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Abstract—The automatic estimation of human affect from the
speech signal is an important step towards making virtual agents
more natural and human-like. In this paper, we present a novel
technique for incremental recognition of the user’s emotional
state as it is applied in a sensitive artificial listener (SAL) system
designed for socially competent human-machine communica-
tion. Our method is capable of using acoustic, linguistic, as well
as long-range contextual information in order to continuously
predict the current quadrant in a two-dimensional emotional
space spanned by the dimensions valence and activation. The
main system components are a hierarchical dynamic Bayesian
network (DBN) for detecting linguistic keyword features and long
short-term memory (LSTM) recurrent neural networks which
model phoneme context and emotional history to predict the affec-
tive state of the user. Experimental evaluations on the SAL corpus
of non-prototypical real-life emotional speech data consider a
number of variants of our recognition framework: continuous
emotion estimation from low-level feature frames is evaluated as a
new alternative to the common approach of computing statistical
functionals of given speech turns. Further performance gains are
achieved by discriminatively training LSTM networks and by
using bidirectional context information, leading to a quadrant
prediction F1-measure of up to 51.3 %, which is only 7.6 % below
the average inter-labeler consistency.

Index Terms—Dynamic Bayesian networks (DBNs), emotion
recognition, intelligent environments, long short-term memory
(LSTM), recurrent neural nets, virtual agents.

I. INTRODUCTION

OR the design of intelligent environments which enable
F natural human—machine interaction it is important to con-
sider the principles of interhuman communication as the ideal
prototype [1]. While automatic speech recognition (ASR) is al-
ready an integral part of most intelligent systems such as vir-
tual agents, in-car interfaces, or mobile phones, a lot more pat-
tern recognition modules are needed to close or at least narrow
the gap between the human ability to permanently observe and
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react to the affective state of the conversational partner in a so-
cially competent way, and the straightforwardness of system re-
sponses generated by today’s state-of-the-art human—computer
interfaces [2], [3]. Therefore, automatic emotion recognition
(AER) is an essential precondition to make, e.g., virtual agents
more human-like and to increase their acceptance among poten-
tial users [4]-[7].

Even though researchers report outstanding recognition ac-
curacies when trying to assign an affective state to an emo-
tionally colored speech turn [8], [9], systems that apply auto-
matic emotion recognition still are only rarely found in every
day life. The main reason for this is that emotion recognition
performance is often overestimated: apart from examples such
as call-center data [10]-[12], databases for interest recognition
[13], [14], or other spontaneous speech evaluations [15]-[19],
most speech-based AER systems are trained and tested on cor-
pora that contain segmented speech turns with acted, prototyp-
ical emotions that are comparatively easy to assign to a set of
predefined emotional categories [20]-[22]. Often, only utter-
ances that have been labeled equally by the majority of annota-
tors are used to evaluate AER performance. Yet, these assump-
tions fail to reflect the conditions a recognition system has to
face in real-life usage. Next-generation AER systems must be
able to deal with non-prototypical speech data and have to con-
tinuously process naturalistic and spontaneous speech as uttered
by the user (e.g., as in the Interspeech 2009 Emotion Challenge
[23]). More specifically, a real-life emotion recognition engine
has to model “everything that comes in,” which means it has
to use all data as recorded, e.g., for a dialogue system, media
retrieval, or surveillance task by using an open microphone set-
ting. According to [24], dealing with non-prototypicality is “one
of the last barriers prior to integration of emotion recognition
from speech into real-life technology.”

Thus, in this paper we present and investigate a speech-based
system for emotion recognition that is able to cope with sponta-
neous, non-prototypical, and unsegmented speech. We address
the problem of predicting the quadrant of an emotional space
(spanned by the two dimensions valence and activation), which
best describes the current affective state of the speaker. We will-
fully omit dominance as a further dimension, since we found
that activation and dominance are usually strongly correlated.
Consequently, the continuum of emotional states is reduced to
the four quadrants which can be described as relaxed/serene
(D), happy/excited (I1), sad/bored (111), and angry/anxious (IV)
in order to keep the affective state information as simple as
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possible. A further motivation for quadrant quantization of the
continuous emotional space is to reduce the multiplicity of
possible system responses for the emotion dependent dialogue
management of virtual agents, since at some stage, a categorical
decision about the user’s emotion has to be made before deter-
mining a suitable system output. The outlined AER framework
is optimized for usage within virtual agent scenarios such as
the SEMAINE system for Sensitive Artificial Listening [25],
which demands for incremental real-time emotion estimation.
Applications like the SEMAINE system require customized
and immediate feedback based on the emotional state of the
user, and responses have to be prepared already before the user
has finished speaking. This, however, would hardly be feasible
using traditional static classification approaches like support
vector machines (SVMs) which classify segmented or fixed
length speech segments at the end of a speech turn. Instead,
incremental processing demands for techniques that operate
on short speech segments while incorporating an adequate and
gradually increasing amount of contextual information.

As shown in [26], capturing temporal long-range dependen-
cies is essential for the prediction quality of an AER system
and is superior to static SVM modeling. Hence, our technique
applies long short-term memory (LSTM) recurrent neural net-
works [27] which have shown excellent performance in many
machine learning applications [28]—[30]. This concept is able
to model emotional history and overcomes the so-called van-
ishing gradient problem in conventional recurrent neural nets
(RNNs). We show that LSTM enables a completely novel ap-
proach towards RNN based affect recognition, using low-level
features on a frame basis instead of turnwise computed sta-
tistical functionals or fixed-length feature vector sequences, as
applied in other context-independent RNN systems [31]. Our
principle of framewise emotion estimation is related to strate-
gies for speech recognition, where the temporal evolution of
low-level descriptors is not only captured by functionals of fea-
tures but by the classifier. Such an approach has many advan-
tages: it allows for incremental real-time emotion estimation
from speech as it is needed for emotionally sensitive virtual
agents and does not need to operate on supra-segmental units
of speech (as in almost any other method [32]-[34]). Moreover,
the precondition of perfect segmentation is not needed anymore
and the AER system can update the emotion prediction while
the user is speaking. The long short-term memory RNN archi-
tecture copes with the fact that speech emotion is a phenomenon
observed over a longer time window. Typical units of analysis
for static classifiers are complete sentences, sentence fragments
(i.e., chunks), or words [35]. Yet, finding the optimal unit of
analysis is still an active area of research [9], [36], [37]. Unlike
hidden Markov model (HMM)-based methods [38], [39] which
also focus on low-level features and perform best-path decoding
on the complete input fragment, our technique offers the great
advantage that the amount of contextual information that is used
for emotion recognition is learned during training. In order to
refine and update the estimation of a user’s emotion once the
complete spoken utterance is available, we also investigate the
usage of bidirectional context [40]. This is done by bidirectional
long short-term memory (BLSTM) networks which process the
entire speech sequence in forward and backward direction using

two hidden layers that are connected to the same output layer.
In contrast to the bidirectional system which presumes either
offline operation or a short “look-ahead” input buffer, the unidi-
rectional LSTM system can operate in real-time at a moderate
computational cost (see Section II.B).

In addition to the acoustic features, the system presented
herein also uses linguistic features derived from a dynamic
Bayesian network (DBN) for keyword spotting. The DBN is
designed in a way that it detects keywords which are correlated
to the user’s emotion in order to provide a binary linguistic
feature vector. In order to also exploit the principle of LSTM
modeling for the generation of linguistic features, our system
contains an additional LSTM network that provides a discrete
phoneme prediction feature to the keyword spotter. This prin-
ciple of tandem LSTM-DBN modeling was shown to prevail
over conventional hidden Markov model-based approaches
[41].

The emotion recognition system presented in this paper
is trained and evaluated on the Sensitive Artificial Listener
(SAL) database [42] which contains natural, spontaneous, and
emotionally colored speech. We investigate the accuracy of
predicting the quadrants of the emotional space as well as the
ability to distinguish high from low activation and valence,
respectively. Furthermore, we evaluate the AER performance
when considering neutrality as a fifth emotional state. We con-
sider both turnwise and framewise classification using BLSTM,
LSTM, SVM, and conventional RNN architectures—with and
without linguistic features. In addition to continuously esti-
mating valence and activation before assigning the prediction
to one of the four quadrants, we also investigate discriminative
training on the quadrants.

The rest of this paper is structured as follows. Section II de-
scribes the SAL database and gives an overview over the in-
troduced AER system architecture. In Section III, the principle
of long short-term memory is introduced. Sections IV and V
outline the acoustic and the linguistic feature extractor, respec-
tively. We present experimental results in Section VI and con-
cluding remarks are given in Section VII.

II. SENSITIVE ARTIFICIAL LISTENING

The aim of the SEMAINE project! is to build a sensitive
artificial listener—a multimodal dialogue system with the so-
cial interaction skills needed for a sustained conversation with
a human user. This section describes the SAL database which
was recorded during a Wizard-of-Oz SAL scenario and will be
used in the experimental section of this paper. Further, our AER
system architecture will be explained.

A. Database

The SAL corpus is a subset of the HUMAINE database?
[42] that is continuously labeled in a two-dimensional emo-
tional space spanned by activation and valence. It contains 25
audio-visual recordings in total from four speakers (two male,
two female) with an average recording length of 20 minutes
per speaker. The language spoken in the database is English.

Thttp://www.semaine-project.eu/
2http://emotion-research.net/download/pilot-db/
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Fig. 1. Turnwise annotations of the SAL database.

The recordings were obtained during natural human—computer
conversations, which were recorded using a Wizard-of-Oz
SAL interface designed to let users work through a range
of emotional states. All users had to speak to four different
virtual characters, each of whom represents one of the four
emotional quadrants (Fig. 1): “Prudence” is matter-of-fact
(quadrant I), “Poppy” is cheerful (quadrant II), “Obadiah” is
pessimistic (quadrant IIT), and “Spike” is aggressive (quadrant
IV). During the conversations, all virtual characters aimed to
induce an emotion that corresponds to “their” quadrant. Yet,
those “prototypical” virtual characters are used explicitly for
emotion induction and not for modeling conditional dependen-
cies between the affective state of the agent and the user, as
done in [43] for example. Both, the database and the recording
procedure are described in more detail in [42].

The annotators used the FEELtrace system [44] which gen-
erates quasi-time-continuous samples of activation and valence
every 10 ms (unlike the VAM corpus [45] and practically any
other database where labels for the emotional dimensions are
given only once per speech turn). All labelers listened to the
recordings twice, while annotating activation and valence con-
secutively in real-time. As ground truth for our experiments, the
mean of the four different annotators was used. The mean was
calculated by averaging both the (linear) activation and valence
coordinates of the labelers for every time step. Note that am-
biguous speech turns can lead to the case that the averaged coor-
dinates in the valence-activation space are located in a quadrant
that neither of the labelers had assigned to the speech fragment
(e.g., the average of coordinates in quadrant I and IV can be
located in quadrant II or III). Yet, the resulting quadrant can be
seen as the best possible compromise with respect to the average
perceived level of activation and valence. An alternative would
be to map such ambiguous utterances to a “garbage class.” How-
ever, since we found that only 2% of the resulting quadrant la-
bels are located in a quadrant that neither of the annotators as-
signed to the corresponding speech turn, and since all of those
cases have averaged coordinates that are located in the “neutral”
region (coordinates within the dashed circle in Fig. 1), we de-
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Fig. 2. Histogram for the turnwise annotations of activation (top) and valence
(bottom) in the SAL database.

cided that modeling neutrality is more adequate, rather than the
introduction of a “garbage class.”

For all experiments reported on in this paper the same
training- and test-set splits as introduced in [26] are used. The
25 recording sessions are split into 16 training sessions and
nine test sessions. The test split has a total length of 53.3 min,
whereas the training split has a length of 99.2 min. Since only
four speakers are contained in this database, the training- and
test-splits are not speaker disjunctive. Yet, speaker dependent
emotion recognition is of significant practical importance,
especially for the paradigm of virtual agents and sensitive
listeners, since the listener can adapt its models to the current
speaker and learn speaker profiles.

For our experiments on turn-based emotion recognition, the
sessions were split into turns using an energy based voice ac-
tivity detection. A total of 1692 turns is accordingly contained
in the database. The training- and test splits contain 1102 and
590 turns, respectively. The obtained speech turns do not nec-
essarily comprise complete sentences since the sessions were
also split at short hesitation pauses. Thus, the average length of
a speech turn is 3.5 seconds. Since the turns are short enough
to assume quasi-stationarity of the emotion within a turn, la-
bels for each turn were computed by averaging the FEELtrace
annotations for valence and activation over a complete turn in
order to obtain a ground truth for the turnwise AER experiments.
Note that, unlike in databases annotated on the word level [15],
short “activation peaks” like the stress of a single word within
a sentence are unlikely to be captured by the annotators, due to
the finite reaction time of the human labelers. Consequently, the
time-continuous annotations tend to have low-pass characteris-
tics and do not contain high frequencies, which limits the loss of
information due to the averaging of annotation samples within
a turn and accounts for the fact that emotion is perceived over
a longer time window. The distribution of the averaged labels
can be seen in Figs. 1 and 2. The dashed circle (with a radius
of 0.33, dividing the axes into thirds) in the center of the va-
lence-activation space in Fig. 1 marks a fifth region which rep-
resents a neutral emotional state. The coordinates that lie within
this circle will be considered as belonging to a fifth, neutral class
(see Section VI).
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Fig. 3. Architecture of the acoustic-linguistic affect recognition system.

The great challenge of emotion recognition on the natural-
istic SAL database is the fact that the system must deal with all
data—as observed and recorded—and not only manually pres-
elected emotional prototypes as in virtually any other database.
Note that there is usually a high difference in accuracy between
the tasks of prototypical and non-prototypical emotion recogni-
tion [23], [24], [46].

B. System Architecture

In Fig. 3, a flowchart of the presented incremental affect
recognition system is shown. Processing components such as
the LSTM network or the feature extractors are represented as
ovals, whereas rectangles denote data. Depending on whether
framewise or turnwise processing is used, our openEAR feature
extractor module [47] (see Section IV) provides either low-level
descriptors or statistical functionals of acoustic low-level fea-
tures to the LSTM network (outlined in Section III) for emotion
estimation. Additionally, mel-frequency cepstral coefficient
(MFCC) features are provided to both components of the
tandem keyword spotter component (see Section V), consisting
of a DBN and a further LSTM network for phoneme prediction.
Together with the produced phoneme predictions, the MFCC
features are observed by the DBN, which then can detect the
occurrence of a relevant keyword (i.e., a word that is relevant
for valence or activation prediction, see Section V). Both, the
discrete keyword feature and the acoustic features extracted by
openEAR are used by an LSTM network to predict the user’s
current emotion. For the emotion coding, EmotionML3 is used
[48], [49], supporting continuous spatio-temporal emotion
representation. EmotionML is a standard representation format
for emotion-related states in technological contexts, developed
by the W3C Emotion Markup Language Incubator Groups.
It can be used within the tasks of data annotation, emotion
recognition, and generation of emotion-related states.

Details about the overall architecture of the SEMAINE dia-
logue system can be found in [25].

