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Abstract

We analyze the effect of interference on the convergence rate of average consensus algorithms,

which iteratively compute the measurement average by message passing among nodes. It is usually

assumed that these algorithms converge faster with a greater exchange of information (i.e., by in-

creased network connectivity) in every iteration. However, when interference is taken into account,

it is no longer clear if the rate of convergence increases with network connectivity. We study this

problem for randomly-placed consensus-seeking nodes connected through an interference-limited

network. We investigate the following questions: (a) How does the rate of convergence vary with

increasing communication range of each node? and (b) How does this result change when each

node is allowed to communicate with a few selected far-off nodes? When nodes schedule their

transmissions to avoid interference, we show that the convergence speed scales withr2−d, where

r is the communication range andd is the number of dimensions. This scaling is the result of two

competing effects when increasingr: Increased schedule length for interference-free transmission

vs. the speed gain due to improved connectivity. Hence, although one-dimensional networks can

converge faster from a greater communication range despiteincreased interference, the two effects

exactly offset one another in two-dimensions. In higher dimensions, increasing the communication

range can actually degrade the rate of convergence. Our results thus underline the importance of

factoring in the effect of interference in the design of distributed estimation algorithms.
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I. INTRODUCTION

A. Motivation

The advent of wireless sensor and ad hoc networks has motivated the need for distributed

information processing algorithms, which allow each node to operate only on local information.

A well-studied algorithm that allows distributed averaging is the average consensus algorithm,

wherein the global average of a set of initial sensor observations can be computed based on

purely local computations at each sensor. Starting from a set of initial measurements, the average

consensus algorithm allows a set of nodes to communicate by a(possibly time-varying) topology to

iteratively compute the global average of the initial measurements, see e.g., [1]–[9] and references

therein. The connectivity properties of the topologies that ensure convergence have been well-

studied (e.g., [10], [11]). Of late, the focus has shifted tostudying convergence in the face of

communication constraints, like quantization [12]–[14],packet drops [15] and noise [16]. A closely

associated algorithm is the gossip algorithm [2], [17], [18]. In particular, the recent work [18]

proposes and studies a probabilistic version of the broadcast gossip algorithm [17]. The idea is to

exploit channel fluctuations to enable opportunistic longer-range message-passing. Since only one

node is allowed to transmit at any given time, the question ofinterference does not arise.

In this paper, unlike prior work, we study the effect of interference, which becomes important

in the formation of more general message-passing topologies. We explicitly model the effect of

interference on the rate of topology formation—and hence convergence—of the average consensus

algorithm. This important effect—which crucially dependson network geometry—has been largely

ignored. In wireless networks, depending on the physical proximity of a to d and c to b, the

transmission froma to b andc to d may interfere with one another; hence two time slots may be

needed to establish edges
−−−→
(a, b) and

−−−→
(c, d). The network thus has two time-scales of interest: that of

establishing individual communications among the desiredset of nodes and that of the iterations

of the distributed algorithms, which occur only when all thedesired nodes have successfully

communicated. One may thus, view the underlying communication network as constructing the

desired message passing graphs from several feasible sub-graphs, each of which satisfies half-

duplex, fading and interference constraints. The union of all these sub-graphs is the desired message

passing graph.

To illustrate this, consider the formation of a simple linear 6-node network shown in Fig. 1.

Suppose the estimation algorithm requires nearest-neighbor communication (shown as bidirectional
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edges). However, due to interference constraints, only every third node can transmit. In this case,

we see that forming the the desired topology requires at least three time-slots, as shown. In other

words, for these interference constraints, this topology’s fastest rate of formationis three time

slots. Clearly, a topology’s intrinsic benefitand the fastest rate of its formation determine its true

utility.

Desired 
Message-Passing

Graph

1

2

3

Time Slots
Feasible 

Communication
Graphs

Figure 1. An example illustrating the constraints introduced by interference. If the nodes are physically placed as shown,
interference limits the number of nodes that can communicate concurrently. Assuming a spatial re-use factor of two,
the message-passing graph can be formed as a union of three feasible sub-graphs, each of them satisfying interfefence
constraints. We consider this TDMA schedulefeasible.

The performance of the underlying (real-time) estimation algorithm is thereforecoupledwith

algorithms for channel access and routing. In our previous work [19], we studied the coupling with

channel access for the average consensus algorithm for a certain class of deterministic network

topologies. Using a simple protocol model [20] for reception, we were able to show that the effect

of increasing network connectivity depends crucially on its dimension. In our recent work [21] we

exploited the well-known parallels between the convergence of the average consensus algorithm and

Markov chain mixing (e.g., [2] and the references therein) to study consensus on disk graphs [22]

using the more refined physical model. We examined the scaling behavior of the fastest rate

of topology formation with interference, captured by the shortest feasible TDMA schedules that

construct the graph.

We note here that implementing inter-node communication ina network will require some addi-

tional overhead. For example, one possible protocol that establishes point-to-point communication

can have nodes tag their packets with their uniquely assigned address. A receiver reads this address

and decodes a packet only if the address is that of one of its intended transmitters. In this work,

we neglect this additional overhead. However, we show that even when this overhead is neglected,

increased interference alone is enough to significantly lower the rate of topology formation.
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B. Main Contributions

In this paper, we study networks with short-range and networks with both short-range and

limited long-range communication. Although remarkable improvements in convergence rate have

been reported [23]–[25] for consensus on graphs with a few long-range edges (as in small-world

graphs [26]), it is not clear if these benefits will carry overto a wireless setting, where long-

range links come at a cost of increased interference. Motivated by this fact, we study the average

consensus problem in graphs formed by overlaying long-range edges onto an existing “short-range”

disk graph. We derive the scaling law for the spectral gap as well as that of the fastest rate of

topology formation in the presence of interference. To the best of our knowledge, this is the first

such attempt.

We find that the spectral gap scales quadratically in the communication ranger, independently

of the network dimensiond, but the length of the shortest TDMA schedule that constructs such

graphs scales asrd. Thus when interference is factored in, the benefit of a greater communication

range depends crucially on the network dimension:

• For one-dimensional networks (d = 1), topologies with increased communication range can

converge faster despite greater interference.

• For two-dimensional networks, the rate of convergence scales independentlyof the commu-

nication range.

• For three- (and higher-) dimensional networks, increasingthe communication range can ac-

tually slow down convergence.

