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Abstract

There is relatively little work on the investigation of large-scale human data in terms of multimodality for human

activity discovery. In this paper we suggest that human interaction data, or human proximity, obtained by mobile

phone Bluetooth sensor data, can be integrated with human location data, obtained by mobile cell tower connections,

to mine meaningful details about human activities from large and noisy datasets. We propose a model, called bag

of multimodal behavior, that integrates the modeling of variations of location over multiple time-scales, and the

modeling of interaction types from proximity. Our representation is simple yet robust to characterize real-life human

behavior sensed from mobile phones, which are devices capable of capturing large-scale data known to be noisy

and incomplete. We use an unsupervised approach, based on probabilistic topic models, to discover latent human

activities in terms of the joint interaction and location behaviors of97 individuals over the course of approximately

a 10 month period using data from MIT’s Reality Mining project. Some of the human activities discovered with our

multimodal data representation include “going out from 7pm-midnight alone” and “working from 11am-5pm with

3-5 other people”, further finding that this activity dominantly occurs on specific days of the week. Our methodology

also finds dominant work patterns occurring on other days of the week. We further demonstrate the feasibility of the

topic modeling framework to discover human routines to predict missing multimodal phone data on specific times

of the day.
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I. I NTRODUCTION

Cell phones are rapidly emerging as the ultimate multimodalsensor of human dynamics and behaviors [11].

Equipped with GPS, Bluetooth, accelerometers, cameras, and microphones, current phones have the potential of

tracing multiple forms of data at scales previously unattainable. This data has the potential of enabling the design

of new human-centered applications related to people’s daily life, thus opening a whole scope of problems in

multimodal integration and ubiquitous computing [4], [16], [19], as well as enabling the understanding of human

interactions, movements, and behaviors, and how these impact each other, as never before.

Two fundamental problems in this domain relate to routine modeling: how todiscover recurrent patterns in a

person’s life from multimodal data like proximity, location, and motion, and how topredict, based on the knowledge

of a person’s routines, her most likely routines at any giventime. On one hand, pattern discovery via unsupervised

learning is often a necessity, given the potentially large number of relevant routine patterns of an entire population

and the huge amount of unlabeled data that can be recorded with a phone over time [7], [8]. On the other hand,

predictions from aggregated user observations are, arguably, some of the most useful outcomes of routine modeling,

by inferring both where and with whom a user would most likelybe in the future (for anticipation) or would most

likely have been in the past (for cases of missing data).

While recent works have started to analyze both problems from location or proximity data - discovery and

prediction in [7], discovery in [8] - one aspect that has not been investigated in depth is the role of multimodal

integration in large-scale routine analysis. More specifically, how does the joint use of multiple modalities (e.g.

location and proximity to others) enhance the understanding of a person’s routines, and how can this be efficiently

represented and automatically inferred? Proximity to knownpeople (as a coarse approximation of face-to-face

interaction) adds a rich element of social context that is very useful to complement or disambiguate many situations

in daily life. For instance, being at home alone or with a large group having a party represent entirely different

social situations, that would be nevertheless identical from the sole perspective of location. Such finer descriptions

of routines based on multiple cues are clearly important to characterize users and their habits.

This paper presents an approach for large-scale unsupervised learning and prediction of people routines through

the joint modeling of human location and proximity interactions. Our work has four contributions:

1) We present an approach to jointly model a user’s location,interactions, and time data in a manner suitable

for robust human activity mining from large-scale noisy data. We propose a bag of multimodal behavior,

that integrates the modeling of variations of semantic location over multiple time-scales, and the modeling of

interactions types from Bluetooth proximity. Our representation is simple yet robust to noisy and incomplete

real-life mobile data.

2) We present an analysis of the proximity interactions occurring in the Reality Mining data [7] which depicts
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MIT Media Lab and business students, considering both durations of interactions with fellow lab-mates as

well as all other Bluetooth devices.

3) We use a probabilistic topic model, namely Latent Dirichlet Allocation (LDA), to mine the dominant mul-

timodal human activities occurring in the Reality Mining data, including typical human activities such as

“being at home in the morning with another person”. Upon closer analysis of the results, we are able to

find routines occurring dominantly on certain days of the weekto inform us of activities such as “being out

Friday evening with a large group of lab mates”.

4) We present a method to predict missing multi-modal sensordata, in this case joint location-proximity data

over several hour intervals. The prediction task further confirms the feasibility of the joint location-proximity

routines discovered as topics for data prediction.

This paper is organized as follows. In Section II, we present the most related works on large-scale human sensor

data with focus of human activity modeling. We then present our framework in detail in Section III, followed by

our experimental results and analysis in Section IV. Finally,the paper is concluded with some ideas for future

work.

II. RELATED WORK

The mobile phone is a very unique device continuously capturing our location, interaction, communication, and

motion traces continuously left behind in our daily lives [16]. Researchers are just beginning to understand the

implications of such data collections for fields ranging fromepidemiology [24] to dynamical network analysis [14].

The research most relevant to ours is in the field of human activity modeling.

