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Unsupervised Acoustic Model Adaptation
Based on Ensemble Methods

Takahiro Shinozaki, Member, IEEE, Yu Kubota, and Sadaoki Furui, Fellow, IEEE

Abstract—We propose unsupervised cross-validation (CV) and
aggregated (Ag) adaptation algorithms that integrate the ideas
of ensemble methods, such as CV and bagging, in the iterative
unsupervised batch-mode adaptation framework. These algo-
rithms are used to reduce overtraining problems and to improve
speech recognition performance. The algorithms are constructed
on top of a general parameter estimation technique such as the
maximum-likelihood linear regression method. The proposed
algorithms are also useful for suppressing the negative effects of
unsupervised adaptation, which reinforces the errors included
in the hypothesis used for the adaptation. Experiments are per-
formed using clean and noisy speech recognition tasks with several
conditions. We show that both our proposed unsupervised adap-
tation algorithms give higher performance than the conventional
batch-mode adaptation algorithm; however, the unsupervised CV
adaptation algorithm is more advantageous than the unsupervised
Ag adaptation algorithm in terms of computational cost. The
proposed algorithms resulted in 4% to 10% relative reduction in
the word error rate over the conventional batch-mode adaptation.

Index Terms— Acoustic model, cross-validation, ensemble
methods, speech recognition, unsupervised adaptation.

I. INTRODUCTION

S POKEN utterances largely vary with conditions such as
speakers and environments. Therefore, the ability to adapt

a speaker-independent general model to target utterances in an
unsupervised manner is especially important to achieve high
recognition performance in speech recognition. Batch-type un-
supervised adaptation is generally performed by first running
an automatic recognizer to derive a transcription of the target
utterances, and then parameter estimation algorithms are ap-
plied using that transcript [1]. Based on the adapted model, this
process is often iterated for lower recognition error rates [2].

Difficulties of this process are that the amount of adaptation
data is usually limited, and the transcript made by the recog-
nizer includes errors. Adaptation techniques are designed to
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manage these problems by effectively reducing the number
of free parameters to improve the generalization ability of the
adaptation. However, since the modeling flexibility is affected
by the free parameter reduction, there is a tradeoff between this
and the opportunity to precisely adapt the model to the target
data. Therefore, though controlling the number of free param-
eters is effective, the problems are not completely alleviated
and there is room for further improvement. We propose unsu-
pervised cross-validation (CV) and aggregated (Ag) adaptation
algorithms for improving the generalization performance of
the batch-mode unsupervised adaptation technique by intro-
ducing CV [3] and bagging-like [4] ideas to the iterative model
update process [5], which is similar to the CV-based gradient
estimation algorithm for maximum mutual information (MMI)
training [6] and to our previously proposed cross-validation
expectation-maximization (CV-EM) and aggregated expecta-
tion-maximization (Ag-EM) supervised training algorithms [7],
[8]. These algorithms are different from the typical applications
of machine ensemble methods [9] in that multiple models are
used inside an iterative training process.

The proposed algorithms are constructed on top of a conven-
tional parameter estimation method, such as maximum-likeli-
hood linear regression (MLLR) [10], and are basically inde-
pendent from the details of how the method estimates param-
eters. Therefore, they have potentially broad applications in it-
erative unsupervised adaptation not limited to speech recogni-
tion. In this paper, however, we focus on using the proposed
algorithms for MLLR and maximum a posteriori (MAP)-based
[11] acoustic model adaptation.

The organization of this paper is as follows. In Section II, the
conventional batch-mode unsupervised adaptation framework
is briefly reviewed and the proposed unsupervised CV and Ag
adaptation algorithms are explained. In Section III, an efficient
variant of the unsupervised CV adaptation algorithm specialized
for MLLR adaptation is proposed. Experimental conditions are
described in Section IV and the results are shown in Section V.
Conclusions and future work are given in Section VI.

