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Abstract

The problem of network-constrained averaging is to compluteaverage of a set of values distributed
throughout a grapliz using an algorithm that can pass messages only along graggs.ede study this
problem in the noisy setting, in which the communicationnglceach link is modeled by an additive
white Gaussian noise channel. We propose a two-phase dalcesd algorithm, and we use stochastic
approximation methods in conjunction with the spectrapgr¢gheory to provide concrete (non-asymptotic)
bounds on the mean-squared error. Having found such bowelsnalyze how the number of iterations
T (n; 6) required to achieve mean-squared erfoscales as a function of the graph topology and the
number of nodes:.. Previous work provided guarantees with the number of titena scaling inversely
with the second smallest eigenvalue of the Laplacian. Thmepgives an algorithm that reduces this graph

dependence to the graph diameter, which is the best scatisgjlpe.

. INTRODUCTION

The problem of network-constrained averaging is to comphuteaverage of a set of numbers distributed
throughout a network, using an algorithm that is allowed aggpmessages only along edges of the graph.
Motivating applications include sensor networks, in whicldividual motes have limited memory and
communication ability, and massive databases and serversfan which memory constraints preclude
storing all data at a central location. In typical applioas, the average might represent a statistical estimate
of some physical quantity (e.g., temperature, pressurg etcan intermediate quantity in a more complex
algorithm (e.g., for distributed optimization). There iew an extensive literature on network-averaging,
consensus problems, as well as distributed optimizatiehestimation (e.g., see the papers [I71,/ [12],] [10],

[301, [20], [3], [4], [8], 23], [22]). The bulk of the earliework has focused on the noiseless variant, in
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which communication between nodes in the graph is assumbd tmiseless. A more recent line of work
has studied versions of the problem with noisy communiocaliiks (e.g., see the papers [18], [15]. [27],
[2], [29], [19], [24] and references therein).

The focus of this paper is a noisy version of network-coms# averaging in which inter-node com-
munication is modeled by an additive white Gaussian nois¥@Al) channel. Given this randomness, any
algorithm is necessarily stochastic, and the corresparsiiguence of random variables can be analyzed in
various ways. The simplest question to ask is whether theridign is consistent—that is, does it compute
an approximate average or achieve consensus in an asyorggate for a given fixed graph? A more refined
analysis seeks to provide information about this convergemate. In this paper, we do so by posing the
following question: for a given algorithm, how does numbeiterations required to compute the average to
within §-accuracy scale as a function of the graph topology and numfbeodesn? For obvious reasons,
we refer to this as theetwork scalingof an algorithm, and we are interested in finding an algorithat
has near-optimal scaling law.

The issue of network scaling has been studied by a numbettiodi@in the noiseless setting, in which the
communication between nodes is perfect. Of particulaveglee here is the work of Benezit et all [5], who
in the case of perfect communication, provided a schemehtastessentially optimal message scaling law
for random geometric graphs. A portion of the method progdsethis paper is inspired by their scheme,
albeit with suitable extensions to multiple paths that esseatial in the noisy setting. The issue of network
scaling has also been studied in the noisy setting; in pdaticpast work by Rajagopal and Wainwright [27]
analyzed a damped version of the usual consensus updatepr@nded scalings of the iteration number
as a function of the graph topology and size. However, our algarithm has much better scaling than the
method [[27].

The main contributions of this paper are the development nbwel two-phase algorithm for network-
constrained averaging with noise, and establishing the-o@#mality of its network scaling. At a high
level, the outer phase of our algorithm produces a sequehderates{0(7)}2°, based on a recursive
linear update with decaying step size, as in stochasticoxppation methods. The system matrix in this
update is a time-varying and random quantity, whose stradtudetermined by the updates within the inner
phase. These inner rounds are based on establishing raylgphs between pairs of nodes, and averaging
along them simultaneously. By combining a careful analg§ithe spectral properties of this random matrix
with stochastic approximation theory, we prove that thie-pphase algorithm computesieaccurate version

of the average using a number of iterations that grows wittgtlaph diameter (up to logarithmic factcHsAs

1The graph diameter is the minimal number of edges neededrioect any two pairs of nodes in the graph.



we discuss in more detail following the statement of our mrasult, this result is optimal up to logarithmic
factors, meaning that no algorithm can be substantialllebét terms of network scaling.

The remainder of this paper is organized as follows. We bagitsection[Il with background and
formulation of the problem. In Sectidnllll, we describe olgamithm, and state various theoretical guarantees
on its performance. We then provide the proof of our main ItasuSection[1M. Section V is devoted to
some simulation results that confirm the sharpness of owrdiieal predictions. We conclude the paper in

Section V.

Notation: For the reader’'s convenience, we collect here some notatsaa throughout the paper. The
notation f(n) = O(g(n)) means that there exists some constaat(0,c0) andng € N such f(n) < cg(n)
for all n > ng, whereasf(n) = Q(g(n)) means thatf(n) > ¢’g(n) for all n > ny. The notationf(n) =
©(g(n)) means thaf (n) = O(g(n)) andf(n) = Q(g(n)). Given a symmetric matrid € R"*", we denote
its ordered sequence of eigenvalueshyA4) < Xy(A4) < ... < A\, (A) and also itsly-operator norm by

I All2 = supj,j, =1 [|Av|l2. Finally we use(-, -) to denote the Euclidean inner product.

[I. BACKGROUND AND PROBLEM SEFUP

We begin in this section by introducing necessary backgiamd setting up the problem more precisely.

