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Abstract

There is relatively little work on the investigation of largcale human data in terms of multimodality for human
activity discovery. In this paper we suggest that humanraatgon data, or human proximity, obtained by mobile
phone Bluetooth sensor data, can be integrated with huntatido data, obtained by mobile cell tower connections,
to mine meaningful details about human activities from daegd noisy datasets. We propose a model, called bag
of multimodal behavior, that integrates the modeling ofiatimns of location over multiple time-scales, and the
modeling of interaction types from proximity. Our repretsgion is simple yet robust to characterize real-life human
behavior sensed from mobile phones, which are devices apdlrapturing large-scale data known to be noisy
and incomplete. We use an unsupervised approach, basedbabjistic topic models, to discover latent human
activities in terms of the joint interaction and locatiorhbeiors of97 individuals over the course of approximately
a 10 month period using data from MIT’s Reality Mining projecbi8e of the human activities discovered with our
multimodal data representation include “going out from 7pmdnight alone” and “working from 1lam-5pm with
3-5 other people”, further finding that this activity dommtly occurs on specific days of the week. Our methodology
also finds dominant work patterns occurring on other days@fiteek. We further demonstrate the feasibility of the
topic modeling framework to discover human routines to mteshissing multimodal phone data on specific times

of the day.
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I. INTRODUCTION

Cell phones are rapidly emerging as the ultimate multimaaadsor of human dynamics and behaviors [11].
Equipped with GPS, Bluetooth, accelerometers, cameras, acmphbnes, current phones have the potential of
tracing multiple forms of data at scales previously unagible. This data has the potential of enabling the design
of new human-centered applications related to people'ly diée, thus opening a whole scope of problems in
multimodal integration and ubiquitous computing [4], [1619], as well as enabling the understanding of human
interactions, movements, and behaviors, and how thesecin@a&h other, as never before.

Two fundamental problems in this domain relate to routinedeting: how todiscover recurrent patterns in a
person’s life from multimodal data like proximity, locatipand motion, and how toredict, based on the knowledge
of a person’s routines, her most likely routines at any gitrere. On one hand, pattern discovery via unsupervised
learning is often a necessity, given the potentially largenber of relevant routine patterns of an entire population
and the huge amount of unlabeled data that can be recordadawihone over time [7], [8]. On the other hand,
predictions from aggregated user observations are, asgsaime of the most useful outcomes of routine modeling,
by inferring both where and with whom a user would most like/in the future (for anticipation) or would most
likely have been in the past (for cases of missing data).

While recent works have started to analyze both problemsh flecation or proximity data - discovery and
prediction in [7], discovery in [8] - one aspect that has nekl investigated in depth is the role of multimodal
integration in large-scale routine analysis. More spedffichow does the joint use of multiple modalities (e.g.
location and proximity to others) enhance the understandfra person’s routines, and how can this be efficiently
represented and automatically inferred? Proximity to kngwople (as a coarse approximation of face-to-face
interaction) adds a rich element of social context that iy wseful to complement or disambiguate many situations
in daily life. For instance, being at home alone or with a éagyoup having a party represent entirely different
social situations, that would be nevertheless identiGahfthe sole perspective of location. Such finer descriptions
of routines based on multiple cues are clearly importanth@racterize users and their habits.

This paper presents an approach for large-scale unsupgte@ming and prediction of people routines through

the joint modeling of human location and proximity intefans. Our work has four contributions:

1) We present an approach to jointly model a user’s locafimeractions, and time data in a manner suitable
for robust human activity mining from large-scale noisyadafVe propose a bag of multimodal behavior,
that integrates the modeling of variations of semantictiocaover multiple time-scales, and the modeling of
interactions types from Bluetooth proximity. Our represdion is simple yet robust to noisy and incomplete
real-life mobile data.

2) We present an analysis of the proximity interactions a@eg in the Reality Mining data [7] which depicts



MIT Media Lab and business students, considering both duratof interactions with fellow lab-mates as
well as all other Bluetooth devices.

3) We use a probabilistic topic model, namely Latent DirithAdocation (LDA), to mine the dominant mul-
timodal human activities occurring in the Reality Miningtalaincluding typical human activities such as
“being at home in the morning with another person”. Upon etoanalysis of the results, we are able to
find routines occurring dominantly on certain days of the weekform us of activities such as “being out
Friday evening with a large group of lab mates”.

4) We present a method to predict missing multi-modal sedats, in this case joint location-proximity data
over several hour intervals. The prediction task furthefficmrs the feasibility of the joint location-proximity
routines discovered as topics for data prediction.

This paper is organized as follows. In Section Il, we preseatntiost related works on large-scale human sensor

data with focus of human activity modeling. We then presamtfeamework in detail in Section lll, followed by
our experimental results and analysis in Section IV. Findlg paper is concluded with some ideas for future

work.

Il. RELATED WORK

The mobile phone is a very unique device continuously capguour location, interaction, communication, and
motion traces continuously left behind in our daily live[1Researchers are just beginning to understand the
implications of such data collections for fields ranging frepidemiology [24] to dynamical network analysis [14].
The research most relevant to ours is in the field of human #ctmodeling.