II. UNSUPERVISED ADAPTATION ALGORITHMS

In this section, we briefly review the conventional batch-mode
unsupervised adaptation framework, and explain our proposed
unsupervised cross-validation (CV) and aggregated (Ag) adap-
tation algorithms. Although these algorithms are general, we as-
sume speaker adaptation in a speech recognition system for sim-
plicity.

A. Conventional Batch-Mode Adaptation

Fig. 1 shows a typical procedure of iterative conventional
batch-mode unsupervised speaker adaptation. The first step is

1932-4553/$26.00 © 2010 IEEE
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Fig. 1. Batch-mode unsupervised adaptation. M is model, T is recognition hy-
pothesis, and D is adaptation data. Hypothesis T is made from data D using
model M. Using that hypothesis, parameters of model M are updated. Updated
model is used to recognize same data in next iteration.

to decode a set of target utterances from a speaker using either
an initial model, if it is the first iteration, or otherwise using an
adapted model made in the previous step. By running the de-
coder, a hypothesized transcript is obtained. The second step is
to perform model parameter updates based on the hypothesis.
The details of how to update the parameters depend on under-
lying adaptation techniques, such as MLLR. This process is it-
erated several times to achieve higher adaptation performance.
The final recognition result is obtained by outputting the hypoth-
esis made in the last decoding step.

In this procedure, the over-fitting problem cannot be avoided.
Once a model parameter is biased to a specific data sample,
the bias is reinforced in the subsequent adaptation iterations
since the same data is used in the decoding and model update
steps. Moreover, it is unavoidable to have recognition errors
in the recognition hypothesis. These errors are also reinforced
during the iteration. These problems decrease the efficiency of
the adaptation.

B. Cross-Validation (CV) Adaptation

The proposed unsupervised CV adaptation algorithm re-
duces the problems of batch-mode adaptation by effectively
separating the data used in the decoding and model update
steps based on the -fold CV technique. Fig. 2 shows the
procedure of the unsupervised CV adaptation algorithm. In
this procedure, the target utterances are divided into ex-
clusive subsets so that each subset
has roughly the same size. The first decoding step is basically
the same as the batch-mode adaptation, and the subsets are
processed using the same initial model. Then, given subsets

of the recognition hypotheses for the
utterances, CV models are made

Fig. 2. Unsupervised CV adaptation. � is model and � is target data. ����
is �th CV model, ���� is �th exclusive data subset, and � ��� is recognition
hypothesis of that subset using ����. ���� denotes global CV model and
� ��� denotes hypothesis by ����.

by excluding one of these subsets, instead of making a single
model. As an initial model for estimating the th CV model, the

th CV model of the previous stage is used. Each model is used
in the next decoding step to make a new hypothesis for the data
subset that has been excluded from the parameter estimation
of that model. The decoding and the model update steps are
repeated as in the conventional batch-mode adaptation, and the
final recognition hypothesis is obtained by gathering the hy-
potheses of the subsets made in the last decoding step. With
this procedure, the data used for the decoding and for the model
parameter estimation are effectively separated, minimizing the
undesired effect of reinforcing the bias. Because the utterances
used for model estimation are not decoded with that model,
there is no chance that the same recognition error is repeated
with that model. Each CV model is estimated from a union of

exclusive subsets, each of which includes of the
original adaptation data. Therefore, the amount of data used to
estimate a CV model is of the original data, and
the data fragmentation problem is minimal for large . For
example, if is 20, then 95% of the original adaptation data
is used to estimate each CV model. Optionally, a global CV
model can be made in the update step together with the
CV models by using all recognition hypotheses. The global CV
model is useful when a single adapted model is required as an
output of the adaptation process.