A. Network-constrained averaging

Consider a collectio{§;(0), ¢ = 1,...,n} of n numbers. In statistical settings, these numbers would
be modeled as identically distributed (i.i.d.) draws from @nknown distributionQ with meany. In a
centralized setting, a standard estimator for the meaneisséimple average := %Ejle 0;(0). When all
of the data can be aggregated at a central location, thenutatign ofé is straightforward. In this paper,
we consider the network-constrained version of this egtomgproblem, modeled by an undirected graph
G = (V, &) that consists of a vertex seét= {1,...,n}, and a collection of edgesjoining pairs of vertices.
Fori € V, we view each measuremefi{0) as associated with vertex (For instance, in the context of
sensor networks, each vertex would contain a mote and takbeservations of the environment.) The edge
structure of the graph enforces communication constraintthe processing: in particular, the presence of
edge(i, j) indicates that it is possible for sensém@nd; to exchange information via a noisy communication
channel. Conversely, sensor pairs thatrasejoined by an edge are not permitted to communicate dichtIy.
Every node has a synchronized internal clock, and acts atedéstimest = 1,2, - - -. For any given pair of

“Moreover, since the edges are undirected, there is no eliffer between edge, ;) and (j,7); moreover, we exclude self-edges,
meaning that(s,:) ¢ £ for all : € V.



sensorgi, j) € £, we assume that the message sent fioim j is perturbed by an independent identically
distributed N (0, o2) variate. Although this additive white Gaussian noise (AWGhbdel is more realistic
than a noiseless model, it is conceivable (as pointed ouhyobthe reviewers) that other stochastic channel
models might be more suitable for certain types of sensavar&s, and we leave this exploration for future
research.

Given this set-up, of interest to us are stochastic algmstthat generate sequend@st)}:°, of iterates
contained withinR™, and we require that the algorithm geaph-respectingmeaning that in each iteration,
it is allowed to send at most one message for each directieverfy edg€(i, j) € £. At time ¢, we measure

the distance betweefi(t) and the desired averagevia the average (per node) mean-squared error, given

by
MSB((0) =+ 3" Bl(0:(1) ~ 7)) M)

In this paper, our goal is for every node to compute the awefagp to an error toleranc& In addition,

we require almost sure consensus among nodes, meaning
PO;(t) = 0;(t) Yi,j=1,2,---,n] =1 ast— oco.

Our primary goal is in characterizing the rate of convergeas a function of the graph topology and the
number of nodes, to which we refer as thetwork-scaling functiorof the algorithm. More precisely, in
order to study this network scaling, we consider sequentgsphs{g, } indexed by the number of nodes
n. For any given algorithm (defined for each gra@f) and a fixed tolerance parameter- 0, our goal is

to determine bounds on the quantity
Tg(n;6) :=inf {¢t =1,2,... | MSE((t)) < é}. (2

Note that7g(n; ) is a stopping time, given by the smallest number of iteraticeguired to obtain mean-

squared error less thanon a graph of typ&j with n nodes.

B. Graph topologies

Of course, the question that we have posed will depend onrdgghgype, and this paper analyzes three
types of graphs, as shown in Figlde 1. The first two graphs heyalar topologies: the single cycle graph
in panel (a) is degree two-regular, and the two-dimensignial graph in panel (b) is degree four-regular.
In addition, we also analyze an important class of randomhggavith irregular topology, namely the class

of random geometric graphs. As illustrated in Figlle 1(c)amdom geometric graph (RGG) in the plane



(a) Single cycle. (b) Two-dimensional grid. (c) Random getna graph.

Fig. 1. lllustration of graph topologies. (a) A single cycle gragih) Two-dimensional grid with four-nearest-
neighbor connectivity. (c) lllustration of a random georitegraph (RGG). Two nodes are connected if their
distance is less than(n). The solid circles represent the center of squares.

is formed according by placing nodes uniformly at random in the unit squdfe1] x [0,1], and the
connecting two nodes if their Euclidean distance is less g@me radius:(n). It is known that an RGG

will be connected with high probability as long agn) = Q( log"); see Penrose [26] for discussion of

n

this and other properties of random geometric graphs.

A key graph-theoretic parameter relevant to our analysithésgraph diameter denoted byD,, =
diam(G,). The path distance between any pair of nodes is the lengtheoShortest path joining them
in the graph, and by definition, the graph diameter is the mari path distance taken over all node pairs
in the graph. It is straightforward to see thaf, = ©(n) for the single cycle graph, and that, = ©(/n)
for the two-dimensional grid. For a random geometric grajth wadius chosen to ensure connectivity, it is

known thatD,, = © (\/E)

Finally, in order to simplify the routing problem explainkder, we divide the unit square into subregions

(squares) of side Iengtb/; in case of grid, and for some constant- 0, of side length,/c=2" in case

of RGG. We assume that each node knows its location and iseasiathe center of these? subregions

namely (z;,y;) i,j = 1,2,--- ,m, wherem = /n for the regular grid, andn = Cl:gn for the RGG.

As a convention, we assume that, y;) is the left bottom square, to which we refer to as the first sgua
By construction, in a regular grid, each square will con@m@ and only one node which is located at the
center of the square. From known properties of RGG5 [26], Bach of the given subregions will contain at
least one node with high probability (w.h.p.). Moreover,R@BG is regular w.h.p, meaning that each square
containsO (logn) nodes (see Lemma 1 in the paper![12]). Accordingly, in theaiader of the paper, we
assume without loss of generality that any given RGG is megdlote that by construction, the transmission

radiusr(n) is selected so that each node in each square is connectedripahier node in four adjacent

squares.