Due to the complexity of the system, the computational cost
of our AER engine is higher than for standard classification
techniques such as SVMs, which however show significantly
lower performance than the proposed system (see Section VI).
Yet, when exclusively using unidirectional context within the
LSTM framework, the causal system can operate in real-time:
on an AMD Phenom 64 bit quad core CPU at 2.2 GHz, the ope-
nEAR feature extraction module runs online with a real-time
factor (RTF) of 0.01, while the LSTM operates at a real-time

3http://www.w3.0rg/2005/Incubator/emotion/XGR-emotionml-2008 1120/

factor of 0.09. Only one of the four cores was used for compu-
tation. Time and space complexity of the DBN is O(T logT")
and O(log T'), respectively, assuming that 7" corresponds to the
length of the speech sequence that is currently processed.

III. LONG SHORT-TERM MEMORY

This section outlines the principle of the long short-term
memory RNNs that are used for emotion classification in
Section VI as well as for phoneme prediction in Section V.
Framewise classification of emotion as investigated in this paper
presumes a classifier that can access and model long-range
context, since emotion mostly affects the long-term dynamics
of prosodic, spectral, and voice quality speech features. When
attempting to predict emotion frame by frame, a large number
of preceding speech frames have to be taken into account in
order to capture speech characteristics that are influenced by
emotion. The number of speech frames which should be used to
obtain enough context for reliably estimating emotion without
affecting the capability of also detecting sudden changes of
the speaker’s emotional state is hard to determine [36], [37].
Thus, a classifier that is able to learn the amount of context is a
promising alternative to manually defining fixed time windows
for emotion recognition. Static techniques such as SVMs do not
explicitly model context but rely on either capturing contextual
information via statistical functionals of features [14] or aggre-
gating frames using multi-instance learning techniques [50].
Dynamic classifiers like hidden Markov models are often used
for flexible context modeling and time warping. Yet, HMMs
have drawbacks such as the inherent assumption of conditional
independence of successive observations, meaning that an
observation is statistically independent of past observations
provided that the values of the hidden variables are known.
Hidden conditional random fields (HCRFs) [51] are one at-
tempt to overcome this limitation. However, HCRF also offer
no possibility to model a self-learned amount of contextual
information. Other dynamic classifiers such as neural networks
are able to model a certain amount of context by using cyclic
connections. These so-called recurrent neural networks can
in principle map from the entire history of previous inputs to
each output. Yet, the analysis of the error flow in conventional
recurrent neural nets led to the finding that long range context
is inaccessible to standard RNNs since the backpropagated
error either blows up or decays over time (vanishing gradient
problem [52]). This led to the introduction of long short-term
memory RNNs [27]. They are able to overcome the vanishing
gradient problem and can learn the optimal amount of con-
textual information relevant for the classification task. Thus,
LSTM architectures seem to be well-suited for our framewise
emotion recognition task.

An LSTM layer is composed of recurrently connected
memory blocks, each of which contains one or more memory
cells, along with three multiplicative “gate” units: the input,
output, and forget gates. The gates perform functions analogous
to read, write, and reset operations. More specifically, the cell
input is multiplied by the activation of the input gate, the cell
output by that of the output gate, and the previous cell values
by the forget gate (see Fig. 4). The overall effect is to allow the
network to store and retrieve information over long periods of
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hidden layers (k¥ and h®) for forward and backward processing.

TABLE I
28 LOW-LEVEL AUDIO FEATURES FOR TIME-CONTINUOUS EMOTION ANALYSIS
(C) AND 39 FEATURES FOR TURN-BASED RECOGNITION (T); FEATURES IN BOLD
FACE ARE USED FOR BOTH, CONTINUOUS AND TURN-BASED RECOGNITION

Feature Group  Features in Group #(C) #(T)

Signal energy Root Mean-Square and log. en- 1 2
ergy

Pitch Fundamental Frequency Fgo, 2 1 3
measures for probability of voicing

Voice Quality Harmonics-To-Noise Ratio 1 1

Cepstral MFCC 0, MFCC 1-12, MFCC 13- 12 16
15

Time Signal Zero-Crossing-Rate, max. and 1 4
min. value, DC component

Spectral Energy in bands 0-250Hz, 0- 4 4
650Hz, 250-650Hz, 1000-4000Hz
10%, 25%, 50%, 75%, and 90% 5 5
Roll-Off
Centroid, Flux, and relative po- 3 4
sition of maximum and minimum

SUM 28 39

time. For example, as long as the input gate remains closed,
the activation of the cell will not be overwritten by new inputs
and can therefore be made available to the net much later in the
sequence by opening the output gate.

Another problem with standard RNNs is that they have ac-
cess to past but not to future context. This can be overcome
by using bidirectional RNNs [40], where two separate recurrent
hidden layers scan the input sequences in opposite directions.
The two hidden layers are connected to the same output layer,

TABLE 11
36 STATISTICAL FUNCTIONALS APPLIED TO THE LOW-LEVEL DESCRIPTOR
CONTOURS FOR TURN-BASED EMOTION ANALYSIS

Functionals #
Maximum/Minimum Value and Relative Position 4
Range (Max.-Min.) 1
Mean and Mean of Absolute Values 2
Max.-Mean, Min.-Mean 2
Quartiles and Inter-Quartile Ranges 6
95% and 98% Percentile 2
4
1
4
5
1
4

Std. deviation, Variance, Kurtosis, Skewness

Centroid of Contour

Linear Regression Coefficients and Approximation Error

Quadratic Regression Coefficients and Approximation Error
Zero-Crossing Rate

25% Down-Level Time, 75% Up-Level Time, Rise-Time, Fall-Time

which therefore has access to context information in both di-
rections. The amount of context information that the network
actually uses is learned during training, and does not have to
be specified beforehand. Fig. 5 shows the structure of a simple
bidirectional network.

Combining bidirectional networks with LSTM gives bidi-
rectional LSTM [53], which has demonstrated excellent
performance in phoneme recognition [28], [54], keyword
spotting [29], and emotion recognition from speech [26].

While bidirectional LSTM cannot be used for online incre-
mental prediction tasks, they are well suited to refine or cor-
rect the estimation of affect once the complete turn is available.
Thus, we included bidirectional networks in our performance
evaluation on the SAL database.

All RNN-based classifiers used in the experiments in
Section VI were implemented using the open source RNNLIB
library.4

IV. AcCOUSTIC FEATURE EXTRACTION

Acoustic features from the speech signal are extracted using
our openEAR [47] audio feature extractor, which was also used
to provide features for the Interspeech 2009 Emotion Challenge
[23].

The 28 low-level descriptors extracted from the audio signal
for time-continuous emotion recognition are summarized in
Table I (column “C’). The descriptors were extracted every
20 ms for overlapping frames with a frame-length of 32 ms.
First-order regression coefficients are appended to the 28
low-level descriptors, resulting in a 56-dimensional feature
vector for each frame.

In order to enable also turn-based emotion recognition ex-
periments, the openEAR module alternatively follows the tra-
ditional approach of generating a large set of features by ap-
plying statistical functionals to low-level descriptor contours.
An extended set of 39 low-level-descriptors detailed in Table I
(column “T’) is extracted, first— and second-order delta coeffi-
cients are appended, and 36 functionals are applied to each of the
resulting 117 low-level descriptor contours, resulting in a total
of 4212 features. The 36 functionals are detailed in Table II.

The 4212 features for turn-based emotion recognition are
reduced to relevant features for activation and valence indepen-
dently by a correlation-based feature subset (CFS) selection

“http://github.com/alexgraves/RNNLIB
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[55], [56]. The main idea of CFS is that useful feature subsets
should contain features that are highly correlated with the target
class while being uncorrelated with each other. The core of
CFS is an evaluation function

MS _ k- Tef
k+ k(k— Drg

where Mg is the rating of a subset S with k features. 7. de-
notes the mean feature-class correlation and rg is the average
feature-feature inter-correlation. Good subsets of features have
highly predictive properties, yielding a high value in the numer-
ator of (1), and a low degree of redundancy among the features,
yielding a small value in the denominator. For correlation mea-
surement, the symmetrical uncertainty coefficient is used (as
described in [55]). To avoid an exhaustive search in the fea-
ture space a greedy hill climbing forward search is applied [56].
In this heuristic search algorithm, each feature is tentatively
added to the feature subset, whereas the resulting set of fea-
tures is evaluated using (1). Once the (so far) best feature set
has been chosen, the procedure is repeated. Note that we will-
fully decided for a filter based feature selection method, since
a wrapper-based technique would have biased the resulting fea-
ture set with respect to compatibility to a specific classifier.

Conducting CFS for turn-based emotion recognition via re-
gression resulted in 60 features being selected for activation and
64 features for valences. As termination criterion we considered
a maximum of five non-improving nodes before terminating the
greedy hill climbing forward search. Binary targets for activa-
tion and valence (high versus low, see Section VI) lead to the
selection of 110 and 55 features, respectively. For the discrimi-
native four-class quadrant classification task 121 features were
selected, and for the five-class task applying CES resulted in 123
selected features. Framewise emotion recognition uses the full
set of 28 - 2 = 56 features without further reduction.

All features (turn-based functionals and low-level features)
were standardized to have zero mean and unit standard devia-
tion. These parameters were computed from the training data
only and applied to both training and test data.

(D

V. LINGUISTIC FEATURE EXTRACTION

This section outlines the tandem LSTM-DBN keyword
spotter which generates binary linguistic features in order to
incorporate knowledge about the spoken content via early
fusion.

A. Background and References

Apart from acoustic features, also spoken or written text car-
ries information about the underlying affective state [57]-[59].
This is usually reflected in the usage of certain words or
grammatical alterations. A number of approaches exist for this
analysis: keyword spotting [60], [61], rule-based modeling [62],
semantic trees [63], Latent Semantic Analysis [64], transfor-
mation-based learning [65], world-knowledge-modeling [66],
key-phrase spotting [67], and Bayesian networks [68], [69].
Two methods seem to be predominant, presumably because

San explanation of the used features, openEAR configuration files, and lists of
the selected features and keywords can be found at http://www.openaudio.eu/
features_emo09.zip

they are shallow representations of linguistic knowledge and
have already been frequently employed in automatic speech
processing: (class-based) N-grams [70]-[73] and vector space
modeling [74], [75]. Due to the typical data sparseness in
emotion recognition, unigrams mostly have been applied so far
[72], [73]. The technique applied in our experiments is related
to bag of words modeling [74]-[76] via keyword spotting;
however, when applying framewise emotion recognition, only
one keyword can be present at a given time frame. In the case
of turnwise AER, the binary feature vector can contain more
than one keyword. This would enable techniques like (bag of)
N-gram modeling or other forms of linguistic information in-
tegration [77], [78], which however were not conducted in this
paper in order to allow a fair comparison between framewise
and turnwise affect recognition.

For combined acoustic and linguistic AER, the acoustic fea-
ture vector is extended by appending binary linguistic features.
Each binary feature corresponds to the occurrence of one of the
56 keywords that were shown to be correlated to either valence
or activation. Note that using a single linguistic feature con-
taining the current word identity in form of a word index would
not be feasible with LSTM networks since they assume that the
absolute value of a feature is always correlated or proportional
to the “intensity” of the corresponding feature. This, however,
would not be true for a “word index feature.”

When applying framewise acoustic-linguistic analysis, a
short buffer has to be included in order to allow the keyword
spotter to provide the binary features after the keyword has
been decoded. Yet, this causes only a short delay as linguistic
features can still be delivered while the user is speaking. In
order to reduce the vocabulary to a small set of emotionally
meaningful keywords, correlation-based feature subset selec-
tion was applied on the training set. Pace regression [79]-based
CFS used the continuous labels for valence and activation
for bag of words keyword selection with a minimum term
frequency of two (without stemming). Thereby keywords like
again, angry, assertive, very, etc., were selected for activation,
and typical keywords correlated to valence where, e.g., good,
great, lovely, or totally.

The keyword spotter used in this paper is based on a recently
introduced hierarchical DBN which was shown to significantly
outperform a standard HMM-based approach [80]. The incor-
poration of an LSTM layer providing improved phoneme pre-
dictions was proven to further enhance keyword detection per-
formance [41].

B. Design Overview

The tandem LSTM-DBN architecture we used for keyword
spotting was proven to be robust with respect to phoneme recog-
nition errors [41] and well suited for emotional speech. Its struc-
ture is depicted in Fig. 6. The network is composed of five dif-
ferent layers and hierarchy levels, respectively: a word layer,
a phoneme layer, a state layer, the observed features, and the
LSTM layer, consisting of inputs 7;, a hidden layer h;, and out-
puts o; (nodes inside the grey shaded box).

The following random variables are defined for every time
step t: q; denotes the phoneme identity, ¢ represents the po-
sition within the phoneme, q%r indicates a phoneme transition,
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DBN word layer

DBN phoneme layer

DBN state layer

observation

/ LSTM layer

Fig. 6. Structure of the tandem LSTM-DBN keyword spotter: the LSTM net-
work (gray shaded box) provides a discrete phoneme prediction feature b, which
is observed by the DBN, in addition to the MFCC features ;. The DBN is
composed of a state, phoneme, and word layer, consisting of hidden transition

(str, gf*, wi), position (¢f*, wP®), and identity (¢, g¢, w, ) variables. Hidden

variables (circles) and observed variables (squares) are connected via random
CPFs (zig-zagged lines) or deterministic CPFs (straight lines). Switching parent
dependencies are indicated with dotted lines.

s¢ is the current state with s* indicating a state transition, and
x4 denotes the observed MFCC features. The variables w;, w!®,
and w;'r are identity, position, and transition variables for the
word layer of the DBN whereas a hidden garbage variable g,
indicates whether the current word is a keyword or not. A second
observed variable b, contains the phoneme prediction of the
LSTM network. Fig. 6 displays hidden variables as circles and
observed variables as squares. Deterministic conditional prob-
ability functions (CPFs) are represented by straight lines and
zig-zagged lines correspond to random CPFs. Dotted lines refer
to so-called switching parents [81], which allow a variable’s par-
ents to change conditioned on the current value of the switching

parent. Note that a switching parent can not only change the set
of parents but also the implementation (i.e., the CPF) of a parent.
The bold dashed lines in the LSTM layer do not represent sta-
tistical relations but simple data streams.

C. Design Details

Assuming a speech sequence of length 7', the DBN structure
specifies the factorization

tr ps tr ps tr
p (91:T7 wi.T, Wy, Wy, q1:175 49175 91,75 S1.75 S1:T'»

$1:T,b1:T)
T
H (4| s0)p(be [56) f (s¢ |0t qr)
t=1
xp (8] se) f(a] @ qe.s17) fge|we)
f( | at, wy ,wf)f(qi’s)p(ql | wh® ,wi, 1)
x f (wi”) p(ws Hf | ity art s art 1)

(wt | Wity wea)
(Qt |Qt 1 9t—1; wf 7wt7gt)

( pS Irlth 17wt 1)

@

with p(-) denoting random conditional probability functions
and f(-) describing deterministic CPFs.

The probability of the observed sequence can then be com-
puted by summing over all hidden variables, whereas the factor-
ization property in (2) can be exploited to optimally distribute
the sums over the hidden variables into the products, using the
junction tree algorithm [82].