The unsupervised CV adaptation algorithm is similar to the
CV-based gradient estimation algorithm for MMI training [6]
and to our previously proposed CV-EM algorithm [7], which
extends EM [12], in that CV is introduced in an iterative param-
eter estimation process. Compared to this CV-EM algorithm,
the decoding step corresponds to the E-step, and the parameter
update step corresponds to the M-step. The differences are that
the proposed unsupervised CV adaptation algorithm is an unsu-
pervised training algorithm, and the CV framework is used to
obtain recognition hypotheses rather than estimating gradients,
as in the MMI training, or sufficient statistics for true transcripts
as in CV-EM. The model update step can be performed using
any kind of parameter estimation method. The computational
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Fig. 3. Ag adaptation.� is model and� is target data.���� is�th Ag model,
���� is �th exclusive data subset, and T(n,k) is recognition hypothesis of �th
subset made using nth Ag model. ���� denotes global Ag model and � ���
denotes hypothesis by ����.

cost for the decoding step is constant for except for the over-
head due to reading different models. The computational cost
for the update step is proportional to .

If , CV adaptation is also similar to cross-adapta-
tion [13]. The difference is that CV adaptation is performed on
a single recognition system, whereas cross-adaptation requires
two. While cross-adaptation uses transcripts from two systems
representing different views of the same data based on different
features and/or decoding algorithms, CV adaptation uses dif-
ferent data of the same view.

C. Aggregated (Ag) Adaptation

Fig. 3 describes the unsupervised Ag adaptation algorithm.
Unlike CV adaptation, Ag adaptation allows overlap between
the data used in the decoding and the update steps. Instead,
the generalization ability is obtained through aggregating

models as in the bagging method. More specifically, the
target utterances are first divided into exclusive subsets

. Then, each data subset is repeatedly
decoded using models . Initially,
these models are prepared just by copying an initial model.
In the update step, models are made using hypotheses
from subsets that are randomly selected without
replacement. Depending on the underlying adaptation method,
the observation counts may be normalized by in the param-
eter estimation since hypotheses from the same utterance are
used simultaneously. The models are then used in the next
decoding step.

Ag adaptation is an extension of Ag-EM [7] and has the same
similarities and dissimilarities as in CV adaptation and CV-EM.
Another difference is that, a single recognition hypothesis with
the adapted models needs to be output in Ag adaptation. For
this, the different hypotheses from the last decoding step

of the same subset can be integrated using recognizer output
voting for error reduction (ROVER) [14] or confusion network
combination (CNC) [15]. Another option is to make a special
model that integrates all the transcripts from all the subsets
along with the models and output a recognition result using
that model. We adopted the latter strategy and refer to the model
as a global Ag model. The computational cost for the update
step is .

III. VARIANT FOR EFFICIENT MLLR ADAPTATION

While the unsupervised CV and Ag adaptation algorithms
are independent from an underlying parameter estimation
method, their computational cost for the model update step can
be reduced in some cases by using the details of the estimation
method with a small modification to their algorithms. In this
section, we first overview the MLLR algorithm for mean trans-
formation [10], which is widely used in speech recognition,
and then propose an efficient variant of the unsupervised CV
adaptation algorithm specialized for the MLLR method.

A. MLLR Algorithm

In MLLR adaptation, mean vectors of a set of Gaussian
mixture hidden Markov models (HMMs) are classified into

classes, and the transformation shown in (1) is estimated
for each class so as to maximize the likelihood of adaptation
data with the adapted HMM, where is a class index,
is a Gaussian component index belonging to th class,
is a transformation matrix, is an extended
mean vector consisting of a constant term and an original mean
vector , and is a transformed mean vector:

(1)

Given a set of adaptation utterances, the optimal transformation
is obtained by solving (2) as follows:

(2)
where is a covariance matrix of the th Gaussian com-
ponent of the original model, is an observation vector at
time , and is an occupation count of
being at the Gaussian mixture component at time given
HMM model parameters and the observation sequence .