There is an increasing body of work on activity recognitiomgsrarious types of wearable sensors (not involving
mobile phones). For example, in [21], wearable electromidges measure the amount of face-to-face interaction,
conversational time, physical proximity to other peopleg @hysical activity levels in order to capture individual
and collective patterns of behavior. Their goal is to underdthow patterns of behavior shape individuals and
organizations. Other authors [15] use two wearable sensoesplaced on the right hip and one on the right wrist
of a person, to recognize user daily routines such as “dyigircar”’, and “washing hands”. The method uses topics
models and is tested on a few weeks of data obtained by oneTusar technique, however, would not be directly
applicable to mobile sensor data since it uses body paritsensuman motion features of the wrist and hip as
opposed to features directly obtainable by mobile phonaisddin be worn in pockets, bags, or backpacks. Recently,
mobile phones have been modified to capture non-linguisgéedp attributes [19], [20]. These non-verbal speech
features have been used for sound classification (for exampsic versus voice) and for the discovery of sound
events [19]. In [20], these features, in addition to othdstmed by mobile phone sensors, are used to characterize

social interactions such as personal relationships at tirephace or in private.



Mobile phone call data has been analyzed at large-scale3],iflfl] to understand human dynamics. Human
mobility patterns have been modeled from location datainbtawhenever phone calls were made in [11], to find
that human trajectories are highly regular in terms of bethgoral and spatial characteristics. In [3], phone call
data has been used to study the mean collective behaviormérmi at large scales, focusing on the occurrence
of anomalous events. The authors also investigate pattérrallimg activity at the individual level and model the
individual calling patterns (time between phone calls) @avy tailed. In [5], missing data in activity logs are filled
using sequence alignment techniques.

There are several works related to activity modeling frormatimn-driven phone sensor data. CitySense [18] is
a mobile application which uses GPS and WiFi data to summatipéspots” of activity in the San Francisco
area, which can then be used to make recommendations toepesgdrding, for example, preferred restaurants
and nightclubs [23]. Liao et al [17] use GPS data traces to lahdl extract a person’s activities and significant
places. Their method is based on Relational Markov Netwdgkgle and Pentland [7], the pioneers in the Reality
Mining research domain, used Principle Component AnahyBGA) to identify the main components structuring
daily human behavior. The main components of human actitighich are the top eigenvectors of the PCA
decomposition are termeegenbehaviors. Our previous work [8] builds on the initial ideas in [7], tgh we
propose the use of probabilistic topic models and develojibflefeature bags to capture human routines in a robust
manner (i.e. small variations in daily activities will noffect results though they might result in eigenbehavior
changes). Our method also had the advantage of capturimgatlestic trends occurring over part of the day (such
as early morning only), whereas eigenbehaviors captuterssaover the entire day.

To our knowledge, relatively few works have focused on lesgale human activity modeling from proximity
or multimodal mobile sensor data. There are some works by &l group [20], [21], using multimodal data,
though the critical features for these works are non verbdicafeatures which would not be readily available
from most off-the-shelf mobile devices. In [6], a dynami©ximity network is modeled and analyzed to find the
properties of human interaction dynamics. In [24], a stuflj)\aw mobile phone viruses spread investigated joint
location and proximity mobile phone data, though the fodubat work is to the application of epidemiology rather
than to the mining of routines as we do here. Recently, we diceliminary study on Reality Mining data, where
we investigated human activity patterns from multimodalbiteo data, considering both location and proximity
data [9]. This paper extends that initial work by providingtifier details and analysis of the data and results. More
specifically, this paper introduces the concept and metloggioin more details. Further, we introduce a detailed
analysis of user interactions within the group and with ptBkietooth devices and compare the interactions of
two different subpopulations. We also extend the multinhedatine discovery to consider factors such as the day

of the week, leading to the discovery of work patterns dotimigaon Sundays versus Mondays, for example. We
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Fig. 1. Overview diagram of our method. The data captured by mobilegshéwhere a user is as well as with whom) is combined to
form a joint location-proximity representation. After the multimodal dataesentation is transformed to a bag of words, Latent Dirichlet
Allocation inference is applied to reveal latent topics (or discovered resitircorresponding to common user places and interactions. Each
routine is characterized by its top multimodal words ranked by their pitityab

also present an investigation of user entropy to diffeeativarying types of individual behaviors.

Ill. M ULTIMODAL FRAMEWORK

We use the Reality Mining (RM) dataset [7] for which the aiti#ds of 97 students and staff at MIT were recorded
by Nokia 6600 smart phones over the 2004-2005 academic @dan a day in the life of a person in terms of
where they go and the number of people within the group theyimrproximity with, our goal is to discover
routines from large-scale multimodal phone data. Further,use the combined location and proximity routines
discovered to predict missing location and proximity déta.overview of our method is visualized in Figure 1. We
represent a day in the life of a user in terms of where they aee @90-minute time interval as well as the number
of people they are with during this time interval within thé/IRoopulation, forming a joint location-proximity
data representation, described next. This joint data reptaton is input to the Latent Dirichlet Allocation (LDA)

model, from which human routines are discovered, repraggrebmmon forms of social interactions which occur

at varying locations.