There is an increasing body of work on activity recognition using various types of wearable sensors (not involving

mobile phones). For example, in [21], wearable electronic badges measure the amount of face-to-face interaction,

conversational time, physical proximity to other people, and physical activity levels in order to capture individual

and collective patterns of behavior. Their goal is to understand how patterns of behavior shape individuals and

organizations. Other authors [15] use two wearable sensors, one placed on the right hip and one on the right wrist

of a person, to recognize user daily routines such as “driving a car”, and “washing hands”. The method uses topics

models and is tested on a few weeks of data obtained by one user. Their technique, however, would not be directly

applicable to mobile sensor data since it uses body part sensitive human motion features of the wrist and hip as

opposed to features directly obtainable by mobile phones that can be worn in pockets, bags, or backpacks. Recently,

mobile phones have been modified to capture non-linguistic speech attributes [19], [20]. These non-verbal speech

features have been used for sound classification (for examplemusic versus voice) and for the discovery of sound

events [19]. In [20], these features, in addition to others obtained by mobile phone sensors, are used to characterize

social interactions such as personal relationships at the workplace or in private.
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Mobile phone call data has been analyzed at large-scales in [3], [11] to understand human dynamics. Human

mobility patterns have been modeled from location data obtained whenever phone calls were made in [11], to find

that human trajectories are highly regular in terms of both temporal and spatial characteristics. In [3], phone call

data has been used to study the mean collective behavior of humans at large scales, focusing on the occurrence

of anomalous events. The authors also investigate patterns of calling activity at the individual level and model the

individual calling patterns (time between phone calls) as heavy tailed. In [5], missing data in activity logs are filled

using sequence alignment techniques.

There are several works related to activity modeling from location-driven phone sensor data. CitySense [18] is

a mobile application which uses GPS and WiFi data to summarize “hotspots” of activity in the San Francisco

area, which can then be used to make recommendations to people regarding, for example, preferred restaurants

and nightclubs [23]. Liao et al [17] use GPS data traces to labeland extract a person’s activities and significant

places. Their method is based on Relational Markov Networks.Eagle and Pentland [7], the pioneers in the Reality

Mining research domain, used Principle Component Analysis (PCA) to identify the main components structuring

daily human behavior. The main components of human activities, which are the top eigenvectors of the PCA

decomposition are termedeigenbehaviors. Our previous work [8] builds on the initial ideas in [7], though we

propose the use of probabilistic topic models and develop flexible feature bags to capture human routines in a robust

manner (i.e. small variations in daily activities will not affect results though they might result in eigenbehavior

changes). Our method also had the advantage of capturing characteristic trends occurring over part of the day (such

as early morning only), whereas eigenbehaviors capture features over the entire day.

To our knowledge, relatively few works have focused on large-scale human activity modeling from proximity

or multimodal mobile sensor data. There are some works by Pentland’s group [20], [21], using multimodal data,

though the critical features for these works are non verbal audio features which would not be readily available

from most off-the-shelf mobile devices. In [6], a dynamic proximity network is modeled and analyzed to find the

properties of human interaction dynamics. In [24], a study of how mobile phone viruses spread investigated joint

location and proximity mobile phone data, though the focus of that work is to the application of epidemiology rather

than to the mining of routines as we do here. Recently, we did apreliminary study on Reality Mining data, where

we investigated human activity patterns from multimodal mobile data, considering both location and proximity

data [9]. This paper extends that initial work by providing further details and analysis of the data and results. More

specifically, this paper introduces the concept and methodology in more details. Further, we introduce a detailed

analysis of user interactions within the group and with other Bluetooth devices and compare the interactions of

two different subpopulations. We also extend the multimodal routine discovery to consider factors such as the day

of the week, leading to the discovery of work patterns dominating on Sundays versus Mondays, for example. We
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Fig. 1. Overview diagram of our method. The data captured by mobile phones (where a user is as well as with whom) is combined to
form a joint location-proximity representation. After the multimodal data representation is transformed to a bag of words, Latent Dirichlet
Allocation inference is applied to reveal latent topics (or discovered routines), corresponding to common user places and interactions. Each
routine is characterized by its top multimodal words ranked by their probability.

also present an investigation of user entropy to differentiate varying types of individual behaviors.

III. M ULTIMODAL FRAMEWORK

We use the Reality Mining (RM) dataset [7] for which the activities of 97 students and staff at MIT were recorded

by Nokia 6600 smart phones over the 2004-2005 academic year.Given a day in the life of a person in terms of

where they go and the number of people within the group they are in proximity with, our goal is to discover

routines from large-scale multimodal phone data. Further, we use the combined location and proximity routines

discovered to predict missing location and proximity data.An overview of our method is visualized in Figure 1. We

represent a day in the life of a user in terms of where they are over a90-minute time interval as well as the number

of people they are with during this time interval within the RM population, forming a joint location-proximity

data representation, described next. This joint data representation is input to the Latent Dirichlet Allocation (LDA)

model, from which human routines are discovered, representing common forms of social interactions which occur

at varying locations.