Transformation estimation using (2) can be divided into two
steps. The first step is an accumulation step expressed in (3), and
the second is a transformation estimation step that solves (4) as
follows:

(3)

(4)

While the accumulation step requires summation over obser-
vation sequences, and the computational cost is linear to the
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Fig. 4. Efficient variant of unsupervised CV adaptation specialized for MLLR.
���� is �th CV model,���� is �th exclusive data subset, and � ��� is recog-
nition hypothesis of that subset using ����. ����� is set of MLLR sufficient
statistics for ���� using ���� and � ���.

amount of data, the cost for the transformation estimation step
is constant. Therefore, for a large amount of data, the computa-
tional cost is dominated by the accumulation step.

B. Efficient Unsupervised CV Adaptation

Fig. 4 shows the procedure of the proposed efficient variant
of the unsupervised CV adaptation algorithm for MLLR. The
differences from the original CV algorithm are that the MLLR
model update procedure is split into two steps, and the data ex-
change for the CV operation is performed between the two steps.
That is, the MLLR statistics defined by (3) are accumulated in
the accumulation step for each CV subset using the recognition
hypothesis of that subset and a corresponding CV model. Then,
the MLLR transforms for the th CV model are estimated in the
estimation step described by (4) by gathering all the statistics
excluding the one for the th subset. The new th CV model is
made by applying the estimated transforms to the th CV model
of the previous epoch.

The accumulation of the MLLR statistics is based on an as-
sumption that the alignments using the CV models correspond.
In the proposed CV adaptation algorithm, this assumption
holds for large . Because an arbitrary pair of the CV models

share sets of the MLLR statistics out
of in their parameter estimation, the models are quite
similar, except that they are open to a different data subset.

In this procedure, the computational cost for the MLLR accu-
mulation step is constant for the number of CV folds , except
the overhead of reading multiple models, since each input utter-
ance is processed only once while in the original version it is
processed times using different CV models. Therefore,
when the computational cost of MLLR is dominated by the ac-
cumulation step, the model update step of the efficient version
works with only of the original cost.

IV. EXPERIMENTAL SETUP

A. Corpora and Initial Acoustic Models

To evaluate the proposed algorithm in various conditions,
two test sets and three training conditions were used. The
first test set was the official evaluation set of the Corpus of
Spontaneous Japanese (CSJ) [16]. This test set consists of ten
academic oral presentations given by different male speakers.
The length of each presentation was about 10 to 20 minutes and
the total duration was 2.3 hours. This data is referred to as CSJ
test set. To evaluate this test data with domain-matched as well
as unmatched recognition conditions, spontaneous, and read
speech training data were used. The spontaneous training data
was from the training set portion of the CSJ corpus containing
254 hours of academic oral presentations. As a speaker-inde-
pendent baseline acoustic model, a tied-state Gaussian mixture
triphone HMM set with 3000 states and 32 mixtures per state
was estimated using this data. The read speech training data
was from the Japanese News Article Sentences (JNAS) corpus
[17] and consisted of 52 hours of gender-independent data.
Using the data, a speaker-independent initial triphone HMM
set with 2000 states and 32 mixtures per state was constructed.
These models were estimated using the EM and minimum
phone error (MPE) [18] training methods. Both Mel-frequency
cepstral coefficient (MFCC) [19] and perceptual linear predic-
tion (PLP)-based [20] acoustic models were constructed. The
MFCC-based features had 39 elements comprising 12 MFCCs
and log energy, and their delta [21] and delta-delta values.
Similarly, the PLP-based features consisted of 12 PLPs and log
energy, and their delta and delta-delta values.