A. Joint Location-Proximity Representation
The joint location-proximity data representation is basadttee concatenation of data corresponding to users’
location, proximity, and a timeslot indicating a coarsaigrmeasure of the time of day for which this data is

measured. The details follow.



Location Representation: Following Eagle et al [7], a given individual’s locations gn by cell towers) is
represented over the course of a day by representing allpp®dscations into4 categories, namely work (W),
home (H), out (O), and no reception (N). W are the MIT work pisa, H are the homes of individuals, and
O are towers that are not H or W, thus encompassing a large ewailplaces. The W and H labels can be, in
general, easily obtained from user tagging of cell towersram knowledge about the data collection campaign.
N is a label used if there is missing data for a person for argtime, for instance when the phone is off. The
basic idea for the location representation, which is takemfour previous work [8], is to assign a single location
label (H,W,0O,N) for eact80—minute time interval of a user's day, resulting 48 location labels for each user
and each day. The use 86-minute slots, synchronized on the hour, is a simple yet sblgsumption, as many
people and organizations schedule their life around this tf day segmentation. Also, the data is quite noisy and
challenging, and this representation aids with some ssusEaoise, such as the numerous fluctuating cell tower
recordings. To assign a single label t@@minute slot, we compute the time of occurrence for all lmratabels
within the slot, and assign the one with largest duration.nTBeconsecutive 30-minute labels are taken to obtain
location transition information over &5 hour period in a day. These5-hour intervals are overlapping, resulting
in 48 x 1.5-hour 3-label location sequences in a day. We usg hour intervals in order to capture transitions in
user movement.

Proximity Representation: For proximity data, we use the Bluetooth readings to comgdaximity with people
in the Reality Mining group. Bluetooth can detect other amdevices located within &0-meter radius. Bluetooth
is a reasonable (although clearly imperfect) proxy for abiciteractions, though there are various sources of noise
making it challenging to work with. On one hand, we could etpbat people actually interacting will often be
sensed by Bluetooth but many cases of nearby people who datedict will be detected too. This is a limitation
of the Bluetooth modality. Proximity in general could be ddesed as proximity to laptops, computers, and other
people, is also recorded in the data, but it is difficult to idgish them from mobile phones. We quantize the
number of proximate people intb prototypical groups: user is alone, dyad (1 person in praxdimsmall group
(2-4 people in proximity), large group (5 or more people iopmity). The group sizes are motivated by research
in social science that has traditionally analyzed dyadsllsgroups, and large groups as separate categories, as
they present distinct dynamics [10].

Timeslot Division: Each day is divided int@ coarse-grain timeslots as follows: 0-7am (1), 7-9am (2),L8m
(3), 11am-2pm (4), 2-5pm (5), 5-7pm (6), 7-9pm (7), 9-12pm These timeslots were chosen to capture common
events in daily life, such as lunch time, dinner time, or nimgnand afternoon work times. Other time intervals
could equally be used to capture events occurring over fineoarser daily periods.

A day in a user’s life is finally represented asnaltimodal bag of words, where a word is a location sequence,



concatenated with the corresponding proximity group arichadiot, as shown in Figure 1. The bag of word model

is amenable for probabilistic topic modeling which is imuged in the next subsection.

B. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised problédiic generative model that was initially developed
to characterize text collections, but can be extended teratbllections of discrete data [2]. vord is a basic unit
of discrete data defined by an item for a vocabulary of $izeA document is a bag of N words, and a corpus
is a collection of M documents. Each document is viewed as a mixture of topicsyeMopics are distributions
over words. The probability of a word in a document, assuming it is generated from a convex coriibmaf
T topics, is given as

T

p(w) = 3 plulz = t)p(z = ), (1)

t=1
where z is a latent variable indicating the topics from which the evar was drawn. In LDA, a Dirichlet prior
is assumed on the topic distributions to provide a completgeative model for documents [12]. The graphical
model for LDA is shown in Figure 1.

def

The objective of LDA inference is to determine the word disttibn p(w|z = t) = ¢§w) for each topict, and

the topic distributionp(z = t) e 9((;) for each documend. We use the approximation derived in [12] based on
Gibbs sampling. In LDAp(#) andp(¢) are assumed to be Dirichlet distributions with hyperpatansex and g,

w)

respectively. The Gibbs sampler is used since exact infermsniotractable [12]. Letzg andnflt) be the number of

times wordw and documend have been assigned to topiaespectively. Let; = Zgzl n§“’> andng = Zthl ng)
denote the sums of words in a given topic, and of topics in argidocument, respectively. Let denote the set
of words in the corpus, and denote the set of topics in the corpus, ang denotez excluding the current topic

elementz; = t. In practice in the Gibbs sampler, we sample from

p(w,2) pwl)  p(a)
zi =t|z—, W) = = : 2
P =teiW) = S T pwalzp(@) bl @)
"E@z +0 ”g)ﬁz +a

X

Zgzl ngli)z + 8 Zthl n&t) ta

using the procedure summarized in Figure 2. In the above lequsaatz(ll denotes the counts of the elements jointly
contained in the subscript and superscript, excluding tireent element. The topic assignmentgz,ff) and n§w>

are initialized randomly. In each Gibbs sampling iteratitre topic assignments for a word and a document are
sampled from Equation 3. After a predefined number of iteratioe. after the burn-in time of the Gibbs sampler),
the sampler is assumed to have approached its stationampuli®on [22]. This is a common assumption in MCMC

methods. Essentially, the initialization process randoadgigns words and documents to topics. Then the chain



/I GOAL: Given a training corpus and parameters, and7’, estimate the parameteféf) and n§w>
from which we can determine the model paramet&§’ and éf;).