A. Joint Location-Proximity Representation

The joint location-proximity data representation is based on the concatenation of data corresponding to users’

location, proximity, and a timeslot indicating a coarse-grain measure of the time of day for which this data is

measured. The details follow.
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Location Representation: Following Eagle et al [7], a given individual’s locations (given by cell towers) is

represented over the course of a day by representing all possible locations into4 categories, namely work (W),

home (H), out (O), and no reception (N). W are the MIT work premises, H are the homes of individuals, and

O are towers that are not H or W, thus encompassing a large number of places. The W and H labels can be, in

general, easily obtained from user tagging of cell towers orfrom knowledge about the data collection campaign.

N is a label used if there is missing data for a person for a given time, for instance when the phone is off. The

basic idea for the location representation, which is taken from our previous work [8], is to assign a single location

label (H,W,O,N) for each30−minute time interval of a user’s day, resulting in48 location labels for each user

and each day. The use of30-minute slots, synchronized on the hour, is a simple yet robust assumption, as many

people and organizations schedule their life around this type of day segmentation. Also, the data is quite noisy and

challenging, and this representation aids with some sources of noise, such as the numerous fluctuating cell tower

recordings. To assign a single label to a30-minute slot, we compute the time of occurrence for all location labels

within the slot, and assign the one with largest duration. Then, 3 consecutive 30-minute labels are taken to obtain

location transition information over a1.5 hour period in a day. These1.5-hour intervals are overlapping, resulting

in 48 x 1.5-hour 3-label location sequences in a day. We use1.5 hour intervals in order to capture transitions in

user movement.

Proximity Representation: For proximity data, we use the Bluetooth readings to consider proximity with people

in the Reality Mining group. Bluetooth can detect other similar devices located within a10-meter radius. Bluetooth

is a reasonable (although clearly imperfect) proxy for social interactions, though there are various sources of noise

making it challenging to work with. On one hand, we could expect that people actually interacting will often be

sensed by Bluetooth but many cases of nearby people who do notinteract will be detected too. This is a limitation

of the Bluetooth modality. Proximity in general could be considered as proximity to laptops, computers, and other

people, is also recorded in the data, but it is difficult to distinguish them from mobile phones. We quantize the

number of proximate people into4 prototypical groups: user is alone, dyad (1 person in proximity), small group

(2-4 people in proximity), large group (5 or more people in proximity). The group sizes are motivated by research

in social science that has traditionally analyzed dyads, small groups, and large groups as separate categories, as

they present distinct dynamics [10].

Timeslot Division: Each day is divided into8 coarse-grain timeslots as follows: 0-7am (1), 7-9am (2), 9-11am

(3), 11am-2pm (4), 2-5pm (5), 5-7pm (6), 7-9pm (7), 9-12pm (8). These timeslots were chosen to capture common

events in daily life, such as lunch time, dinner time, or morning and afternoon work times. Other time intervals

could equally be used to capture events occurring over finer orcoarser daily periods.

A day in a user’s life is finally represented as amultimodal bag of words, where a word is a location sequence,
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concatenated with the corresponding proximity group and a timeslot, as shown in Figure 1. The bag of word model

is amenable for probabilistic topic modeling which is introduced in the next subsection.

B. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is an unsupervised probabilistic generative model that was initially developed

to characterize text collections, but can be extended to other collections of discrete data [2]. Aword is a basic unit

of discrete data defined by an item for a vocabulary of sizeV . A document is a bag ofN words, and a corpus

is a collection ofM documents. Each document is viewed as a mixture of topics, where topics are distributions

over words. The probability of a wordw in a document, assuming it is generated from a convex combination of

T topics, is given as

p(w) =
T∑

t=1

p(w|z = t)p(z = t), (1)

wherez is a latent variable indicating the topics from which the word w was drawn. In LDA, a Dirichlet prior

is assumed on the topic distributions to provide a complete generative model for documents [12]. The graphical

model for LDA is shown in Figure 1.

The objective of LDA inference is to determine the word distribution p(w|z = t)
def
= φ

(w)
t for each topict, and

the topic distributionp(z = t)
def
= θ

(t)
d for each documentd. We use the approximation derived in [12] based on

Gibbs sampling. In LDA,p(θ) andp(φ) are assumed to be Dirichlet distributions with hyperparametersα andβ,

respectively. The Gibbs sampler is used since exact inference is intractable [12]. Letn(w)
t andn

(t)
d be the number of

times wordw and documentd have been assigned to topict, respectively. Letnt =
∑V

w=1 n
(w)
t andnd =

∑T
t=1 n

(t)
d

denote the sums of words in a given topic, and of topics in a given document, respectively. Letw denote the set

of words in the corpus, andz denote the set of topics in the corpus, andz¬i denotez excluding the current topic

elementzi = t. In practice in the Gibbs sampler, we sample from

p(zi = t|z¬i,w) =
p(w, z)

p(w, z¬i)
=

p(w|z)

p(w¬i|z¬i)p(wi)
·

p(z)

p(z¬i)
(2)

