
ar
X

iv
:0

90
9.

13
08

v2
 [

cs
.L

G
]

 3
 J

an
 2

01
0

Efficient Learning of Sparse Conditional Random Fields for

Supervised Sequence Labelling

Nataliya Sokolovska, Thomas Lavergne, Olivier Cappé and François Yvon∗

Abstract

Conditional Random Fields (CRFs) constitute a popular and efficient approach for super-
vised sequence labelling. CRFs can cope with large description spaces and can integrate some
form of structural dependency between labels. In this contribution, we address the issue of
efficient feature selection for CRFs based on imposing sparsity through an ℓ1 penalty. We first
show how sparsity of the parameter set can be exploited to significantly speed up training and
labelling. We then introduce coordinate descent parameter update schemes for CRFs with ℓ1

regularization. We finally provide some empirical comparisons of the proposed approach with
state-of-the-art CRF training strategies. In particular, it is shown that the proposed approach
is able to take profit of the sparsity to speed up processing and handle larger dimensional
models.

1 Introduction

Conditional Random Fields (CRFs), originally introduced in [16], constitute a popular and effective
approach for supervised structure learning tasks involving the mapping between complex objects
such as strings and trees. An important property of CRFs is their ability to cope with large
and redundant feature sets and to integrate some form of structural dependency between output
labels. Directly modeling the conditional probability of the label sequence given the observation
stream allows to explicitly integrate complex dependencies that can not directly be accounted for
in generative models such as Hidden Markov Models (HMMs). Results presented in section 6.2
will illustrate this ability to use large sets of redundant and non-causal features.

Training a CRF amounts to solving a convex optimization problem: the maximization of the
penalized conditional log-likelihood function. For lack of an analytical solution however, the CRF
training task requires numerical optimization and implies to repeatedly perform inference over the
entire training set during the computation of the gradient of the objective function.

This is where the modeling of structure takes its toll: for general dependencies, exact inference
is intractable and approximations have to be considered. In the simpler case of linear-chain CRFs,
modeling the interaction between pairs of adjacent labels makes the complexity of inference grow
quadratically with the size of label set: even in this restricted setting, training a CRF remains a
computational burden, especially when the number of output labels is large.

Introducing structure has another, less studied, impact on the number of potential features that
can be considered. It is possible, in a linear-chain CRF, to introduce features that simultaneously
test the values of adjacent labels and some property of the observation. In fact, these features often
contain valuable information [24]. However, their number scales quadratically with the number of

∗N. Sokolovska and O. Cappé are with Telecom ParisTech and LTCI CNRS, 46 rue Barrault, 75013 Paris, France;
T. Lavergne and F. Yvon are with Université Paris-Sud 11 and LIMSI CNRS, 91403 Orsay, France.

1

http://arxiv.org/abs/0909.1308v2

labels, yielding both a computational (feature functions have to be computed, parameter vectors
have to be stored in memory) and an estimation problem.

The estimation problem stems from the need to estimate large parameter vectors based on
sparse training data. Penalizing the objective function with the ℓ2 norm of the parameter vector
is an effective remedy to overfitting; yet, it does not decrease the number of feature computations
that are needed. In this paper, we consider the use of an alternative penalty function, the ℓ1 norm,
which yields much sparser parameter vectors [28]1. As we will show, inducing a sparse vector not
only reduces the number of feature functions that need to be computed, but it can also reduce the
time needed to perform parameter estimation and decoding.

The main shortcoming of the ℓ1 regularizer is that the objective function is no longer differen-
tiable everywhere, challenging the use of gradient-based optimization algorithms. Proposals have
been made to overcome this difficulty: for instance, the orthant-wise limited-memory quasi-Newton
algorithm [1] uses the fact that the ℓ1 norm remains differentiable when restricted to regions in
which the sign of each coordinate is fixed (an “orthant”). Using this technique, [12] reports test
performance that are on par with those obtained with a ℓ2 penalty, albeit with more compact
models. Our first contribution is to show that even in this situation (equivalent test performance),
the ℓ1 regularization may be preferable as sparsity in the parameter set can be exploited to reduce
the computational cost associated with parameter training and label inference.

For parameter estimation, we consider an alternative optimization approach, which general-
izes to CRFs the proposal of [10] (see also [9, 14]). In a nutshell, optimization is performed
in a coordinate-wise fashion, based on an analytic solution to the unidimensional optimization
problem. In order to tackle realistic problems, we propose an efficient blocking scheme in which
the coordinate-wise updates are applied simultaneously to a properly selected group (or block) of
parameters. Our main methodological contributions are thus twofold: (i) a fast implementation
of the training and decoding algorithms that uses the sparsity of parameter vectors and (ii) a
novel optimization algorithm for using ℓ1 penalty with CRFs. These two ideas combined together
offer the opportunity of using very large “virtual” feature sets for which only a very small number
of features are effectively selected. As will be seen (in Section 2), this situation is frequent in
typical natural language processing applications, particularly when the number of possible labels
is large. Finally, the proposed algorithm has been implemented as C code and validated through
experiments on artificial and real-world data. In particular, we provide detailed comparisons, in
terms of numerical efficiency, with solutions traditionally used for ℓ2 and ℓ1 penalized training of
CRFs in publicly available software such as CRF++ [15], CRFsuite [23] and crfsgd [3].

The rest of this paper is organized as follows. In Section 2, we introduce our notations and
restate more precisely the issues we wish to address, based on the example of a simple natural
language processing task. Section 3 discusses the algorithmic gains that are achievable when
working with sparse parameter vectors. We then study, in Section 4, the training algorithm used
to achieve sparsity, which implements a coordinate-wise descent procedure. Section 5 discusses
our contributions with respect to related work. And finally, Section 6 presents our experimental
results, obtained both on simulated data, a phonetization task, and a named entity recognition
problem.

1To be more precise, we consider in the following a mixed penalty which involves both ℓ1 and squared ℓ2 terms,
also called the elastic net penalty [35]. The sparsity of the solution is however controlled mostly by the amount of
ℓ1 regularization.

2

2 Conditional Random Fields and Sparsity

Conditional Random Fields [16, 27] are based on the following discriminative probabilistic model

pθ(y|x) =
1

Zθ(x)
exp

{

T
∑

t=1

K
∑

k=1

θkfk(yt−1, yt, xt)

}

(1)

where x = (x1, . . . , xT) denotes the input sequence and y = (y1, . . . , yT) is the output sequence,
also referred to as the sequence of labels. {fk}1≤k≤K is an arbitrary set of feature functions and
{θk}1≤k≤K are the associated real-valued parameter values2. The CRF form considered in (1) is
sometimes referred to as linear-chain CRF, although we stress that it is more general, as yt and
xt could be composed not directly of the individual sequence tokens, but on sub-sequences (e.g.,
trigrams) or other localized characteristics. We will denote by Y , X, respectively, the sets in which
yt and xt take their values. The normalization factor in (1) is defined by

Zθ(x) =
∑

y∈Y T

exp

{

T
∑

t=1

K
∑

k=1

θkfk(yt−1, yt, xt)

}

. (2)

The most common choice of feature functions is to use binary tests such that fk(yt−1, yt, xt) is
one only when the triplet (yt−1, yt, xt) is in a particular configuration. In this setting, the number
of parameters K is equal to |Y |2×|X|train, where | · | denotes the cardinal and |X|train refers to the
number of configurations of xt observed in the training set. As discussed in Section 3 below, the
bottleneck when performing inference is the computation of the pairwise conditional probabilities
pθ(yt−1 = y, yt = y′|x), for t = 1, . . . , T and (y, y′) ∈ Y 2 for all training sequences, which involves
a number of operations that scales as |Y |2 times the number of training tokens. Thus, even in
moderate size applications, the number of parameters can be very large and the price to pay for
the introduction of sequential dependencies in the model is rather high, explaining why it is hard
to train CRFs with dependencies between more than two adjacent labels.