/I Initialization
1) Initialize the count parameterﬂﬁf) =0, niw) =0.
2) Iterate over each wordv in the corpus:
3) Sample a topi¢ from ¢ ~ Mult(7).
4) Update the count parametet§’, n{") as followsn{ = n{) + 1, n{") = n{*) 4 1.

/I Run the chain
5) Iterate over a large number of iterations (e.g. 1000):
6) Iterate over each wordv in the corpus:
7) Decrement the current word and current word’s topic assignmettcounts as follows|

n((it) = nfit) -1, nf“’) = niw) — 1.
[P ns@i+,@ nfﬁﬂ-«—a
8) Sample a topic indek from p(z; = t|z—;, W) x Z:Lnﬁ',”i’ﬂrﬁ ST e
9) Increment the new word/topic and topic/document courstsfodlows n = n{ + 1,

ni“” = ngw) + 1.

/I Compute model parameters

10) Determine the unknown pa)rameters as follows
(w) t
w) Ny + P ) _ Ny T a ) 5 -
= —+———— andf,’ = —~—— where¢p andf are the model parameter estimates,
2 ng+ V3 d ng + 7T« ¢ P

ng = Zx:l ngw), andng = ZtT:1 n((;).

Fig. 2. Gibbs Sampling algorithm for LDA.

is run in order to ‘refine’ these assignments according to Egua. In this paper, we use the last sample in the
chain for document and word ranking of topics due to the lackdentifiability problem in sampling-based LDA
(i.e. there is no guarantee that topics across samples argathe [22]). The Gibbs sampler results in

w _nV+B g ta

= ==\ 4
t ng+Vp’ d ng + Ta “)

In our work, documents are days in people’s lives and wordstlae location-proximity words defined in Sec-
tion IlI-A. Topics are expected to correspond to routines.

In this work, we use LDA for two tasks:

Routine Discovery: We propose to extend the use of LDA to handle multimodal dagae@ing that topics will
capture joint patterns of location and proximity that helgadhbiguate relevant cases (e.g. discriminating between
a person at work alone and in a group). Routines can be idehhffeobserving the top words for a given topic
(ranked by their probability) and also by the top days for\&egitopic.

Predicting Behavior: LDA is also used for the prediction of missing labels in a dag. (ihe prediction of users’
joint patterns of location and proximity for certain timets). To achieve prediction, LDA inference is run on the
test days containing missing bits. The algorithm detailspresented in Figure 3, is defined as the timeslot of

a document (a day), where = 1...8 are the8 coarse-grain possibilities in a day. After finding topicshait the



/I GOAL: Given a test document with missing location and proximity labels for timeslef,, predict
a label.

/I Topic discovery from the training corpus.
1) The Gibbs sampling algorithm in Figure 2 is performed om taining corpus to discover topics.

/I LDA querying is performed to retrieve documents releviantest documents.
2) Follow the Gibbs sampling procedure in Figure 2, replgdie topic sampling in Step 5 by th
following equation, from which topi¢ is sampled:

D

Al e .
1% w ~(w ’ T ’
D=1 n,(f ) + ng,—\)i +8 Y ng) +a

p(zi = t|z—i, W) x

whered represents the test document, aﬁ@fi counts the observations of term and topict in the
test documents, excluding th& index [13].

® g
d

ng+Ta’

~ ~ n
3) The document/topic distribution for the test documes 9((;) =

// Find the best matching topic for test document R

4) The topicz; for which ¢ = argmirs; — s,,| and 9((;"’) > Th, wheres; is the timeslot of the most
j

probable word of topicz;, s,, is the timeslot of the missing data,,s,, = {0,..8}, andTh is a

threshold, is chosen a%ol’.

/IReplace the missing data.
5) d(sm) = d tor (5m), Whered,.o» is the most probable document givegf”.
d d

Fig. 3. Algorithm for predicting proximity and location timeslots.

training corpus via LDA, a distribution of topics for eachttdecumentd, is inferred resulting inﬁg). The resulting
topics for document are ranked according té)g) and the best matching topic for documehis denoted byzg’p,
which is found according to Step 4 in Figure 3. The result is alsitgpic which is used for replacement of the
missing data over the timeslot. To fill in the missing locateomd proximity words, we replace the missing labels

with those of the top day for the mostly likely topic selectédsm) = do» (sm), Whered » is the most probable

document givem?p. For the predicting behavior task (whose results are gime8dction IV.D), experiments are
performed over0 chains. Note that the procedure used for behavior predicteéscribed here is simple and more

elaborate methods to predict missing labels could be difem the output generated by LDA.