The second test set was from the “Drivers’ Japanese Speech
Corpus in a Car Environment” corpus [22] and consisted of
20 male speakers and 20 female speakers who were profes-
sional drivers. The utterances were voice commands to a car
navigation system, and there were a total of 108 utterances
per speaker. They were recorded inside a car in idling mode,
driven in a city, or driven on a highway. Depending on the
driving conditions, the signal-to-noise ratio (SNR) varied from

10 to 20 dB. The total amount of data per speaker was about
six minutes. This data is referred to as a noisy test set. The
speaker-independent initial model used to recognize this noisy
test data was a tied-state Gaussian mixture triphone HMM.
It was first trained on 52 hours of clean speech data from the
JNAS corpus and then adapted to noisy speech conditions
using 1795 CSJ utterances that were randomly mixed with
28 noises from the JEIDA-NOISE corpus [23], including car
noises at seven different SNRs. The HMM had 2000 states
and 16 mixtures per state. The feature vectors had 38 elements
consisting of 12 MFCCs, their delta plus delta log energy, and
delta-delta values. Spectral subtraction [24] was performed
both in the estimation of the initial speaker-independent noisy
speech model and recognition of the evaluation data. The noise
vector for the spectral subtraction was estimated using the first
ten frames of each speech segment.

B. Recognition Systems

Most of the recognition experiments were performed using
the weighted finite-state transducer (WFST)-based decoder
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[25] with the MFCC-based features. An exception was an eval-
uation of cross-adaptation in which the Julius decoder [26] and
PLP-based features were also used together with an MFCC-
based system. Julius is a two-pass decoder with stack de-
coding, while is one pass.

The hidden Markov model toolkit (HTK) [27] was used for
the HMM training and for adaptation using the MLLR and
MAP methods. MLLR adaptation was performed using regres-
sion class trees with 32 leaf nodes with the default settings
of the toolkit except Ag adaptation, in which the occupancy
threshold to determine the number of MLLR adaptation classes
was multiplied by for normalization because hypotheses
from the same data are used in Ag adaptation. For the efficient
variant of the CV MLLR adaptation, a modified version of
the toolkit was used to support the algorithm. Other than that,
the original version was used without any modification in the
source code.

The recognition system for the large vocabulary CSJ test set
used a trigram language model trained from 6.8 million words of
academic and extemporaneous presentations from the CSJ. The
dictionary size was 30 k. The recognition system for the noisy
test set was based on a network grammar with a vocabulary of
300 words.

V. EXPERIMENTAL RESULTS

The proposed unsupervised ensemble adaptation algorithms
were first evaluated in the context of unsupervised MLLR
speaker adaptation using the CSJ test set and the CSJ trained
acoustic model to investigate basic characteristics. Since the
adaptation algorithms rely on a recognition hypothesis, there
was a question of how their adaptation performance would be
affected by the accuracy of the initial recognition results. To
answer this question, domain-mismatched experiments were
performed, where the read speech JNAS model was used as an
initial model to recognize the spontaneous speech CSJ test set.
Next, the proposed algorithms were evaluated for an unsuper-
vised speaker-independent domain adaptation task using the
JNAS model as an initial model. In addition to the experiments
using the large-vocabulary clean CSJ task, small vocabulary
noisy-speech recognition experiments were performed using
the noisy test set that was recorded in actual car environments
to see how the proposed algorithms worked in different tasks.
Finally, the proposed unsupervised CV adaptation algorithm
was compared with cross-adaptation, which is known to be
useful in improving adaptation performance.

A. Speaker Adaptation

The proposed unsupervised ensemble-based MLLR speaker
adaptation was performed using the CSJ test set and the
EM-based CSJ initial model with MFCC-based features. Fig. 5
shows the relationship between the number of CV folds of
the CV adaptation algorithm and the word error rates averaged
over the speakers. CV adaptation gave lower word error rates
than the baseline conventional batch-mode adaptation for all
the CV conditions. The best results were obtained when was
greater than ten. This is because when is small, the amount
of effective adaptation data is reduced for model parameter
estimation. As the value of increases, stable results are

Fig. 5. Number of cross-validation folds� of CV adaptation and recognition
performance. �-fold CV adaptation is denoted as CV(K). “iter” is number of
adaptation iterations. Zeroth iteration is result of speaker-independent model.
Baseline conventional batch-mode adaptation result is denoted as Baseline.