To motivate our contribution, we consider below a moderate-size natural language processing
task, namely a word phonetization task based on the Nettalk dictionary [25], where |Y | (the
number of phonemes) equals 53 and |X| is 26 (one value for each English letter). For this task,
we use a CRF that involves two types of features functions, which we refer to as, respectively,
unigram features, µy,x, and bigram features, λy′,y,x. These are such that

K
∑

k=1

θkfk(yt−1, yt, xt) =
∑

y∈Y,x∈X

µy,x1(yt = y, xt = x)

+
∑

(y′,y)∈Y 2,x∈X

λy′,y,x1(yt−1 = y′, yt = y, xt = x) (3)

where 1(cond.) is equal to 1 when the condition is verified and to 0 otherwise.
The use of the sole unigram features {µy,x}(y,x)∈Y×X would result in a model equivalent to

a simple bag-of-tokens position-by-position logistic regression model. On the other hand, bigram

2Note that various conventions are found in the literature regarding the treatment of the initial term (with index
t = 1) in (1). Many authors simply ignore the term corresponding to the initial position t = 1 for so-called (see
below) bigram features. In our implementation, y0 refers to a particular (always observed) label that indicates the
beginning of the sequence. In effect, this adds a few parameters that are specific to this initial position. However,
as the impact on performance is usually negligible, we omit this specificity in the following for the sake of simplicity.

3

features {λy′,y,x}(y,x)∈Y 2×X are helpful in modelling dependencies between successive labels. The
motivations for using simultaneously both types of feature functions and the details of this ex-
periment are discussed in Section 6. In the following, by analogy with the domain of constrained
optimization, we refer to the subset of feature functions whose multiplier is non-zero as the “active”
features.

le
tte

rs

phonemes
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

le
tte

rs

phonemes
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

Figure 1: The ℓ1 norm of the parameters estimated with standard ℓ2-regularized maximum like-
lihood for the Nettalk task. Above: |µy,x| for the 53 phonemes y and 26 letters x. Below:
∑

y′ |λy′,y,x| for the 53 phonemes y and 26 letters x.

Figure 1 allows to visualize the magnitude of the parameter vectors obtained with the ℓ2-
regularized maximum likelihood approach. Sparsity is especially striking in the case of the λy′,y,x

parameters which are, by far, the most numerous (532 × 26). Another observation is that this
sparsity pattern is quite correlated with the corresponding value of |µy,x|: in other words, most
sequential dependencies λy′,y,x are only significant when the associated marginal factor µy,x is.
This suggests to take a closer look at the internal structure of the feature set.

From this picture, one would expect to attain the same classification accuracy with a much
reduced set of feature functions using an appropriate feature selection approach. These preliminary
considerations motivate some of the questions that we try to answer in this contribution: (1) Is it
possible to take profit of the fact that a large proportion of the parameters are null to speed up
computations? (2) How can we select features in a principled way during the parameter estimation
phase? (3) Can sparse solutions also result in competitive test accuracy?

3 Fast Computations in Sparse CRFs

3.1 Computation of the Objective Function and its Gradient

Given N independent labelled sequences {x(i),y(i)}Ni=1, where both x(i) and y(i) contain T (i)

symbols, conditional maximum likelihood estimation is based on the minimization, with respect
to θ, of

l(θ) = −

N
∑

i=1

log pθ(y
(i)|x(i))

=

N
∑

i=1







logZθ(x
(i))−

T (i)
∑

t=1

K
∑

k=1

θkfk(y
(i)
t−1, y

(i)
t , x

(i)
t)







(4)

4

The function l(θ) is recognized as the negated conditional log-likelihood of the observations and will
be referred to in the following as the logarithmic loss function. This term is usually complemented
with an additional regularization term so as to avoid overfitting (see Section 4 below). The gradient
of l(θ) is given by

∂l(θ)

∂θk
=

N
∑

i=1

T (i)
∑

t=1

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t)

−
N
∑

i=1

T (i)
∑

t=1

fk(y
(i)
t−1, y

(i)
t , x

(i)
t) (5)

where Epθ(y|x(i)) denotes the conditional expectation given the observation sequence, i.e.

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t) =

∑

(y′,y)∈Y2

fk(y, y
′, x

(i)
t) Pθ(yt−1 = y′, yt = y|x(i)) (6)

Although l(θ) is a smooth convex function, it has to be optimized numerically. The computation of
its gradient implies to repeatedly compute the conditional expectation in (6) for all input sequences
x(i) and all positions t.

3.2 Sparse Forward-Backward Algorithm

The standard approach for computing the conditional probabilities in CRFs is inspired by the
forward-backward algorithm for hidden Markov models: in the case of the parameterization of (3),
the algorithm implies the computation of the forward

{

α1(y) = exp(µy,x1 + λy0,y,x1)

αt+1(y) =
∑

y′ αt(y
′) exp(µy,xt+1 + λy′,y,xt+1)

(7)

and the backward recursion
{

βTi
(y) = 1

βt(y
′) =

∑

y βt+1(y) exp(µy,xt+1 + λy′,y,xt+1
),

(8)

for all indices 1 ≤ t ≤ T and all labels y ∈ Y . Then, Zθ(x) =
∑

y αT (y) and the pairwise
probabilities Pθ(yt = y′, yt+1 = y|x) are given by

αt(y
′) exp(µy,xt+1 + λy′,y,xt+1)βt+1(y)/Zθ(x)

These recursions require a number of operations that grows quadratically with |Y |.
Let us now consider the case where the set of bigram features {λy′,y,xt+1}(y′,y)∈Y 2 is sparse with

only r(xt+1) ≪ |Y |2 non null values and define the matrix

Mt+1(y
′, y) = exp(λy′,y,xt+1)− 1

Observe that Mt+1(y
′, y) also is a sparse matrix and that the forward and backward equations

may be rewritten as

αt+1(y) = exp(µy,xt+1)

{

∑

y′

αt(y
′) +

∑

y′

αt(y
′)Mt+1(y

′, y)

}

βt(y
′) =

∑

y

vt+1(y) +
∑

y

Mt+1(y
′, y)vt+1(y) (9)

5

where vt+1(y) = βt+1(y) exp(µy,xt+1). The resulting computational savings stem from the fact that
the vector matrix products in (9) now only involve the sparse matrix Mt+1(y

′, y). This means that
they can be computed, using an appropriate sparse matrix implementation, with exactly r(xt+1)
multiplications instead of |Y |2. If the set {µy,xt+1}y∈Y of unigram features is also sparse, one may
use a similar idea although the computation savings will in general be less significant.