∝
n

(w)
t,¬i + β

∑V
w=1 n

(w)
t,¬i + β

·
n

(t)
d,¬i + α

∑T
t=1 n

(t)
d + α

, (3)

using the procedure summarized in Figure 2. In the above equations,n(.)
.,¬i denotes the counts of the elements jointly

contained in the subscript and superscript, excluding the current elementi. The topic assignments,n(t)
d and n

(w)
t

are initialized randomly. In each Gibbs sampling iteration, the topic assignments for a word and a document are

sampled from Equation 3. After a predefined number of iterations (i.e. after the burn-in time of the Gibbs sampler),

the sampler is assumed to have approached its stationary distribution [22]. This is a common assumption in MCMC

methods. Essentially, the initialization process randomlyassigns words and documents to topics. Then the chain



// GOAL: Given a training corpus and parametersα, β, andT , estimate the parametersn(t)
d and n

(w)
t

from which we can determine the model parametersφ̂
(w)
t and θ̂

(t)
d .

// Initialization
1) Initialize the count parameters,n

(t)
d = 0, n

(w)
t = 0.

2) Iterate over each wordw in the corpus:
3) Sample a topict from t ∼ Mult( 1

T
).

4) Update the count parametersn
(t)
d , n

(w)
t as followsn

(t)
d = n

(t)
d + 1, n

(w)
t = n

(w)
t + 1.

// Run the chain
5) Iterate over a large number of iterations (e.g. 1000):

6) Iterate over each wordw in the corpus:
7) Decrement the current wordw and current word’s topic assignmentt counts as follows
n

(t)
d = n

(t)
d − 1, n

(w)
t = n

(w)
t − 1.

8) Sample a topic indext from p(zi = t|z
¬i,w) ∝

n
(w)
t,¬i

+β
P

V
w=1 n

(w)
t,¬i

+β
·

n
(t)
d,¬i

+α
P

T
t=1 n

(t)
d

+α
.

9) Increment the new word/topic and topic/document counts as follows n
(t)
d = n

(t)
d + 1,

n
(w)
t = n

(w)
t + 1.

// Compute model parameters
10) Determine the unknown parameters as follows

φ̂
(w)
t =

n
(w)
t + β

nt + V β
, and θ̂

(t)
d =

n
(t)
d + α

nd + Tα
, whereφ̂ and θ̂ are the model parameter estimates,

nt =
∑V

w=1 n
(w)
t , andnd =

∑T

t=1 n
(t)
d .

Fig. 2. Gibbs Sampling algorithm for LDA.

is run in order to ‘refine’ these assignments according to Equation 3. In this paper, we use the last sample in the

chain for document and word ranking of topics due to the lack of identifiability problem in sampling-based LDA

(i.e. there is no guarantee that topics across samples are the same [22]). The Gibbs sampler results in

φ̂
(w)
t =

n
(w)
t + β

nt + V β
, θ̂

(t)
d =

n
(t)
d + α

nd + Tα
. (4)

In our work, documents are days in people’s lives and words are the location-proximity words defined in Sec-

tion III-A. Topics are expected to correspond to routines.

In this work, we use LDA for two tasks:

Routine Discovery: We propose to extend the use of LDA to handle multimodal data, expecting that topics will

capture joint patterns of location and proximity that help disambiguate relevant cases (e.g. discriminating between

a person at work alone and in a group). Routines can be identified by observing the top words for a given topic

(ranked by their probability) and also by the top days for a given topic.

Predicting Behavior: LDA is also used for the prediction of missing labels in a day (i.e. the prediction of users’

joint patterns of location and proximity for certain timeslots). To achieve prediction, LDA inference is run on the

test days containing missing bits. The algorithm details arepresented in Figure 3.sm is defined as the timeslot of

a document (a day), wherem = 1...8 are the8 coarse-grain possibilities in a day. After finding topics within the



// GOAL: Given a test document̃d with missing location and proximity labels for timeslotsm, predict
a label.

// Topic discovery from the training corpus.
1) The Gibbs sampling algorithm in Figure 2 is performed on the training corpus to discover topics.

// LDA querying is performed to retrieve documents relevantto test documents.
2) Follow the Gibbs sampling procedure in Figure 2, replacing the topic sampling in Step 5 by the
following equation, from which topict is sampled:

p(zi = t|z
¬i,w) ∝

n
(w)
t + ñ

(w)
t,¬i + β

∑V

w=1 n
(w)
t + ñ

(w)
t,¬i + β

·
n

(t)

d̃¬i
+ α

∑T

t=1 n
(t)

d̃
+ α

, (5)

where d̃ represents the test document, andñ
(w)
t,¬i counts the observations of termw and topict in the

test documents, excluding theith index [13].

3) The document/topic distribution for the test documentd̃ is θ̂
(t)

d̃
=

n
(t)

d̃
+ α

nd̃ + Tα
.

// Find the best matching topic for test documentd̃.
4) The topiczi for which i = argmin

j

|sj − sm| and θ̂
(zi)

d̃
> Th, wheresi is the timeslot of the most

probable word of topiczi, sm is the timeslot of the missing data,si, sm = {0, ..8}, and Th is a
threshold, is chosen asztop

d̃
.