Furthermore, these results hold whether each node only communicates with all other nodes within

its communication range, or, additionally, with a small number of far-away nodes. Thus our results

significantly change many optimistic results obtained by analyzing the consensus problem in an

abstract graph-theoretic setting.

The remainder of this paper is organized as follows. In Section II, we provide some standard

definitions and results used in this paper. In Section III, wespecify our system model and formulate

the problem using the terminology developed in Section II. In Section IV, we discuss convergence

results for the disk graph model. In Section V. we study the effect of selective long-range com-

munication and provide the relevant scaling results. Section VI concludes the paper.
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II. D EFINITIONS AND NOTATION

To make this paper self-contained, we formally state the following standard definitions and facts

about Markov chains and introduce some notation and other relevant terminology.

1) Basic Definitions from Markov Chain Theory:Consider a connected undirected graphG,

with n verticesV = {1, 2, . . . , n} and a set of edgesE. We assumeG also contains all self-loops,

i.e., i ∈ V =⇒ (i, i) ∈ E. Let di denote the degree of vertexi. For more information, see [27].

Definition 1. (Random walk on a graph) A random walkX (G) = (Xk)k∈Z on V is characterized

by then × n transition probability matrixP(G) = [pij], with pij , P(Xk+1 = i | Xk = j), and

pij > 0 only if (i, j) ∈ E, with
∑

j pij = 1 ∀i ∈ V .

Observe thatP is stochastic.

Definition 2. (Symmetric random walk) A random walk is symmetric ifpij = pji.

For a symmetric random walkP is doubly stochastic.

Fact 3. A random walk onG is a Markov chain with state spaceV . Given an initial distribution

π(0) overV , the distributionπ(k+1) after k+1 steps satisfiesπ(k+1) = Pπ(k) for k = 0, 1, . . .

Definition 4. (Stationary distribution of a Markov chain) A stationary distribution π
∗ satisfies

π
∗ = Pπ

∗, i.e., remains invariant with time.

Definition 5. (Reversible Markov chain) A Markov chainX = (Xk)k∈Z is said to bereversibleif

for all statesi, π∗
jpij = π∗

i pji.

Fact 6. An irreducible and aperiodic Markov chain has a unique stationary distribution.

Definition 7. (Natural random walk) A natural random walk onG is a random walk with

pij =











1/2di, (i, j) ∈ E, i 6= j

1/2 i = j.

Fact 8. The natural random walk is reversible, irreducible and aperiodic with a unique stationary

distribution π∗
i = di∑

i
di

. WhenG is regular, a natural random walk is also symmetric and has a

uniform stationary distribution.
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Definition 9. (Mixing time of a random walk) For a random walkX with a unique stationary

distribution π∗, consider the Total Variational (TV) distance1 (cf. [27, Chap. 4])dTV,i(t;π0) ,

1
2

∑

i |P(Xt = i, π0)− π∗
i | for an initial distributionπ0. Then the mixing time ofX is defined as

Tmix(ǫ;P ) , sup
π(0)

inf{t : dTV(t;P, π(0)) ≤ ǫ}.

2) Asymptotic Notation:We use the following asymptotic notation. For two functionsf andg

of a variablen, asn → ∞, we write

• g = O(f) if the ratio g/f is asymptotically finite. Further,g = o(f) if this limit is zero.

• g = Ω(f) if f = O(g). Further,g = ω(f) ⇐⇒ f = o(g).

• g = Θ(f) if g = O(f) andg = Ω(f).

Whenf andg are random, these relations are defined to hold with probability one.

3) Graph Sequences and the Asymptotic Regime:Consider a sequence of (possibly random)

undirected graphs(Gn), whosenth memberGn hasn verticesVn = {1, 2, . . . , n} and a set of

edgesEn. We assume each graph contains all self-loops. Denote the maximum and minimum node

degrees ofGn by dmax(Gn) (shortened todmax) and dmin (shortened todmin) respectively. We

provide some standard definitions below.

Definition 10. (Asymptotically regular graph)Gn is asymptotically regular ifdmax(Gn)−dmin(Gn) =

o(1).

Definition 11. (Asymptotically almost sure validity) A propertyP is true asymptotically almost

surely (a.a.s.) for a sequence of random objects(Xn), if limn→∞ P (Xn has propertyP) = 1.

We obtain scaling results for the convergence of the averageconsensus algorithm in large

networks by mapping the problem to the scaling of mixing times of natural random walks on

a sequence of graphs that are connected and regular asymptotically almost surely.

III. PROBLEM FORMULATION

A. Average Consensus and Random Walks

Consider a set of sensor nodesVn = {1, 2, . . . , n}. Associate with theith sensor an initial

observationzi(0). Given a realization of a randommessage-passinggraphGn with verticesVn

1The TV distance between two distributionsµ andν over a countable setS is defined as‖µ−ν‖TV , 1

2

∑
i∈S

|µi−νi|
(essentially theℓ1 norm).
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and edgesEn, suppose that all the verticesi ∈ Vn synchronously update their observations as

zi(k + 1) =
1

2
zi(k) +

1

2di

∑

j∈Ni(Gn)

(zj(k)− zi(k)), k = 0, 1, . . . (1)

HereNi(Gn) denotes the neighborhood of vertexi in Gn. By stacking the individual observations

zi to form the observation vectorz, the(k+1)th update starting from an initial observation vector

z(0) can be written as

z(k + 1) = Wnz(k). (2)

where we have defined theupdate matrixWn , (In − ∆nLn)/2, whereIn denotes then × n

identity matrix,∆n , diag[d−1
i ] andLn is the graph Laplacian. Notice thatWn depends on the

realization of the random graphGn, which remains the same for all iterations. We will analyze

the speed of convergence for specific families of random graphs in the scaling limitn → ∞, by

deriving properties of interest that hold a.a.s. for all realizations ofGn.

Without loss of generality, letzi(0) > 0, and definez′i(0) , zi(0)/
∑

i zi(0) as the normalized

initial observation vector. In the light of Fact 3 and Definition 7, the iterationz′(k+1) = Wnz
′(k)

can now be interpreted as time-evolution of the node occupancy distribution of a natural random

walk overGn with a transition probability matrixWn [2], [23].