Using the implementation outlined in (9), the complexity of the forward-backward procedure
for the sequence x(i) can be reduced from T (i) × |Y |2 to the cumulated sizes of the feature sets
encountered at each position along the sequence. Thus, the complexity of the forward-backward
procedure is proportional to the average number of active features per position in the parameter
set rather than to the actual number of potentially active features. This observation suggests that
it might even be possible to use some longer term dependencies between labels, as long as only a
few of them are active simultaneously.

It should be stressed that both CRF++ [15] and crfsgd [3] use logarithmic computation in the
forward-backward recursions, that is, updating log αt(y) and log βt(y) rather than αt(y) and βt(y)
in (7) and (8). The advantage of logarithmic computations is that numerical over/underflows
are avoided whatever the length T (i) of the sequence, whereas the linear form of (7) and (8) is
only suitable for sequences whose length is less than a few tens. On the other hand, logarithmic
computation is not the only way of avoiding numerical issues (the “scaling” solution traditionally
used for HMMs [5] applies as well here) and is very inefficient from an implementation point
of view due to the repeated calls to the exp function (see Section 6.2). This being said, when
logarithmic computations are used, (9) may be used in a similar fashion to reduce the complexity
of the logarithmic update when Mt+1(y

′, y) is sufficiently sparse.
Note that although we focus in this paper on the complexity of the training phase, the above

idea may also be used to reduce the computational burden associated with Viterbi (or optimal
sequence-wise) decoding. Indeed, at position t + 1, the forward pass in the Viterbi recursion
amounts to computing

ǫt+1(y) = max
y′∈Y

{

ǫt(y
′) + λy′,y,xt+1

}

+ µy,xt+1 (10)

where ǫt(y) denotes the conditional log-likelihood of the optimal labelling of the t first tokens
subject to the constraint that the last label is y (omitting the constant − logZθ(x) which is
common to all possible labellings). Assuming that A(y, xt+1) = {y′ ∈ Y : λy′,y,xt+1 6= 0} is limited
to a few labels, it is possible to implement (10) as

ǫt+1(y) = max

{

max
y′∈Ā(y,xt+1)

ǫt(y
′), max

y′∈A(y,xt+1)

(

ǫt(y
′) + λy′,y,xt+1

)

}

+ µy,xt+1

where Ā(y, xt+1) denotes the elements of Y that are not in the current active set A(y, xt+1) of
bigram features. Hence the number of required additions now is of the order of the number of
active features, |A(y, xt+1)|, rather than equal to the number of labels |Y |.

4 Parameter Estimation Using Blockwise Coordinate Descent

4.1 Regularization

The standard approach for parameter estimation in CRFs consists in minimizing the logarithmic
loss l(θ) defined by (4) with an additional squared ℓ2 penalty term ρ2

2 ‖θ‖
2
2, where ρ2 is a regu-

larization parameter. The objective function is then a smooth convex function to be minimized

6

over an unconstrained parameter space. Hence, any numerical optimization strategy may be used
for this purpose and popular solutions include limited memory BFGS (L-BFGS) [18] or conjugate
gradient. Note that it is important however, to avoid numerical optimizers that require the full
Hessian matrix (e.g., Newton’s algorithm) or approximations of it due to the size of the parameter
vector in usual applications of CRFs.

In the following, we consider the elastic net penalty [35] which combines ℓ1 and ℓ2 regularizers
and yields an objective function

l(θ) + ρ1‖θ‖1 +
ρ2
2
‖θ‖22 (11)

where ρ1 and ρ2 are regularization parameters. The use of both types of penalty terms seems
preferable in log-linear conditional models, as it makes it possible to control both the number of
non zero coefficients (through ρ1) and to avoid the numerical problems that might occur in large
dimensional parameter settings if the magnitude of the θks is not sufficiently constrained by the
penalty.

It may also be rewarding to look for some additional information in hierarchical and group
structure of the data. An example is the group lasso estimator, introduced in [21] as an extension
of the lasso. The motivation for the group lasso is to select not individual variables, but whole
blocks of variables. Typically, the penalty takes the form of the sum of the ℓ2 norms of predefined
blocks of the parameter vector. This idea has been further extended in [34] under the name of
Composite Absolute Penalties (CAP) for dealing with more complex a priori parameter hierarchies
while still retaining an overall convex penalty term. Although our approach could be suitable for
this more complex choices of the penalty function, we restrict ourselves in the following to the
case of the elastic net penalty.

4.2 Coordinate Descent

The objective function in (11) is still convex but not differentiable everywhere due to the ℓ1 penalty
term. Although different algorithms have been proposed to optimize such a criterion, we believe
that the coordinate-wise approach of [11] has a strong potential for CRFs as the update of the
parameter θk only involves carrying out the forward-backward recursions for those sequences that
contain symbols x such that at least one of the values {fk(y

′, y, x)}(y,y′)∈Y 2 is non null, which is
most often much smaller than the total number of training sequences. This algorithm operates
by first considering a local quadratic approximation of the objective function around the current
value θ̄:

lk,θ̄(θk) = Cst +
∂l(θ̄)

∂θk
(θk − θ̄k) +

1

2

∂2l(θ̄)

∂θ2k
(θk − θ̄k)

2

+ ρ1|θk|+
ρ2
2
θ2k (12)

Then, the minimizer of the approximation (12) is easily found to be

θk =
s
{

∂2l(θ̄)
∂θ2

k

θ̄k −
∂l(θ̄)
∂θk

, ρ1

}

∂2l(θ̄)
∂θ2

k

+ ρ2
(13)

where s is the soft-thresholding function defined by

s(z, ρ) =











z − ρ if z > ρ

z + ρ if z < −ρ

0 otherwise

(14)

7

Interestingly, [9] originally proposed a similar idea but based on a different local approximation
of the behavior of the logarithmic loss. In [9], the local behavior of the function l(θ) is approximated
under a form that is equivalent to the first-order only and leads to a closed-form coordinate-wise
optimization formula as well. This approximation is however explicitly based on the fact that
each parameter θk is multiplied by a function that takes its values in {0, 1}. This property is not
verified for CRF, since θk is multiplied by

∑T
t=1 fk(yt−1, yt, xt), which can be more than 1 if the

corresponding feature is observed at several positions in the sequence.

4.3 Coordinate Descent for CRFs

To apply the algorithm described above for CRFs, one needs to be able to compute (14), which
requires to evaluate the first and second order derivatives of l(θ). If the first order derivative is
readily computable using the forward-backward recursions described in Section 3.2 and (5), the
exact computation of the second derivative is harder for CRFs. In fact, standard computations
show that the diagonal term of the Hessian is

∂2l(θ)

∂θ2k
=

N
∑

i=1

{

Epθ(y|x(i))





T (i)
∑

t=1

fk(yt−1, yt, x
(i)
t)





2

−



Epθ(y|x(i))

T (i)
∑

t=1

fk(yt−1, yt, x
(i)
t)





2}

(15)

The first term is problematic as it involves the conditional expectation of a square which cannot be
computed only from the pairwise probabilities Pθ(yt−1 = y′, yt = y|x(i)) returned by the forward-
backward procedure. It can be shown (see Chapter 4 of [5] and [4]) that (15) can be computed
using auxiliary recursions related to the usual forward recursion with an overall complexity of order
|Y |2 × T (i) per sequence. Unfortunately, this recursion is specific for each index k and cannot be
shared between parameters. As will be shown below, sharing (part of) the computations between
parameters is desirable feature for handling non trivial CRFs; we thus propose to use instead the
approximation

∂2l(θ)

∂θ2k
≈

N
∑

i=1

T (i)
∑

t=1

Epθ(y|x(i)) f
2
k (yt−1, yt, x

(i)
t)

−
(

Epθ(y|x(i)) fk(yt−1, yt, x
(i)
t)

)2
(16)

This approximation amounts to assuming that, given x(i), fk(yt−1, yt, x
(i)
t) and fk(ys−1, ys, x

(i)
s)

are uncorrelated when s 6= t. Note that this approximation is exact when the feature fk is only
active at one position along the sequence. It is likely that the accuracy of this approximation is
reduced when fk is active twice, especially if the corresponding positions s and t are close.