I[1l. ALGORITHM AND ITS PROPERTIES

In this section we state our main result which is followed byletailed description of the proposed

algorithm.

A. Theoretical guarantees

Our main result guarantees the existence of a graph-résgedgorithm with desirable properties. Recall
the definition of the graph respecting scheme, as well as dfiition of our AWGN channel model given
in Sectionl. In the following statement, the quantity denotes a universal constant, independent,af,

ando2.

Theorem 1. For the communication model in which each link is an AWGN de&mith variances2, there

is a graph-respecting algorithm such that:

a) Nodes almost surely reach a consensus. More preciselhawe
0(t) 2301 ast — oo, (3)

for somed € R.

b) AfterT = Tg(n;d) iterations, the algorithm satisfy the following bounds de MSE(6(T)):

i) For fixed tolerance’ > 0 sufficiently small, we havBISE(4(T)) < 3 025 after

1. 1 MSE(®6(0))
{gk’gg’iaasz }

iterations for a single cycle graph.

i) For fixed tolerances > 0 sufficiently small, we havBISE(6(T)) = O (c%6) after

MSE(8(0)) }

1 1
§ o282

T
0

grid(n§ 5) < ¢ \/ﬁ max{ log

iterations for the regular grid in two dimensions.

iii) Assume that = ﬁ, for some fixed sufficiently small. Then we haWdSE(4(T)) = O <025~)

after

)

(logn)? MSE(#(0)) }
5 0262

1
Traa(n;8) < co/n(logn)3 max{glog

iterations for a regular random geometric graph.

Here ¢y is some constant independentrgfs, and o2, whose value may change from line to line.



Remarks: A few comments are in order regarding the interpretatiomisfiesult. First, it is worth mentioning
that the quality of the different links does not have to beghme. Similar arguments apply to the case where
noises have different variances. Second, although nodegsalsurely reach a consensus, as guaranteed in
part (a), this consensus value is not necessarily the sathe aample meaf. The choice of is intentional

to emphasize this point. However, as guaranteed by path{b)gonsensus value is withirts distance of the
actual sample mean. Since the sample mean itself represaoisy estimate of some underlying population
guantity, there is little point to computing it to arbitraagcuracy. Third, it is worthwhile comparing part (b)
with previous results on network scaling in the noisy settiRajagopal and Wainwright [27] analyzed

a simple set of damped updates, and showed That(n;6) = O (n2) for the single cycle, and that
Tarid(n) = O (n) for the two-dimensional grid. By comparison, the algorithroposed here and our analysis

thereof has removed factors afand/n from this scaling.

B. Optimality of the results

As we now discuss, the scalings in Theofem 1 are optimal ®c#ses of cycle and grid and near-optimal
(up to logarithmic factor) for the case of RGG. In an adveadaetting, any algorithm needs at le&xtD,,)
iterations, whereD,, denotes the graph diameter, in order to approximate theageeotherwise, some node
will fail to have any information from some subset of othedas (and their values can be set in a worst-case
manner). Theore 1 provides upper bounds on the numberrafides that, at most, are within logarithmic
factors of the diameter, and hence are also within logafithactors of the optimal latency scaling law.
For the graphs given here, the scalings are also optimal ioneadversarial setting, in whicfp;(0)}7,
are modeled as chosen i.i.d. from some distribution. Indé®da given nodej € V, and positive integet,
we let N/(j;t) denote the depth neighborhood ofj, meaning the set of nodes that are connectedlig a
path of length at most. We then define the graph spreading functias(t) = min;cy [N (j;¢)|. Note that
the functionyg is non-decreasing, so that we may define its inverse fun@tg)lr(s) = inf{t | Yg(t) < s}.

As some examples:
« for a cycle onn nodes, we haveg(t) = 2t, and hencepgl(s) =s/2.
« for a n-grid in two dimensions, we have the upper bounglt) < 2¢t2, and hence the lower bound
vg'(s) > /35

« for a random geometric graph (RGG), we have the upper bawid) = ©(¢%logn), which implies

the lower bound);'(s) = © ( log‘n)
After t steps, a given node can gather the information of at migs$t) nodes. For the average based on
g (t) nodes to be comparable & we require that)g(t) = Q(n), and hence the iteration numbieshould

be at Ieasﬂ(q,z)gl(n)). For the three graphs considered here, this leads to the samctusion, namely that

7



Q(D,,) iterations are required. We note also that using informatieeoretic techniques, Ayaso et all [1]
proved a lower bound on the number of iterations for a gergregdh in terms of the Cheeger constant [9].

For the graphs considered here, the Cheeger constant ig afrder of the diameter.