If Gn is also connected, this equivalence with a natural random walk ensures (from Fact 6) that

the value of each vertex asymptotically reaches1
n

∑

i zi(0) = 1
T z(0)

n (a more general result for a

time-varying case was studied in [10]). Interpreting each vertex as a sensor and the initial values

(zi(0))i∈Vn
as sensor measurements, this algorithm allows each sensor to iteratively compute the

average1n
∑

i zi(0) of the initial measurement set by exchanging messages as described in (1). We

will sometimes also refer toGn as themessage-passing network.

The rate of convergence of (2) to its steady state value can beunderstood in terms of the mixing

time of the natural random walk described byWn. Indeed, by expressingz′i in terms ofzi, we

can write from Definition 9:

Tmix(ǫ;Wn) = sup
z(0)

inf{k : ‖z(k) − n−1
1z0‖TV ≤ ǫz0} (3)

wherez0 ,
∑

i zi(0).

WhenGn is a.a.s. connected and regular, we know from Fact 8 that the stationary distribution

of the random walk is uniform a.a.s., thereby implying convergence to average consensus a.a.s.
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In this paper, we analyze random graphs based on the disk graph [22], which are parameterized

by the disk radius (see Section III-B). For this family of graphs, it is well-known that the graphs are

a.a.s. connected if and only if the radius remains large enough with n (i.e., in the “supercritical”

regime [28], see, e.g., [29] for a proof). In this regime, theasymptotic regularity property was

formally shown to hold a.a.s. in [2, Lemma 10]. In fact, in [2]these two properties were used

to establish scaling laws for the mixing time of both the natural and the fastest mixing reversible

random walks on these graphs to the uniform distribution.

It is well-known that the mixing time of a random walk can be characterized by the second-

largest eigenvalue ofWn. Denoting the eigenvalues ofWn by µ1 = 1 > µ2 > · · · > µn > 0,

the asymptotic convergence of the iteration (2) is determined by µ2. The result below formally

establishes this dependence:

Theorem 12. [30]. The ǫ−mixing time of a random walk with a doubly stochastic positive definite

transition matrixWn on a connected graphGn is bounded as

µ2 log(2ǫ)
−1

2(1− µ2)
≤ Tmix(ǫ;Wn) ≤

log n− log ǫ

1− µ2
,

where1− µ2 is called thespectral gapof Gn.

Remark:Observe that the spectral gap controls the mixing time. In the scaling limitn → ∞, the

scaling ofǫ also becomes important. The logarithmic dependence onǫ−1 suggests three meaningful

possibilities:

1) Polynomial scaling:ǫ = 1/nδ for some fixedδ > 0.

2) Exponential scaling:ǫ = exp(−δ′n) for some fixedδ′ > 0.

3) Constant error:ǫ ≪ 1 is constant.

For polynomial and exponential error scaling, it is clear that the bounds in Theorem 12 are of

the same order, and areΘ((1− µ2)
−1 log n) andΘ((1− µ2)

−1n) respectively. For constant error,

the upper bound scaleslog n times faster than the lower bound, i.e.,Tmix = Ω((1 − µ2)
−1) and

T = O((1− µ2)
−1 log n).

In the sequel we assume polynomial scaling, as was done in [2]. It will become clear in the

later sections that the scaling laws for exponential scaling follow from a substitutionlog n 7→ n.

Spectral Gap and Cheeger’s Inequality:

Intuition suggests that the mixing time of a Markov chain depends on how “easy” it is to move
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out of any specified region in the state space. This property can be formalized with the notion of

conductance. The conductance of a reversible Markov chain on a state space Ω = V on a graph

Gn with an equilibrium distributionπ∗ is defined as follows [31]:

h = min
S⊂Ω,π∗(S)≤1/2

Q(S, S̄)

π∗(S)
, (4)

whereπ∗(S) ,
∑

i∈S π∗(i) and S̄ = Ω\S, andQ(S, S̄) ,
∑

i∈s,j∈S̄ π
∗(i)P(Xn+1 = j|Xn = i).

Viewed in graph-theoretic terms, the numerator (4) measures the effective weighted flow across

the cut(S, S̄), while the denominator measures the weighted capacity ofS. Intuitively, we would

expect a larger conductance to correspond to a smaller mixing time, or equivalently from Theorem

12, a larger1 − µ2 of the underlying graphGn. This is indeed the case, as Cheeger’s Inequality

shows:

Theorem 13. [30]. The spectral gap of a reversible Markov chain satisfies

h2

2
≤ 1− µ2 ≤ 2h,

whereh is the conductance of the Markov chain.

Once we know howh scales withn for a (random) sequence of graphs(Gn), we can use

Theorem 13 to find the scaling law for their spectral gap. This, in turn, permits the use Theorem

12 in deriving scaling laws for the mixing time for iterations of the form (2) on these sequences of

graphs. In the following, motivated by the need to capture the distance-dependence and randomness

in the connectivity of the nodes, we present random geometric graph models forGn.

B. Network Models

Each pointi ∈ {1, 2, . . . , n} is placed uniformly randomly in ad−dimensional torusTd on

[0, 1]d, i.e., the vertices form a binomial point process [32]Φ = {xi}, i = 1, 2, . . . n, on Td. Each

element of(Gn) is based on the well-known disk graph model [22], [28]. In thefollowing let

bd(x, r) ≡ b(x, r) denote a Euclidean ball centered atx ∈ R
d and radiusr, and |b(x, r)| denote

its volume.

1) Networks with Short-Range Communication:In this case,Gn is the d−dimensional disk

graph parameterized by the commoncommunication ranger of each node. The neighborhood of
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nodexi ∈ Φ that will be used for implementing (1) is

Nxi
(r) , {xj ∈ Φ : ‖xj − xi‖ ≤ r},

where‖·‖ denotes the Euclidean norm. In this paper, we will always operate in the super-critical

regime, i.e.,r = ω(rc), whererc , ( lognn )1/d to ensure asymptotic connectivity and regularity of

(Gn) [20]. We label this family of graphs asG sh
n (r, d) ≡ G sh

n (r), and the update matrix byWsh
n .

We refer to the points ofΦ either by their locationxi ∈ R
d or by their indexi ∈ N.

2) Networks with both Short- and Selective Long-Range Communication: We start with a disk

graphG sh
n (r) and add long-range edges of lengths = Θ(rγ). The parameterγ controls the distance

over which long-range communication occurs: for a givenr a node can communicate with nodes

farther away asγ → 0. We add the long edges as follows.