The size of the LSTM input layer ¢, corresponds to the dimen-
sionality of the acoustic feature vector z;, whereas the vector
o¢ contains one probability score for each of the P different
phonemes at each time step. b; is the index of the most likely
phoneme:

by = max(ot Ty--e30tjy-es04P). 3)

The CPFs p(z: | s:) are described by Gaussian mixtures, as
is common practice with HMMs. Together with p(bt | s+) and
p(st¥| s¢), they are learned via EM training. s¥ is a binary
variable, indicating whether a state transition takes place or
not. Since the current state is known with certainty, given the
phoneme and the phoneme position, f(s;|q}", q:) is purely
determlmstlc A phoneme transition occurs whenever s{* = 1
and ¢}° = S provided that S denotes the number of states of a
phoneme. This is expressed by the function f(qf* | 2%, ¢s, s?).
The phoneme position ¢I* is known with certainty if si* ;,
¢, and ¢} | are given.

The hidden variable w; can take values in the range w; =
0... K with K being the number of different keywords in the
vocabulary. In case wy; = 0, the model is in the garbage state
which means that no keyword is uttered at that time. The vari-
able g; is then equal to one. wi" | is a switching parent of w;: if
no word transition is indicated, w; is equal to w;_1. Otherwise,
a word bigram specifies the CPF p(wy |wi™; = 1,wi—1). In
our experiments, we simplified the word bigram to a zerogram
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which makes each keyword equally likely. However, we intro-
duced differing a priori likelihoods for keywords and garbage
phonemes:

K -10°
ploe=1:Kwily =1) = ooy @)
and
1

The parameter a can be used to adjust the tradeoff between
true positives and false positives. Setting a = 0 means that the
a priori probability of a keyword and the probability that the
current phoneme does not belong to a keyword are equal. Ad-
justing ¢ > 0 implies a more aggressive search for keywords,
leading to higher true positive and false positive rates. The CPFs
Fwi™ | g, wi® we) and f(wi® | gy, wh®, wit ) are similar
to the phoneme layer of the DBN (i.e., the CPFs for ¢f* and
qF®). However, we assume that “garbage words” always consist
of only one phoneme, meaning that if g, = 1, a word transi-
tion occurs as soon as ¢f* = 1. Consequently, w}*® is always
zero if the model is in the garbage state. The variable ¢; has two
switching parents: ¢i* ; and g;. Similar to the word layer, ¢; is
equal to g;_1 if ¢f* ; = 0. Otherwise, the switching parent g;
determines the parents of ¢;. In case g, = 0—meaning that the
current word is a keyword—g; is a deterministic function of the
current keyword w; and the position within the keyword w}". If
the model is in the garbage state, ¢; only depends on ¢;_1 in a
way that phoneme transitions between identical phonemes are
forbidden.

Note that the design of the CPF p(qs | ¢i* 1, qe—1, W, wy, gt)
entails that the DBN will strongly tend to choose g; = 0 (i.e.,
it will detect a keyword) once a phoneme sequence that cor-
responds to a keyword is observed. Decoding such an obser-
vation while being in the garbage state g, = 1 would lead
to “phoneme transition penalties’ since the CPF p(q; | ¢f* ; =
1,q:—1,wy® wy, g¢ = 1) contains probabilities less than one.
By contrast, p(q; | ¢i* ; = 1, w}", wy, g¢ = 0) is deterministic,
introducing no likelihood penalties at phoneme borders.

The DBN was implemented using the Graphical Models
Toolkit (GMTK) [83]. In our experiments, we used phoneme
models consisting of three states with 16 Gaussian mixtures.
Phoneme models were trained on the TIMIT database [84]
and adapted using the training split of the Sensitive Artificial
Listener database (see Section II-A) to allow a better modeling
of emotionally colored speech. Thereby all means, variances,
and weights of the Gaussian mixture probability distributions
p(z¢ | st), as well as the state transition probabilities p(s}" | s¢)
were re-estimated until the change of the overall log likelihood
of the SAL training set became less than 0.02%. Since we found
that in the context of our target application a low true positive
rate is less critical than a high false positive rate, we chose a low
tradeoff parameter of ¢ = 0. The LSTM network of the tandem
keyword spotter consists of 100 memory blocks of one cell
each. All other DBN and LSTM parameters correspond exactly
to those applied in [41]. Using these settings, the keyword
spotter achieves a true positive rate of 0.59 at a false positive
rate of 0.05 on the test partition of the SAL corpus.

VI. EXPERIMENTS

Our emotion recognition engine was trained and tested on
the SAL database (see Section II-A). In order to fit the require-
ments of the SEMAINE dialogue management [25], the recog-
nition framework was designed in a way that it estimates the cur-
rent quadrant in the two-dimensional valence-activation space.
In addition to quadrant classification, we also investigated a
five-class task including a “neutral” state, as well as discrimi-
nating low and high valence and activation separately.

A. Primary Systems Evaluated

For quadrant prediction we followed two different strategies:
first, we trained LSTM networks for regression to obtain con-
tinuous predictions for valence and activation which were then
mapped onto one of the four quadrants. In order to conduct fea-
ture selection independently for both the valence and the ac-
tivation dimension, we used separate networks for the two di-
mensions. Second, the continuous labels for the emotional di-
mensions were mapped before training the network in order to
allow a discriminative training on the quadrants, following the
strategy introduced in [85]. These two strategies were also eval-
uated for the five-class task and for both of the two-class tasks
(discrimination of low versus high activation and valence, re-
spectively).

For each of the two techniques we evaluated both traditional
turnwise classification with statistical functionals of acoustic
features (see Section IV) and framewise classification using
only low-level features. The gain of appending the binary key-
word feature vector obtained by the dynamic Bayesian network
(outlined in Section V) for combined acoustic-linguistic affect
recognition was examined for every recognizer configuration.

The size of the LSTM input layer corresponds to the number
of selected acoustic and linguistic features (see Sections IV and
V), while the size of the output layer is equal to the number
of regression/classification targets (one, two, four, and five, re-
spectively). Each LSTM-RNN consists of one recurrent hidden
layer with 50 memory blocks of one LSTM cell each. The
BLSTM-RNN has two hidden layers of 50 memory blocks, one
for each direction (forwards, backwards). For the acoustic—lin-
guistic experiments the LSTM network size was increased
to 70 memory blocks due to the increased size of the com-
bined acoustic-linguistic feature vector. The networks were
trained applying resilient propagation [86]. Prior to training,
all weights were randomly initialized in the range from —0.1
to 0.1. Input and output gates used tanh activation functions,
while the forget gates had logistic activation functions. Since
the training converged faster for turnwise classification, we
aborted turnwise training after ten epochs, whereas the training
procedure for framewise classification was aborted after 250
epochs.

Before mapping the (B)LSTM-RNN predictions o, onto
quadrants, they were smoothed using a first-order low-pass
filter to obtain the filtered predictions 0§

0f = aoj_; + (1 —a)- o (6)
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TABLE III
KAPPA VALUES FOR THE FOUR DIFFERENT ANNOTATORS IN
THE SAL DATABASE (TURNWISE QUADRANT LABELING);
ILA: INTER-LABELER AGREEMENT

K 1 2 3 4
ILA | 068 0.67 0.67 0.60
1 049 048 046
2 048 045
3 0.52

An a of 0.99 was used for time-continuous emotion recogni-
tion and an a of 0.7 was used for turn-based recognition. Both
values were optimized on the training set.

B. Comparison Systems and Ground Truth

As a common continuous recognition technique, support
vector regression (SVR) was performed for comparison [26],
[56], [87]. The SVR used a polynomial kernel function of
degree 1 and sequential minimal optimization (SMO). The dis-
criminatively trained LSTM networks were compared to SVMs
instead of SVR. Since SVR and SVM do not model contextual
information, only turnwise classification was evaluated in this
case. In order to determine the gain of long short-term memory
modeling, we also investigated conventional RNN classification
for comparison. The RNNs were trained in the same way as the
LSTM networks; however, the network consisted of 50 hidden
neurons instead of the 50 one-cell LSTM memory blocks.

Furthermore, we evaluated inter-labeler consistency as an
upper benchmark for automatic emotion recognition. To ob-
tain an impression of human emotion prediction quality we
compared the annotations of one labeler to the mean of the an-
notations of the remaining three labelers. This was done for all
of the four labelers so that eventually the average inter-labeler
consistency could be determined.

As a further evaluation of inter-labeler agreement, Table III
shows the kappa values for the four different annotators. Since
each of the kappa values is larger than 0.4, the labeler agreement
can be characterized as sufficiently high.

C. Results

Tables IV and VI show the recognition result for the as-
signment of quadrants using the regression method and the
discriminative technique, respectively. Results for the five-class
task which also considers a “neutral” state (see Fig. 1) can be
seen in Tables V and VII, and Tables VIII and IX contain the
results for separate classification of the degree of activation and
valence (i.e., positive versus negative activation and valence,
respectively). Due to the slightly unbalanced class distribu-
tion, accuracy is a rather inappropriate performance measure.
Thus, we used the Fl1-measure as the harmonic mean between
unweighted recall and unweighted precision for performance
evaluation. Compared to emotion recognition on prototypical
speech turns (as in [8] or [9]), the overall performance is signif-
icantly lower. Yet, the accuracies are in the order of magnitude
that is typical for real-life experiments, attempting to classify
natural, non-prototypical, and ambiguous emotional speech
turns [23].

TABLE 1V
REGRESSION-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT CLASSIFICATION USING TURNWISE OR
FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit features acc. rec. prec. F1
quadrants
BLSTM turn A 371% 349% 355% 352%
BLSTM turn A+L 410% 369% 378% 37.3%
BLSTM  frame A 417% 448% 420% 433%
BLSTM  frame A+L 482% 51.6% 493% 504 %
LST™M turn A 373% 379% 354%  36.6%
LSTM turn A+L 386% 384% 398% 39.7%
LSTM  frame A 312% 334% 372% 352%
LSTM  frame A+L 342% 30.7% 379% 339%
RNN turn A 337% 348% 347% 34.7%
RNN turn A+L 371% 355% 36.7%  36.1%
RNN frame A 31.0% 369% 338% 353%
RNN frame A+L 282% 317% 348% 332%
SVR turn A 288% 300% 273%  28.6%
SVR turn A+L 333% 322% 304% 313%
lab turn 62.0% 592% 587%  58.9%
lab frame 592% 583% 56.7%  57.4%
TABLE V

REGRESSION-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT/NEUTRAL FIVE-CLASS TASK USING TURNWISE
OR FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit features acc. rec. prec. F1
quadrants + neutral

BLSTM turn A 379% 34.1% 386% 362%
BLSTM turn A+L 409% 306% 395% 345%
BLSTM  frame A 346% 393% 343% 36.6%
BLSTM  frame A+L 442% 494% 452% 47.2%
LST™M turn A 360% 351% 325% 33.7%
LSTM turn A+L 390% 300% 355% 325%
LSTM frame A 290% 283% 325% 303%
LSTM frame A+L 332% 304% 303% 30.4%
RNN turn A 351% 309% 332% 32.0%
RNN turn A+L 36.8% 308% 344% 325%
RNN frame A 356% 21.1% 414% 279%
RNN frame A+L 368% 205% 41.0% 274%
SVR turn A 328% 255% 249% 252%
SVR turn A+L 320% 252% 249% 25.0%
lab turn 56.8% 55.1% 53.7%  54.3%
lab frame 56.3% 56.9% 54.9%  55.8%

A rating of the prediction quality can be obtained when com-
paring the best result in Table IV (framewise BLSTM classifi-
cation using acoustic and linguistic features) with the predic-
tion performance of a human labeler (lab, frame in Table IV):
when comparing the annotation of a single labeler to the mean of
the annotations of the remaining three labelers, the obtained av-
erage Fl-measure (57.4%) is only 7% higher than the F1-mea-
sure of the best classifier (50.4%). This reflects the ambiguity of
perceived emotion and the resulting low degree of inter-labeler
agreement. A further reason for the low annotator F1-measure
is that a high amount of utterances are near the class borders
(see Fig. 1). Consequently, those speech turns are hard to assign,
even for human annotators. Such non-prototypical, ambiguous
utterances also reduce the uncertainty during model training,
which limits the obtainable automatic recognition performance.
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TABLE VI
DISCRIMINATIVE (B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
MACHINE (SVM) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT CLASSIFICATION USING TURNWISE OR
FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit features acc. rec. prec. F1
quadrants
BLSTM turn A 493% 513% 512% 513%
BLSTM turn A+L 476% 48.6% 46.8% 47.7%
BLSTM  frame A 425% 439% 413% 425%
BLSTM  frame A+L 390% 374% 37.1% 372%
LSTM turn A 48.6% 474% 482% 47.8%
LSTM turn A+L 49% 491% 483% 48.7%
LSTM frame A 374% 380% 38.1% 38.1%
LSTM frame A+L 320% 378% 326% 353%
RNN turn A 463% 472% 472% 472%
RNN turn A+L 459% 465% 458%  46.1%
RNN frame A 283% 321% 309% 31.5%
RNN frame A+L 21% 282% 2713% 271.7%
SVM turn A 390% 396% 412% 404%
SVM turn A+L 378% 385% 36.7% 37.6%
lab turn 620% 592% 58.7%  58.9%
lab frame 592% 583% 56.7% < 57.4%
TABLE VII

DISCRIMINATIVE (B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT/NEUTRAL FIVE-CLASS TASK USING TURNWISE
OR FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit  features acc. rec. prec. F1
quadrants + neutral

BLSTM turn A 398% 40.1% 384 % 39.2 %
BLSTM turn A+L 419% 418% 41.7% 41.7%
BLSTM  frame A 280% 253% 295% 272%
BLSTM  frame A+L 290% 323% 258% 28.7%
LSTM turn A 40.0% 387% 360% 373%
LSTM turn A+L 419% 415% 371% 392%
LSTM frame A 278% 286% 29.6% 29.1%
LSTM frame A+L 304% 30.0% 247% 27.1%
RNN turn A 380% 398% 354% 375%
RNN turn A+L 390%  41.6% 37.1% 392%
RNN frame A 287% 243% 250%  24.6%
RNN frame A+L 270% 25.6% 264% @ 26.0%
SVM turn A 348% 358% 352% 355%
SVM turn A+L 348% 359% 350% 354%
lab turn 56.8%  551% 53.7%  54.3%
lab frame 563% 569%  54.9%  55.8%

The best Fl1-measure for valence (72.2%) is notably below
the average “performance” or consensus of a human labeler (85.
7%). However, the best recognition result for activation (68.9%)
is only 2.2% below the inter-human labeling consistency (71.
1%). For the five-class task the performance gap between the
best classifier and human labelers is 8.6% (see Table V).

In what follows, we will analyze the results in Tables IV-IX
with respect to six different aspects: the number of emotion
classes, the difference between regression and discriminative
training, the gain of LSTM context modeling, the benefit of in-
cluding bidirectional context, the difference between turnwise
and framewise classification, and the integration of linguistic
features.