C. Description of algorithm

We now describe the algorithm that achieves the boundsdsiat&heorenf]l. At the highest level, the
algorithm can be divided into two types of phases: an innexsphand an outer phase. The outer phase
produces a sequence of iterat@gr)}, wherer = 0,1,2,... is the outer time scale parameter. By design
of the algorithm, each update of the outer parameters regjairtotal ofA/ message-passing rounds (these
rounds corresponding to the inner phase), where in eacldrwnalgorithm can pass at most two messages
per edge (one for each direction). To put everything in ahritsthe algorithm is based on establishing
multiple routes, averaging along them in an inner phase guhting the estimates based on the noisy
version of averages along routes in an outer phase. Constdgutwe use the estimaté(r), then in the
language of Theorefd 1, it correspondgte= M rounds of message-passing. Our goal is to establish upper

bounds onl" that guarantee the MSE 8(c25). Figure[2 illustrates the basic operations of the algorithm

Two-phase algorithm for distributed consensus:

« Inner phase:

Deciding the averaging direction

Choosing the head nodes

Establishing the routes

Averaging along the routes
« Outer phase:

— Based on the averages along the routes, update the estiatat@sling to

O(r+1) =0(r) — e(){L(1)0(7) + v(7)}

Fig. 2: Basic operations of a two-phase algorithm for distributedsensus.

1) Outer phasein the outer phase, we produce a sequence of iteféteg}>° , according to the recursive
update
O(r+1)=0(r) — e(T){L(T)H(T) + U(T)}. 4)

Here {¢(7)}2°, is a sequence of positive decreasing stepsizes. For a ghemision,d, we sete(r) =

T=1

1/(% 4 7). For eachr, the quantityL(r) € R"*" is a random matrix, whose structure is determined by the



inner phase, and(7) € R" is an additive Gaussian term, whose structure is also detedrin the inner
phase. As will become clear in the sequel, even tholigindv are dependent, they are both independent
of . Moreover, givenL, the random vectov is Gaussian with bounded variance.

2) Inner phase:The inner phase is the core of the algorithm and it involvesimber of steps, as we
describe here. We use= 1,2,..., M to index the iterations within any inner phase, and {i$6s)},
to denote the sequence of inner iterates witRif. For the inner phase corresponding to outer update
from 0(7) — (7 + 1), the inner phase takes the initializatigfil) < 6(7), and then reduces as output
v(M) — 6(T+1) to the outer iteration. In more detail, the inner phase cabrbken down into three steps,
which we now describe in detail.

a) Step 1, deciding the averaging directiomhe first step is to choose a direction in which to perform
averaging. In a single cycle graph, since left and right aeeved as the same, there is only one choice, and
hence nothing to be decided. In contrast, the grid or RGGhgapquire a decision-making phase, which
proceeds as follows. One node in the first (bottom left) sguaakes up and chooses uniformly at random
to send in the horizontal or vertical direction. We code tiégision using the random variatje= {—1, 1},
where( = —1 (respectively( = +1) represents the horizontal (respectively vertical) diogc To simplify
matters, we assume in the remainder of this descriptionttieaaveraging direction is horizontal, with the
modifications required for vertical averaging being stadda

b) Step 2, choosing the head nodéshis step applies only to the grid and RGG graphs. Given our
assumption that the node in the first square has chosen thetial direction, it then passes a token message
to a randomly selected node in the above adjacent squarepurpese of this token is to determine which
node (referred to as the head node) should be involved ibledtang the route passing through the given
square. After receiving the token, the receiving node mais$e another randomly selected node in the above
adjacent square and so on. Note that in the special casedptiggre is only one node in each square, and so
no choices are required within squares. Afterrounds, one node in each squasg,y;),j =1,2,--- ,m
((zi,y1),i = 1,2,--- ,m) receives the token, as illustrated in Figlte 3. Note thatiragh a single cycle
graph, there is nothing to be decided, since the directi@hreead nodes are all determined.

c) Step 3, establishing routes and averagitigthis phase, each of head nodes establishes a horizontal
path, and then perform averaging along the path, as ilkestria Figurd B(b). This part of algorithm involves
three substeps, which we now describe in detail.

e Forj=1,2,---,m, each head node; selects a nods,; uniformly at random (u.a.r.) from within the

right adjacent square, and passes to it the quamtityl ). Given the Gaussian noise model, nadgthen



Fig. 3. (a) The node labeled;; in the first square, chooses the horizontal direction forayiag ( = —1); it
passes the token vertically to inform other nodes to avehagizontally. Nodes who receive the token pass it
to another node in the above adjacent square. (b) The heabsnpdj = 1,2,-- -, as determined in the first
step, establish routes horizontall,( j = 1,2,--- ,m) and then average along these paths.

receives the quantity
F15(1) = y15(1) +v1;,  wherevy; ~ N(0,0?),

and then updates its own local variableyag2) = v2;(1) + 71,(1). We then iterate this same procedure—
that is, nodesy; selects anothess; u.a.r. from its right adjacent square, and passes the messgg).

Overall, at round of this update procedure, we have
Y1)+ 1) = (g1 (8) + 7 (8),

wherey;; (i) = 7;;(i) + vij, andv;; ~ N(0,0?%). At the end of roundn, nodes,,; can compute a noisy

version of the average along the p&h: s;; — sa; — - -+ — 5,5, In particular via the rescaled quantity

Ymi(m) _ 1§
Ny = mjn :Ezesu(t)—i_ruj j:1727"'7m-
i=1

Here the variable; ~ A/(0, %2), since the noise variables associated with different edgegdependent.
At this point, for eachj = 1,2,...,m, each nodes,,; which has the noisy version;, of the path
average along rout®;; can share this information with other nodes in the path by n; back to
the head node. A naive way to do this is as follows: nege makesm copies ofnj—namely,n](.l) =,
1=1,2,--- ;m—and starts transmitting one copy at a time back to the hedd.rdodes along the path
simply forward what they receive, so that after— i + m — 1 time steps, node;; receivesm noisy

copies of the averagé‘{(]l.) = n(-l) +v§;.) wherevg.) ~ N(0, (m —i)o?). Averaging them copies, nodes;;

10



can compute the quantity

1 =) 1
: !
im0 = D3y = 0D 0, (1) 4w

wherew;; = v;+ L 3", v, () since the noise on different links and different time stemsindependent

Gaussian random variables, we havg ~ N(0, af), with

1 ] — 1
U?:E02+(1_%)02:(1_(1 )

Therefore, at the end a¥/ = ©(m) rounds, for eachy = 1,2,...,m, all nodes have the average of the
estimates in the patR; that is perturbed by Gaussian noise with variance at mésBincem = ©(D,,),
we haveM = ©(D,,).