For somer, η > 0 and 0 < γ < 1, tile the torus with hypercubes of side lengthηr. Let c

denote one of these hypercubes. Along each dimensionm = 1, 2, . . . d, let c+m and c−m denote the

farthest hypercubes fromc that are less than distances/2 away fromc along themth coordinate

axis, the distance being measured in terms of the separationbetween their farthest edges. We

call these hypercubes as thepartner hypercubesof c. Figure 2 illustrates the case ofd = 2. It

is easy to see that from any vertex inc, any vertex inc+m and c−m is at a distance of at most
√

(d− 1)η2r2 + s2/4 ≤ s√
2

for a small enoughη.

Sincer = ω(rc), every tilec containsnη2r2 nodes a.a.s. Without loss of generality, letx1 be one

of these nodes. Now add an edge betweenx1 and every vertex inc+m, c−m for m = 1, 2, . . . , d. Thus

each of these nodes becomes along-range partnerof x1. Repeat this procedure for every node in

Φ, and count duplicate edges only once. Thus forr = ω(rc), every node in every tile is additionally

connected tonr2|b(0, 1)| + 2dnη2r2 + o(1) nodes a.a.s., i.e.,Gn is regular asymptotically almost

surely. Hence an iteration of the form (2) on this graph will converge to a uniform distribution

a.a.s. We define the resultant graph asGl
n(r, s, d) ≡ Gl

n(r, s) and the corresponding update matrix

by W
l
n.

Notice that this model adds long edges selectively to each node; it is motivated by the observation

that a small number of long edges added to a graph can greatly increase its spectral gap, as is the

case in small-world graphs (cf. [33, Chap. 14]). We have adapted this idea to a wireless network.

Instead of adding a single additional edge to a node as is normally the case in abstract graph-

theoretic models, the inherent broadcast nature of the wireless channel allows a transmitter to
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PSfrag replacements
ηr

ηr

r

≤ s/2
> s/2

Figure 2. An illustration of the geometric random graph models for d = 2. The vertices are shown as black circles.
In G s

n(r), an edge exists between any two nodes iff they are at most at a distancer (the communication range) away
from each other. This is shown, for example, for the node at the center of the circle.Gl

n contains all edges inG s

n.
Additionally each node communicates with its long-range partners. For example, for each node in the dark gray square,
all nodes in the lightly shaded squares are long-range partners. These partner squares are chosen such that the distance
between their farthest edges is less thans/2. Note that there are 4 such partner squares, two along each coordinate axis.

broadcast its information to several receivers that are in close proximity to one another with very

little overhead. This allows multiple communication pathsto form simultaneously.

We now describe the communication model, which is a well-accepted model in the study of

wireless networks.

C. Communication Model

We make the following assumptions on the communication model:

• All edges inG sh
n andGl

n are established by wireless links that operate in the same frequency

band (normalized to unit bandwidth).

• Each node encodes its message inK ≫ 1 nats, such that there is negligible quantization error.

These messages are sent using a point-to-point capacity-achieving AWGN channel code with

SNR thresholdβ (i.e., R = log(1 + β)). Transmissions are slotted withK/R channel uses

allowed per slot.

• There is no fading. The path-loss exponentα is greater than the dimensiond of the network,

so that the interference remains finite a.s. as the network size grows.

• A packet from nodei can be received atj iff the Signal-to-Interference-Ratio (SIR) at node

November 5, 2018 DRAFT
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j, SIRij, is greater than a known constantβ > 0. Therefore for any senderi and receiverj,

the link i → j will be in outage iff

‖xj − xi‖−α

∑

k∈S\{i} ‖xj − xk‖−α
< β. (5)

whereS is the set of all senders that transmit in the same slot asi. This is the well-known

interference-limited physical model [20]2.

• The medium-access scheme is TDMA with spatial re-use.

Thus the successful formation of each edge in a graphGn is mapped to a successful link formation

in each direction. Notice that (5) models that fact that there is a limit to the number of edges that

can be formed simultaneously, and consequently on the maximum rate at which a given message-

passing graph can be established. For a given TDMA protocol,the rate of topology formation is

thus determined by itsschedule lengthin time-slots. Since we investigate networks in the scaling

limit, we will investigate the scaling properties of the fastest TDMA protocols that can establish

a given sequence of random graphs(Gn) (i.e., have the smallest schedule length a.a.s.)

D. Quantifying the Effective Speed of Convergence

Note that the mixing time, which is a function of the update matrix Wn, the smallestnumber

of iterationsto converge to anǫ−ball around the average consensus point. This is different from

the time takento taken to converge to this ball with a finite rate of topologyformation in each

iteration. For example, in Fig. 1, due to interference constraints, the shortest schedule to construct

this topology has at least three time slots. Hence message-passing iterations using this topology

can occur no faster than once in every three time slots.

Thus for a topologyGn and an update matrixWn, thesmallesteffective time to converge is the

product of the mixing timeTmix(ǫ;Wn) of a topology and the lengthT ∗(Gn, β) of the shortest

TDMA schedule that constructs the topology in each iteration. We call this theSlot Mixing Time.

We formally state it below for future reference:

Definition 14. (Slot Mixing Time) The Slot Mixing TimeTslots(Gn) ≡ Tslots(Gn,Wn, β, ǫ) is

2It is possible to derive our scaling results by including both noise and interference in the SINR model at the cost
of making equations and derivations more cumbersome while distracting from the main message of the paper, which is
the analysis of the performance with interference. Hence wefocus on the interference-limited case.
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defined as the product

Tslots(Gn) , Tmix(ǫ;Wn) · T ∗(Gn, β),

whereTmix(ǫ;Wn) is the ǫ−mixing time of iterations using a message-passing graphGn and an

update matrixWn andT ∗(Gn, β) is the length of the shortest TDMA schedule that constructsGn

in time slots.

Notice that in generalTslots(Gn) depends on the realization of the random graphGn. We will

analyze the scaling ofTslots(Gn) for the families of random geometric graphs described in Section

III-B.

E. Asymptotic Behavior

From Sections III-A and III-C we notice that the problem involves:

• The network sizen.

• The short link distancer.

• The parameterγ that controls the length of long links.

We will study the mixing time in an interference-limited network in the regimen → ∞.