//Replace the missing data.
5) d̃(sm) = dz

top

d̃

(sm), wheredz
top

d̃

is the most probable document givenztop

d̃
.

Fig. 3. Algorithm for predicting proximity and location timeslots.

training corpus via LDA, a distribution of topics for each test document,d̃, is inferred resulting in̂θ(t)

d̃
. The resulting

topics for document̃d are ranked according tôθ(t)

d̃
and the best matching topic for documentd̃ is denoted byztop

d̃
,

which is found according to Step 4 in Figure 3. The result is a single topic which is used for replacement of the

missing data over the timeslot. To fill in the missing locationand proximity words, we replace the missing labels

with those of the top day for the mostly likely topic selected; d̃(sm) = dz
top

d̃

(sm), wheredz
top

d̃

is the most probable

document givenztop

d̃
. For the predicting behavior task (whose results are given in Section IV.D), experiments are

performed over10 chains. Note that the procedure used for behavior prediction described here is simple and more

elaborate methods to predict missing labels could be derived from the output generated by LDA.

IV. EXPERIMENTS AND RESULTS

A. Data and Model Parameters

We experimented with all of the97 individuals in the RM dataset and with days ranging from 18.07.2004 to

05.05.2005, encompassing291 consecutive days thus extending our previous work [8] whichonly considered30

users. This subset of days was chosen since these are the days for which proximity data is mostly available. Days

with entirely no reception for location were not consideredsince they contain no useful information for proximity

either. The LDA model for joint location-proximity routine discovery usedT = 100 topics. Heuristic methods were
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used to obtainT , but generally speaking, a small value ofT will produce coarse routines, whereas a largeT will

be much more specialized. The estimation of the optimal number of topics in topic models is an active research

problem [1], [13]. The hyperparameters were set toβ = 0.01 and α = 50/T . These hyperparameters are chosen

based on standard values used for text analysis [12].

B. Exploratory Analysis

We performed an analysis of the proximity data to study the interactions of business students compared to

engineering students and staff, considering interactionsfor different days of the week as well as interactions with

others in the same group compared to other Bluetooth devices(not including people in the group), which could

include family members, friends, strangers, laptops, or computers. The results are illustrated in Figure 4. The entire

Reality Mining dataset was considered for these results, including 16 months of97 users’ data.

Figure 4(a) and (b) illustrates the quantity of interactionsbetween users of the Reality Mining study. Users

1-27 are the Sloan business students, and users 28-97 are the Media lab students and staff. There are two boxes

marking the separation between those groups in Figure 4(a) and (b). We plot the quantity of interactions between

individuals in terms of (a) the number of interactions during the course of the study (without taking into account

the duration of interaction) as well as (b) the total duration of interaction between these users in hours. In both

plots, the amount of interaction (either considering number of interactions or total duration) was much higher

between several Media Lab users, in comparison to business students. The figures have been adjusted to visualize

the interaction between business students as well by assigning any interactions occurring over a threshold to the

last bin of the colorbar (200+ interactions or 150+ hours). More specifically, in Figure 4(a), if there are 200 or

more interactions between a pair of users, this is labeled by200+. The threshold 200 is chosen by rounding up

the maximum number of interactions between business students. The same procedure is applied in Figure 4(b) for

hours of interaction. The maximum number of interactions throughout the study occurred between a pair of Media

Lab users, and was approximately 585. The maximum duration of interactions occurred between a differing pair

of Media Lab users, and was on the order of 690 hours over the course of 16 months. Note that these plots are

not symmetric due to the inconsistencies in Bluetooth and the data collection software. Often times, two people

will be sensed as being proximate only by one of the phones. Furthermore, there are several users without any data

recordings. There are many interactions which occur frequently between individuals though not for long durations.

This is especially visible between several of the Media Lab users. Also note that interactions between business

students and engineering students are quite sparse. There are many Media Lab users that never interact, though

most business students (with data recorded) interact, resulting in a much less sparse matrix. There was a pair of

users with negative duration values, likely due to incorrect clock settings, which was removed.
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Figure 4(c) and (d) plots the overall means of the number of interactions and the duration of interactions in hours

respectively, for Media Lab and business users over the week where ’S M T W T F S’ on the x-axis corresponds to

’Sunday through Saturday’. These average values varied greatly across users. We can see in both groups of people,

the interactions are very low on the weekends. The mean numberof interactions is always on average higher for

Media Lab students on every day of the week, though it is especially higher on Mondays, Wednesdays, and Fridays.

The duration of interactions for Sloan students is on average higher than Media Lab students on Thursdays, perhaps

due to a course or business school event on this day.

In Figures 4(e) and (f), we plot the total duration of user interactions with users in the study compared to ’non-

user’ Bluetooth devices (or other devices), which could include family, friends, strangers, laptops and computers.

Figure 4(e) illustrates the total interaction times of Sloan users whereas (f) is for the Media Lab users. In (e) and

(f) we can see there are a few people in both groups who have heavy interactions within the group. Also, many of

the users have more interaction with people in the group thanwith ’other devices’. Many of the Media Lab users

have heavy interactions with ’other devices’, likely due tothe fact that they spend hours in front of their laptops

and computers daily.