At the end of the inner phase, nodes that were involved in a path use their estimate of Weeage
along the path to updat{r), while estimate of the nodes that were not involved in anygeamain the

same. A given nods;; on a path updates its estimate via

Os, (T +1) = {1 = € (1) }0s,,(7) + € (T)7;; (M), (6)

wheree' (1) = O <T+1/5) On the other hand, using, -) to denote the Euclidean inner product, we have

vi;(M) = (w, 6(7)) + vs,,, wherew is the averaging vector of the rou& with the entriesw(sy;) =

for ¢ =1,2,--- ,m, and zero otherwise. Combining the scalar updates (5) /il matrix-form update
O(1+1) = 0(r) — € (1){(I = W(r))0(r) + (1)}, (6)
where the matriXdV (1) = W(r;P1, P2, -+, Pm, () is @ random averaging matrix induced by the choice

of routesPy, Py, -+, P, and the random directions The noise vector'(r) ~ N (0,C") is additive
noise. Note that for any given time, the noise at differerde®are correlated via the matiiX, but for
different time instants # 7/, the noise vectors’(r) and /(') are independent. Moreover, from our

earlier arguments, we have the upper boumhx C{i < o2

i=1,.

IV. PROOF OFTHEOREM[]]

We now turn to the proof of Theoreid 1. At a high-level, the stuwe of the argument consists of
decomposing the vectdl(r) € R™ into a sum of two terms: a component within the consensuspsuies
(meaning all values of the vector are identical), and a carepbin the orthogonal complement. Using this
decomposition, the mean-squared error splits into a sumvofterms and we use standard techniques to

bound them. As will be shown, these bounds depend on the pteadn noise variance, the initial MSE,

11



and finally the (inverse) spectral gap of the update matrhe final step is to lower bound the spectral gap

of our update matrix.

A. Setting up the proof

Recalling the averaging matri¥ (7) from the update (6), we define the Laplacian mafiix) := I — W (7).
We then define the average matix := IE [W(7)], where the expectation is taken place over the randomness
due to the choice of rout&tn a similar way, we define the associated (average) Laplagia= I — W'.

Finally, we define the rescaled quantities

6(7_) — )\2(5) 6/(7_)7 L(T) — )\215) S(T), and U(T) = )\215)

v'(7), ()

where we recall thah,(-) denotes the second smallest eigenvalue of a symmetricxmitrierms of these

rescaled quantities, our algorithm has the form
0(r +1) = 0(7) — e(T)[L(7)0(7) + v(7)], (8)

as stated previously in the update equatidn (4). Moreowecdnstruction, we have(r) ~ N (0,C) where

C = WC’. We also, for theoretical convenience, set

)= ——=—"1 9)
1

- D
We first claim that the matri¥?” is symmetric and (doubly) stochastic. The symmetry folldvesn the

or equivalentlye(7) forr=1,2,---.
fact that different routes do not collide, whereas the masristochastic because every rowldf (depending
on whether the node corresponding to that row participaitesroute or not) either represents an averaging
along a route or is the corresponding row of the identity ima€onsequently, we can interprél’ as
the transition matrix of a reversible Markov chain. It is areducible Markov chain, because within any
updating round, there is a positive chance of averaging s)titgt are in the same column or row, which
implies that the associated Markov chain can transitiomfane state to any other in at most two steps.
Moreover, the stationary distribution of the chain is unifo(i.e., 7 = 1/n).

We now use these properties to simplify our study of the secei¢d(7)}2°, generated by the up-
date equation[{8). Sinc& is real and symmetric, it has the eigenvalue decomposifioa= UAUT,

whereU = |u; wuy --- wu,| IS @ unitary matrix (that isUTU = I,). Moreover, we have\ =

% For the single cycle graph, there is only one route that iremlall the nodes at each round, 86(7) is deterministic in this
case.
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diag{\1(5), \2(5),--- , M\u(S)}, where \;(S) is the eigenvalue corresponding to the eigenveatorfor

i=1,...,n. Sincel = - 15) (I — W), the eigenvalues of. and TV are related via
MI) = (= A7)
1 — )\2(§) n+l—z
1

— T_l(m_/)(l — Anp1-i(W)).