1) Four Quadrants Versus Five Classes: The best Fl1-mea-
sure for quadrant classification can be obtained when using a
discriminative BLSTM for turnwise prediction with acoustic

TABLE VIII

REGRESSION-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR

REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR CLASSIFICATION OF VALENCE AND ACTIVATION (HIGH

VERSUS LOW) USING TURNWISE OR FRAMEWISE PREDICTION WITH
ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC (A + L) FEATURES: ACCURACY
(ACC.), UNWEIGHTED RECALL (REC.), UNWEIGHTED PRECISION (PREC.),

AND F1-MEASURE (F1)

model unit  features acc. rec. prec. F1
activation
BLSTM turn A 648% 65.0% 649% 649%
BLSTM turn A+L 64.1% 643% 64.1% 642%
BLSTM  frame A 64.0% 641% 64.1% 64.1%
BLSTM  frame A+L 65.7% 657% 65.6% 65.6 %
LSTM turn A 59.8% 609% 613% 61.1%
LSTM turn A+L 602% 60.7% 60.7%  60.7%
LSTM frame A 564% 5712% 574% 57.3%
LSTM frame A+L 59.1% 599% 60.1%  60.0%
RNN turn A 546% 55.1% 552% 55.2%
RNN turn A+L 556% 564% 565% @ 56.5%
RNN frame A 534% 551% 564%  55.7%
RNN frame A+L 493% 494% 494% 494 %
SVR turn A 538% 533% 533% 533%
SVR turn A+L 555% 552% 558%  552%
lab turn 68.6% 70.6% 71.6% 71.1 %
lab frame 67.7% 694% 70.1% 69.8%
valence

BLSTM turn A 56.5% 58.0% 583% 58.1%
BLSTM turn A+L 600% 61.1% 614% 61.3%
BLSTM  frame A 65.8% 64.0% 647% 64.3%
BLSTM  frame A+L 728% 722% T21% 722 %
LSTM turn A 61.0% 625% 629% 62.7%
LSTM turn A+L 588% 603% 609%  60.6%
LSTM frame A 559% 574% 574% 574%
LSTM frame A+L 63.6% 57.7% 67.3% 62.1 %
RNN turn A 588% 603% 608%  60.5%
RNN turn A+L 629% 642% 648% 64.5%
RNN frame A 609% 63.6% 643% 639%
RNN frame A+L 57.5% 620% 660%  63.9%
SVR turn A 53.1% 550% 556% 553%
SVR turn A+L 56.0% 57.5% 58.0% 57.8 %
lab turn 886% 884% 886% 88.6%
lab frame 86.0% 858% 85.6% 85.7%

features (51.3%, see Table VI). However, additionally modeling
the “neutral” state can lead to a comparable prediction perfor-
mance (47.2%, see Table V). Interestingly, for the five-class task
framewise regression prevails. Obviously, the higher number of
class borders a discriminative classifier has to face in the five-
class experiment downgrades performance significantly. As can
be seen in Table V, a BLSTM network modeling all five classes
profits from frame by frame modeling of the fineness of emo-
tional dynamics via regression. Tables X and XI show typical
confusions when distinguishing four and five classes, respec-
tively. In both cases, the best prediction quality can be obtained
for quadrant IV (angry/anxious). Table XI points out that, due
to the non-prototypicality of emotions in the SAL corpus, al-
most all quadrants are most frequently confused with the neutral
state. An impression of the prediction quality for more prototyp-
ical utterances (or utterances with emotions of higher intensity)
can be obtained when masking the last column and the last line
of Table XI: quadrant—quadrant confusions obviously occur less
frequent than quadrant—neutral confusions. Another interesting
aspect is the effect of emotional intensity—and thus indirectly
prototypicality—of the test set on the obtained recognition per-
formance: when using the Regression-BLSTM for framewise
prediction with acoustic and linguistic features (trained on all
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TABLE IX
DISCRIMINATIVE-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
MACHINE (SVM) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR CLASSIFICATION OF VALENCE AND ACTIVATION (HIGH
VERSUS LOW) USING TURNWISE OR FRAMEWISE PREDICTION WITH
ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC (A + L) FEATURES: ACCURACY
(ACC.), UNWEIGHTED RECALL (REC.), UNWEIGHTED PRECISION (PREC.),
AND F1-MEASURE (F1)

model unit  features acc. rec. prec. F1
activation
BLSTM turn A 683% 689% 68.8% 68.9 %
BLSTM turn A+L 664% 665% 664%  66.4%
BLSTM  frame A 628% 63.6% 640% 63.8%
BLSTM  frame A+L 580% 579% 578% 579%
LSTM turn A 634% 648% 65.6% 652%
LSTM turn A+L 653% 662% 665%  66.4%
LSTM frame A 500% 50.8% 508%  50.8%
LSTM frame A+L 563% 568% 569% 56.9%
RNN turn A 61.7% 63.0% 63.8% 63.4%
RNN turn A+L 61.5% 629% 637% 63.3%
RNN frame A 50.6% 527% 538% 53.3%
RNN frame A+L 544% 552% 554% 553 %
SVM turn A 558% 56.7% 568%  56.8%
SVM turn A+L 544% 552% 553% 553%
lab turn 68.6% 706% 71.6% 71.1%
lab frame 67.7% 694% 70.1%  69.8%
valence
BLSTM turn A 63.7% 646% 647% 64.7%
BLSTM turn A+L T12% 718% 71.7% 71.7%
BLSTM  frame A 63.8% 651% 648% 65.0%
BLSTM  frame A+L 550% 584% 59.7% 59.0%
LSTM turn A 564% 594% 634% 61.3%
LSTM turn A+L 66.8% 685% 70.1%  69.3%
LSTM frame A 653% 663% 659%  66.1%
LSTM frame A+L 583% 56.1% 56.6% 56.4%
RNN turn A 67.5% 679% 678% 67.9%
RNN turn A+L 69.5% 705% 70.6%  70.5%
RNN frame A 575% 603% 61.0% 60.6%
RNN frame A+L 642% 64.6% 642% 64.4%
SVM turn A 614% 635% 657% 64.6%
SVM turn A+L 593% 614% 629%  62.1%
lab turn 88.6% 884% 88.6% 88.6%
lab frame 86.0% 858% 85.6%  85.7%
TABLE X

CONFUSION MATRIX FOR THE BEST QUADRANT CLASSIFICATION SETTING
(DISCRIMINATIVE BLSTM FOR TURNWISE PREDICTION WITH ACOUSTIC
FEATURES ONLY); ROWS: GROUND TRUTH; COLUMNS: PREDICTIONS
(WHITE TO BLACK RESEMBLES 0-100 %)

%[ 1 1 10 IV
I[/39 31 9 21
I 9 54 12 25
I 4 27 47 22
Iv| 3 21 9 |67

training data and characterized by the five-class confusion ma-
trix in Table XI), while evaluating only those utterances that
are not annotated as “neutral,” the resulting quadrant prediction
Fl-measure is 58.2%. On the other hand, when evaluating only
those turns that are annotated as “neutral,” the F1-measure for
quadrant prediction is as low as 34.3%. For very “intense” test
utterances that are labeled as having an absolute value of acti-
vation and valence that is higher than 0.5, the obtained quadrant
prediction F1-measure is 85.1%.

2) Regression Versus Discriminative Training: For almost
every experimental setting we can observe that discriminative

TABLE XI
CONFUSION MATRIX FOR THE BEST “QUADRANTS + NEUTRAL” (N)
CLASSIFICATION SETTING (REGRESSION BLSTM FOR FRAMEWISE PREDICTION
WITH ACOUSTIC AND LINGUISTIC FEATURES); ROWS: GROUND TRUTH;
COLUMNS: PREDICTIONS (WHITE TO BLACK RESEMBLES 0-100 %)

%| 1 11 III IV N
1[40 13 6 4 37
Im2s 40 3 8 24

I 12 1 48 14 25
Ivi 2 9 180 8
N|22 11 10 16 41

training prevails for turnwise recognition while regression pre-
vails for framewise recognition. Complete turns that are charac-
terized by statistical functionals of features can be distinguished
better with a discriminative technique. On the other hand, when
predicting a class frame by frame the network fails to model
“label jumps” when discriminatively trained on the discrete la-
bels. For framewise prediction, modeling the smooth progres-
sion of valence and activation is necessary before mapping the
output activations to quadrants.

3) LSTM Context Modeling Versus RNN and SVM: Both,
for framewise but also for turnwise prediction the LSTM
architecture outperforms a conventional RNN in most cases.
The major reason for this is the vanishing gradient problem
(see Section III) which limits the amount of context a recurrent
neural network can access. Using no contextual information at
all leads to comparatively low performance as can be seen in
the SVR and SVM experiments, justifying the higher computa-
tional cost of the LSTM approach.

4) Unidirectional Versus Bidirectional Context: Independent
of the classification task, bidirectional context mostly prevails
over unidirectional context. Both, regression and discriminative
BLSTM networks outperform all other models (LSTM, RNN,
SVR, and SVM) for the discrimination of five, four, and two
classes (numbers in bold face in Tables [IV-IX).

5) Turnwise Versus Framewise Classification: As already
mentioned, turnwise prediction can successfully be combined
with discriminative learning, while framewise emotion recogni-
tion is rather suited for predictors based on regression. For both
strategies, modeling contextual information is essential. When
additionally modeling “neutrality,” the best result can be ob-
tained with framewise prediction (see Table V). Note that the
amount of contextual information a BLSTM network models is
a lot more flexible when framewise prediction is applied, since
the temporal granularity is higher than it is for turnwise recogni-
tion. This can be seen as the major reason why framewise recog-
nition outperforms turnwise prediction if regression-BLSTM
networks are used.

6) Acoustic Features Versus Combined Acoustic and Lin-
guistic Features: Comparing Tables IV and VI, one can assert
that the regression-LSTM seems to profit more from the inclu-
sion of linguistic features. In some cases the quadrant prediction
performance of the discriminative classifier is even degraded
when adding keyword features. Obviously, the presence of
single keywords is not discriminative enough in this case. Lin-
guistic features are rather suited for modeling tendencies within
a continuous scale for valence and activation. When modeling
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Fig. 7. Prediction of activation (black) using a regression-LSTM and ground
truth (gray) over all turns of the test set (only acoustic features used).

“neutrality” as a fifth class, also the discriminative BLSTM
profits from linguistic features (while this is not the case for the
discriminative four-class task). This supports the finding that a
performance gain through keyword features presumes a certain
level of granularity of the prediction targets.

As an example for emotion recognition using regression,
Fig. 7 shows the turnwise activation predictions of a regres-
sion-LSTM before the output activations are mapped onto
quadrants. Prediction and ground truth are correlated with
a correlation coefficient of 0.56, leading to an Fl-measure
of 61.1% (see Table VIII) when distinguishing positive and
negative activation for every speech turn.

VII. CONCLUSION

In this paper, we introduced a novel technique for the
estimation of the quadrant in a two-dimensional emotional
space spanned by the dimensions valence and activation, as
it is needed for the SAL—an emotionally sensitive virtual
agent developed within the SEMAINE project. In contrast to
many other works that report recognition results for the static
classification of acted speech turns representing emotional pro-
totypes, our contribution can be seen as a realistic evaluation of
recognition accuracy under real-life conditions, where non-pro-
totypical speech has to be classified using powerful techniques
of dynamic speech modeling. Our approach combines acoustic
features obtained by our openEAR online feature extractor with
binary linguistic features produced by a tandem LSTM-DBN,
which are then classified by a long short-term memory recurrent
neural net. The LSTM architecture allows for the modeling of
long-range contextual information and enables a new technique
of incremental affect recognition that does not require the
computation of statistical functionals of features but captures
the temporal evolution indirectly through LSTM memory cells.
As an alternative for regression-based quadrant prediction, we
designed a discriminatively trained LSTM network which ex-
plicitly learns to distinguish quadrants of the emotional space.
The design of our proposed AER system is based on a series of
findings documented in earlier works: the benefit of including
linguistic features for speech based emotion recognition [14],
the enhancement of keyword spotting performance through the
incorporation of LSTM phoneme prediction features [41], the
importance of modeling temporal long-range dependencies in
emotion recognition [26], and the potential of discriminative
learning for quadrant prediction [85]. The prediction quality

of our system was shown to be comparable to the degree of
consistency between different human labelers.

One short-coming of our system is the fact that bidirectional
context cannot be used in a causal online emotion recognition
system. However, since we observed improved results for bidi-
rectional LSTM networks, the investigation of the potential of
BLSTM-RNN for online recognition is promising. For future
experiments, a possible approach would be a tandem system
with an LSTM-RNN that produces immediate outputs which are
refined over time by a BLSTM as more frames become avail-
able. A further drawback of the introduced system is its com-
plexity. However, provided that only unidirectional context is
used, our system can still operate in real-time. The training of
the complete system as used in this paper can be completed
within one day, but will take longer as soon as larger training
databases are used. Another problem—implied by the recog-
nition task—is that our classification system has to deal with a
high amount of ambiguous speech turns which are near the class
borders in the valence-activation space. This leads to high error
rates for non-prototypical speech segments that are difficult to
model when using discrete classes. A possible solution is to con-
tinuously model emotion via regression while abstaining from
mapping the regression output onto quadrants. Yet, those con-
tinuous values are difficult to use for the dialogue management
system of an emotion-sensitive virtual agent which will have
to use thresholds or any other kind of discretization before se-
lecting adequate system responses. As far as AER performance
evaluation is concerned, a possible solution is to increase the
granularity of emotional space discretization (e.g., by defining
nine instead of four regions in the emotional space) while at the
same time tolerating confusions between neighboring regions,
as done in [26], for example. Even though “wrong” assignments
of ambiguous speech turns are not necessarily critical for the
quality or adequateness of a virtual agent’s responses (even hu-
mans can interpret such utterances differently), further research
will be necessary in this area.

Future works will focus on investigating the benefit of in-
cluding further feature types, such as vision features used in [14]
or [88], into a time-continuous context sensitive emotion recog-
nition framework. For this purpose it would be interesting to
examine the potential of hybrid fusion techniques such as asyn-
chronous hidden Markov models [89] or multidimensional dy-
namic time warping [90] as alternatives to late and early fusion.
Also the LSTM architecture and parameterization could be opti-
mized by including more hidden layers or using different layer
sizes. Furthermore it would be interesting to examine the po-
tential of multi-task learning, i.e., learning the phonemes and
the affective state simultaneously. In addition to the mentioned
approaches for future improvements, there will be a lot more
aspects to consider before emotion-sensitive systems can show
a degree of naturalness that is comparable to humans. Yet, even
though the amount of social competence our emotion recog-
nition framework can incorporate into a virtual agent remains
limited and cannot fully compete with human affect recognition
quality, the principle of incremental speech processing and the
integration of long-range context information can be seen as two
further steps towards making virtual agents more human-like.
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Abstract—The automatic estimation of human affect from the
speech signal is an important step towards making virtual agents
more natural and human-like. In this paper, we present a novel
technique for incremental recognition of the user’s emotional
state as it is applied in a sensitive artificial listener (SAL) system
designed for socially competent human-machine communica-
tion. Our method is capable of using acoustic, linguistic, as well
as long-range contextual information in order to continuously
predict the current quadrant in a two-dimensional emotional
space spanned by the dimensions valence and activation. The
main system components are a hierarchical dynamic Bayesian
network (DBN) for detecting linguistic keyword features and long
short-term memory (LSTM) recurrent neural networks which
model phoneme context and emotional history to predict the affec-
tive state of the user. Experimental evaluations on the SAL corpus
of non-prototypical real-life emotional speech data consider a
number of variants of our recognition framework: continuous
emotion estimation from low-level feature frames is evaluated as a
new alternative to the common approach of computing statistical
functionals of given speech turns. Further performance gains are
achieved by discriminatively training LSTM networks and by
using bidirectional context information, leading to a quadrant
prediction F1-measure of up to 51.3 %, which is only 7.6 % below
the average inter-labeler consistency.