C. Joint Location-Proximity Routines

The fusion of proximity and location data enables the discovery of more detailed patterns regarding this group

of MIT users’ daily lives compared to single modalities. After LDA learning, there is a chance that two topics

could be similar to each other, as LDA does not guarantee that topics be distinct from each other. The fact that

LDA-learned topics are often similar to each other has also been observed in the text domain. A short summary

of the learned routines on the entire corpus is presented below, and a summary is visualized in Figure 5.

-Home routines and proximity: Most of the home routines discovered occurred for users alone (i.e. not in proximity

with anyone from the group). Only2 out of the20 topics related to discovered home routines dominated for a

pair of users in proximity. No home routines occurred for small or large groups in proximity, which suggests that

people did not socialize within the population at home.

-Work routines and proximity: Most of the routines discovered with proximity interactions occurred at work locations.

There are17 topics corresponding to work routines, and13 of them occur with proximity patterns. Routines at

work were discovered for all four proximity groups (users alone, in dyads, small, and large groups), which indicates

that all these types of interactions occur frequently.

-Morning routines and proximity: Only 3 out of 100 topics had a proximity interaction in the morning (before

10am), and all3 of these routines occur for pairs of users and never for groups. People interacting in the morning

seems to be relatively sparse for this population.
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Fig. 4. Interaction patterns of MIT business students compared to engineering students and staff. Figures (a) and (b) visualize the pairwise
user interactions in terms of (a) the number of interactions and (b) the totalduration of interactions (hours). Business students (1-27) and
Media Lab users (28-97) are highlighted by boxes. There are many interactions between engineering students which do not occur over long
durations. The average quantity of interactions over all Sloan business students versus all Media lab students and staff is computed over the
days of the week ’S M T W T F S’ in terms of (c) the number of interactions and (d) the total duration of interactions (hours). On average,
Media Lab users have more interactions, though on Thursdays business students interact for longer durations, perhaps due to a course on
this day. They also interact less on Mondays, Wednesdays and Fridays. On average, there is little interaction on weekends in all cases. The
total interaction times (hours) of users with other Reality Mining users in comparison to all other Bluetooth devices are shown in (e) for
Sloan students and (f) for Media Lab users.

-Day time routines and proximity: Approximately20 topics characterize user interactions throughout the day (10am-

7pm). The interactions include pairs of users, as well as small and large groups.

-Evening routines and proximity: 7 topics characterize group interactions in the evenings (7pm-midnight). These

occur for pairs of users, and small as well as large groups.

A selection of topics illustrating the types of joint routines discovered are visualized in Figure 5. We have

illustrated results for selected topics,zi = 11, 28, 41, 46, 53, for the50 most probable days given those topics. The

3 most probable words given the topics are shown in the tables in the first row. We plot the results in terms of
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Topic 11
Top 3 words p(w|z)

W W W
11am-2pm 0.502

Small Group
W W W
2pm-5pm 0.427

Small Group
H H W

9am-11am 0.015
Dyad

Topic 28
Top 3 words p(w|z)

O O O
9pm-12pm 0.634

Alone
O O O

7pm-9pm 0.358
Alone

W O W
11am-2pm 0.001

Dyad

Topic 41
Top 3 words p(w|z)

W W W
2pm-5pm 0.610

Large Group
W W W
5pm-7pm 0.275

Large Group
W W H

5pm-7pm 0.034
Large Group

Topic 46
Top 3 words p(w|z)

W W W
7pm-9pm 0.415

Small Group
W W W

9pm-12pm 0.219
Small Group

W W W
5pm-7pm 0.132

Small Group

Topic 53
Top 3 words p(w|z)

H H H
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Fig. 5. Selected LDA results. The first row of tables correspond to the most probable words given a topic. Ranked days (i.e. documents)
for selected topics byp(d|zi), showing (second row) the top50 days’ location data and (third row) the corresponding proximity data for a
given topic. (fourth row) Histograms of the users whose days rankedin the top50 for topic zi. (last row) Histograms of the days of the
week (M T W T F S S = Monday to Sunday) that ranked in the top50 for topic zi. Note the colorbars for the location figures indicating
the W, H, O, and N locations, and for the proximity figures indicating a large group, small group, pair, or alone.

users’ locations (second row), proximity (third row), userstatistics (fourth row), and day of week statistics (fifth

row). The figures illustrating the users’ locations and proximity data show the time of the day as the x-axis, and

each row is a day of the life of a user plot in terms of their location (H is home, W is work, O is out, and N is

no reception) as well as in terms of their interactions where(’large’ corresponds to a large group, and ’small’ to a

small group). Furthermore, a histogram for the users whose days ranked in the top50 documents is shown in the

fourth row, the x-axis indicating anonymous user id and the y-axis the number of days. The fifth row illustrates a

histogram of the days of the week (M T W T F S S = Monday to Sunday) of the 50 most probable days given

each topic. A summary of the routines discovered plotted in Figure 5 is:

-Topic 11: The user is at work during the day (dominantly 11am-5pm as seen from the 3 top words given topic

11) while in proximity with a small group of 3-5 people. Several users have days with high probability of topic

11. This work routine dominates on Mondays.

-Topic 28: The user is out in the evenings (7pm-12pm) alone. This routineoccurs most frequently on Fridays for
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several users in the study.