Since the largest eigenvalue of an irreducible Markov chisinne (with multiplicity one)[[16], we have

1= X (W) > N1 (W) >--- > X\ (W), or equivalently

with X\o(L) = 1. Moreover, we haveés1 = L1 = 0, so that the first eigenvectar; = 1/,/n corresponds
to the eigenvalue\;(L) = 0. Let U denote the matrix obtained froi by deleting its first columny; .
Since the smallest eigenvalue bfis zero, we may write, = UAUZ, whereA = diag{\2(L), - An(L)},

UTU = I,,,, andUUT = I,, — I With this notation, our analysis is based on the decomiposit
0(r) = alr)—= + T(r) (10)
T)=a(r)—
va
where we have defined(r) := (I/y/n, 6(7)) € R and 3(7) := UT0(r) € R"L. Sincel” L(7) = (7 for

all - = 1,2,---, from the decompositiof_(10) and the form of the updakés \(&),have the following

recursions,
7
alt+1)=a(r) — G(T)%U(T), and (11)
B(r+1)=p(1) —e(r) (L(T)ﬁ(T) + ﬁTU(T)). (12)

HereL is an(n — 1) x (n — 1) matrix defined by the relation
0 oF
0 L(r)

As we show, part (a) of the theorem requires some intermedésults of the proof of part (b). Accordingly,

UTL(T)U =

nxn

B. Main steps

we defer it to the end of the section. With this set-up, we ntatesthe two main technical lemmas that
form the core of Theorefm 1. Our first lemma concerns the beha¥ithe component sequencis(7)}22

and {3(7)}2°, which evolve according to equatioris{11) ahdl (12) respelgtiv
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Lemma 2. Given the random sequen¢é(7)} generated by the update equati®), we have

MSE(8(r)) = - var (a(7)) + - E[|3(r)[3]. (13)

n

' '

el (T) €2 (T)

Furthermore,e; (1) and es(7) satisfy the following bounds:

(a) For each iterationr = 1,2,..., we have
o)
e1(r) < —— 14
=R EE 4
(b) Moreover, for each iterationr = 1,2,... we have
(r) < o2  log(t + % -1) T e(0) % -1 (15)
ea(T = e —_—,
2 TSP r+i-1 ? T+1-1

From LemmdXR, we conclude that in order to guarante@aﬂ%) bound on the MSE, it suffices to

take T such that

1 1
5—1 - a’ s and log( + 5 —1)

__ <o
T—{—%—l B 62(0)[)\2(5)]2 7’—|—%—1

Note that the first inequality is satisfied when> sz((?z) [A2(S)]?. Moreover, doing a little bit of algebra,

one can see that= 2log + — (3 — 1) is sufficient to satisfy the second inequality. Accordingle take

2 1 ex(0)[A2(9)]?
T:max{glogg,%}

outer iterations.
The last part of the proof is to bound the second smallesteadee of the Laplacian matri$. The
following lemma, which we prove in Sectign IViD to follow, drksses this issue. Recall thaf(-) denotes

the second smallest eigenvalue of a matrix.

Lemma 3. The averaged matri¥ that arises from our protocol has the following properties:

(@) For a cycle and a regular grid we havg(S) = Q(1), and

(b) for a random geometric graph, we haxe(S) = Q(-~-), with high probability.

logn

It is important to note that the averaged mai$iis not the samas the graph Laplacian that would arise from

standard averaging on these graphs. Rather, as a conseqie&stablishing many paths and averaging along
them in each inner phase, our protocol ensures that thexmhaves essentially like the graph Laplacian
for the fully connected graph.

As established previously, each outer step requives= O(D,,) iterations. Therefore, we have shown

14



that it is sufficient to take a total of

2. 1 ex(0)[N2(9)]?
T=0 (Dn max{glog—, T
transmissions per edge in order to guarant?égf? bound on the MSE. As we will see in the next section,
assuming that the initial values are fixed, we hay&) = 0, henceMSE(#(0)) = e2(0). The claims in
Theorent 1L then follow by standard calculations of the diamsetf the various graphs and the result of the
Lemmal3.

It remains to prove the two technical results, Lenirha 2[dndchd,vee do so in the following sections.

C. Proof of Lemm&]2

We begin by observing that
E|(0(r) - 0T)(0(r) — 01)T| = Fi + By + B,

where Fy := E [(a(7) — v/nf)2] 1LZ, the second term is given b, := E [ﬁﬁ(r)ﬁ(T)TﬁT], and

i’

(a(r) = v/nB) UB(r) 7

T

E
NGO "

F3:=E |(a(7) — v/n) R .

SinceU has orthonormal columns, all orthogonal to the all one we(d@fol = 0), it follows thattrace(F) = E[]|8()|13].
andtrace(F3) = 0.

It remains to computerace(F7). Unwrapping the recursion (11) and using the fact thatahitationd(0)
implies «/(0) = \/nf yields

T—1 g
- 1
a(r) = v/nf - 125 O {0, (16)
forall - =1,2,.... Sincev(l), l =0,1,--- ,7 — 1, are zero mean random vectors, from equation (16) we

conclude thatf[a(7)] = /nf l and accordinglytrace(F;) = var (a(7)). Recalling the definition of the
MSE (1) and combining the pieces yields the claim] (13).

(a) From equation[(16), it is clear that eaclir) is Gaussian with meag/nf. It remains to bound the

“Here we have assumed that the initial valu&$p) s = 1,2, -- - ,n, are given (fixed).

15



variance. Using the i.i.d. nature of the sequentg ~ N (0,C), we have

Ao

V&I‘

~

0
T—1 l)

[\

where we have recalled the rescaled quantifiés (7). Regattie fact thatC, < o2 and using the Cauchy-

Schwarz inequality, we hawe}; < ,/C},C}; < o*. Hence, we obtain

no? >* 1 n o2
= [A2<s>]2/; 2% T WGP

from which rescaling byl /n establishes the bound (14).