Fig. 6. Number of adaptation iterations and recognition performance of CV and
Ag adaptation. Zeroth iteration is result of speaker-independent model. Batch-
mode baseline adaptation result is denoted as baseline, CV �� � ���, ECV
�� � ���, and Ag (� � ��, � � �, � � �) adaptations are denoted as
CV(20), ECV(20), and Ag(10,6,8).

obtained since of the data is used in the model
parameter estimation.

Fig. 6 shows the number of iterations and word error rates of
the CV and Ag adaptation algorithms. CV adaptation was per-
formed with , and Ag adaptation was performed with

, , and . Ag adaptation gives the same
result as baseline batch-mode adaptation for the first iteration.
This is because the recognition hypothesis from Ag adaptation is
obtained from the global Ag model. After the first iteration, Ag
adaptation gave lower word error rates than the baseline, and the
CV algorithm gave a lower error rate than the baseline from the
first iteration. The efficient variant of CV adaptation, referred to
as ECV, performed almost the same as the original version for
the first few iterations. However, it gave a slightly higher error
rate than the original CV adaptation for iterations larger than
five. This is probably because of the modification of the CV
algorithm to compute MLLR-sufficient statistics and because
of the different treatment of the transformation classes in the
current implementation in which common classes are used over
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Fig. 7. Number of adaptation iterations and recognition performance of CV
and ECV adaptations in unmatched training and test conditions. Zeroth itera-
tion is result of speaker-independent model. Baseline conventional batch-mode
adaptation result is denoted as Baseline, CV �� � ���, and ECV �� � ���
adaptations are denoted as CV(20), and ECV(20). CV0(20) is result of CV(20)
with global model.

the different CV subsets. After eight iterations, baseline, CV,
ECV, and Ag adaptations gave 12%, 17%, 16%, and 15% rela-
tive reductions in the word error rate from 22.5% error rate of
the speaker-independent initial model, respectively. Compared
to the batch-mode baseline, CV, ECV, and Ag adaptations gave
6%, 4%, and 4% relative reductions, which were statistically
significant with the matched pair sentence segment word error
(MAPSSWE) test [28].

Because unsupervised adaptation is based on a recognition
hypothesis, adaptation performance is affected by the accuracy
of initial recognition results. To observe the performance of the
proposed algorithms in an unmatched training and test condi-
tion, the JNAS read speech model was used as the initial model
to recognize the CSJ test set. Fig. 7 shows the results. While
the same CSJ test set was used as for the iterations shown in
Fig. 6, the initial word error rate was much higher because of
the mismatch of the training and test domains. As can be seen
in Fig. 7, CV adaptation again gave significantly larger improve-
ments than with the conventional batch-mode adaptation. Com-
pared to the baseline adaptation, CV, CV with a global model,
and ECV adaptations gave 10%, 10%, and 8% relative reduc-
tions, respectively.

Fig. 8 shows the observed CPU time in recognizing the CSJ
test set using the CSJ initial model. The CPU times are for the
decoding and the update steps averaged over the adaptation iter-
ations and the speakers. As mentioned in Section II, CV adapta-
tion has roughly the same computational cost for the decoding
step as that of baseline conventional batch-mode adaptation. The
cost for the update step is proportional to , but because adap-
tation is generally cheaper than decoding, the total cost of the
20-fold CV adaptation was about three times higher than that of
baseline adaptation. On the other hand, the computational cost
of Ag adaptation is generally higher than that of baseline adap-
tation in both the decoding and update steps. The total computa-
tional cost of Ag adaptation with , , and
was 11 times higher than that of baseline adaptation. For the
20-fold ECV adaptation, the cost for the update step was about

Fig. 8. CPU time of adaptation algorithms. CPU time is measured for decoding
and update steps at each epoch and averaged over adaptation iterations.

one-third that of the original version. As a result, the total cost
of ECV was only 1.8 times higher than that of baseline conven-
tional batch-mode adaptation.