IV. CONVERGENCE INNETWORKS WITH SMALL COMMUNICATION RANGE

A. Characterizing the Spectral Gap

The spectral gap for the disk graph is known to beΘ(r2), independent of network dimension [2].

Using Cheeger’s Inequality (Theorem 12), it was shown that the mixing time of thefastest mixing

reversible random walk with a uniform distribution onG sh
n (r), for polynomial scalingǫ = 1/nδ,

δ > 0 scales as

Tmix(W
sh
n ) = Θ(r−2 log n). (6)

It was also shown therein that the mixing time for the naturalrandom walk onG sh
n is also

Θ(r−2 log n). We will now use combine the scaling law for the mixing time with the fastest rate

of topology formation implied by the communication model inSection III-C.

B. Interference-Limited Topology Formation

We now prove two results that follow from the assumptions made in Section III-C.
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Proposition 15. Consider a system ofn nodes on ad−dimensional torus with a short-range

communication ranger, that communicate using point-to-point codes with SINR thresholdβ, with

α > d being the path-loss exponent. Assuming the short-range network model in Section III-B1

and the communication model described in III-C, the length of the shortest TDMA schedule that

constructsG sh
n has no fewer thanC1nr

dβd/α slots a.a.s., for some positive constantC1.

Proof: Let S be the set of concurrent transmitters at any given time. Suppose nodej is an

intended receiver of a transmitteri ∈ S. Theni’s message is decoded correctly iff (5) is satisfied.

Thus for allk ∈ S\{i},

‖xj − xk‖ ≥ β1/α‖xj − xi‖. (7)

Clearly this is true even for thefarthest intended receiver. It is easy to show that such a receiver

lies a.a.s. in a ring of inner radiuss(1− δ
′′

) for some fixedδ
′′

> 0. We thus conclude‖xk−xj‖ ≥
r(1− δ

′′

)β1/α , rmin a.a.s.

This suggests that any TDMA protocol allowingi to pass a message to its farthest nodej needs

to set up a guard zone of radius no smaller thanrmin aroundj. Since every node inside this

guard zone must transmit at least once to form the required message passing graph, any TDMA

protocol that constructs the message passing graphG sh
n requires least

∑

x∈Φ 1x∈Φ∩b(0,rmin) slots.

Here the indicator1x∈Φ∩b(0,rmin) is used to indicate the existence of the pointx ∈ Φ inside the

ball b(0, rmin). The summation is over all pointsx ∈ Φ.

For r = ω(rc), each such ball hasn|b(0, rmin)| = nrdβd/α(1− δ)d|b(0, 1)|+ o(1) ≥ C1nr
dβd/α

a.a.s., whereC1 = 0.5(1 − δ)d|b(0, 1)|.

Proposition 16. Consider the network model in Section III-B1 and the communication model

described in III-C. The length of the shortest TDMA schedulethat constructsG sh
n has at most

C2nr
dβd/α slots a.a.s., for some positive constantC2.

Proof: The proof involves construction of a feasible TDMA schedulewhose length isC2nr
dβd/α

Let x , θr for some fixedθ > 1. Consider the latticeL that consists of points on the scaled integer

latticexZ2 that also lie on the torus. In other words,L = xZ2 ∩T2(n). PartitionL into sublattices

as follows:

• L00 , {(ix, jx) ∈ L : iandj are even}
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• L01 , {(ix, jx) ∈ L : ieven, j odd}
• L10 , {(ix, jx) ∈ L : iodd, j even}
• L11 , {(ix, jx) ∈ L : iandj are odd}

With each lattice sitep ∈ L one can associate the tileτp = p + [0, x]2 that lies within the torus

T2(n). Denote byTij the set of such tiles associated with each of the points inLij , i, j = 0, 1.

For example,T00 , {τp : p ∈ L00}. Thus{Tij} partition the torusT2(n).
The idea behind such a partition is to enable spatial re-use.Consider the following four-phase

MAC protocol consisting of phases 00, 01, 10, 11. In phaseij at most one node from each tile in

Tij is allowed to transmit. The protocol ensures that each node transmits exactly once.

The next step is to show that this protocol provides the desired connectivity to each node every

C2nr
2β2/α time slots for some positiveC2. To this end, we first show that the interference at each

intended receiver is bounded from above and can be made smaller than anyβ > 0 by a suitable

choice ofθ.

Consider one such transmission in phase 00. LetS ⊂ T00 ∩ Vn be the set of all transmitters.

Consider a transmitting nodei in tile τp wherep = (0, 0), i.e., a tile at the origin. To remain

feasible, the protocol must satisfy (5) for each successfullink. For anyi, j, k, it is clear that

‖xk − xj‖ = ‖xk − xi − (xj − xi)‖

≥ ‖xk − xi‖ − ‖xj − xi‖

≥ ‖xk − xi‖ − r,

since‖xj − xi‖ ≤ r. Therefore for a transmitter atxi, the interference power at any intended

receiver atxj can be upper bounded as

∑

k∈S\{i}
‖xk − xj‖−α ≤

∑

k∈S\{i}
(‖xk − xi‖ − r)−α , (8)

where the right hand side is independent ofj. By the design of the protocol, an interfererk for

any intended receiver of the message fromi must lie in a tile distinct fromτ(0,0). Moreover, such

a tile should lie withinT00; thus the protocol imposes a lower bound on the minimum distance

between any two concurrent transmitters. Using geometrical arguments (see Figure 3), the right
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Figure 3. Geometric reasoning underlying the proof of Proposition 16. The location of a typical transmit-
ter in τ0,0 and one of its intended receivers is shown. The nearest interferers and their respective tiles are
τ2,0, τ2,2, τ0,2, τ−2,2, τ−2,0, τ−2,−2, τ0,−2, τ2,−2. The signal power from any of one these interferers at the intended
receiver is no larger than that received from the closest interferer allowed by the protocol. The protocol ensures that this
nearest distance is no smaller thanx = θr.

hand side of (8) is upper bounded as

∑

k∈S\{i}
(‖xk − xi‖ − r)−α

≤
∞
∑

l=1

8l ((2l − 1)θr − r)−α

= 8r−α
∞
∑

l=1

l ((2l − 1)θ − 1)−α

≤ 8r−α

(

((θ − 1)−α +

∞
∑

l=2

l((2l − 1)θ − θ)−α

)

= 8r−α

(

(θ − 1)−α + 2−αθ−α
∞
∑

l=2

l(l − 1)−α

)

≤ ξr−α(θ − 1)−α, (9)

for some fixedξ > 0, since the sum converges forα > 2 (in general, forα > d, as assumed in

the communication model). The SIR condition (5) is guaranteed to be satisfied at every intended
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j, if θ is chosen such that

r−α

ξr−α(θ − 1)−α
≥ β

=⇒ θ ≥ 1 + (ξβ)
1

α .