The proposed coordinate descent algorithm applied to CRFs is summarized as Algorithm 1.
A potential issue with this algorithm is the fact that, in contrast to the logistic regression case

considered in [11], we are using an approximation to ∂2l(θ)/∂θ2k which could have a detrimen-
tal effect on the convergence of the coordinate descent algorithm. An important observation is
that (13)–(14) used with an approximated second-order derivative still yield the correct stationary
points.

8

Algorithm 1 Coordinate Descent for CRF

while Convergence criterion is not met do
for k = 1 : K do

for Sequences for which fk is active do

Perform sparse forward-backward.
end for

Compute ∂l(θ)/∂θk and ∂2l(θ)/∂θ2k from (5)–(16).
Update θ according to (13)–(14).

end for

end while

To see why it is true, assume that θ̄ is such that (13)–(14) leave θ̄k unchanged (i.e., θk = θ̄k).
If θ̄k = 0, this can happen only if |∂l(θ̄)/∂θk| ≤ ρ1, which is indeed the first order optimality
condition in 0. Now assume that θ̄k > 0, the fact that θ̄k is left unmodified by the recursion
implies that θ̄kρ2 + ∂l(θ)/∂θk + ρ1 = 0, which is also recognized as the first order optimality
condition (note that since θ̄k 6= 0, the criterion is differentiable at this point). The symmetric
case, where θ̄k < 0, is similar. Hence, the use of an approximated second-order derivative does
not prevent the algorithm from converging to the appropriate solution. A more subtle issue is the
question of stability: it is easily checked that if ∂2l(θ)/∂θ2k is smaller than it should be (remember
that it has to be positive as l(θ) is strictly convex), the algorithm can fail to converge even for
simple functions (e.g., if l(θ) is a quadratic function). An elaborate solution to this issue would
consist in performing a line search in the “direction”:

s
(

α−1 ∂2l(θ̄)
∂θ2

k

θ̄k −
∂l(θ̄)
∂θk

, ρ1

)

α−1 ∂2l(θ̄)
∂θ2

k

+ ρ2

where 0 < α ≤ 1, is chosen as close as possible to 1 with the constraint that it indeed leads to
a decrease of the objective function (note that the step size affects only the second-order term in
order to preserve the convergence behavior). On the other hand, coordinate descent algorithms
are only viable if each individual update can be performed very quickly, which means that using
line search is not really an option. In our experiments, we found that using a fixed value of
α = 1 was sufficient for Algorithm 1, probably due to the fact that the second-order derivative
approximation in (16) is usually quite good. For the blockwise approach described below, we had
to use somewhat larger values of α to ensure stability (typically, in the range 2–5 near convergence
and in the range 50–500 for the very few initial steps of the algorithm in cases where it is started
blindly from arbitrary parameter values). Alternative updates based on uniform upper-bounds of
the Hessian could also be derived in a fashion similar to the work reported in [14].

4.4 Blockwise Coordinate Descent for CRFs

The algorithm described in the previous section is efficient in simple problems (see Section 6.1)
but cannot be used even for moderate size applications of CRFs. For instance, the application to
be considered in Section 6 involves up to millions of parameters and single component coordinate
descent is definitely ruled out in this case. Following [11], we investigate the use of blockwise
updating schemes, which update several parameters simultaneously trying to share as much com-
putations as possible. It turns out that the case of CRFs is rather different from the polytomous
logistic regression case considered in [11] and requires specific blocking schemes. In this discussion,

9

we consider the parameterization defined in (3) which makes it easier to highlight the proposed
block structure.

Examining the forward-backward procedure described in Section 3.2 shows that the evaluation
of the first or second order derivative of the objective function with respect to µy,x or λy′,y,x requires
to compute the pairwise probabilities pθ(yt = y′′, yt+1 = y′|x(i)) for all values of (y′′, y′) ∈ Y 2 and
for all sequences x(i) which contain the symbol x at any position in the sequence. Hence, the most
natural grouping in this context is to simultaneously update all parameters {µy,x, λy′,y,x}(y′,y)∈Y 2

that correspond to the same value of x. This grouping is orthogonal to the solution adopted for
polytomous regression in [11], where parameters are grouped by common values of the target label.

Algorithm 2 Blockwise Coordinate Descent for CRF

while Convergence criterion is not met do
for x ∈ X do

for Sequences which contain the symbol x do

Perform sparse forward-backward on relevant indices.
end for

Compute

{∂l(µ, λ)/∂µy,x, ∂
2l(µ, λ)/∂µ2

y,x}y∈Y

{∂l(µ, λ)/∂λy′ ,y,x, ∂
2l(µ, λ)/∂λ2

y′,y,x}(y′,y)∈Y 2

using (5) and (16).
Update {µy,x}y∈Y and then {λy′,y,x}(y′,y)∈Y 2 according to (13)–(14).

end for

end while

Different variants of this algorithm are possible, including updating only one of the two types
of blocks ({µy,x}y∈Y or {λy′,y,x}(y′,y)∈Y 2) at a time. Although the block coordinate-wise algorithm
requires scanning all the |X| possible symbols x at each iteration, it is usually relatively fast
due to the fact that only those sequences that contain x are considered. In addition, careful
examination reveals that for each sequence that contains the token x, it is only required to carry
the forward recursion up to the index of last occurrence of x in the sequence (and likewise to
perform the backward recursion down to the first occurrence of x). The exact computational
saving will however depend on the target application as discussed in Section 6.2 below.

5 Discussion

As mentioned above, the standard approach for CRFs is based on the use of the ℓ2 penalty term
and the objective function is optimized using L-BFGS [18], conjugate gradient [22] or Stochastic
Gradient Descent (SGD) [2]. The CRF training softwares CRF++ [15] and CRFsuite [23] use L-
BFGS while crfsgd [3] is, as the name suggests, based on SGD. The latter approach differs from the
others in that it processes the training sequences one by one: thus each iteration of the algorithm
is very fast and it is generally observed that SGD converges faster to the solution, especially for
large training corpora. On the other hand, as the algorithm approaches convergence, SGD becomes
slower than global quasi-Newton algorithms such as L-BFGS. [31] discusses improvements of the
SGD algorithm based on the use of an adaptive step size whose computation necessitates second-
order information. However, these approaches based on the ℓ2 penalty term do not perform feature

10

selection.
To our knowledge, [20] made the first attempt to perform model selection for conditional

random fields. The approach was mainly motivated by [7] and is based on a greedy algorithm
which selects features with respect to their impact on the log-likelihood function. Related ideas
also appear in [8]. These greedy approaches are different from our proposed algorithm in that
they do not rely on a convex optimization formulation of the learning objective.