(b) Defining H(3(7), v(r)) = L(7)B(r) + UTv(r), the update equatiof(12) can be written as

Br+1) = B(r) — e(n)H(B(7), (7)),

for 7 =1,2,---. In order to upper bouney (7 + 1), defined in [(IB), we need to contrej(r + 1) — ea(7).

Doing some algebra yields

LE[(8(r +1) - B(r), B(r +1) + B(r))]

62(T+1) —62(7') = E
1

and hence

ex(r+1) — ex(r) = — ()2 E [|H(B). o )IE] — 22 E[H(B(),0(7)) B,

Sincef(r) is independent of botli(7) andv(7), by conditioning on thes(7) and using the tower property

of expectation, we obtain

E[(H(B(r),v(r)), B(T))] = E[E[L] 5(r), ()]
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By construction all the eigenvalues Bf[L] are greater than one, hence

(E[L]B(r), B(r)) = 1B(N)I3-

Putting the pieces together, we obtain

ealr +1) € 2 e(r 2B [|H(E(). o(r)) 3] + (1= 26(r) exlr)
= % 6(7)2 E [HL(TW(T)H%] + % 5(7')2 E [HﬁTU(T)H%} + (1 — 2¢(7)) ea(7), (17)
£ —

where we used the fact thdt [(L(T)ﬁ(T), ﬁTv(T)>] = 0. We continue by upper bounding the terms
Fy =E[||L(r)B(7)|j3], and F, = E [HﬁTU(T)H%]. First, we bound the former. By definition of the-

operator norm, we have

E [|L(m)BMI3] < E LT3 18()I3] -

On the other hand, using the fact thatr) = % UT (I — W (7)) U (recall the identities of the Section
V-A) yieIdJ;

1 2

o LHIVEI) = o

IL(T)ll2 <

Therefore, we have the following bound é#

4

Fi < s E ISR (18)
Turning to termF;, we have
11 no?
Fy, = E |v(n)T(I - T)U(T)] < trace (cov(v(r))) < NGk (19)

Substituting the inequalities (118) arld [19) infol(17), weadi the following recursive bound o (7 + 1)

2

“ DS REr

4e(T)?
e(T)? + (1 —2¢(7) + [Az(S)P) e (7).

SLet v be an eigenvector of the matrb¥/ () corresponding to the eigenvalue# 1. SinceI”v = 0, there exist an(n — 1)-
dimensional vector, such thatv = Uu. Therefore we have,

U1 —W(r)0u = U I -=W(r)v = (1 -0 v = (1 - Au.

So by subtracting one from the eigenvaluesdf(I — W (r))U, we obtain the non-one eigenvaluesof(r).

17



Recall the definitiong{7) and](9). & < w, thenl — 2¢(7) + % <1 —¢(7), and hence we have

0.2

ea(T+1) < ™ (S)]26(7)2 + (1 —e(r))ea(r), (20)

for all - =1,2,---. Unwrapping the inequality_(20) yields
2

ea(T+1) 522 H (1 —e(l +H1—e (22)
1=0

I=k+1

On the other hand, the produtf,_, (1 —¢(l)) forms a telescopic series and is equaf:—ﬁ. Substituting

this fact into the equatior_(21) yields

1
i
+1) - + e2(0) 2
exr +1) < )\252zk+ ( 1) 62()T+§
@ o2 log(r+ 1) 11
> 12 2(0) 1>
[A2(9)] T+ 5 T+ 3
where step (a) uses the following inequality
Yoo [T 4
< —dx < log(t +
par i 3 -1

valid for 6 € (0, 1).

D. Proof of Lemmé&l3

In the case of cycle there is only one averaging path and @lhtddes are involved in that at each round
so the averaging matriX}’, is fixed. More precisely, we hawd = W = % . Therefore, IV is a rank 1
matrix with \,,_1 (W) = 0 and accordingly we hav&;(S) =1 — \,_1(W) = 1.

For the case of grid or random geometric graphs, we use thec&®w®i inequality [11]. A version of this
theorem can be stated as follows: Lét= [a;;] denote the transition matrix of an irreducible aperiodic

time reversible Markov chain with stationary distributian For each ordered pair of nodés, «) in the

transition diagram, choose one and only one pgth= (s, s1,s2,- -, s;,u) betweens andu and define
1 1 1
el m(s)ass,  (51)as,s, m(81)asu (22)

Then the Poincare coefficient is

= max nz;e [Dsulm(s)m(w), (23)

where E’ is the set of directed edges formed in the previous step. iDgfihis quantity, the theorem states
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that \,_1(A4) <1 — 1 or equivalently,

1— A1 (A) > —. (24)

e

We apply this theorem to the Markov chain formediby the idea is to upper bound its Poincare coefficient.
1) Grid: We first define a path,,, for every pair of node$s, u}. Two different cases can be distinguished
here. For an illustration of the path, see Figurél4.
a) Case 1:Nodess and u« do not belong to the same column or row. In this case, we censid
two-hop pathn,, = (s = w — u), wherew = (z,,ys) is the vertex of the rectangle constructed osnd
u. Note thatz,, is the z-coordinate ofu andys is the y-coordinate ofs. Since nodeqs, w} and{w, u}
are averaged of the time, we havéV,,, = W, = 5. Substituting this into[{22) and using the fact that

7 = 171 yields

~n
1 1
[Nsu| = = + = = 4mn.

Wewm(s)  Wiyum(w)

b) Case 2:Nodess andu belong to the same row or column. In this case, weiggt= (s — u)
which leads to

1
Nsu| = =——— = 2mn.

Wu($)
Moreover, a given edge = (s — w) is involved in at mosin paths. As node: varies in the corresponding
column or row, we obtaimm — 1 paths in case 1, and one path in case 2.