Index Terms—Dynamic Bayesian networks (DBNs), emotion
recognition, intelligent environments, long short-term memory
(LSTM), recurrent neural nets, virtual agents.

I. INTRODUCTION

OR the design of intelligent environments which enable
F natural human—machine interaction it is important to con-
sider the principles of interhuman communication as the ideal
prototype [1]. While automatic speech recognition (ASR) is al-
ready an integral part of most intelligent systems such as vir-
tual agents, in-car interfaces, or mobile phones, a lot more pat-
tern recognition modules are needed to close or at least narrow
the gap between the human ability to permanently observe and
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react to the affective state of the conversational partner in a so-
cially competent way, and the straightforwardness of system re-
sponses generated by today’s state-of-the-art human—computer
interfaces [2], [3]. Therefore, automatic emotion recognition
(AER) is an essential precondition to make, e.g., virtual agents
more human-like and to increase their acceptance among poten-
tial users [4]-[7].

Even though researchers report outstanding recognition ac-
curacies when trying to assign an affective state to an emo-
tionally colored speech turn [8], [9], systems that apply auto-
matic emotion recognition still are only rarely found in every
day life. The main reason for this is that emotion recognition
performance is often overestimated: apart from examples such
as call-center data [10]-[12], databases for interest recognition
[13], [14], or other spontaneous speech evaluations [15]-[19],
most speech-based AER systems are trained and tested on cor-
pora that contain segmented speech turns with acted, prototyp-
ical emotions that are comparatively easy to assign to a set of
predefined emotional categories [20]-[22]. Often, only utter-
ances that have been labeled equally by the majority of annota-
tors are used to evaluate AER performance. Yet, these assump-
tions fail to reflect the conditions a recognition system has to
face in real-life usage. Next-generation AER systems must be
able to deal with non-prototypical speech data and have to con-
tinuously process naturalistic and spontaneous speech as uttered
by the user (e.g., as in the Interspeech 2009 Emotion Challenge
[23]). More specifically, a real-life emotion recognition engine
has to model “everything that comes in,” which means it has
to use all data as recorded, e.g., for a dialogue system, media
retrieval, or surveillance task by using an open microphone set-
ting. According to [24], dealing with non-prototypicality is “one
of the last barriers prior to integration of emotion recognition
from speech into real-life technology.”

Thus, in this paper we present and investigate a speech-based
system for emotion recognition that is able to cope with sponta-
neous, non-prototypical, and unsegmented speech. We address
the problem of predicting the quadrant of an emotional space
(spanned by the two dimensions valence and activation), which
best describes the current affective state of the speaker. We will-
fully omit dominance as a further dimension, since we found
that activation and dominance are usually strongly correlated.
Consequently, the continuum of emotional states is reduced to
the four quadrants which can be described as relaxed/serene
(D), happy/excited (I1), sad/bored (111), and angry/anxious (IV)
in order to keep the affective state information as simple as

1932-4553/$26.00 © 2010 IEEE
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possible. A further motivation for quadrant quantization of the
continuous emotional space is to reduce the multiplicity of
possible system responses for the emotion dependent dialogue
management of virtual agents, since at some stage, a categorical
decision about the user’s emotion has to be made before deter-
mining a suitable system output. The outlined AER framework
is optimized for usage within virtual agent scenarios such as
the SEMAINE system for Sensitive Artificial Listening [25],
which demands for incremental real-time emotion estimation.
Applications like the SEMAINE system require customized
and immediate feedback based on the emotional state of the
user, and responses have to be prepared already before the user
has finished speaking. This, however, would hardly be feasible
using traditional static classification approaches like support
vector machines (SVMs) which classify segmented or fixed
length speech segments at the end of a speech turn. Instead,
incremental processing demands for techniques that operate
on short speech segments while incorporating an adequate and
gradually increasing amount of contextual information.

As shown in [26], capturing temporal long-range dependen-
cies is essential for the prediction quality of an AER system
and is superior to static SVM modeling. Hence, our technique
applies long short-term memory (LSTM) recurrent neural net-
works [27] which have shown excellent performance in many
machine learning applications [28]—[30]. This concept is able
to model emotional history and overcomes the so-called van-
ishing gradient problem in conventional recurrent neural nets
(RNNs). We show that LSTM enables a completely novel ap-
proach towards RNN based affect recognition, using low-level
features on a frame basis instead of turnwise computed sta-
tistical functionals or fixed-length feature vector sequences, as
applied in other context-independent RNN systems [31]. Our
principle of framewise emotion estimation is related to strate-
gies for speech recognition, where the temporal evolution of
low-level descriptors is not only captured by functionals of fea-
tures but by the classifier. Such an approach has many advan-
tages: it allows for incremental real-time emotion estimation
from speech as it is needed for emotionally sensitive virtual
agents and does not need to operate on supra-segmental units
of speech (as in almost any other method [32]-[34]). Moreover,
the precondition of perfect segmentation is not needed anymore
and the AER system can update the emotion prediction while
the user is speaking. The long short-term memory RNN archi-
tecture copes with the fact that speech emotion is a phenomenon
observed over a longer time window. Typical units of analysis
for static classifiers are complete sentences, sentence fragments
(i.e., chunks), or words [35]. Yet, finding the optimal unit of
analysis is still an active area of research [9], [36], [37]. Unlike
hidden Markov model (HMM)-based methods [38], [39] which
also focus on low-level features and perform best-path decoding
on the complete input fragment, our technique offers the great
advantage that the amount of contextual information that is used
for emotion recognition is learned during training. In order to
refine and update the estimation of a user’s emotion once the
complete spoken utterance is available, we also investigate the
usage of bidirectional context [40]. This is done by bidirectional
long short-term memory (BLSTM) networks which process the
entire speech sequence in forward and backward direction using

two hidden layers that are connected to the same output layer.
In contrast to the bidirectional system which presumes either
offline operation or a short “look-ahead” input buffer, the unidi-
rectional LSTM system can operate in real-time at a moderate
computational cost (see Section II.B).

In addition to the acoustic features, the system presented
herein also uses linguistic features derived from a dynamic
Bayesian network (DBN) for keyword spotting. The DBN is
designed in a way that it detects keywords which are correlated
to the user’s emotion in order to provide a binary linguistic
feature vector. In order to also exploit the principle of LSTM
modeling for the generation of linguistic features, our system
contains an additional LSTM network that provides a discrete
phoneme prediction feature to the keyword spotter. This prin-
ciple of tandem LSTM-DBN modeling was shown to prevail
over conventional hidden Markov model-based approaches
[41].

The emotion recognition system presented in this paper
is trained and evaluated on the Sensitive Artificial Listener
(SAL) database [42] which contains natural, spontaneous, and
emotionally colored speech. We investigate the accuracy of
predicting the quadrants of the emotional space as well as the
ability to distinguish high from low activation and valence,
respectively. Furthermore, we evaluate the AER performance
when considering neutrality as a fifth emotional state. We con-
sider both turnwise and framewise classification using BLSTM,
LSTM, SVM, and conventional RNN architectures—with and
without linguistic features. In addition to continuously esti-
mating valence and activation before assigning the prediction
to one of the four quadrants, we also investigate discriminative
training on the quadrants.

The rest of this paper is structured as follows. Section II de-
scribes the SAL database and gives an overview over the in-
troduced AER system architecture. In Section III, the principle
of long short-term memory is introduced. Sections IV and V
outline the acoustic and the linguistic feature extractor, respec-
tively. We present experimental results in Section VI and con-
cluding remarks are given in Section VII.

II. SENSITIVE ARTIFICIAL LISTENING

The aim of the SEMAINE project! is to build a sensitive
artificial listener—a multimodal dialogue system with the so-
cial interaction skills needed for a sustained conversation with
a human user. This section describes the SAL database which
was recorded during a Wizard-of-Oz SAL scenario and will be
used in the experimental section of this paper. Further, our AER
system architecture will be explained.

A. Database

The SAL corpus is a subset of the HUMAINE database?
[42] that is continuously labeled in a two-dimensional emo-
tional space spanned by activation and valence. It contains 25
audio-visual recordings in total from four speakers (two male,
two female) with an average recording length of 20 minutes
per speaker. The language spoken in the database is English.

Thttp://www.semaine-project.eu/
2http://emotion-research.net/download/pilot-db/
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Fig. 1. Turnwise annotations of the SAL database.

The recordings were obtained during natural human—computer
conversations, which were recorded using a Wizard-of-Oz
SAL interface designed to let users work through a range
of emotional states. All users had to speak to four different
virtual characters, each of whom represents one of the four
emotional quadrants (Fig. 1): “Prudence” is matter-of-fact
(quadrant I), “Poppy” is cheerful (quadrant II), “Obadiah” is
pessimistic (quadrant IIT), and “Spike” is aggressive (quadrant
IV). During the conversations, all virtual characters aimed to
induce an emotion that corresponds to “their” quadrant. Yet,
those “prototypical” virtual characters are used explicitly for
emotion induction and not for modeling conditional dependen-
cies between the affective state of the agent and the user, as
done in [43] for example. Both, the database and the recording
procedure are described in more detail in [42].

The annotators used the FEELtrace system [44] which gen-
erates quasi-time-continuous samples of activation and valence
every 10 ms (unlike the VAM corpus [45] and practically any
other database where labels for the emotional dimensions are
given only once per speech turn). All labelers listened to the
recordings twice, while annotating activation and valence con-
secutively in real-time. As ground truth for our experiments, the
mean of the four different annotators was used. The mean was
calculated by averaging both the (linear) activation and valence
coordinates of the labelers for every time step. Note that am-
biguous speech turns can lead to the case that the averaged coor-
dinates in the valence-activation space are located in a quadrant
that neither of the labelers had assigned to the speech fragment
(e.g., the average of coordinates in quadrant I and IV can be
located in quadrant II or III). Yet, the resulting quadrant can be
seen as the best possible compromise with respect to the average
perceived level of activation and valence. An alternative would
be to map such ambiguous utterances to a “garbage class.” How-
ever, since we found that only 2% of the resulting quadrant la-
bels are located in a quadrant that neither of the annotators as-
signed to the corresponding speech turn, and since all of those
cases have averaged coordinates that are located in the “neutral”
region (coordinates within the dashed circle in Fig. 1), we de-
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Fig. 2. Histogram for the turnwise annotations of activation (top) and valence
(bottom) in the SAL database.

cided that modeling neutrality is more adequate, rather than the
introduction of a “garbage class.”

For all experiments reported on in this paper the same
training- and test-set splits as introduced in [26] are used. The
25 recording sessions are split into 16 training sessions and
nine test sessions. The test split has a total length of 53.3 min,
whereas the training split has a length of 99.2 min. Since only
four speakers are contained in this database, the training- and
test-splits are not speaker disjunctive. Yet, speaker dependent
emotion recognition is of significant practical importance,
especially for the paradigm of virtual agents and sensitive
listeners, since the listener can adapt its models to the current
speaker and learn speaker profiles.

For our experiments on turn-based emotion recognition, the
sessions were split into turns using an energy based voice ac-
tivity detection. A total of 1692 turns is accordingly contained
in the database. The training- and test splits contain 1102 and
590 turns, respectively. The obtained speech turns do not nec-
essarily comprise complete sentences since the sessions were
also split at short hesitation pauses. Thus, the average length of
a speech turn is 3.5 seconds. Since the turns are short enough
to assume quasi-stationarity of the emotion within a turn, la-
bels for each turn were computed by averaging the FEELtrace
annotations for valence and activation over a complete turn in
order to obtain a ground truth for the turnwise AER experiments.
Note that, unlike in databases annotated on the word level [15],
short “activation peaks” like the stress of a single word within
a sentence are unlikely to be captured by the annotators, due to
the finite reaction time of the human labelers. Consequently, the
time-continuous annotations tend to have low-pass characteris-
tics and do not contain high frequencies, which limits the loss of
information due to the averaging of annotation samples within
a turn and accounts for the fact that emotion is perceived over
a longer time window. The distribution of the averaged labels
can be seen in Figs. 1 and 2. The dashed circle (with a radius
of 0.33, dividing the axes into thirds) in the center of the va-
lence-activation space in Fig. 1 marks a fifth region which rep-
resents a neutral emotional state. The coordinates that lie within
this circle will be considered as belonging to a fifth, neutral class
(see Section VI).
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Fig. 3. Architecture of the acoustic-linguistic affect recognition system.

The great challenge of emotion recognition on the natural-
istic SAL database is the fact that the system must deal with all
data—as observed and recorded—and not only manually pres-
elected emotional prototypes as in virtually any other database.
Note that there is usually a high difference in accuracy between
the tasks of prototypical and non-prototypical emotion recogni-
tion [23], [24], [46].

B. System Architecture

In Fig. 3, a flowchart of the presented incremental affect
recognition system is shown. Processing components such as
the LSTM network or the feature extractors are represented as
ovals, whereas rectangles denote data. Depending on whether
framewise or turnwise processing is used, our openEAR feature
extractor module [47] (see Section IV) provides either low-level
descriptors or statistical functionals of acoustic low-level fea-
tures to the LSTM network (outlined in Section III) for emotion
estimation. Additionally, mel-frequency cepstral coefficient
(MFCC) features are provided to both components of the
tandem keyword spotter component (see Section V), consisting
of a DBN and a further LSTM network for phoneme prediction.
Together with the produced phoneme predictions, the MFCC
features are observed by the DBN, which then can detect the
occurrence of a relevant keyword (i.e., a word that is relevant
for valence or activation prediction, see Section V). Both, the
discrete keyword feature and the acoustic features extracted by
openEAR are used by an LSTM network to predict the user’s
current emotion. For the emotion coding, EmotionML3 is used
[48], [49], supporting continuous spatio-temporal emotion
representation. EmotionML is a standard representation format
for emotion-related states in technological contexts, developed
by the W3C Emotion Markup Language Incubator Groups.
It can be used within the tasks of data annotation, emotion
recognition, and generation of emotion-related states.

Details about the overall architecture of the SEMAINE dia-
logue system can be found in [25].

Due to the complexity of the system, the computational cost
of our AER engine is higher than for standard classification
techniques such as SVMs, which however show significantly
lower performance than the proposed system (see Section VI).
Yet, when exclusively using unidirectional context within the
LSTM framework, the causal system can operate in real-time:
on an AMD Phenom 64 bit quad core CPU at 2.2 GHz, the ope-
nEAR feature extraction module runs online with a real-time
factor (RTF) of 0.01, while the LSTM operates at a real-time

3http://www.w3.0rg/2005/Incubator/emotion/XGR-emotionml-2008 1120/

factor of 0.09. Only one of the four cores was used for compu-
tation. Time and space complexity of the DBN is O(T logT")
and O(log T'), respectively, assuming that 7" corresponds to the
length of the speech sequence that is currently processed.