To deal with ℓ1 penalties, the simplest idea is that of [13] which was introduced for maximum
entropy models but can be directly applied to conditional random fields. The main idea of [13]
is to split every parameter θ into two positive constrained parameters, θ+ and θ−, such that
θ = θ+ − θ−. The penalty takes the form ρ(θ+ − θ−). The optimization procedure is quite
simple, but the number of parameters is doubled and the method is reported to have a slow
convergence [1]. A more efficient approach is the already mentioned orthant-wise quasi-Newton
algorithm introduced in [1]. [12] shows that the orthant-wise optimization procedure is faster
than the algorithm proposed by [13] and performs model selection even in very high-dimensional
problems with no loss of performance compared to the use of the ℓ2 penalty term. Orthant-wise
optimization is available in the CRFsuite [23] package. Recently, [30] proposed an adapted version
of SGD with ℓ1 penalization, which is claimed to be much faster than the orthant-wise algorithm.

As observed in [24, 12], ℓ1 regularization per se does not in general warrant improved test
set performance. We believe that the real challenge is to come up with methods for CRFs that
can take profit of the parameter sparsity to either speed up processing or, more importantly,
make it possible to handle larger “virtual” sets of parameters (i.e., a number of parameters that
is potentially very large but only a very limited fraction of them being selected). The combined
contributions of Sections 3 and 4 are a first step in that direction. Related ideas may be found in [6]
who considers “generalized” feature functions. Rather than making each feature function depend
on a specific value of the label (or on specific values of label pairs), the author introduces functions
that only depend on subsets of (pairs of) labels. This amounts to introducing tying between some
parameter values, a property that can also be used to speed-up the forward-backward procedure
during training. This technique allows to considerably reduce the training time, with virtually no
loss in accuracy. From an algorithmic perspective, this work is closest to our approach, since it
relies on a decomposition of the clique potential into two terms, the first has a linear complexity
(w.r.t. the number of labels), and the other is sparse; this idea was already present in [26]. This
method however requires to specify a priori the tying pattern, a requirement that is not needed
here. The important dependencies emerge from the data, rather than being heuristically selected
a priori. A somewhat extreme position is finally advocated in [17], where the authors propose
to trade the explicit modeling of dependencies between labels for an increase in the number of
features testing the local neighborhood of the current observation token. Our proposal explores the
opposite choice: reducing the number of features to allow for a better modeling of dependencies.

6 Experiments

6.1 Simulated data

The experiments on an artificial dataset reported here are meant to illustrate two aspects of the
proposed approach. Firstly, we wish to show that considering unnecessary dependencies in a model
can really hurt the performance, and that using ℓ2 and ℓ1 regularization terms can help solve this
problem. Second, we wish to demonstrate that the blockwise algorithm (Algorithm 2) enables to
achieve accuracy results that are very close to those obtained with the coordinate descent approach

11

M1 M2 M3 M4 M5 M6 M7 M8
0

5

10

15

20

25

tr
ai

n
er

ro
r

Features
M1 M2 M3 M4 M5 M6 M7 M8

15

20

25

30

35

te
st

 e
rr

or

Features

Figure 2: Performance of the models on artificial data. Models M1 − M3 are trained with ℓ2

penalty (L-BFGS), models M4 − M8 with the ℓ1 penalty term (block coordinate-wise descent).
Above: performance on training set. Below: performance on testing set.

(Algorithm 1).
The data we use for these experiments are generated with a first-order hidden Markov model.

Each observation and label sequence has a length of 5, the observation alphabet contains 5 values,
and the label alphabet contains 6 symbols. This HMM is designed in such a way that the transition
probabilities are uniform for all label pairs, except for two. The emission probability matrix on
the other hand has six distinctively dominant entries such that most labels are well identified from
the observations, except for two of them which are very ambiguous. The minimal (Bayes) error
for this model is 15.4%.

Figure 2 compares several models: M1 contains both (yt−1, yt, xt) and (yt, xt) features, M2 and
M3 are simpler, with M2 containing only the bigram features, and M3 only the unigram features.
The models M1–M3 are penalized with the ℓ2 norm. Models M4–M8 contain both features, bigram
and unigram, but are penalized by the elastic net penalty term. For the ℓ2-penalized models (M1–
M3), the regularization factor ρ2 is set to its optimal value (obtained by cross validation). For
M4–M8 however, the value of ρ2 does not influence much the performance and is set to 0.001 while
M4–M8 correspond to different choices of ρ1, as shown in Table 1.

For this experiment, we used only N = 10 sequences for training, so as to reproduce the
situation, which is prevalent in practical uses of CRFs, where the number of training tokens (here
10 × 5 = 50) is of the same order as the number of parameters, which ranges from 6 × 5 = 30
for M3 to 6 × 5 + 62 × 5 = 210 for M1 and M4–M8. Figure 2 displays box-and-whiskers plots
summarizing 100 independent replications of the experiment.

M4 M5 M6 M7 M8

ρ1 0.001 0.01 0.1 1 2.5
Number of active µ 28.5 15.0 10.9 6.2 5.8
Number of active λ 50.6 26 17.2 4.9 1.3

Table 1: Impact of ρ1 on the number of active features (ρ2 = 0.001).

Unsurprisingly, M1 and M2, which contain more parameters, perform very well on the training
set, much better than M3. The test performance tells a different story: M2 performs in fact
much worse that the simple unigram model M3, which is all the more remarkable that we know
from the simulation model that the observed tokens are indeed not independent and that the
models are nested (i.e. any model of type M3 corresponds to a model of type M2). Thus, even
with regularization, richer models are not necessary the best, hence the need for feature selection

12

techniques. Interestingly, M1 which embarks both unigram and bigram features, achieves the
lowest test error, highlighting the interest of using simultaneously both feature types to achieve
some sort of smoothing effect. With proper choice of the regularization (here, M7), ℓ1-penalized
models achieve comparable test set performance. As a side effect of model selection, notice that
M7 is somewhat better than M1 at predicting the test performance at training time: for M1, the
average train error is 6.4% vs. 18.5% for the test error while for M7, the corresponding figures
are 10.3% and 17.9%, respectively. Finally, closer inspection of the sparsity pattern determined
by M7 shows that it is most often closely related to the structure of the simulation model which
is also encouraging.

1 5 10 15 20
52

54

56

58

60

62

64

66

lo
g.

 lo
ss

iterations

Coordinate update
Blockwise update

1 5 10 15 20
18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

te
st

 e
rr

or

iterations

Coordinate update
Blockwise update

Figure 3: Comparison of the coordinate-wise update with the block update on simulated data.
Above: values of logarithmic loss being minimized. Below: performance on test data.