B. Domain Adaptation

The proposed ensemble-based unsupervised adaptation algo-
rithms can be applied not only to speaker adaptation but also to
domain adaptation. Unsupervised domain adaptation is useful
when domain-dependent speech data is available but transcrip-
tion is not.

Unsupervised domain adaptation experiments were per-
formed using the CSJ test set and the JNAS model as the
domain-independent initial model. Speaker-independent do-
main adaptation data consisted of 1 to 10 hours of academic
presentations from the CSJ training set. The domain-indepen-
dent initial model was adapted using the domain adaptation
data using the MAP method with five iterations. Since a single
model is required as the output of the domain adaptation, CV
adaptation made a global CV model in the last model update
step. Fig. 9 compares the adaptation performance of the conven-
tional batch-mode and the proposed CV adaptation algorithms
by recognizing the CSJ test set using the domain-adapted
speaker-independent models. For comparison, supervised
adaptation results are also shown in this figure. As can be seen,
unsupervised CV domain adaptation gave a lower word error
rate than the baseline conventional batch-mode adaptation.
Unsupervised CV adaptation with 10 hours of unlabeled data
performed better than supervised adaptation with two hours of
labeled data.

Unsupervised domain adaptation can be combined with unsu-
pervised speaker adaptation. Fig. 10 shows the word error rates
when the domain-adapted speaker-independent model was used
as the initial model for unsupervised MLLR speaker adapta-
tion. The zeroth iteration is the result from the domain-adapted
models using 10 hours of domain adaptation data. The figure
plots four lines representing the combinations of the conven-
tional baseline and CV adaptation algorithms for domain and
speaker adaptation. This suggests that the improvement by CV
domain adaptation compared to the baseline conventional batch-
mode adaptation remains after unsupervised speaker adaptation.
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Fig. 9. Unsupervised domain adaptation using conventional batch-mode base-
line adaptation and proposed CV adaptation algorithms. “Init” is result of initial
domain-independent model. Supervised adaptation results are also shown for
comparison.

Fig. 10. Unsupervised speaker adaptation after domain adaptation. Unsuper-
vised speaker adaptation was performed using domain-adapted speaker-inde-
pendent model as initial model. In legend, “algorithm1-algorithm2” denotes do-
main adaptation with algorithm 1 and speaker adaptation with algorithm 2.

Improvements by CV adaptation for unsupervised speaker adap-
tation were larger than for domain adaptation. This is probably
because the adaptation and the test data are identical in unsu-
pervised speaker adaptation, whereas they are different in do-
main adaptation. Therefore, the effect of using CV was more
direct in unsupervised speaker adaptation than in domain adap-
tation. When the baseline adaptation algorithm was used for do-
main and speaker adaptation, the word error rate was 25.5%
after eight iterations of speaker adaptation. On the other hand,
it was 23.6% when the CV adaptation algorithm was used for
domain and speaker adaptation. The relative reduction in the
word error rate by CV-based domain and speaker adaptation was
7.6% compared to that of baseline adaptation result.

C. Adaptation in Noisy Speech Condition

Fig. 11 shows the results of speaker adaptation using the noisy
test set. The initial model was the noisy speech model from the

Fig. 11. Unsupervised speaker adaptation using noisy speech data from actual
car environments as recognition task.

multi-condition training with spectral subtraction. CV adapta-
tion was performed with , and Ag adaptation was per-
formed with , , and . It can be seen
that both CV and Ag adaptation showed larger improvements
than conventional batch-mode baseline adaptation. A slight in-
crease in the error rate was observed for CV adaptation when
the number of iterations was more than three, while the error
rates were still smaller than those of the baseline. After eight it-
erations, the relative reductions in the word error rate from the
initial model by the baseline, CV, CV with a global model, and
Ag adaptations were 5%, 8%, 8%, and 9%, respectively. Com-
pared to the baseline adaptation result, the relative reductions in
the word error rate by the CV, CV with a global model, and Ag
adaptations were 4%, 4%, and 5%, respectively.