IV. EXPERIMENTS AND RESULTS
A. Data and Model Parameters

We experimented with all of th@7 individuals in the RM dataset and with days ranging from I&004 to
05.05.2005, encompassi?g1 consecutive days thus extending our previous work [8] whinly considered0
users. This subset of days was chosen since these are theodayisi¢dh proximity data is mostly available. Days
with entirely no reception for location were not considesaice they contain no useful information for proximity

either. The LDA model for joint location-proximity routinestiovery used” = 100 topics. Heuristic methods were
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used to obtairl’, but generally speaking, a small value’Bfwill produce coarse routines, whereas a lafgsvill
be much more specialized. The estimation of the optimal nurabéopics in topic models is an active research
problem [1], [13]. The hyperparameters were sefjte- 0.01 and o = 50/7". These hyperparameters are chosen

based on standard values used for text analysis [12].

B. Exploratory Analysis

We performed an analysis of the proximity data to study theractions of business students compared to
engineering students and staff, considering interactionslifferent days of the week as well as interactions with
others in the same group compared to other Bluetooth deyiasincluding people in the group), which could
include family members, friends, strangers, laptops, onpaters. The results are illustrated in Figure 4. The entire
Reality Mining dataset was considered for these resultduding 16 months of97 users’ data.

Figure 4(a) and (b) illustrates the quantity of interactidretween users of the Reality Mining study. Users
1-27 are the Sloan business students, and users 28-97 areetlia Mb students and staff. There are two boxes
marking the separation between those groups in Figure 4¢h)gnWe plot the quantity of interactions between
individuals in terms of (a) the number of interactions dgrthe course of the study (without taking into account
the duration of interaction) as well as (b) the total dumatad interaction between these users in hours. In both
plots, the amount of interaction (either considering numdsieinteractions or total duration) was much higher
between several Media Lab users, in comparison to businedergs. The figures have been adjusted to visualize
the interaction between business students as well by asgigmy interactions occurring over a threshold to the
last bin of the colorbar (200+ interactions or 150+ hourspr&specifically, in Figure 4(a), if there are 200 or
more interactions between a pair of users, this is labele@(®}#. The threshold 200 is chosen by rounding up
the maximum number of interactions between business stsidéhe same procedure is applied in Figure 4(b) for
hours of interaction. The maximum number of interactionsulghout the study occurred between a pair of Media
Lab users, and was approximately 585. The maximum durationtefactions occurred between a differing pair
of Media Lab users, and was on the order of 690 hours over theseamf 16 months. Note that these plots are
not symmetric due to the inconsistencies in Bluetooth amdd#ta collection software. Often times, two people
will be sensed as being proximate only by one of the phonesh&umore, there are several users without any data
recordings. There are many interactions which occur fretiydetween individuals though not for long durations.
This is especially visible between several of the Media Lalrausélso note that interactions between business
students and engineering students are quite sparse. Tleraaay Media Lab users that never interact, though
most business students (with data recorded) interactltiresin a much less sparse matrix. There was a pair of

users with negative duration values, likely due to incdridock settings, which was removed.
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Figure 4(c) and (d) plots the overall means of the number efattions and the duration of interactions in hours
respectively, for Media Lab and business users over the wéekevS M T W T F S’ on the x-axis corresponds to
'Sunday through Saturday’. These average values varied g@atbss users. We can see in both groups of people,
the interactions are very low on the weekends. The mean nuafhiateractions is always on average higher for
Media Lab students on every day of the week, though it is eafpetiigher on Mondays, Wednesdays, and Fridays.
The duration of interactions for Sloan students is on averageehthan Media Lab students on Thursdays, perhaps
due to a course or business school event on this day.

In Figures 4(e) and (f), we plot the total duration of userratéions with users in the study compared to 'non-
user’ Bluetooth devices (or other devices), which couldude family, friends, strangers, laptops and computers.
Figure 4(e) illustrates the total interaction times of Slogera whereas (f) is for the Media Lab users. In (e) and
(f) we can see there are a few people in both groups who have lie@ractions within the group. Also, many of
the users have more interaction with people in the group ti#in 'other devices’. Many of the Media Lab users
have heavy interactions with 'other devices’, likely duethe fact that they spend hours in front of their laptops

and computers daily.

C. Joint Location-Proximity Routines

The fusion of proximity and location data enables the disgowd more detailed patterns regarding this group
of MIT users’ daily lives compared to single modalities. éftL DA learning, there is a chance that two topics
could be similar to each other, as LDA does not guarantee tipi¢s be distinct from each other. The fact that
LDA-learned topics are often similar to each other has alsnlmbserved in the text domain. A short summary
of the learned routines on the entire corpus is presentagvbehd a summary is visualized in Figure 5.

-Home routines and proximity: Most of the home routines discovered occurred for usersegliom not in proximity
with anyone from the group). Onlg out of the20 topics related to discovered home routines dominated for a
pair of users in proximity. No home routines occurred for Bramlarge groups in proximity, which suggests that
people did not socialize within the population at home.

-Work routines and proximity: Most of the routines discovered with proximity interacsarccurred at work locations.
There arel7 topics corresponding to work routines, ah8l of them occur with proximity patterns. Routines at
work were discovered for all four proximity groups (usersred, in dyads, small, and large groups), which indicates
that all these types of interactions occur frequently.