Figure 3 compares the behavior of the coordinate-wise update policy with the blockwise ap-
proach, where one iteration refers to a complete round where all model parameters are updated
exactly once. As can be seen on these graphs, the convergence behavior is comparable for both
approaches, both in terms of objective function (top plot) and test error (bottom plot). Each
iteration of the blockwise algorithm is however about 50 times faster than the coordinate-wise
update, that roughly correspond to the size of each block. Clearly, the blockwise approach is the
only viable strategy when tackling more realistic higher-dimensional tasks such as those considered
in the next two sections.

6.2 Experiments with Nettalk

This section presents results obtained on a word phonetization task, using the Nettalk dictio-
nary [25]. This dataset contains approximately 18000 English words and their pronunciations.
Graphemes and phonemes are aligned at the character level thanks to the insertion of a “null
sound” in the latter string when it is shorter than the former. The set of graphemes X thus
includes 26 letters, the alphabet of phonemes Y contains 53 symbols. In our experiments, we
consider that each phoneme is a target label and we consider two different settings. The first only
uses features that test the value of one single letter, and is intended to allow for a detailed analysis
of the features that are extracted. The second setting is more oriented towards performance and
uses features that also test the neighboring letters. The training set comprises 16452 sequences and
the test set contains 1628 sequences. The results reported here are obtained using the blockwise
version of the coordinate descent approach (Algorithm 2).

Figure 4 displays the estimated parameter values when the ℓ1 penalty is set to its optimal
value of 0.2 (see Table 2 below). Comparing this figure with Figure 1 shows that the proposed
algorithm correctly identifies those parameters that are important for the task while setting the

13

le
tte

rs

phonemes
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

le
tte

rs

phonemes
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

Figure 4: Nettalk task, ℓ1 norm of the parameters estimated with elastic net penalty, ρ1 = 0.2,
ρ2 = 0.05 Above: |µy,x| for the 53 phonemes y and 26 letters x. Below:

∑

y′ |λy′,y,x| for the 53
phonemes y and 26 letters x.

other to zero. It confirms the impression conveyed by Figure 1 that only a very limited number
of features is actually used for predicting the labels. The first column in this figure corresponds
to the null sound and is unsurprisingly associated with almost all letters. One can also directly
visualize the ambiguity of the vocalic graphemes which correspond to the first (’a’), fifth (’e’),
ninth (’i’), etc. gray rows; this contrasts with the much more deterministic association of a typical
consonant grapheme with a single consonant phoneme.

Method Iter. Time Train Test Kµ Kλ

(min.) (%) (%)

SBCD, ρ1 = 0 30 125 13.3 14.0 1378 73034
SBCD, ρ1 = 0.1 30 76 13.5 14.2 1155 4171
SBCD, ρ1 = 0.2 30 70 14 14.2 1089 3598
SBCD, ρ1 = 0.5 30 63 13.7 14.3 957 3077
SBCD, ρ1 = 1 30 55 16.3 16.8 858 3111
SBCD, ρ1 = 2 30 43 16.4 16.9 760 2275
SBCD, ρ1 = 10 30 25 17.3 17.7 267 997

OWL-QN, ρ1 = 0.1 50 165 13.5 14.2 1864 4079

L-BFGS 90 302 13.5 14.1 74412

SGD 30 17 18.5 19.1 74412

Table 2: Upper part: summary of results for various values of ρ1 for the proposed Sparse Blockwise
Coordinate Descent (SBCD) algorithm (with ρ2 = 0.001) and orthant-wise L-BFGS (OWL-QN).
Lower part: results obtained with ℓ2 regularization only, for L-BFGS and stochastic gradient
descent (SGD).

Table 2 gives the per phoneme accuracy with varying level of sparsity, both for the proposed
algorithm (SBCD) and the orthant-wise L-BFGS (OWL-QN) strategy of [1]. For comparison
purposes the lower part of the table also reports performance obtained with ℓ2 regularization only.
For ℓ2-based methods (L-BFGS and SGD) the regularization constant was set to its optimal value
determined by cross validation as ρ2 = 0.02. The proposed algorithm (SBCD) is coded in C
while OWL-QN and L-BFGS use the CRF++ package [15] modified to use the liblbfgs library
provided with CRFsuite [23] that implements the standard and orthant-wise modified versions of
L-BFGS. Finally, SGD use the software of [3]. All running times were measured on a computer

14

with an Intel Pentium 4 3.00GHz CPU and 2G of RAM memory. Measuring running times is a
difficult issue as each iteration of the various algorithm does not achieve the same improvement
in term of performance. For our method, 30 iterations were found necessary to reach reasonable
performance in the sense that further iterations did not significantly reduce the error rates (with
variations smaller than 0.3%). Proceeding similarly for the other methods showed that OWL-QN
and L-BFGS usually require more iterations to reach stable performance, which is reflected in
Table 2. Finally, SGD requires few iterations (where an iteration is defined as a complete scan of
all the training sequences) although we obtained disappointing performance on this dataset with
SGD.

First, Table 2 shows that for ρ1 = 0.1 or 0.2 our method reaches an accuracy that is comparable
with that of non-sparse trainers (SBCD with ρ1 = 0 or L-BFGS) but with only about 5000 active
features. Note in particular the dramatic reduction achieved for the bigram features λy′,y′,x as
the best accuracy/sparsity compromise (ρ2 = 0.2) nullifies about 95% of these parameters. We
observe that the performance of SBCD (for ρ1 = 0.1) is comparable to that of OWL-QN, which is
reassuring as they optimize related criterions, except for the fact that OWL-QN is based on the use
of the sole ℓ1 penalty. There are however minor differences in the number of selected features for
both methods. In addition to the slight difference in the penalties used by SBCD and OWL-QN,
it was constantly observed in all our experiments that for ℓ1-regularized methods the performance
stabilizes much faster than the pattern of selected features which may require as much as a few
hundreds of iterations to fully stabilize. This effect was particularly noticeable with the OWL-QN
algorithm. We have not found satisfactory explanation regarding the poor performance of SGD on
this dataset: further iterations do not significantly improve the situation and this failure has not
been observed on the CoNLL 2003 data considered below. In general, SGD is initially very fast
to converge and no other algorithm is able to obtain similar performance with such small running
time. The fact that SGD fails to reach satisfactory performance in this example is probably
related to an incorrect decrease of the step size. In this regard, an important difference between
the Nettalk data and the CoNLL 2003 example considered below is the number of possible labels
which is quite high here (53). A final remark regarding timings is that all methods except SBCD
use logarithmic computation in the forward-backward recursions. As discussed in Section 3.2, this
option is slower by a factor which, in our implementation, was measured to be about 2.4. Still,
the SBCD algorithm compares favorably with other algorithms, especially with OWL-QN which
optimizes the same objective function.

Table 2 also shows that the running time of SBCD depends on the sparsity of the estimated
model, which is fully attributable to the sparse version of the forward-backward recursion intro-
duced in Section 3.2. To make this connection clearer, Figure 5 displays the running time as a
function of the number of active features (rather than ρ1). When the number of active feature is
less than 10000, the curve shows a decrease that is proportional to the number of active features
(beware that the x-axis is drawn on a logarithmic scale). The behavior observed for larger numbers
of active features, where the sparse implementation becomes worse than the baseline (horizontal
blue line) can be attributed to the overhead generated by the use of sparse matrix-vector multi-
plications for matrices that are not sparse. Hence the ideas exposed in Section 3.2 have a strong
potential for reducing the computational burden in situations where the active parameter set is
very small compared to the total number of available features. Note also that the OWL-QN
optimizer could benefit from this idea as well.