III. LONG SHORT-TERM MEMORY

This section outlines the principle of the long short-term
memory RNNs that are used for emotion classification in
Section VI as well as for phoneme prediction in Section V.
Framewise classification of emotion as investigated in this paper
presumes a classifier that can access and model long-range
context, since emotion mostly affects the long-term dynamics
of prosodic, spectral, and voice quality speech features. When
attempting to predict emotion frame by frame, a large number
of preceding speech frames have to be taken into account in
order to capture speech characteristics that are influenced by
emotion. The number of speech frames which should be used to
obtain enough context for reliably estimating emotion without
affecting the capability of also detecting sudden changes of
the speaker’s emotional state is hard to determine [36], [37].
Thus, a classifier that is able to learn the amount of context is a
promising alternative to manually defining fixed time windows
for emotion recognition. Static techniques such as SVMs do not
explicitly model context but rely on either capturing contextual
information via statistical functionals of features [14] or aggre-
gating frames using multi-instance learning techniques [50].
Dynamic classifiers like hidden Markov models are often used
for flexible context modeling and time warping. Yet, HMMs
have drawbacks such as the inherent assumption of conditional
independence of successive observations, meaning that an
observation is statistically independent of past observations
provided that the values of the hidden variables are known.
Hidden conditional random fields (HCRFs) [51] are one at-
tempt to overcome this limitation. However, HCRF also offer
no possibility to model a self-learned amount of contextual
information. Other dynamic classifiers such as neural networks
are able to model a certain amount of context by using cyclic
connections. These so-called recurrent neural networks can
in principle map from the entire history of previous inputs to
each output. Yet, the analysis of the error flow in conventional
recurrent neural nets led to the finding that long range context
is inaccessible to standard RNNs since the backpropagated
error either blows up or decays over time (vanishing gradient
problem [52]). This led to the introduction of long short-term
memory RNNs [27]. They are able to overcome the vanishing
gradient problem and can learn the optimal amount of con-
textual information relevant for the classification task. Thus,
LSTM architectures seem to be well-suited for our framewise
emotion recognition task.

An LSTM layer is composed of recurrently connected
memory blocks, each of which contains one or more memory
cells, along with three multiplicative “gate” units: the input,
output, and forget gates. The gates perform functions analogous
to read, write, and reset operations. More specifically, the cell
input is multiplied by the activation of the input gate, the cell
output by that of the output gate, and the previous cell values
by the forget gate (see Fig. 4). The overall effect is to allow the
network to store and retrieve information over long periods of
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Fig. 4. LSTM memory block consisting of one memory cell: the input, output,
and forget gates collect activations from inside and outside the block which
control the cell through multiplicative units (depicted as small circles); input,
output, and forget gate scale input, output, and internal state, respectively; a;
and a, denote activation functions; the recurrent connection of fixed weight 1.0
maintains the internal state.
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Fig. 5. Structure of a bidirectional network with input ¢, output o, and two
hidden layers (k¥ and h®) for forward and backward processing.

TABLE I
28 LOW-LEVEL AUDIO FEATURES FOR TIME-CONTINUOUS EMOTION ANALYSIS
(C) AND 39 FEATURES FOR TURN-BASED RECOGNITION (T); FEATURES IN BOLD
FACE ARE USED FOR BOTH, CONTINUOUS AND TURN-BASED RECOGNITION

Feature Group  Features in Group #(C) #(T)

Signal energy Root Mean-Square and log. en- 1 2
ergy

Pitch Fundamental Frequency Fgo, 2 1 3
measures for probability of voicing

Voice Quality Harmonics-To-Noise Ratio 1 1

Cepstral MFCC 0, MFCC 1-12, MFCC 13- 12 16
15

Time Signal Zero-Crossing-Rate, max. and 1 4
min. value, DC component

Spectral Energy in bands 0-250Hz, 0- 4 4
650Hz, 250-650Hz, 1000-4000Hz
10%, 25%, 50%, 75%, and 90% 5 5
Roll-Off
Centroid, Flux, and relative po- 3 4
sition of maximum and minimum

SUM 28 39

time. For example, as long as the input gate remains closed,
the activation of the cell will not be overwritten by new inputs
and can therefore be made available to the net much later in the
sequence by opening the output gate.

Another problem with standard RNNs is that they have ac-
cess to past but not to future context. This can be overcome
by using bidirectional RNNs [40], where two separate recurrent
hidden layers scan the input sequences in opposite directions.
The two hidden layers are connected to the same output layer,

TABLE 11
36 STATISTICAL FUNCTIONALS APPLIED TO THE LOW-LEVEL DESCRIPTOR
CONTOURS FOR TURN-BASED EMOTION ANALYSIS

Functionals #
Maximum/Minimum Value and Relative Position 4
Range (Max.-Min.) 1
Mean and Mean of Absolute Values 2
Max.-Mean, Min.-Mean 2
Quartiles and Inter-Quartile Ranges 6
95% and 98% Percentile 2
4
1
4
5
1
4

Std. deviation, Variance, Kurtosis, Skewness

Centroid of Contour

Linear Regression Coefficients and Approximation Error

Quadratic Regression Coefficients and Approximation Error
Zero-Crossing Rate

25% Down-Level Time, 75% Up-Level Time, Rise-Time, Fall-Time

which therefore has access to context information in both di-
rections. The amount of context information that the network
actually uses is learned during training, and does not have to
be specified beforehand. Fig. 5 shows the structure of a simple
bidirectional network.

Combining bidirectional networks with LSTM gives bidi-
rectional LSTM [53], which has demonstrated excellent
performance in phoneme recognition [28], [54], keyword
spotting [29], and emotion recognition from speech [26].

While bidirectional LSTM cannot be used for online incre-
mental prediction tasks, they are well suited to refine or cor-
rect the estimation of affect once the complete turn is available.
Thus, we included bidirectional networks in our performance
evaluation on the SAL database.

All RNN-based classifiers used in the experiments in
Section VI were implemented using the open source RNNLIB
library.4

IV. AcCOUSTIC FEATURE EXTRACTION

Acoustic features from the speech signal are extracted using
our openEAR [47] audio feature extractor, which was also used
to provide features for the Interspeech 2009 Emotion Challenge
[23].

The 28 low-level descriptors extracted from the audio signal
for time-continuous emotion recognition are summarized in
Table I (column “C’). The descriptors were extracted every
20 ms for overlapping frames with a frame-length of 32 ms.
First-order regression coefficients are appended to the 28
low-level descriptors, resulting in a 56-dimensional feature
vector for each frame.

In order to enable also turn-based emotion recognition ex-
periments, the openEAR module alternatively follows the tra-
ditional approach of generating a large set of features by ap-
plying statistical functionals to low-level descriptor contours.
An extended set of 39 low-level-descriptors detailed in Table I
(column “T’) is extracted, first— and second-order delta coeffi-
cients are appended, and 36 functionals are applied to each of the
resulting 117 low-level descriptor contours, resulting in a total
of 4212 features. The 36 functionals are detailed in Table II.

The 4212 features for turn-based emotion recognition are
reduced to relevant features for activation and valence indepen-
dently by a correlation-based feature subset (CFS) selection

“http://github.com/alexgraves/RNNLIB



6 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 5, OCTOBER 2010

[55], [56]. The main idea of CFS is that useful feature subsets
should contain features that are highly correlated with the target
class while being uncorrelated with each other. The core of
CFS is an evaluation function

MS _ k- Tef
k+ k(k— Drg

where Mg is the rating of a subset S with k features. 7. de-
notes the mean feature-class correlation and rg is the average
feature-feature inter-correlation. Good subsets of features have
highly predictive properties, yielding a high value in the numer-
ator of (1), and a low degree of redundancy among the features,
yielding a small value in the denominator. For correlation mea-
surement, the symmetrical uncertainty coefficient is used (as
described in [55]). To avoid an exhaustive search in the fea-
ture space a greedy hill climbing forward search is applied [56].
In this heuristic search algorithm, each feature is tentatively
added to the feature subset, whereas the resulting set of fea-
tures is evaluated using (1). Once the (so far) best feature set
has been chosen, the procedure is repeated. Note that we will-
fully decided for a filter based feature selection method, since
a wrapper-based technique would have biased the resulting fea-
ture set with respect to compatibility to a specific classifier.

Conducting CFS for turn-based emotion recognition via re-
gression resulted in 60 features being selected for activation and
64 features for valences. As termination criterion we considered
a maximum of five non-improving nodes before terminating the
greedy hill climbing forward search. Binary targets for activa-
tion and valence (high versus low, see Section VI) lead to the
selection of 110 and 55 features, respectively. For the discrimi-
native four-class quadrant classification task 121 features were
selected, and for the five-class task applying CES resulted in 123
selected features. Framewise emotion recognition uses the full
set of 28 - 2 = 56 features without further reduction.

All features (turn-based functionals and low-level features)
were standardized to have zero mean and unit standard devia-
tion. These parameters were computed from the training data
only and applied to both training and test data.

(D

V. LINGUISTIC FEATURE EXTRACTION

This section outlines the tandem LSTM-DBN keyword
spotter which generates binary linguistic features in order to
incorporate knowledge about the spoken content via early
fusion.

A. Background and References

Apart from acoustic features, also spoken or written text car-
ries information about the underlying affective state [S7]-[59].
This is usually reflected in the usage of certain words or
grammatical alterations. A number of approaches exist for this
analysis: keyword spotting [60], [61], rule-based modeling [62],
semantic trees [63], Latent Semantic Analysis [64], transfor-
mation-based learning [65], world-knowledge-modeling [66],
key-phrase spotting [67], and Bayesian networks [68], [69].
Two methods seem to be predominant, presumably because

San explanation of the used features, openEAR configuration files, and lists of
the selected features and keywords can be found at http://www.openaudio.eu/
features_emo09.zip

they are shallow representations of linguistic knowledge and
have already been frequently employed in automatic speech
processing: (class-based) N-grams [70]-[73] and vector space
modeling [74], [75]. Due to the typical data sparseness in
emotion recognition, unigrams mostly have been applied so far
[72], [73]. The technique applied in our experiments is related
to bag of words modeling [74]-[76] via keyword spotting;
however, when applying framewise emotion recognition, only
one keyword can be present at a given time frame. In the case
of turnwise AER, the binary feature vector can contain more
than one keyword. This would enable techniques like (bag of)
N-gram modeling or other forms of linguistic information in-
tegration [77], [78], which however were not conducted in this
paper in order to allow a fair comparison between framewise
and turnwise affect recognition.

For combined acoustic and linguistic AER, the acoustic fea-
ture vector is extended by appending binary linguistic features.
Each binary feature corresponds to the occurrence of one of the
56 keywords that were shown to be correlated to either valence
or activation. Note that using a single linguistic feature con-
taining the current word identity in form of a word index would
not be feasible with LSTM networks since they assume that the
absolute value of a feature is always correlated or proportional
to the “intensity” of the corresponding feature. This, however,
would not be true for a “word index feature.”

When applying framewise acoustic-linguistic analysis, a
short buffer has to be included in order to allow the keyword
spotter to provide the binary features after the keyword has
been decoded. Yet, this causes only a short delay as linguistic
features can still be delivered while the user is speaking. In
order to reduce the vocabulary to a small set of emotionally
meaningful keywords, correlation-based feature subset selec-
tion was applied on the training set. Pace regression [79]-based
CFS used the continuous labels for valence and activation
for bag of words keyword selection with a minimum term
frequency of two (without stemming). Thereby keywords like
again, angry, assertive, very, etc., were selected for activation,
and typical keywords correlated to valence where, e.g., good,
great, lovely, or totally.

The keyword spotter used in this paper is based on a recently
introduced hierarchical DBN which was shown to significantly
outperform a standard HMM-based approach [80]. The incor-
poration of an LSTM layer providing improved phoneme pre-
dictions was proven to further enhance keyword detection per-
formance [41].

B. Design Overview

The tandem LSTM-DBN architecture we used for keyword
spotting was proven to be robust with respect to phoneme recog-
nition errors [41] and well suited for emotional speech. Its struc-
ture is depicted in Fig. 6. The network is composed of five dif-
ferent layers and hierarchy levels, respectively: a word layer,
a phoneme layer, a state layer, the observed features, and the
LSTM layer, consisting of inputs 7;, a hidden layer h;, and out-
puts o; (nodes inside the grey shaded box).

The following random variables are defined for every time
step t: q; denotes the phoneme identity, ¢ represents the po-
sition within the phoneme, q%r indicates a phoneme transition,
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DBN word layer

DBN phoneme layer

DBN state layer

observation

/ LSTM layer

Fig. 6. Structure of the tandem LSTM-DBN keyword spotter: the LSTM net-
work (gray shaded box) provides a discrete phoneme prediction feature b, which
is observed by the DBN, in addition to the MFCC features ;. The DBN is
composed of a state, phoneme, and word layer, consisting of hidden transition

(str, gf*, wir), position (¢f*, wP®), and identity (¢, g¢, w, ) variables. Hidden

variables (circles) and observed variables (squares) are connected via random
CPFs (zig-zagged lines) or deterministic CPFs (straight lines). Switching parent
dependencies are indicated with dotted lines.

s¢ is the current state with s* indicating a state transition, and
x4 denotes the observed MFCC features. The variables w;, wi®,
and w;'r are identity, position, and transition variables for the
word layer of the DBN whereas a hidden garbage variable g,
indicates whether the current word is a keyword or not. A second
observed variable b, contains the phoneme prediction of the
LSTM network. Fig. 6 displays hidden variables as circles and
observed variables as squares. Deterministic conditional prob-
ability functions (CPFs) are represented by straight lines and
zig-zagged lines correspond to random CPFs. Dotted lines refer
to so-called switching parents [81], which allow a variable’s par-
ents to change conditioned on the current value of the switching

parent. Note that a switching parent can not only change the set
of parents but also the implementation (i.e., the CPF) of a parent.
The bold dashed lines in the LSTM layer do not represent sta-
tistical relations but simple data streams.

C. Design Details

Assuming a speech sequence of length 7', the DBN structure
specifies the factorization

tr ps tr ps tr
p (91:T7 wi.T, Wy, Wy, q1:175 49175 91,75 S1.75 S1:T'»

$1:T,b1:T)
T
H (4| s0)p(be [56) f (s¢ |0t qr)
t=1
xp (8] se) f(a] @ qe.s17) fge|we)
f( | at, wy ,wf)f(qi’s)p(ql | wh® ,wi, 1)
x f (wi”) p(ws Hf | ity art s art 1)

(wt | Wity wea)
(Qt |Qt 1 9t—1; wf 7wt7gt)

( pS Irlth 17wt 1)

@

with p(-) denoting random conditional probability functions
and f(-) describing deterministic CPFs.

The probability of the observed sequence can then be com-
puted by summing over all hidden variables, whereas the factor-
ization property in (2) can be exploited to optimally distribute
the sums over the hidden variables into the products, using the
junction tree algorithm [82].