-Topic 41: The user is at work from 2pm-7pm in a large group. This occurs dominantly for a handful of users,

predominantly on Thursdays. Note, that most of these users correspond to Sloan business school students, displaying

their common Thursday afternoon work routine.

-Topic 46: The user is at work in the evening (from 5pm-midnight) in a small group. This work routine dominates

on Sundays and occurs often for a few users.

-Topic 53: The user is at home alone in the mornings (from midnight until11am). This topic hardly ever occurs

on Fridays.

D. Behavior Prediction

We now show how it is possible to use LDA in order to predict unobserved location and proximity data for a

timeslot of a user’s day. For experiments, we decided to distinguish between people based on the entropy of their

routines under the hypothesis that prediction of location and proximity will be more or less difficult depending

on the variability of each person’s habits. User entropy is computed on the distribution of topics given users,

p(z|u) =
∑

d p(z|d, u)p(d|u), whereu is the user variable, and we assumep(d|u) = 1
|Du|

, Du is the set of users

recorded for user u, and|Du| is the set cardinality. The topicsz correspond to the joint location-proximity routines

found in Section IV-C. All of the users in the dataset are ranked according to their entropy. After this, we set two

thresholds for high and low entropy which gave10 users in each case. We randomly picked5 people for each class

(high and low entropy).

For each of the10 selected users,20 days of their life were randomly selected from days with at least one

proximity interaction (i.e. days that contained at least one non-empty word over the entire day). This set of days

was used to form the test set, from which we systematically remove words to generate data with missing sequences

to predict. For each day, the words of a given coarse-grain timeslot were removed to form a day for which the

method has to predict the missing sequence, thus generating8 days, each with one timeslot’s words missing. The

resulting dataset for which we predict missing sequences contains10 users, each with160 days= 1600 documents

for testing. Thus, for each user there are160 documents for testing, and each coarse-grain timeslot contains 200

documents for testing.

For each document, there is one timeslot with missing location and proximity labels. For evaluation, we compute

two types of error. Thelocation error is the number of incorrectly predicted location labels divided by the total

number of labels to be predicted in the given coarse-grain timeslot. For instance, documents with timeslot1 missing

have14 location labels to be predicted since it occurs from 0-7am. The proximity error is the average number of
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people wrongly predicted for each word in a given timeslot. More specifically, if the predicted group (alone, dyad,

small group, large group) is correct then there is no error. If the predicted group is incorrect, then we predict the

minimum number of possible people in the group (alone=1, dyad=2, small group=3, large group=5) and compute

the difference with the actual number of people in proximity. For example, if there are10 people in proximity and

we predict a small group, then we assume3 people are in proximity. If this incorrect prediction occurs over the14

half-hour words in timeslot1 (midnight-7am), then the average proximity error is7. Finally, the results for location

and proximity error are averaged over 10 randomly initialized chains of the Gibbs sampling procedure described

in Figure 2.

The location and proximity errors are computed over users andtimeslots and displayed in Figures 6 and 7. We

present the average errors as a function of the user for location in Figure 6(a) and for proximity in Figure 6(b).

Users 1-5 (in blue) have low entropy and 6-10 (in red) have high entropy. Interestingly, low-entropy users have

lower error in the prediction of location labels than high-entropy users. For low entropy users, the error can be as

low as 0.32 which nevertheless indicates that the task is difficult. We also include errorbars corresponding to the

standard deviation over the10 randomly initialized chains. High entropy users are significantly more difficult to

predict. In Figure 6(b) we plot the proximity error. In the best (resp. worst) case, the predicted number of people

in proximity is incorrect by, on average,0.16 (resp.1.2) people. In this case, low entropy users do not necessarily

have lower prediction errors in proximity than high entropyusers.

In Figures 7(a) and (b), we plot the average errors as a function of coarse-grain timeslot for both high and low

entropy users for location (Figure 7(a)) and proximity (Figure 7(b)). We can see in Figure 7(a) that for almost every

timeslot (with the exception of timeslot 6), high entropy users are harder to predict (have higher errors) than low

entropy users. Timeslot 6 (5-7pm, which corresponds to typical commuting times) is overall the most difficult to

predict. Also, for timeslots1 and2 (midnight to 9am), low entropy users correspond to much better performance

than high entropy users. Regarding Figure 7(b), the error in proximity prediction as a function of timeslot is again

not highly correlated with the entropy of a user. The prediction in proximity has the highest error in timeslot5,

corresponding to 2-5pm, and the lowest error in the morningsand late evenings, which is not surprising. In the

worst case, the proximity error in any given timeslot is lessthan1.25 people on average.