The simple feature set used in the above experiments is too restricted to achieve state-of-the-
art performance for this task. We therefore conducted another series of experiments with much
larger feature sets, including bias terms and tests on the neighbors of the letter under focus. For

15

10
3

10
4

10
5

20

40

60

80

100

120

140

tim
e

(m
in

ut
es

)
Number of active features

Sparse Forward−Backward
Standard Forward−Backward

Figure 5: Running time as a function of the number of active features for the SBCD algorithm
on the Nettalk corpus. The blue line correspond to the running time when using non-sparse
forward-backward.

these experiments, we keep the same baseline feature set and add the bias terms 1(yt = y) and
1(yt−1 = y′, yt = y) for all possible values of (y, y′). For the context, we consider two variants: in
the first, termed pseudo n-gram, we also add 1(yt = y, xt±i = x) and 1(yt−1 = y′, yt = y, xt±i = x)
for all values of (x, y, y′) and of the offset 1 ≤ i ≤ n − 1/2. In other terms, in this variant, we
test separately the values of the letters that occur before and after the current position. In the
second variant, termed n-gram, we add features 1(yt = y, zt = z) and 1(yt−1 = y′, yt = y, zt = z)
where zt denotes the letter k-gram centered on xt, and z ranges over all observed k-grams (with
k ≤ n). This second variant seems of course much more computationally demanding [17] as it
yields a much higher number of features (see the top line of Table 3, where the total number of
features is given in millions).

pseudo n-gram n-gram
n = 3 n = 5 n = 3 n = 5

M feat. 0.236 0.399 14.2 121

20 iter. 8.98 (12.5) 6.77 (19.8) 8.22 (12.8) 6.51 (21.7)
30 iter. 8.67 (10.9) 6.65 (17.1) 8.04 (11.7) 6.50 (20.1)

Table 3: Experiments with contextual features: performance of the SBCD algorithm after 20
and 30 iterations in terms of error rate and, between parentheses, number of selected features (in
thousands).

As can be seen in Table 3, these extended feature sets yield results that compare favorably with
those reported in [33, 19], with an phoneme-error-rate of 6.5% for the 5-gram system. We also
find that even though both variants extract comparable numbers of features, the results achieved
with “true” n-grams are systematically better than for the pseudo n-grams. More interestingly,
the n-gram variants are also faster: this paradoxical observation is due to the fact that for the
n-gram features, each block update only visits a very small number of observation sequences,
and further, that for each position, a much smaller number of features are active as compared
to the pseudo n-gram case. Finally, the analysis of the performance achieved after 20 and 30
iterations suggests that the n-gram systems are quicker to reach their optimal performance. This
is because a very large proportion of the n-gram features are zeroed in the first few iterations. For

16

instance, the 5-gram model, after only 9 iterations, has an error rate of 6.56% and selects only
27.3 thousand features out of 121 millions. These results clearly demonstrate the computational
reward of exploiting the sparsity of the parameter set as described in Section 3: in fact, training
our largest model takes less than 5 hours (for 20 iterations), which is quite remarkable given the
very high number of features.

6.3 Experiments with CoNLL 2003

Named entity recognition consists in extracting groups of syntagms that correspond to named
entities (e.g., names of persons, organizations, places, etc.). The data used for our experiments
are taken from the CoNLL 2003 challenge [29] and implies four distinct types of named entities,
and 8 labels. Labels have the form B-X or I-X, that is begin or inside of a named entity X
(however, the label B-PER is not present in the corpus). Words that are not included in any
named entity, are labeled with O (outside). The train set contains 14987 sequences, and the test
set 3684 sequences. At each position in the text, the input consists of three separate components
corresponding respectively to the word (with 30290 distinct words in the corpus), part-of-speech
(46), and syntactic (18) tags. To accommodate this multidimensional input the standard practice
consists in superposing unigram or bigram features corresponding to each of those three dimensions
considered separately. The parameters we use in the model are of the form {µy,xd , λy′,y,xd} for
d ∈ {1, 2, 3}, which corresponds to a little more than 9 million parameters. Hence, the necessity
to perform model selection is acute.

10
4

10
5

10
6

40

45

50

55

60

65

70

F
−

m
ea

su
re

 B

Number of active features

Zeroed a posteriori
Cut−off L−BFGS (frequency)
Cut−off SGD (frequency)
Orthant−Wise QN
Elastic Net
MI Pre−Selection

Figure 6: Performance comparison of different model selection approaches on CoNLL 2003 (En-
glish): test set B.

To illustrate the efficiency of ℓ1-based feature selection, we compare it with three simple-
minded approaches to feature selection, which are often used in practice. The first one, termed
“cut-off”, consists in incorporating only those features that have been observed sufficiently often
in the training corpus. This amounts to deleting a priori all the rare dependencies. The second
strategy, termed MI preselection, selects features based on their Mutual Information (MI) with the
label, as in [32] (where the MI is referred to as the information gain). The third option consists
in training a model that is not sparse (e.g., with an ℓ2 penalty term) and in removing a posteriori
all features whose values are not of sufficient magnitude. Figure 6 compares the error rates
obtained with these strategies to those achieved by the SBCD or OWL-QN algorithms. Obviously,
a priori cut-off strategies imply some performance degradation, although MI preselection clearly

17

dominates frequency-based selection. A posteriori thresholding is more efficient but cannot be
used to obtain well-performing models that are very sparse (here, with less than 10000 features).
From a computational point of view, a posteriori thresholding is also penalized by the need to
estimate a very large model that contains all available features.

In this experiment, SBCD proves computationally less efficient, for at least two reasons. First,
many POS or chunk tags appear in all training sequences; the same is true for very frequent words:
this yields many very large blocks containing almost all training sentences. Second, the sparse
forward-backward implementation is less efficient than in the case of the phonetization task as the
number of labels is much smaller: SBCD needs 42 minutes (with ρ1 = 1, corresponding to 6656
actives features) to achieve a reasonable performance while OWL-QN is faster, taking about 5
minutes to converge. If sparsity is not needed, SGD appears to be the most efficient method for
this corpus as it converges in less than 4 minutes. L-BFGS in contrast requires about 25 minutes
to reach a similar performance.

7 Conclusions

In this paper, we have proposed an algorithm that performs feature selection for CRFs. The
benefits of working with sparse feature vectors are twofold: obviously, less features need to be
computed and stored; more importantly, sparsity can be used to speed up the forward-backward
and the Viterbi algorithms. Our method combines the ℓ1 and ℓ2 penalty terms and can thus be
viewed as an extrapolation of the elastic net concept to CRFs. To make the method tractable,
we have develop a sparse version of the forward-backward recursions; we have also introduced and
validated two novel ideas: an approximation of the second order derivative of the CRF logarithmic
loss as well as an efficient parameter blocking scheme. This method has been tested on artificial
and real-world data, using large to very large feature sets containing more than one hundred
million features, and yielding accuracy that is comparable with conventional training algorithms,
and much sparser parameter vectors.