For a suitable choice ofξ, we can setθ = 10(ξβ)
1

α .

For s = ω(sc), the number of nodes in each tile isnx2 + o(1) a.a.s. Hence asn → ∞, the

protocol constructed requires4nx2 + o(1) ≤ C2ns
2β2/α transmissions almost surely to establish

the necessary connectivity to each node in the network, where C2 ≥ 400ξ2/α. By optimality, the

number of slotsT ∗ in the shortest TDMA schedule cannot exceed this number.

The results from Propositions 15 and 16 lead to the followingcorollary.

Corollary 17. If T ∗(G sh
n (r), β) denotes the length of the shortest TDMA schedule, then asn → ∞,

a.a.s.:

1) For fixedβ, T ∗(G sh
n , β) = Θ(nrd).

2) Whenβ ≡ β(n) = Ω(1), T ∗(G sh
n , β) = Ω(nrd{β(n)} d

α ).

Proof: Claim 1 is evident from the results of Propositions 15 and 16.

For some constantsC1 andC2, we have from Propositions 15 and 16, a.a.s. for largen and a

fixed β,

C1nr
dβd/α ≤ T ∗(G sh

n , β) ≤ C2nr
dβd/α.

SinceC1 (but notC2) is independent ofβ, we can write forn → ∞, whenβ ≡ β(n) = Ω(1)

T ∗(G sh
n ) = Ω(nrdβ

d

α (n)).

If all nodes had independent point-to-point channels between one another, the rate of topology

formation would beΘ(1). For a wireless channel, however, Corollary 17 suggests that it requires

Θ(1/nrd) even with optimum spatial re-use. Thus better-connected disk graphs are penalized by a

smaller rate of topology formation. We combine the mixing time result (6) to examine the scaling

law for the effectivetime necessary for convergence in the next section.

C. Rate of Convergence

1) Slot Mixing Time:We now analyze the asymptotic convergence behavior of the distributed

averaging algorithm (2) in a dense network asn → ∞. From the earlier sections, we know the
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scaling laws for this regime for:

1) Thenumber of iterationsnecessary to a.s. reach anǫ−ball (from (3)).

2) Theshortest TDMA schedule lengthto a.s. realizeG sh
n in each iteration (from Corollary 17).

Thus from Definition 14, for fixedβ, the Slot Mixing Time scales as

Tslots(G
sh
n ) , Tmix(W

sh
n ) · T ∗(G sh

n , β) = Θ(nrd−2 log n) (10)

slots a.a.s., forǫ = 1/nδ.

From Proposition 15 and the Gaussian signaling assumption,when we also allowβ to depend

on n such thatβ(n) = Ω(1), the time to reach this ball scales as

Ω

(

nrd−2 e
R(n)d/α

R(n)
log n

)

a.a.s.

whereR(n) ≡ log(1 + β(n)).

2) Choice of Communication Range:For a fixedβ the mixing time in (10) scales polynomially

in r for d > 1. Interestingly, ford = 1, the time slots to mix scales as the inverse ofr. This

suggests that increasingr can improve the rate of convergence. Ford = 2, however, this quantity

scalesindependentlyof r, suggesting that these two effects exactly cancel each other, a rather

non-intuitive result. For higher dimensions, the scaling law has a positive exponent inr—implying

that the increasingr can actually slow down mixing.

This dependence on network dimension can be understood as follows. If the network is one-

dimensional, although a transmitter is an isotropic radiator, its effect on the network is seen only

along the line[0, 1]. Although the throughput provided by the optimal TDMA protocol only scales

as Θ(n−1r−1) for a given β from Corollary 17, the spectral gap scales asΘ(r−2), offsetting

this loss. Ind−dimensions, however, while the the fastest rate of topologyformation scales as

Θ(n−1r−d), the spectral gap only scales asΘ(r−2). As a result, improving spatial re-use can

become more important than increasing connectivity.

3) Effect of Increasing Transmission Rate:On the one hand, higher transmission rate reduces

the packet transmission time; on the other, it also restricts spatial re-use. Clearly the benefit of

smaller packet transmission times can be outweighed by reduced spatial re-use for large ratesR.
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V. CONVERGENCE INNETWORKS WITH SELECTIVE LONG-RANGE CONNECTIVITY

A. Scaling of the Spectral Gap

To derive the scaling law for the mixing time, we need to find the scaling of the spectral gap of

Gl
n. As we will see, deriving the scaling law for the conductanceof Gl

n is sufficient to establish

the scaling of the spectral gap.

Proposition 18. The conductance ofGl
n with edge weights determined byWl

n is Θ(rγ) a.a.s., for

d = 1, 2, . . .

Proof: We adopt a modified version of the proof in [34]. From (4) we know that

h = min
S⊂Ω,π∗(S)≤1/2

Q(S, S̄)

π∗(S)
.

By the symmetry inGl
n induced by the construction in Section III-B2, it can be shown using

arguments similar to [34, Appendix G] that the minimum occurs for π∗(S) = 1/2, and that the

minimizing cut(S, S̄) is a hyperplane dividing the torus into two halves. Without loss of generality,

defineS , Φ ∩ {[0, 1/2) × [0, 1]}.