-Morning routines and proximity: Only 3 out of 100 topics had a proximity interaction in the morning (before
10am), and alB of these routines occur for pairs of users and never for groBpople interacting in the morning

seems to be relatively sparse for this population.
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Fig. 4. Interaction patterns of MIT business students compared to emgigestudents and staff. Figures (a) and (b) visualize the pairwise
user interactions in terms of (a) the number of interactions and (b) thedotation of interactions (hours). Business students (1-27) and
Media Lab users (28-97) are highlighted by boxes. There are mamadtitens between engineering students which do not occur over long
durations. The average quantity of interactions over all Sloan busihedsnss versus all Media lab students and staff is computed over the
days of the week 'S M T W T F S’ in terms of (c) the number of interactions @) the total duration of interactions (hours). On average,
Media Lab users have more interactions, though on Thursdays bsishetents interact for longer durations, perhaps due to a course on
this day. They also interact less on Mondays, Wednesdays and Fridayaverage, there is little interaction on weekends in all cases. The
total interaction times (hours) of users with other Reality Mining users in eoisgn to all other Bluetooth devices are shown in (e) for
Sloan students and (f) for Media Lab users.

-Day time routines and proximity: Approximately20 topics characterize user interactions throughout the tiégrt-
7pm). The interactions include pairs of users, as well aslsanal large groups.
-BEvening routines and proximity: 7 topics characterize group interactions in the eveningsnf@pdnight). These
occur for pairs of users, and small as well as large groups.

A selection of topics illustrating the types of joint rowm discovered are visualized in Figure 5. We have
illustrated results for selected topics,= 11, 28,41, 46, 53, for the 50 most probable days given those topics. The

3 most probable words given the topics are shown in the tabldhéa first row. We plot the results in terms of
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Topic 11 Topic 28 Topic 41 Topic 46 Topic 53
Top 3 words | p(w]|z) Top 3 words | p(w|z) Top 3 words | p(w]|z) Top 3 words | p(w]|z) Top 3 words | p(w|z)
WWwWWw 00O WWwWw WWwWWw HHH
1lam-2pm 0.502 9pm-12pm 0.634 2pm-5pm 0.610 7pm-9pm 0.415 0-7am 0.757
Small Group Alone Large Group Small Group Alone
WWwWWw [e)eXe] WWwWw WWwWWw HHH
2pm-5pm 0.427 7pm-9pm 0.358 5pm-7pm 0.275 9pm-12pm 0.219 7am-9am 0.215
Small Group Alone Large Group Small Group Alone
HHW WOoWw WWH WWwWWw HHW
9am-llam 0.015 1lam-2pm 0.001 5pm-7pm 0.034 5pm-7pm 0.132 9am-llam 0.015
Dyad Dyad Large Group Small Group Alone
Topic 11 Topic 28 Topic 46 Topic 53
w W w W U
H H H H | [ H
o o o o o
N 5 10 15 20 N N 5 10 15 20 N 5 10 15 20 N
Time of Day Time of Day Time of Day
Topic 28 Topic 46 Topic 53
Large — Large Large Large
Smal iSmal iSmal Smal
Pair Pair Pair Pair
10 15 Alone 5 _10 15 Alone 5 10 15 Alone 5 10 15 Alone 10 15
Time of Day Time of Day Time of Day Time of Day Time of Day
Topic 11 Topic 28 Topic 41 Topic 46 Topic 53
6 6 20 8 4
6 3
4 4 15
10| 4 2
2 2
5 2| 1
! L1 HI
% 50 100 % 50 100 % 50 100 % 50 100 % 50 100
User User User User User
Topic 11 Topic 28 Topic 41 Topic 46 Topic 53
14 1 12
12 12 10l
10) 10]

8 8
o E
o o
o o
4 4
4 4
) ) 2 2
ST w1 F s s N T w1 F s s W T F s s T w T F s s

Fig. 5. Selected LDA results. The first row of tables correspond to th& prebable words given a topic. Ranked days (i.e. documents)
for selected topics by(d|z;), showing (second row) the tdf days’ location data and (third row) the corresponding proximity data for a
given topic. (fourth row) Histograms of the users whose days rainkébe top50 for topic z;. (last row) Histograms of the days of the

week (M TW TF S S = Monday to Sunday) that ranked in the d0pfor topic z;. Note the colorbars for the location figures indicating
the W, H, O, and N locations, and for the proximity figures indicating a largeg small group, pair, or alone.

users’ locations (second row), proximity (third row), usgatistics (fourth row), and day of week statistics (fifth
row). The figures illustrating the users’ locations and pragindata show the time of the day as the x-axis, and
each row is a day of the life of a user plot in terms of their taoa (H is home, W is work, O is out, and N is
no reception) as well as in terms of their interactions wh#agge’ corresponds to a large group, and 'small’ to a
small group). Furthermore, a histogram for the users whoge daked in the top0 documents is shown in the
fourth row, the x-axis indicating anonymous user id and tkexig the number of days. The fifth row illustrates a
histogram of the days of the week (M T W T F S S = Monday to Sund&yh® 50 most probable days given
each topic. A summary of the routines discovered plotted guié 5 is:

-Topic 11: The user is at work during the day (dominantly 11am-5pm as $emn the 3 top words given topic
11) while in proximity with a small group of 3-5 people. Seveugaers have days with high probability of topic
11. This work routine dominates on Mondays.