The results obtained in this study open several avenues that we wish to explore in the future.
A first extension of this work is related to finding the optimal weight for the penalization term,
a task that is usually achieved through heuristic search for the value(s) that will deliver the best
performance on a development set. Based on our experiments, this search can be performed
efficiently using pseudo regularization-path techniques, which amount here to start the training
with a very constrained model, and to progressively reduce the weight of the ℓ1 term so as to
increase the number of active features. This can be performed effectively at very little cost by
restarting the blockwise optimization from the parameter values obtained with the previous weights
setting (so called “warm-starts”), thereby greatly reducing the number of iterations needed to reach
convergence. A second interesting perspective, aiming at improving the training speed, is based
on the observation that after a dozen iterations or so, the number of active features is decreasing
steadily. This suggests that those features that are inactive at that stage will remain inactive
till the convergence of the procedure. Hence, in some situations, limiting the updates to the
features that are currently active can be an efficient way of improving the training speed. Finally,
the sparse forward-backward implementation appears to be most attractive when the number of
labels is very large. Hence, extensions of this idea to cases where the features include, for instance,
conjunctions of tests that operate on more than two successive labels are certainly feasible. The
perspective here consists in taking profit of the sparsity to allow for inclusion of longer range label
dependencies in CRFs.

18

References

[1] G. Andrew and J. Gao. Scalable training of l1-regularized log-linear models. In Proceedings
of the 24th international conference on Machine learning (ICML), pages 33–40, Corvalis,
Oregon, 2007.

[2] L. Bottou. Stochastic learning. In O. Bousquet and U. von Luxburg, editors, Advanced
Lectures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, pages
146–168. Springer Verlag, Berlin, 2004.

[3] L. Bottou. Stochastic gradient descent (sgd) implementation, 2007.

[4] O. Cappé and E. Moulines. Recursive computation of the score and observed information
matrix in hidden Markov models. In IEEE Workshop on Statistical Signal Processing (SSP),
Bordeaux, France, July 2005.

[5] O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models. Springer, 2005.

[6] T. Cohn. Efficient inference in large conditional random fields. In Proceedings of the 17th
European Conference on Machine Learning, pages 606–613, Berlin, September 2006.

[7] S. Della Pietra, V. J. Della Pietra, and J. D. Lafferty. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

[8] T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields via
gradient tree boosting. In ICML, Banff, Canada, 2004.

[9] M. Dud́ık, S. J. Phillips, and R. E. Schapire. Performance guarantees for regularized maximum
entropy density estimation. In J. Shawe-Taylor and Y. Singer, editors, Proceedings of the 17th
annual Conference on Learning Theory, (COLT 2004), Banff, Canada, volume 3120 of Lecture
Notes in Computer Science, pages 472–486. Springer, 2004.

[10] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.
Annals of Applied Statistics, 1(2):302–332, 2007.

[11] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models
via coordinate descent. Technical report, Department of Statistics, Stanford University, 2008.

[12] J. Gao, G. Andrew, M. Johnson, and K. Toutanova. A comparative study of parameter
estimation methods for statistical natural language processing. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pages 824–831, Prague,
Czech republic, 2007.

[13] J. Kazama and J. Tsujii. Evaluation and extension of maximum entropy models with in-
equality constraints. In Proceedings of the 2003 conference on Empirical methods in natural
language processing, pages 137–144, Morristown, NJ, USA, 2003.

[14] B. Krishnapuram, A. J. Hartemink, L. Carin, and M. A. T. Figueiredo. Sparse multinomial
logistic regression: Fast algorithms and generalization bounds. IEEE Trans. Pattern Anal.
Mach. Intell., 27(6):957–968, 2005.

[15] T. Kudo. CRF++: Yet another CRF toolkit, 2005.

19

[16] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models
for segmenting and labeling sequence data. In Proceedings of the International Conference on
Machine Learning (ICML), pages 282–289. Morgan Kaufmann, San Francisco, CA, 2001.

[17] P. Liang, H. Daumé, III, and D. Klein. Structure compilation: trading structure for features.
In Proceedings of the 25th international conference on Machine learning (ICML’08), pages
592–599, 2008.

[18] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

[19] Y. Marchand and D. Robert. A multi-strategy approach to improving pronunciation by
analogy. Computational Linguistics, 2(26):195–219, 2000.

[20] A. McCallum. Efficiently inducing features of conditional random fields. In Proceedings of
the conference Uncertainty in Artificial Intelligence (UAI), Acapulco, Mexico, 2003.

[21] L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic regression. Journal
of The Royal Statistical Society Series B, 70(1):53–71, 2008.

[22] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[23] N. Okazaki. CRFsuite: A fast implementation of conditional random fields (CRFs), 2007.

[24] F. Peng and A. McCallum. Information extraction from research papers using conditional
random fields. Information Processing and Management, 42(4):963–979, 2006.

[25] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce english text.
Complex Systems, 1, 1987.

[26] S. M. Siddiqi and A. W. Moore. Fast inference and learning in large-state-space hmms. In
Proceedings of the 22nd international conference on Machine learning, pages 800–807, Bonn,
Germany, 2005.

[27] C. Sutton and A. McCallum. An introduction to conditional random fields for relational
learning. In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational Learning,
Cambridge, MA, 2006. The MIT Press.

[28] R. Tibshirani. Regression shrinkage and selection via the lasso. J.R.Statist.Soc.B, 58(1):267–
288, 1996.

[29] E. F. Tjong Kim Sang and F. de Meulder. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of CoNLL-2003, pages 155–
158, Edmonton, Canada, 2003.

[30] Y. Tsuruoka, J. Tsujii, and S. Ananiadou. Stochastic gradient descent training for l1-
regularized log-linear models with cumulative penalty. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 477–485, Suntec, Singapore, 2009.

[31] S. V. N. Vishwanathan, N. N. Schraudolph, M. Schmidt, and K. Murphy. Accelerated training
of conditional random fields with stochastic gradient methods. In Proceedings of the 23th
International Conference on Machine Learning, pages 969–976. ACM Press, New York, NY,
USA, 2006.

20

[32] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categorization.
In D. H. Fisher, editor, Proceedings of ICML-97, 14th International Conference on Machine
Learning, pages 412–420, Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco.

[33] F. Yvon. Grapheme-to-phoneme conversion using multiple unbounded overlapping chunks.
In Proceedings of the conference on New Methods in Natural Language Processing (NeMLaP
II), pages 218–228, Ankara, Turkey, 1996.

[34] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and
hierarchical variable selection. to appear, Annals of Statistics, 2009.

[35] H. Zhou and T. Hastie. Regularization and variable selection via the elastic net. J. Royal.
Stat. Soc. B., 67(2):301–320, 2005.

21

	1 Introduction
	2 Conditional Random Fields and Sparsity
	3 Fast Computations in Sparse CRFs
	3.1 Computation of the Objective Function and its Gradient
	3.2 Sparse Forward-Backward Algorithm

	4 Parameter Estimation Using Blockwise Coordinate Descent
	4.1 Regularization
	4.2 Coordinate Descent
	4.3 Coordinate Descent for CRFs
	4.4 Blockwise Coordinate Descent for CRFs

	5 Discussion
	6 Experiments
	6.1 Simulated data
	6.2 Experiments with Nettalk
	6.3 Experiments with CoNLL 2003

	7 Conclusions