The size of the LSTM input layer ¢, corresponds to the dimen-
sionality of the acoustic feature vector z;, whereas the vector
o¢ contains one probability score for each of the P different
phonemes at each time step. b; is the index of the most likely
phoneme:

by = max(ot Ty--e30tjy-es04P). 3)

The CPFs p(z: | s:) are described by Gaussian mixtures, as
is common practice with HMMs. Together with p(bt | s+) and
p(stt| s¢), they are learned via EM training. s¥ is a binary
variable, indicating whether a state transition takes place or
not. Since the current state is known with certainty, given the
phoneme and the phoneme position, f(s;|q}", q:) is purely
determlmstlc A phoneme transition occurs whenever s{* = 1
and ¢* = S provided that S denotes the number of states of a
phoneme. This is expressed by the function f(q¢* | ¢2*, ¢s, s?).
The phoneme position ¢I* is known with certainty if si* ;,
¢, and ¢} | are given.

The hidden variable w; can take values in the range w; =
0... K with K being the number of different keywords in the
vocabulary. In case wy; = 0, the model is in the garbage state
which means that no keyword is uttered at that time. The vari-
able g; is then equal to one. wi" | is a switching parent of w;: if
no word transition is indicated, w; is equal to w;_1. Otherwise,
a word bigram specifies the CPF p(wy |wi™; = 1,wi—1). In
our experiments, we simplified the word bigram to a zerogram
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which makes each keyword equally likely. However, we intro-
duced differing a priori likelihoods for keywords and garbage
phonemes:

K -10°
ploe=1:Kwily =1) = ooy @)
and
1

The parameter a can be used to adjust the tradeoff between
true positives and false positives. Setting a = 0 means that the
a priori probability of a keyword and the probability that the
current phoneme does not belong to a keyword are equal. Ad-
justing ¢ > 0 implies a more aggressive search for keywords,
leading to higher true positive and false positive rates. The CPFs
Fwi™ | g, wi® we) and f(wi® | gy, wh®, wit ) are similar
to the phoneme layer of the DBN (i.e., the CPFs for ¢f* and
qF®). However, we assume that “garbage words” always consist
of only one phoneme, meaning that if g, = 1, a word transi-
tion occurs as soon as ¢f* = 1. Consequently, w}*® is always
zero if the model is in the garbage state. The variable ¢; has two
switching parents: ¢i* ; and g;. Similar to the word layer, ¢; is
equal to g;_1 if ¢f* ; = 0. Otherwise, the switching parent g;
determines the parents of ¢;. In case g, = 0—meaning that the
current word is a keyword—g; is a deterministic function of the
current keyword w; and the position within the keyword w}". If
the model is in the garbage state, ¢; only depends on ¢;_1 in a
way that phoneme transitions between identical phonemes are
forbidden.

Note that the design of the CPF p(qs | ¢i* 1, qe—1, W, wy, gt)
entails that the DBN will strongly tend to choose g; = 0 (i.e.,
it will detect a keyword) once a phoneme sequence that cor-
responds to a keyword is observed. Decoding such an obser-
vation while being in the garbage state g, = 1 would lead
to “phoneme transition penalties’ since the CPF p(q; | ¢f* ; =
1,q:—1,wy® wy, g¢ = 1) contains probabilities less than one.
By contrast, p(q; | ¢i* ; = 1, w}", wy, g¢ = 0) is deterministic,
introducing no likelihood penalties at phoneme borders.

The DBN was implemented using the Graphical Models
Toolkit (GMTK) [83]. In our experiments, we used phoneme
models consisting of three states with 16 Gaussian mixtures.
Phoneme models were trained on the TIMIT database [84]
and adapted using the training split of the Sensitive Artificial
Listener database (see Section II-A) to allow a better modeling
of emotionally colored speech. Thereby all means, variances,
and weights of the Gaussian mixture probability distributions
p(z¢ | st), as well as the state transition probabilities p(s}” | s¢)
were re-estimated until the change of the overall log likelihood
of the SAL training set became less than 0.02%. Since we found
that in the context of our target application a low true positive
rate is less critical than a high false positive rate, we chose a low
tradeoff parameter of ¢ = 0. The LSTM network of the tandem
keyword spotter consists of 100 memory blocks of one cell
each. All other DBN and LSTM parameters correspond exactly
to those applied in [41]. Using these settings, the keyword
spotter achieves a true positive rate of 0.59 at a false positive
rate of 0.05 on the test partition of the SAL corpus.

VI. EXPERIMENTS

Our emotion recognition engine was trained and tested on
the SAL database (see Section II-A). In order to fit the require-
ments of the SEMAINE dialogue management [25], the recog-
nition framework was designed in a way that it estimates the cur-
rent quadrant in the two-dimensional valence-activation space.
In addition to quadrant classification, we also investigated a
five-class task including a “neutral” state, as well as discrimi-
nating low and high valence and activation separately.

A. Primary Systems Evaluated

For quadrant prediction we followed two different strategies:
first, we trained LSTM networks for regression to obtain con-
tinuous predictions for valence and activation which were then
mapped onto one of the four quadrants. In order to conduct fea-
ture selection independently for both the valence and the ac-
tivation dimension, we used separate networks for the two di-
mensions. Second, the continuous labels for the emotional di-
mensions were mapped before training the network in order to
allow a discriminative training on the quadrants, following the
strategy introduced in [85]. These two strategies were also eval-
uated for the five-class task and for both of the two-class tasks
(discrimination of low versus high activation and valence, re-
spectively).

For each of the two techniques we evaluated both traditional
turnwise classification with statistical functionals of acoustic
features (see Section IV) and framewise classification using
only low-level features. The gain of appending the binary key-
word feature vector obtained by the dynamic Bayesian network
(outlined in Section V) for combined acoustic-linguistic affect
recognition was examined for every recognizer configuration.

The size of the LSTM input layer corresponds to the number
of selected acoustic and linguistic features (see Sections IV and
V), while the size of the output layer is equal to the number
of regression/classification targets (one, two, four, and five, re-
spectively). Each LSTM-RNN consists of one recurrent hidden
layer with 50 memory blocks of one LSTM cell each. The
BLSTM-RNN has two hidden layers of 50 memory blocks, one
for each direction (forwards, backwards). For the acoustic—lin-
guistic experiments the LSTM network size was increased
to 70 memory blocks due to the increased size of the com-
bined acoustic-linguistic feature vector. The networks were
trained applying resilient propagation [86]. Prior to training,
all weights were randomly initialized in the range from —0.1
to 0.1. Input and output gates used tanh activation functions,
while the forget gates had logistic activation functions. Since
the training converged faster for turnwise classification, we
aborted turnwise training after ten epochs, whereas the training
procedure for framewise classification was aborted after 250
epochs.

Before mapping the (B)LSTM-RNN predictions o, onto
quadrants, they were smoothed using a first-order low-pass
filter to obtain the filtered predictions 0§

0f = aoj_; + (1 —a)- o (6)
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TABLE III
KAPPA VALUES FOR THE FOUR DIFFERENT ANNOTATORS IN
THE SAL DATABASE (TURNWISE QUADRANT LABELING);
ILA: INTER-LABELER AGREEMENT

K 1 2 3 4
ILA | 068 0.67 0.67 0.60
1 049 048 046
2 048 045
3 0.52

An a of 0.99 was used for time-continuous emotion recogni-
tion and an a of 0.7 was used for turn-based recognition. Both
values were optimized on the training set.

B. Comparison Systems and Ground Truth

As a common continuous recognition technique, support
vector regression (SVR) was performed for comparison [26],
[56], [87]. The SVR used a polynomial kernel function of
degree 1 and sequential minimal optimization (SMO). The dis-
criminatively trained LSTM networks were compared to SVMs
instead of SVR. Since SVR and SVM do not model contextual
information, only turnwise classification was evaluated in this
case. In order to determine the gain of long short-term memory
modeling, we also investigated conventional RNN classification
for comparison. The RNNs were trained in the same way as the
LSTM networks; however, the network consisted of 50 hidden
neurons instead of the 50 one-cell LSTM memory blocks.

Furthermore, we evaluated inter-labeler consistency as an
upper benchmark for automatic emotion recognition. To ob-
tain an impression of human emotion prediction quality we
compared the annotations of one labeler to the mean of the an-
notations of the remaining three labelers. This was done for all
of the four labelers so that eventually the average inter-labeler
consistency could be determined.

As a further evaluation of inter-labeler agreement, Table III
shows the kappa values for the four different annotators. Since
each of the kappa values is larger than 0.4, the labeler agreement
can be characterized as sufficiently high.

C. Results

Tables IV and VI show the recognition result for the as-
signment of quadrants using the regression method and the
discriminative technique, respectively. Results for the five-class
task which also considers a “neutral” state (see Fig. 1) can be
seen in Tables V and VII, and Tables VIII and IX contain the
results for separate classification of the degree of activation and
valence (i.e., positive versus negative activation and valence,
respectively). Due to the slightly unbalanced class distribu-
tion, accuracy is a rather inappropriate performance measure.
Thus, we used the F1-measure as the harmonic mean between
unweighted recall and unweighted precision for performance
evaluation. Compared to emotion recognition on prototypical
speech turns (as in [8] or [9]), the overall performance is signif-
icantly lower. Yet, the accuracies are in the order of magnitude
that is typical for real-life experiments, attempting to classify
natural, non-prototypical, and ambiguous emotional speech
turns [23].

TABLE 1V
REGRESSION-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT CLASSIFICATION USING TURNWISE OR
FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit features acc. rec. prec. F1
quadrants
BLSTM turn A 371% 349% 355% 352%
BLSTM turn A+L 410% 369% 378% 37.3%
BLSTM  frame A 417% 448% 420% 433%
BLSTM  frame A+L 482% 51.6% 493% 504 %
LST™M turn A 373% 379% 354%  36.6%
LSTM turn A+L 386% 384% 398% 39.7%
LSTM  frame A 312% 334% 372% 352%
LSTM  frame A+L 342% 30.7% 379% 339%
RNN turn A 337% 348% 347% 34.7%
RNN turn A+L 371% 355% 36.7%  36.1%
RNN frame A 31.0% 369% 338% 353%
RNN frame A+L 282% 317% 348% 332%
SVR turn A 288% 300% 273%  28.6%
SVR turn A+L 333% 322% 304% 313%
lab turn 62.0% 592% 587%  58.9%
lab frame 592% 583% 56.7%  57.4 %
TABLE V

REGRESSION-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT/NEUTRAL FIVE-CLASS TASK USING TURNWISE
OR FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit features acc. rec. prec. F1
quadrants + neutral

BLSTM turn A 379% 34.1% 386% 362%
BLSTM turn A+L 409% 306% 395% 345%
BLSTM  frame A 346% 393% 343% 36.6%
BLSTM  frame A+L 442% 494% 452% 47.2%
LST™M turn A 360% 351% 325% 33.7%
LSTM turn A+L 390% 300% 355% 325%
LSTM frame A 290% 283% 325% 303%
LSTM frame A+L 332% 304% 303% 30.4%
RNN turn A 351% 309% 332% 32.0%
RNN turn A+L 36.8% 308% 344% 325%
RNN frame A 356% 21.1% 414% 279%
RNN frame A+L 368% 205% 41.0% 274%
SVR turn A 328% 255% 249% 252%
SVR turn A+L 320% 252% 249% 25.0%
lab turn 56.8% 55.1% 53.7%  54.3%
lab frame 56.3% 56.9% 54.9%  55.8%

A rating of the prediction quality can be obtained when com-
paring the best result in Table IV (framewise BLSTM classifi-
cation using acoustic and linguistic features) with the predic-
tion performance of a human labeler (lab, frame in Table IV):
when comparing the annotation of a single labeler to the mean of
the annotations of the remaining three labelers, the obtained av-
erage Fl-measure (57.4%) is only 7% higher than the F1-mea-
sure of the best classifier (50.4%). This reflects the ambiguity of
perceived emotion and the resulting low degree of inter-labeler
agreement. A further reason for the low annotator F1-measure
is that a high amount of utterances are near the class borders
(see Fig. 1). Consequently, those speech turns are hard to assign,
even for human annotators. Such non-prototypical, ambiguous
utterances also reduce the uncertainty during model training,
which limits the obtainable automatic recognition performance.
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TABLE VI
DISCRIMINATIVE (B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
MACHINE (SVM) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT CLASSIFICATION USING TURNWISE OR
FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit features acc. rec. prec. F1
quadrants
BLSTM turn A 493% 513% 512% 513%
BLSTM turn A+L 476% 48.6% 46.8% 47.7%
BLSTM  frame A 425% 439% 413% 425%
BLSTM  frame A+L 390% 374% 37.1% 372%
LSTM turn A 48.6% 474% 482% 47.8%
LSTM turn A+L 49% 491% 483% 48.7%
LSTM frame A 374% 380% 38.1% 38.1%
LSTM frame A+L 320% 378% 326% 353%
RNN turn A 463% 472% 472% 472%
RNN turn A+L 459% 465% 458%  46.1%
RNN frame A 283% 321% 309% 31.5%
RNN frame A+L 21% 282% 2713% 271.7%
SVM turn A 390% 396% 412% 404%
SVM turn A+L 378% 385% 36.7% 37.6%
lab turn 620% 592% 58.7%  58.9%
lab frame 592% 583% 56.7% < 57.4%
TABLE VII

DISCRIMINATIVE (B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR QUADRANT/NEUTRAL FIVE-CLASS TASK USING TURNWISE
OR FRAMEWISE PREDICTION WITH ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC
(A + L) FEATURES: ACCURACY (ACC.), UNWEIGHTED RECALL (REC.),
UNWEIGHTED PRECISION (PREC.), AND F1-MEASURE (F1)

model unit  features acc. rec. prec. F1
quadrants + neutral

BLSTM turn A 398% 40.1% 384 % 39.2 %
BLSTM turn A+L 419% 418% 41.7% 41.7%
BLSTM  frame A 280% 253% 295% 272%
BLSTM  frame A+L 290% 323% 258% 28.7%
LSTM turn A 40.0% 387% 360% 373%
LSTM turn A+L 419% 415% 371% 392%
LSTM frame A 278% 286% 29.6% 29.1%
LSTM frame A+L 304% 30.0% 247% 27.1%
RNN turn A 380% 398% 354% 375%
RNN turn A+L 390%  41.6% 37.1% 392%
RNN frame A 287% 243% 250%  24.6%
RNN frame A+L 270% 25.6% 264% @ 26.0%
SVM turn A 348% 358% 352% 355%
SVM turn A+L 348% 359% 350% 354%
lab turn 56.8%  551% 53.7%  54.3%
lab frame 563% 569%  54.9%  55.8%

The best Fl1-measure for valence (72.2%) is notably below
the average “performance” or consensus of a human labeler (85.
7%). However, the best recognition result for activation (68.9%)
is only 2.2% below the inter-human labeling consistency (71.
1%). For the five-class task the performance gap between the
best classifier and human labelers is 8.6% (see Table V).

In what follows, we will analyze the results in Tables IV-IX
with respect to six different aspects: the number of emotion
classes, the difference between regression and discriminative
training, the gain of LSTM context modeling, the benefit of in-
cluding bidirectional context, the difference between turnwise
and framewise classification, and the integration of linguistic
features.