Also for the natural random walk, each edge weight is1
di

= Θ
(

1
nr2

)

(for d dimensions,

Θ(n−1r−d)), and the equilibrium distribution isΘ( 1n). It is thus sufficient to count the number

of edges traversing this cut. The number of short edges was shown in [34] to beΘ(n2r3) (for d

dimensionsΘ(n2rd+1)). Observe that every node in a square of sideηr has4nη2r2 long-range

partners. One quarter of these edges traverse the cut(S, S̄); hence the potential number of long

edges that can traverse the cut from a given square isnη2r2 × nη2r2 = Θ(n2r4). Since each

edge has length at leasts/2 − 2ηr = Θ(rγ) (since s = Θ(rγ) and 0 < γ < 1), which is at

mosts, it is clear thatΘ(rγ−1) squares from the cut will contribute to the edges that traverse the

cut (see Fig. 4). Multiplying this result by the number of rows Θ(r−1) of such squares, the total

number of long edges traversing the cut will beΘ(n2r4 × rγ−1 × r−1) = Θ(n2r2+γ) (for general

d, Θ(n2r2d × rγ−1 × r−d+1) = Θ(n2rd+γ)). Counting both the short and long edges, we have in

d dimensions,

Q(S, S̄) = Θ

(

n2rd+1 + n2rd+γ

n2rd

)

= Θ(rγ),
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Θ(1/r)
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S S̄Cut(S, S̄)

Figure 4. The geometry behind the proof of Proposition 18 ford = 2. The tiling used for the construction ofGl

n

is overlaid. By the symmetry induced by the construction, the setS ⊂ Vn for which Q(S, S̄)/π∗(S) is minimized
corresponds to the left-half of the torus as labeled (it can be argued that this set will have the smallest weighted flow for
a given frequency of steady-state occupancy). Since the stationary distribution for this set is1/2, finding the scaling law
for the number of edges that traverse the cut is sufficient to provide a corresponding scaling result for the conductance.
For the short-range communication graphG s

n (i.e., the disk graph whose edge length isO(r)) only nodes from a finite
number of squares from the tiling in either direction from the cut contribute to these edges. For long edges of length
Θ(rγ), a positive fraction of the nodes fromΘ(rγ/r) squares on either side will contribute to these edges. Sincethere
areΘ(1/r) such rows of squares, the proof lies in finding the scaling lawfor the number of edges that traverse the cut.

sinceγ < 1.

Notice that if a node were allowed to have only a finite number of long-range partners, the

contribution of long-edges towards conductance is smaller, without significant interference-reducing

benefits. We elaborate on this point in Section V-C3.

We can infer the following from the above result:

Corollary 19. The spectral gap ofGl
n is Ω(r2γ) andO(rγ).

Proof: From the lower bound in Theorem 13, we have1 − µ2 = Ω(r2γ). From the upper

bound from the same theorem, we have1− µ2 = O(rγ).

As noted in Section III-B2, the distance between any two (graph-theoretic) neighbors is no

more thans/
√
2. Thus every edge inGl

n(r, s, d) is also present in the disk graphG sh
n (s/2),

i.e., Gl
n(r, s, d) ⊂ G sh

n (s/2). Hence a reversible random walk onGl
n with a uniform equilibrium

distribution can mixno faster than the fastest mixing such random walk onG sh
n (s/2). This key
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observation allows us to use a known result that follows from[2, Thm. 8]:

Theorem 20. The spectral gap corresponding to the transition probability matrix of the fastest

mixing reversible random walk onG sh
n (rγ) with a uniform equilibrium distribution isΘ(r2γ) a.a.s.

Since mixing time decreases with spectral gap, from Theorem20 we conclude that the spectral

gap of Gl
n is O(r2γ). But we know from Corollary 19 that this gap is alsoΩ(r2γ). Thus we

conclude that the spectral gap ofGl
n is Θ(r2γ), which is formally stated as a theorem:

Theorem 21. The spectral gap of the natural random walk onGl
n is Θ(r2γ).

This result suggests that the improvement in spectral gap from an increased communication radius

from r to rγ can also be achieved (in the scaling sense) by allowing each node to communicate

with a selected number of nodes at a distanceΘ(rγ).

However, as we shall discuss in the next section, such connectivity comes at a price of a lowered

rate of topology formation. We find that this loss (as measured by the shortest TDMA schedule

length) must be no smaller than the number of nodes in the largest exclusion zone created in the

network. Since the longest link distance in both the disk graph G sh
n (s/2) andGl

n are of the same

order, the similarity in the expressions for the spectral gap scaling law suggests that we should

expect the same dependence on network dimension as in (10).

B. Convergence with Interference

We will derive bounds for the shortest feasible TDMA schedule for Gl
n. In the spirit of the

earlier proofs, the lower bound follows from the feasibility constraint (i.e., the schedule constructs

the desired message passing graph while satisfying the SINRconstraint), while the upper bound

is found by bounding the length of the optimum schedule by that of a specific feasible schedule.

These results are presented in the following.

Proposition 22. For a givenβ, a feasible schedule forGl
n hasC3nr

γdβd/α slots a.a.s. for some

positive constantC3. Furthermore, for a givenβ, this length scales asΩ(nrγd) slots a.a.s.

Proof: We prove this result ford = 2; the proof ford 6= 2 is similar. From the system model,

it is clear that a TDMA protocol that constructsGl
n must form at least one link of distance at

leasts/2 − 2ηr. Sinces = Θ(rγ) (i.e., s scales “much slower” thanr), at large enoughn, the
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protocol must create an exclusion zone of radius of at leasts/4 in the network at least once. All

nodes within this exclusion zone must transmit at least once. But s = ω(rγc ), which implies we

operate the supercritical regime. From a similar argument as in Proposition 15 we can assert that

any feasible TDMA protocol must have at leastC3ns
dβd/α slots whereC3 is a positive constant.

The scaling law for this length follows from the scaling ofs with r.

Proposition 23. For a givenβ, the length of the shortest feasible schedule forGl
n is no more than

C4(ns
dβd/α) slots a.a.s., for some positive constantC4. For a givenβ, this upper bound scales

asO(nrd) a.a.s.

Proof: Consider any TDMA protocol that allows each node to communicate with every node

within a distances. Clearly this protocol will also constructGl
n and is hence feasible. As in

Proposition 16, we construct such a four-phase (ford = 2, in general a2d phase) TDMA protocol

that operates on a tiling of the torus with squares of sideΘ(s). Using an argument similar to

Proposition 16, it is clear that the spatial re-use can be adjusted to construct the graph inC4ns
dβd/α

slots a.a.s. for some constantC4 > 0. Using s = Θ(rγ) we get the scaling law.

Corollary 24. As n → ∞, the shortest feasible schedule forGl
n hasT ∗(Gl

n, β) = Θ(nrγd) slots

a.a.s., for a fixedβ. If we also letβ = β(n) = Ω(1), T ∗(Gl
n, β(n)) = Ω(nrγd{β(n)} d

α ).

Proof: Follows from Propositions 22 and 23.