In Figure 8, we compare the performance of our topic model (TM) method to several other methods. Figure 8(a)

illustrates the overall average location error for the TM approach in comparison to a nearest neighbor approach

called previous day (PD), which uses knowledge about the specific date of the test day, and replaces the missing

data with that of the previous day. Note that the date is a verystrong contextual cue about human routines that

is not currently used in our method TM. The approach labeled W isthe case where all missing data is replaced

by the ‘work’ location. Similarly O is the case where all missing data is replaced by ‘out’, N by ‘no reception’,
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Fig. 6. (a) Average location prediction error as a function of users, where low entropy users are labeled ‘Low E’ and high entropy users
‘High E’. (b) Average proximity prediction error as a function of users. Location label for prediction is consistently lower for low entropy
users. However, for proximity errors are not necessarily lower forlow entropy users.
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Fig. 7. Average error in (a) location prediction, and (b) proximity prediction, as a function of timeslot for low and high entropy users.
High entropy users consistently have higher location label errors for prediction over all times of the day, though the error is highest between
5-7pm (timeslot 6) which corresponds to typical commuting times. The highest errors in proximity label prediction occur from 9am-7pm,
corresponding to work times where most interactions occur.

and H by ‘home’. Figure 8(b) illustrates the overall average proximity error for the TM approach in comparison

to the PD approach, in addition to the approaches labeled A, D,S, and L, corresponding to replacing the missing

proximity data with the labels ‘alone’, ‘dyad’, ‘small group’, and ‘large group’, respectively. We can see the TM

and PD approaches perform similarly in terms of location dataprediction, however, TM outperforms PD for missing

proximity data prediction. The TM approach also outperforms all the other methods illustrated.

Given the simplicity of the PD method, we look deeper into the TMand PD performance for various types of

users in Figure 9. Figure 9(a) illustrates the average location prediction error for high and low entropy users. We

see that for location prediction, the PD method performs better for low entropy users. This is understandable since

low entropy users have very ’routine’ lifestyles and simplyreplacing the missing data with that of the previous day

results in good performance. However, for high entropy users, our TM method, which captures specific patterns

of transitions (e.g. H to W), is working better. Given these complimentary features, for future work, we plan to

investigate a method that integrates both concepts. Figure 9(b) illustrates the average proximity prediction error for

high and low entropy users. The results show that our TM approach outperforms the PD approach both for low

and high entropy users.
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Fig. 8. A comparison of our topic model (TM) approach to various othermethods for overall location and proximity errors. PD is the nearest
neighbor approach of replacing data with the previous days’. (a) For the overall average location error W represents the error obtained if all
missing data is replaced by work, O by other, N by no reception, and H by home. (b) For the overall average proximity error A represents
the error obtained if the missing data is replaced by alone, D by dyad, S by small group, and L by large group. The TM approach predicts
missing location data as well as the PD approach, however, our approach outperforms the PD method for predicting missing proximity data.
The TM also outperforms all the other methods (both in terms of location andproximity missing data prediction) significantly.
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Fig. 9. Comparison of our topic model (TM) approach with the previous day (PD) approach in terms of user types. (a) Average location
error for low entropy users and high entropy users for the TM vs. PD approach. The PD approach performs better for location data prediction
for low entropy users, however, our TM approach performs better for high entropy users. (b) Average proximity error for low and high
entropy users for the TM vs. PD approach. In both cases our TM approach outperforms the PD approach for proximity data prediction.

V. CONCLUSIONS

We have proposed a probabilistic methodology that successfully discovers recurrent patterns in people’s lives from

multimodal data, and that can use the discovered routines for data prediction, estimating location and proximity data

of users with varying entropy. Essentially, the method minesthe most dominantly occurring human routines (topics)

from a huge corpus of real-life human mobile data to determine recurring human patterns involving time of the day,

semantic location and proximity based interaction type. Our method also uses these rich human location-interaction

topics to predict missing data, which in real life occurs very frequently with mobile phone data, and can also be

seen as a method to verify the validity of the routines discovered. By computing the entropy of individuals based

on their jointly modeled locations and interactions, our method is able to predict missing multimodal data over

several hours for users with both low and highly varying lifestyles.

In future work, the methodology for data prediction could befurther optimized to use the topics in a more

sophisticated manner, and to include prediction on varyingtimescales, such as full days of missing data. It would
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also be very useful to take advantage of the other, often available data modalities of mobile sensor data for data

prediction. For instance, one could predict a user’s location given the time of day and their interactions, the day

of the week, or even using their phone call and SMS data. The Bluetooth proximity data is potentially a very rich

source if one considers proximity to all other devices including laptops, computers, and anonymous cell phones.

This data in itself could be used to determine the semantic labels of an individual, such as if the user is at home

(in proximity with their home computer), at work (in proximity with their work computer), or out (in proximity

with strangers). In a different line of work, we would like toenrich the location vocabulary by refining the ’other’

category. This in principle could be done from the Reality Mining dataset, but handling sparse human annotation

of places is in itself a research problem. Finally, we would like to consider recent approaches like the Maximum-

Margin Supervised Topic Model [25] which explicitly addresses the issue of maximizing the distance between

topics, and may be used to optimize the number of topics output.
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