1) Four Quadrants Versus Five Classes: The best Fl1-mea-
sure for quadrant classification can be obtained when using a
discriminative BLSTM for turnwise prediction with acoustic

TABLE VIII

REGRESSION-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR

REGRESSION (SVR) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR CLASSIFICATION OF VALENCE AND ACTIVATION (HIGH

VERSUS LOW) USING TURNWISE OR FRAMEWISE PREDICTION WITH
ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC (A + L) FEATURES: ACCURACY
(ACC.), UNWEIGHTED RECALL (REC.), UNWEIGHTED PRECISION (PREC.),

AND F1-MEASURE (F1)

model unit  features acc. rec. prec. F1
activation
BLSTM turn A 648% 65.0% 649% 649%
BLSTM turn A+L 64.1% 643% 64.1% 642%
BLSTM  frame A 64.0% 641% 64.1% 64.1%
BLSTM  frame A+L 65.7% 657% 65.6% 65.6 %
LSTM turn A 59.8% 609% 613% 61.1%
LSTM turn A+L 602% 60.7% 60.7%  60.7%
LSTM frame A 564% 5712% 574% 57.3%
LSTM frame A+L 59.1% 599% 60.1%  60.0%
RNN turn A 546% 55.1% 552% 55.2%
RNN turn A+L 556% 564% 565% @ 56.5%
RNN frame A 534% 551% 564%  55.7%
RNN frame A+L 493% 494% 494% 494 %
SVR turn A 538% 533% 533% 533%
SVR turn A+L 555% 552% 558%  552%
lab turn 68.6% 70.6% 71.6% 71.1 %
lab frame 67.7% 694% 70.1% 69.8%
valence

BLSTM turn A 56.5% 58.0% 583% 58.1%
BLSTM turn A+L 600% 61.1% 614% 61.3%
BLSTM  frame A 65.8% 64.0% 647% 64.3%
BLSTM  frame A+L 728% 722% T21% 722 %
LSTM turn A 61.0% 625% 629% 62.7%
LSTM turn A+L 588% 603% 609%  60.6%
LSTM frame A 559% 574% 574% 574%
LSTM frame A+L 63.6% 57.7% 67.3% 62.1 %
RNN turn A 588% 603% 608%  60.5%
RNN turn A+L 629% 642% 648% 64.5%
RNN frame A 609% 63.6% 643% 639%
RNN frame A+L 57.5% 620% 660%  63.9%
SVR turn A 53.1% 550% 556% 553%
SVR turn A+L 56.0% 57.5% 58.0% 57.8 %
lab turn 886% 884% 886% 88.6%
lab frame 86.0% 858% 85.6% 85.7%

features (51.3%, see Table VI). However, additionally modeling
the “neutral” state can lead to a comparable prediction perfor-
mance (47.2%, see Table V). Interestingly, for the five-class task
framewise regression prevails. Obviously, the higher number of
class borders a discriminative classifier has to face in the five-
class experiment downgrades performance significantly. As can
be seen in Table V, a BLSTM network modeling all five classes
profits from frame by frame modeling of the fineness of emo-
tional dynamics via regression. Tables X and XI show typical
confusions when distinguishing four and five classes, respec-
tively. In both cases, the best prediction quality can be obtained
for quadrant IV (angry/anxious). Table XI points out that, due
to the non-prototypicality of emotions in the SAL corpus, al-
most all quadrants are most frequently confused with the neutral
state. An impression of the prediction quality for more prototyp-
ical utterances (or utterances with emotions of higher intensity)
can be obtained when masking the last column and the last line
of Table XI: quadrant—quadrant confusions obviously occur less
frequent than quadrant—neutral confusions. Another interesting
aspect is the effect of emotional intensity—and thus indirectly
prototypicality—of the test set on the obtained recognition per-
formance: when using the Regression-BLSTM for framewise
prediction with acoustic and linguistic features (trained on all
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TABLE IX
DISCRIMINATIVE-(B)LSTM AND RNN PERFORMANCE, SUPPORT VECTOR
MACHINE (SVM) PERFORMANCE, AND AVERAGE LABELER (LAB)
CONSISTENCY FOR CLASSIFICATION OF VALENCE AND ACTIVATION (HIGH
VERSUS LOW) USING TURNWISE OR FRAMEWISE PREDICTION WITH
ACOUSTIC (A) OR ACOUSTIC-LINGUISTIC (A + L) FEATURES: ACCURACY
(ACC.), UNWEIGHTED RECALL (REC.), UNWEIGHTED PRECISION (PREC.),
AND F1-MEASURE (F1)

model unit  features acc. rec. prec. F1
activation
BLSTM turn A 683% 689% 68.8% 68.9 %
BLSTM turn A+L 664% 665% 664%  66.4%
BLSTM  frame A 628% 63.6% 640% 63.8%
BLSTM  frame A+L 580% 579% 578% 579%
LSTM turn A 634% 648% 65.6% 652%
LSTM turn A+L 653% 662% 665%  66.4%
LSTM frame A 500% 50.8% 508%  50.8%
LSTM frame A+L 563% 568% 569% 56.9%
RNN turn A 61.7% 63.0% 63.8% 63.4%
RNN turn A+L 61.5% 629% 637% 63.3%
RNN frame A 50.6% 527% 538% 53.3%
RNN frame A+L 544% 552% 554% 553 %
SVM turn A 558% 56.7% 568%  56.8%
SVM turn A+L 544% 552% 553% 553%
lab turn 68.6% 706% 71.6% 71.1%
lab frame 67.7% 694% 70.1%  69.8%
valence
BLSTM turn A 63.7% 646% 647% 64.7%
BLSTM turn A+L T12% 718% 71.7% 71.7%
BLSTM  frame A 63.8% 651% 648% 65.0%
BLSTM  frame A+L 550% 584% 59.7% 59.0%
LSTM turn A 564% 594% 634% 61.3%
LSTM turn A+L 66.8% 685% 70.1%  69.3%
LSTM frame A 653% 663% 659%  66.1%
LSTM frame A+L 583% 56.1% 56.6% 56.4%
RNN turn A 67.5% 679% 678% 67.9%
RNN turn A+L 69.5% 705% 70.6%  70.5%
RNN frame A 575% 603% 61.0% 60.6%
RNN frame A+L 642% 64.6% 642% 64.4%
SVM turn A 614% 635% 657% 64.6%
SVM turn A+L 593% 614% 629%  62.1%
lab turn 88.6% 884% 88.6% 88.6%
lab frame 86.0% 858% 85.6%  85.7%
TABLE X

CONFUSION MATRIX FOR THE BEST QUADRANT CLASSIFICATION SETTING
(DISCRIMINATIVE BLSTM FOR TURNWISE PREDICTION WITH ACOUSTIC
FEATURES ONLY); ROWS: GROUND TRUTH; COLUMNS: PREDICTIONS
(WHITE TO BLACK RESEMBLES 0-100 %)

%[ 1 1 10 IV
I[/39 31 9 21
I 9 54 12 25
I 4 27 47 22
Iv| 3 21 9 |67

training data and characterized by the five-class confusion ma-
trix in Table XI), while evaluating only those utterances that
are not annotated as “neutral,” the resulting quadrant prediction
Fl-measure is 58.2%. On the other hand, when evaluating only
those turns that are annotated as “neutral,” the F1-measure for
quadrant prediction is as low as 34.3%. For very “intense” test
utterances that are labeled as having an absolute value of acti-
vation and valence that is higher than 0.5, the obtained quadrant
prediction F1-measure is 85.1%.

2) Regression Versus Discriminative Training: For almost
every experimental setting we can observe that discriminative

TABLE XI
CONFUSION MATRIX FOR THE BEST “QUADRANTS + NEUTRAL” (N)
CLASSIFICATION SETTING (REGRESSION BLSTM FOR FRAMEWISE PREDICTION
WITH ACOUSTIC AND LINGUISTIC FEATURES); ROWS: GROUND TRUTH;
COLUMNS: PREDICTIONS (WHITE TO BLACK RESEMBLES 0-100 %)

%| 1 11 III IV N
1[40 13 6 4 37
Im2s 40 3 8 24

I 12 1 48 14 25
Ivi 2 9 180 8
N|22 11 10 16 41

training prevails for turnwise recognition while regression pre-
vails for framewise recognition. Complete turns that are charac-
terized by statistical functionals of features can be distinguished
better with a discriminative technique. On the other hand, when
predicting a class frame by frame the network fails to model
“label jumps” when discriminatively trained on the discrete la-
bels. For framewise prediction, modeling the smooth progres-
sion of valence and activation is necessary before mapping the
output activations to quadrants.

3) LSTM Context Modeling Versus RNN and SVM: Both,
for framewise but also for turnwise prediction the LSTM
architecture outperforms a conventional RNN in most cases.
The major reason for this is the vanishing gradient problem
(see Section III) which limits the amount of context a recurrent
neural network can access. Using no contextual information at
all leads to comparatively low performance as can be seen in
the SVR and SVM experiments, justifying the higher computa-
tional cost of the LSTM approach.

4) Unidirectional Versus Bidirectional Context: Independent
of the classification task, bidirectional context mostly prevails
over unidirectional context. Both, regression and discriminative
BLSTM networks outperform all other models (LSTM, RNN,
SVR, and SVM) for the discrimination of five, four, and two
classes (numbers in bold face in Tables [IV-IX).

5) Turnwise Versus Framewise Classification: As already
mentioned, turnwise prediction can successfully be combined
with discriminative learning, while framewise emotion recogni-
tion is rather suited for predictors based on regression. For both
strategies, modeling contextual information is essential. When
additionally modeling “neutrality,” the best result can be ob-
tained with framewise prediction (see Table V). Note that the
amount of contextual information a BLSTM network models is
a lot more flexible when framewise prediction is applied, since
the temporal granularity is higher than it is for turnwise recogni-
tion. This can be seen as the major reason why framewise recog-
nition outperforms turnwise prediction if regression-BLSTM
networks are used.

6) Acoustic Features Versus Combined Acoustic and Lin-
guistic Features: Comparing Tables IV and VI, one can assert
that the regression-LSTM seems to profit more from the inclu-
sion of linguistic features. In some cases the quadrant prediction
performance of the discriminative classifier is even degraded
when adding keyword features. Obviously, the presence of
single keywords is not discriminative enough in this case. Lin-
guistic features are rather suited for modeling tendencies within
a continuous scale for valence and activation. When modeling
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Fig. 7. Prediction of activation (black) using a regression-LSTM and ground
truth (gray) over all turns of the test set (only acoustic features used).

“neutrality” as a fifth class, also the discriminative BLSTM
profits from linguistic features (while this is not the case for the
discriminative four-class task). This supports the finding that a
performance gain through keyword features presumes a certain
level of granularity of the prediction targets.

As an example for emotion recognition using regression,
Fig. 7 shows the turnwise activation predictions of a regres-
sion-LSTM before the output activations are mapped onto
quadrants. Prediction and ground truth are correlated with
a correlation coefficient of 0.56, leading to an Fl-measure
of 61.1% (see Table VIII) when distinguishing positive and
negative activation for every speech turn.

VII. CONCLUSION

In this paper, we introduced a novel technique for the
estimation of the quadrant in a two-dimensional emotional
space spanned by the dimensions valence and activation, as
it is needed for the SAL—an emotionally sensitive virtual
agent developed within the SEMAINE project. In contrast to
many other works that report recognition results for the static
classification of acted speech turns representing emotional pro-
totypes, our contribution can be seen as a realistic evaluation of
recognition accuracy under real-life conditions, where non-pro-
totypical speech has to be classified using powerful techniques
of dynamic speech modeling. Our approach combines acoustic
features obtained by our openEAR online feature extractor with
binary linguistic features produced by a tandem LSTM-DBN,
which are then classified by a long short-term memory recurrent
neural net. The LSTM architecture allows for the modeling of
long-range contextual information and enables a new technique
of incremental affect recognition that does not require the
computation of statistical functionals of features but captures
the temporal evolution indirectly through LSTM memory cells.
As an alternative for regression-based quadrant prediction, we
designed a discriminatively trained LSTM network which ex-
plicitly learns to distinguish quadrants of the emotional space.
The design of our proposed AER system is based on a series of
findings documented in earlier works: the benefit of including
linguistic features for speech based emotion recognition [14],
the enhancement of keyword spotting performance through the
incorporation of LSTM phoneme prediction features [41], the
importance of modeling temporal long-range dependencies in
emotion recognition [26], and the potential of discriminative
learning for quadrant prediction [85]. The prediction quality

of our system was shown to be comparable to the degree of
consistency between different human labelers.

One short-coming of our system is the fact that bidirectional
context cannot be used in a causal online emotion recognition
system. However, since we observed improved results for bidi-
rectional LSTM networks, the investigation of the potential of
BLSTM-RNN for online recognition is promising. For future
experiments, a possible approach would be a tandem system
with an LSTM-RNN that produces immediate outputs which are
refined over time by a BLSTM as more frames become avail-
able. A further drawback of the introduced system is its com-
plexity. However, provided that only unidirectional context is
used, our system can still operate in real-time. The training of
the complete system as used in this paper can be completed
within one day, but will take longer as soon as larger training
databases are used. Another problem—implied by the recog-
nition task—is that our classification system has to deal with a
high amount of ambiguous speech turns which are near the class
borders in the valence-activation space. This leads to high error
rates for non-prototypical speech segments that are difficult to
model when using discrete classes. A possible solution is to con-
tinuously model emotion via regression while abstaining from
mapping the regression output onto quadrants. Yet, those con-
tinuous values are difficult to use for the dialogue management
system of an emotion-sensitive virtual agent which will have
to use thresholds or any other kind of discretization before se-
lecting adequate system responses. As far as AER performance
evaluation is concerned, a possible solution is to increase the
granularity of emotional space discretization (e.g., by defining
nine instead of four regions in the emotional space) while at the
same time tolerating confusions between neighboring regions,
as done in [26], for example. Even though “wrong” assignments
of ambiguous speech turns are not necessarily critical for the
quality or adequateness of a virtual agent’s responses (even hu-
mans can interpret such utterances differently), further research
will be necessary in this area.

Future works will focus on investigating the benefit of in-
cluding further feature types, such as vision features used in [14]
or [88], into a time-continuous context sensitive emotion recog-
nition framework. For this purpose it would be interesting to
examine the potential of hybrid fusion techniques such as asyn-
chronous hidden Markov models [89] or multidimensional dy-
namic time warping [90] as alternatives to late and early fusion.
Also the LSTM architecture and parameterization could be opti-
mized by including more hidden layers or using different layer
sizes. Furthermore it would be interesting to examine the po-
tential of multi-task learning, i.e., learning the phonemes and
the affective state simultaneously. In addition to the mentioned
approaches for future improvements, there will be a lot more
aspects to consider before emotion-sensitive systems can show
a degree of naturalness that is comparable to humans. Yet, even
though the amount of social competence our emotion recog-
nition framework can incorporate into a virtual agent remains
limited and cannot fully compete with human affect recognition
quality, the principle of incremental speech processing and the
integration of long-range context information can be seen as two
further steps towards making virtual agents more human-like.
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