C. Rate of Convergence with Sparse Long-Range Connectivity

We repeat the analysis in Section IV-C to study the benefit of sparse long-range connectivity for

a large number of nodes. From this analysis, we derive a result analogous to (10) for the long-range

model. We use this result to discuss the impact of increased communication range.

1) Slot Mixing Time: From Theorem 21, the spectral gap ofGl
n scales asΘ(r2γ). Conse-

quently, from the mixing time bounds in Theorem 12, we conclude that the mixing time withWl
n

scales as

Tmix(W
l
n) = Θ(r2γ log n) a.a.s. (11)

iterations forǫ = 1/nδ. On the other hand, from Corollary 24 the shortest TDMA schedule that

realizesGl
n scales asΘ(nrdγ) slots.
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Multiplying Tmix(W
l
n) andT ∗(Gl

n, β) we obtain a scaling law analogous to (10) for a network

with sparse long links. We state this result as a proposition:

Proposition 25. Asn → ∞, for ǫ = 1/nδ and with the shortest feasible TDMA schedule, the slot

mixing time of natural random walks on a sequence of random graphs(Gl
n) on a d−dimensional

torus scales as

Tslots(G
l
n) , Tmix(W

l
n) · T ∗(Gl

n, β) = Θ
(

nr(d−2)γ log n
)

a.a.s. (12)

wherer is the short range communication radius, long links areΘ(rγ) for some0 < γ < 1, and

nodes use point-to-point capacity-achieving AWGN channelcodes with SNR thresholdβ.

From Proposition 15 and the Gaussian signaling assumption in Section III-C, when we also let

β ≡ β(n) = Ω(1), the time to reach this ball scales as

Ω

(

nrγ(d−2) e
R(n)d/α

R(n)
log n

)

, a.a.s.

whereR(n) ≡ log(1 + β(n)).

2) Impact of Increasing Communication Range on the Convergence Speed:For a fixedβ, from

(12) we notice that as with short-range links, the slot mixing time scales polynomially inr for

d > 1. The parameters that controls the distance of long-range communication enters the scaling

law throughrγ , sinces = Θ(rγ). By comparing (12) and (10) it is clear that its role is identical

to that of r in (10). Thus we expect the impact of increased communication range to have the

same dependence of the network dimension as in (10). From Proposition 22 and an analysis

similar to Section IV-C3, it follows that while one-dimensional networks can converge faster from

an increased communication range despite greater interference, the convergence speed of two-

dimensional networks scales independently of the communication range. In higher-dimensions

the increased interference from a larger communication range can actually lower the rate of

convergence.

From the models = Θ(rγ), which implies that a largers can result from either a larger

r (communicating with more nearby nodes) or a smallerγ (communicating with nodes farther

away). In either case we find that (12) scales faster than (10): when interference is accounted for,

selective long-range communications do not improve the rate of convergence.
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3) The Importance of Long-Range Clusters:Here we discuss the importance of forming long

links from a node to acluster of nodes. Briefly, we argue that adding only a few long edges to

a given node does not take full advantage of the broadcast nature of the wireless medium: while

these fewer long edges to a node reduce the spectral gap (and can increase mixing time as a result

of Theorem 12), forming long links from a node to acluster of nodes causes approximately the

same interference as forming a point-to-point link of the same distance. Hence in lowering this

cluster size, we do not gain from reduced interference, but can only worsen the spectral gap. So,

when interference is factored in, allowing a node to talk to afar-off clusterrather than a few far-off

nodes allows faster mixing for the same level of interference.

The effect of forming clusters is captured in the long-rangemodel in Section III-B2, which adds

all the nodes from a partner hypercube as long-range partners. This maximizes the number of long

edges contributed by each hypercube and results in the scaling law in Proposition 18. This is key

to deriving Theorem 21.

Suppose we modify the way long edges are added in this model byconstructing a new graph

G′
n(s) by assigning each node onlyρn = O(nrd) long-range partners in each partner hypercube.

EvidentlyG′
n(s) is regular a.a.s., with node degreenrd|b(0, 1)|+ 2dρn + o(1); so iterations as in

(1) converge to the average consensus point a.a.s. Denote the corresponding update matrix byW′
n.

We will now examine the scaling of the spectral gap ofW
′
n.

Following the steps in the proof of Proposition 18, the (edge-weighted) conductance ofG′ is

Θ(r + rγ(ρn/nr
d)). Sinceρn = O(nrd), the conductance can scale no faster thanrγ .

Therefore, unlike in the case withGl
n(s), exploiting the inclusionG′

n(s) ⊂ Gsh
n (s/2) is not

enough to conclude the spectral gap ofW
′
n to be Θ(r2γ). But the inclusion does confirm the

spectral gap to beO(r2γ). Hence, as one would expect, iterations of the form (1) can converge no

faster withW′
n than withWl

n.

However, in the scaling limit, the interference resulting from the construction ofGl
n or G′

n are

the same: it is obvious from Propositions 22 and 23 that the shortest feasible TDMA schedule

for G′
n is alsoΘ(nrγd) slots. We thus conclude that maximizing the cluster size to include all

the nodes inside a partner hypercube speeds up convergence for the same level of interference.

However, when this cluster is enlarged to include all nodes within a radiuss, we have a disk graph

with radiuss. From the results in the previous sections, it is clear that the interference penalty to

realize this larger disk graph scales similarly but is certainly larger than that ofGl
n(s), which has
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only selective long-range links.

VI. CONCLUSIONS

We analyzed the convergence rate of average consensus algorithms in the scaling limit of dense

wireless networks by combining results from Markov chain theory, random geometric graphs,

and wireless networks. When messages in a topology are exchanged over wireless links, the

impact of a greater communication range depends crucially on the network dimension. Increased

communication range can speed up convergence in one-dimensional networks despite greater

interference. In two-dimensional networks, the convergence speed scales independently of the

communication range. In three- (and higher-) dimensional networks, forming long links can actually

slow down convergence. These results hold whether each nodeonly communicates over short links,

or, additionally, with a cluster of far-away nodes.

These results greatly differ from many optimistic results about the benefit of long-range con-

nectivity obtained by analyzing the consensus problem in anabstract graph-theoretic setting. Our

results underline the need to accurately account for the cost of interference in designing fast-

converging topologies for the average consensus algorithm, or for distributed signal processing

problems, in general.
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