-Topic 28: The user is out in the evenings (7pm-12pm) alone. This rowgsars most frequently on Fridays for



14

several users in the study.

-Topic 41: The user is at work from 2pm-7pm in a large group. This occummidantly for a handful of users,
predominantly on Thursdays. Note, that most of these usersspmnd to Sloan business school students, displaying
their common Thursday afternoon work routine.

-Topic 46: The user is at work in the evening (from 5pm-midnight) in a Brgeoup. This work routine dominates
on Sundays and occurs often for a few users.

-Topic 53: The user is at home alone in the mornings (from midnight udtlam). This topic hardly ever occurs

on Fridays.

D. Behavior Prediction

We now show how it is possible to use LDA in order to predict wesked location and proximity data for a
timeslot of a user’s day. For experiments, we decided taongjsish between people based on the entropy of their
routines under the hypothesis that prediction of locatiod proximity will be more or less difficult depending
on the variability of each person’s habits. User entropy asputed on the distribution of topics given users,
p(zlu) = >, p(2|d,u)p(d|u), wherew is the user variable, and we assup(d|u) = ‘D—{L', D, is the set of users
recorded for user u, and,,| is the set cardinality. The topicscorrespond to the joint location-proximity routines
found in Section IV-C. All of the users in the dataset are raniecording to their entropy. After this, we set two
thresholds for high and low entropy which gaM@users in each case. We randomly pickepeople for each class
(high and low entropy).

For each of thel0 selected userg0 days of their life were randomly selected from days with atsteone
proximity interaction (i.e. days that contained at least mon-empty word over the entire day). This set of days
was used to form the test set, from which we systematicaityore words to generate data with missing sequences
to predict. For each day, the words of a given coarse-graiediot were removed to form a day for which the
method has to predict the missing sequence, thus generatiags, each with one timeslot’s words missing. The
resulting dataset for which we predict missing sequencataaws10 users, each with60 days= 1600 documents
for testing. Thus, for each user there d6f documents for testing, and each coarse-grain timesloaoc@00

documents for testing.

For each document, there is one timeslot with missing looadind proximity labels. For evaluation, we compute
two types of error. Thdocation error is the number of incorrectly predicted location labels digd by the total
number of labels to be predicted in the given coarse-graiegiot. For instance, documents with timedlahissing

have 14 location labels to be predicted since it occurs from 0-7are fdroximity error is the average number of
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people wrongly predicted for each word in a given timesloar&specifically, if the predicted group (alone, dyad,
small group, large group) is correct then there is no erfahd predicted group is incorrect, then we predict the
minimum number of possible people in the group (alone=1ddgasmall group=3, large group=5) and compute
the difference with the actual number of people in proximiigr example, if there aré) people in proximity and
we predict a small group, then we assunpeople are in proximity. If this incorrect prediction ocswover thel4
half-hour words in timeslot (midnight-7am), then the average proximity erroffig=inally, the results for location
and proximity error are averaged over 10 randomly initedizhains of the Gibbs sampling procedure described
in Figure 2.

The location and proximity errors are computed over userstiameslots and displayed in Figures 6 and 7. We
present the average errors as a function of the user foridocat Figure 6(a) and for proximity in Figure 6(b).
Users 1-5 (in blue) have low entropy and 6-10 (in red) havdn lagtropy. Interestingly, low-entropy users have
lower error in the prediction of location labels than higitrepy users. For low entropy users, the error can be as
low as0.32 which nevertheless indicates that the task is difficult. W ahclude errorbars corresponding to the
standard deviation over the) randomly initialized chains. High entropy users are sigaifity more difficult to
predict. In Figure 6(b) we plot the proximity error. In the bé®sp. worst) case, the predicted number of people
in proximity is incorrect by, on averagé,16 (resp.1.2) people. In this case, low entropy users do not necessarily
have lower prediction errors in proximity than high entramsers.

In Figures 7(a) and (b), we plot the average errors as a funciicoarse-grain timeslot for both high and low
entropy users for location (Figure 7(a)) and proximity (Fegu(b)). We can see in Figure 7(a) that for almost every
timeslot (with the exception of timeslot 6), high entropyersare harder to predict (have higher errors) than low
entropy users. Timeslot 6 (5-7pm, which corresponds tociptommuting times) is overall the most difficult to
predict. Also, for timeslotd and2 (midnight to 9am), low entropy users correspond to muchebgterformance
than high entropy users. Regarding Figure 7(b), the erroraximity prediction as a function of timeslot is again
not highly correlated with the entropy of a user. The predittin proximity has the highest error in timeslat
corresponding to 2-5pm, and the lowest error in the mornings late evenings, which is not surprising. In the
worst case, the proximity error in any given timeslot is ldssn 1.25 people on average.