D. Comparisons With Cross-Adaptation

When there are two base systems, cross-adaptation [13] is
known to be useful in improving adaptation performance in
which recognition hypotheses are exchanged between the two
systems used as transcriptions for model parameter updates. The
success of cross-adaptation depends on how the two systems are
different. Apparently, cross-adaptation gives the same result as
conventional batch-mode adaptation if the two systems are iden-
tical. At the same time, the two systems need to have comparable
performance. If one of the component systems has significantly
lower performance than the other, it could harm overall perfor-
mance.

To run cross-adaptation, we trained a PLP-based acoustic
model using the CSJ training set and developed a Julius de-
coder-based recognition system in addition to the -based
recognition system as the base systems. Table I lists the word
error rates of these systems for the CSJ test set when the
speaker-independent initial models were used. The PLP-based

system gave a lower error rate with a smaller computational
cost than the PLP-based Julius system. This was probably
because was based on WFST, and the search strategy was
mathematically more organized than conventional decoders.
Note that the system with MFCC features used in this
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TABLE I
BASE SYSTEMS FOR CROSS-ADAPTATION

Fig. 12. Unsupervised speaker adaptation by CV adaptation and cross-adapta-
tion.

experiment was a newer version than the system used in the
previous sections and had lower initial word error rates. The
changes included the use of the MPE trained model and tunings
of the decoder. The PLP model was also estimated using the
MPE method.

Two composite recognition systems were investigated for
cross-adaptation. The first one combines -based systems
using MFCC and PLP features and the latter one combines
a -based system with MFCC features and a Julius-based
system with PLP features. Fig. 12 shows the word error rates
for the number of iterations of unsupervised speaker adapta-
tion. Baseline conventional batch-mode adaptation and CV
adaptation were based on the system with MFCC features,
and CV adaptation was based on a 20-fold CV. The results
of the cross-adaptations were derived from the system
with MFCC features as it gave the lowest initial word error
rate. The two cross-adaptation systems gave lower error rates
than the conventional batch-mode adaptation. Among them,
the combination of with MFCC features and Julius with
PLP features gave better results than the combination of
decoders with MFCC and PLP features, which was expected
since the two component systems of the former system were
more different than the latter. Unsupervised CV adaptation gave
slightly better performance than both of these systems. More
significantly, unsupervised CV adaptation improved using only
a single base system in a systematic manner without requiring
two heuristically different base systems, which is advantageous
in reducing development cost. The relative reductions in the
word error rate by baseline, CV, and cross-adaptation using

with MFCC and PLP features, and cross-adaptation with
and Julius were 11%, 15%, 14%, and 14%, respectively.

VI. CONCLUSION

We proposed unsupervised CV and Ag adaptation algorithms.
The CV and Ag adaptation algorithms respectively introduce
CV and bagging-like approaches into the conventional itera-
tive unsupervised batch-mode adaptation framework to rein-
force generalization and robustness against errors in a recog-
nition hypothesis used for a model parameter update. The pro-
posed algorithms are simple and general and can be combined
with various parameter estimation methods. Experiments were
conducted with varying conditions using clean and noisy speech
recognition tasks. Experimental results showed that both CV
and Ag adaptation algorithms gave significantly lower word
error rates than the conventional batch-mode adaptation algo-
rithm. Among the proposed algorithms, the CV adaptation al-
gorithm was more advantageous than the Ag one in terms of
computational cost. Compared to the conventional batch-mode
unsupervised speaker adaptation results, the relative reductions
in the word error rate with the proposed algorithms ranged from
4% to 10%, depending on the tasks.

Future work includes using a confidence measure in adap-
tation [29], improving Ag adaptation algorithm by introducing
the ROVER or CNS method, and applying the CV and Ag adap-
tation frameworks to lightly supervised training [30] and other
adaptation problems not limited to speech recognition.
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