In Figure 8, we compare the performance of our topic model (TM)hod to several other methods. Figure 8(a)
illustrates the overall average location error for the TMrapgh in comparison to a nearest neighbor approach
called previous day (PD), which uses knowledge about theifapéate of the test day, and replaces the missing
data with that of the previous day. Note that the date is a g&gng contextual cue about human routines that
is not currently used in our method TM. The approach labeled Wiascase where all missing data is replaced

by the ‘work’ location. Similarly O is the case where all misgidata is replaced by ‘out’, N by ‘no reception’,
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Fig. 6. (a) Average location prediction error as a function of usergravlow entropy users are labeled ‘Low E’ and high entropy users
‘High E'. (b) Average proximity prediction error as a function of usdrecation label for prediction is consistently lower for low entropy
users. However, for proximity errors are not necessarily lowetdarentropy users.

(a) (b)
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Fig. 7. Average error in (a) location prediction, and (b) proximity predic as a function of timeslot for low and high entropy users.
High entropy users consistently have higher location label errors &atigtion over all times of the day, though the error is highest between
5-7pm (timeslot 6) which corresponds to typical commuting times. Theelsiglrrors in proximity label prediction occur from 9am-7pm,
corresponding to work times where most interactions occur.

and H by ‘home’. Figure 8(b) illustrates the overall averagexpnity error for the TM approach in comparison

to the PD approach, in addition to the approaches labeled &,[@nd L, corresponding to replacing the missing
proximity data with the labels ‘alone’, ‘dyad’, ‘small grpy and ‘large group’, respectively. We can see the TM
and PD approaches perform similarly in terms of location gagaiction, however, TM outperforms PD for missing

proximity data prediction. The TM approach also outperfordhshe other methods illustrated.

Given the simplicity of the PD method, we look deeper into the @Ml PD performance for various types of
users in Figure 9. Figure 9(a) illustrates the average latgirediction error for high and low entropy users. We
see that for location prediction, the PD method performsebdtir low entropy users. This is understandable since
low entropy users have very ‘routine’ lifestyles and simmplacing the missing data with that of the previous day
results in good performance. However, for high entropy sisear TM method, which captures specific patterns
of transitions (e.g. H to W), is working better. Given thesemplimentary features, for future work, we plan to
investigate a method that integrates both concepts. FigieilRistrates the average proximity prediction error for
high and low entropy users. The results show that our TM approatperforms the PD approach both for low

and high entropy users.
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Fig. 8. A comparison of our topic model (TM) approach to various othethods for overall location and proximity errors. PD is the nearest
neighbor approach of replacing data with the previous days’. (a) leoovkrall average location error W represents the error obtained if all
missing data is replaced by work, O by other, N by no reception, and Holmeh(b) For the overall average proximity error A represents

the error obtained if the missing data is replaced by alone, D by dyad, & group, and L by large group. The TM approach predicts

missing location data as well as the PD approach, however, our appoogmerforms the PD method for predicting missing proximity data.

The TM also outperforms all the other methods (both in terms of locationpaoximity missing data prediction) significantly.

(a) (b)
Avg. Location Error Avg. Proximity Error

1

06 ™ oq HTM

rD /| IlPD
0.4 0.6
0.4

0.2
0.2
0 0
LOW E. HIGH E. LOW E. HIGH E.

Fig. 9. Comparison of our topic model (TM) approach with the previcayg @PD) approach in terms of user types. (a) Average location
error for low entropy users and high entropy users for the TM vs. Bidaach. The PD approach performs better for location data prediction
for low entropy users, however, our TM approach performs betiehigh entropy users. (b) Average proximity error for low and high
entropy users for the TM vs. PD approach. In both cases our TMoapproutperforms the PD approach for proximity data prediction.

V. CONCLUSIONS

We have proposed a probabilistic methodology that sucgkgsiiscovers recurrent patterns in people’s lives from
multimodal data, and that can use the discovered routirredafa prediction, estimating location and proximity data
of users with varying entropy. Essentially, the method mihesmost dominantly occurring human routines (topics)
from a huge corpus of real-life human mobile data to deteem@turring human patterns involving time of the day,
semantic location and proximity based interaction typer. @athod also uses these rich human location-interaction
topics to predict missing data, which in real life occursywéequently with mobile phone data, and can also be
seen as a method to verify the validity of the routines discest. By computing the entropy of individuals based
on their jointly modeled locations and interactions, ourtmd is able to predict missing multimodal data over
several hours for users with both low and highly varyingdifdes.

In future work, the methodology for data prediction could foether optimized to use the topics in a more

sophisticated manner, and to include prediction on vartiimgscales, such as full days of missing data. It would
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also be very useful to take advantage of the other, ofteradotaidata modalities of mobile sensor data for data
prediction. For instance, one could predict a user’s locativen the time of day and their interactions, the day
of the week, or even using their phone call and SMS data. Thet@®itle proximity data is potentially a very rich
source if one considers proximity to all other devices idalg laptops, computers, and anonymous cell phones.
This data in itself could be used to determine the semantieldatXy an individual, such as if the user is at home
(in proximity with their home computer), at work (in proxitpiwith their work computer), or out (in proximity
with strangers). In a different line of work, we would like émrich the location vocabulary by refining the 'other’
category. This in principle could be done from the Reality Mindataset, but handling sparse human annotation
of places is in itself a research problem. Finally, we wouke lfio consider recent approaches like the Maximum-
Margin Supervised Topic Model [25] which explicitly addressthe issue of maximizing the distance between

topics, and may be used to optimize the number of topics outpu
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