Combining the pieces, we compute the Poincare coefficient

4dmn
= > <m—— = 4.
K gggsn 9elnsuI?T(S)?T(U) <m—s

Finally, from equation[(24), we have

which concludes the proof for the case of a grid-structunexplg,.

2) Random geometric graphzor the RGG, we follow the same proof structure: namely, wat find a
path for each pair of nodelss, u}, and then upper bound the Poincare coefficient for the Madkain IV
We first introduce some useful notation. L&t V — {1,2,--- ,m}? be the mapping that takes a node as

its input and returns the sub-square of that node. More gebgcifor somes € V we have

C(s) = (i,j) ifs€ (i,j)th squarg,j =1,2,--- ,m.
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(a) Case 1. (b) Case 2.

Fig. 4. lllustration of the pathy,, for a grid-structured graph. (a) Case 1, where nodaadu do not belong
to the same column or row. (b) Case 2, where nadasdu belong to the same column or row. This choice
of n, Yield a tight upper bound on the Poincare coefficient.

Furthermore, we enumerate the nodes in sq@dsg = (i,j) from 1 ton;; wheren;; denotes the total
number of nodes i€ (s). We refer to the label of node as N (,)(s) where Ng((.) is the enumeration
operator for the squaré(s). Also let n* = min; ; n;; denote the minimum number of nodes in one sub-
square which by assumption is greater thdngn for some constant. We split the problem into three
different cases. Figulld 5 illustrates these there diffecases.

a) Case 1:Nodess andu do not belong to the the same column or row. In this case, a tyopath
Nsy = (s = w — u) is considered. First, we pic&(w), the vertex of the rectangle constructeddjy) and
C(u) with the samer-coordinate a€ (u) and the samg-coordinate a€(s). Now choose a nodey, inside
C(w) such that

Ne)(w) = Nes)(8) + Negwy(u)  modn*. (25)

Since each square has at leasthodes, such a choice can be made. On the other hand, since inaghkech
square is picked uniformly at random in the averaging phaskthere are at mostlog n nodes in each

square (for some constabt we haveW,,,, W, > where the factor of 2 is due to the choice

1
2m(blogn)?"’

of ¢, the averaging direction. Substituting this inequalitioif22), we obtain

1 1

_ 4+ — < 4p? 1 2,
Wwn(s)  Wiyum(w) — mn (log n)

’nsu’ =

Furthermore, from equatiof (R5), we see that for a fixedere are at mosg nodes in the squar&(w) that
result in choosingv. Therefore, edge : (s — w) is involved in at mostg (m — 1) such paths.

b) Case 2:Nodess andu belong to the same row or column. In this case, by setfing= (s — u),
we obtain

1
50| = =——— < 2b*°mn(logn)?.
Wium(s)

suT(S
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(a) Case 1. (b) Case 2. (c) Case 3.

Fig. 5. lllustration of the pathn,, for the case of RGG. (a) Case 1, where nodesnd u belong to the
sub-squares in different row and columns (b) Case 2, whedeswand « belong to the sub-squares in the
same row or column. (c) Case 3, nodeandu belong to the same square.

Note that there is only one path containiagf this type.

c) Case 3:Nodess andu belong to the same square, meanii{g) = C(u). In this case a node is
chosen in a square adjacentd(s) according to[(25) such th&@(w) is to the right ofC(s); unlessC(s) is
in the last column, in which casg&w) is to the left ofC(s). The same argument as case 1 would give us
a bound onln,,|. As for the upper bound on the number of paths: the edgés — w) is involved in at
most2 such paths.

Combining all the pieces, we obtain
nsu] < 4b*mn(logn)® Vs,u €V,

and

b
gé&g/c;]l{nsu Se} < m— + 1.

Substituting these two inequalities info {23) yields

4b% mn (log n)?
n2
2mb 4b% mn (logn)?

- a n2

b
k < (ma—i—l)

= cplogn

for some constant;. Therefore, from Poincare Theorem, we have

which concludes the second part of Lemina 3.
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E. Proof of part (a) of Theorem 1

We now return to the proof of part (a) of Theoréin 1. Combiningations[(ID) and_(16) yields
0(r) = (0 — w(r)) 1 + UB(7), (26)

where w(r) = ﬁ S €(l) (% ,v(l)). As previously established, we know thBtjw(r)] = 0 and

var (w(1)) < ﬁ for all 7 = 1,2,---. Therefore, invoking a result on convergence of series with

bounded variance (Theorem 8.3 from Chapter 1 of [14]), weehav
w(t) 2w ast — oo, (27)

for some random variable. Sincew(r) is a sum of independent Gaussian random variables (and hence
Gaussian), it is absolutely integrable [14]. Therefore, heee E [w] = lim, . E[w(7)] = 0 and also
_1; fosst’)
var (w) = lim, o var (w(7)) < INCIER
Now we move on to the next part of the proof, analyzing the saqe{3(7)}2°, using techniques from
stochastic approximation theory (e.g., see the books [Bl}, These techniques apply to recursions that

generate a state sequer{edt)};°, according to
B(t+1) = 0(t) — () HO(1),0(t)) t=1,2,---,

whereu(t) is the noise vector that models the randomness coming iatoiplthe algorithm. The parameter
€(t) is a positive step size, and the sequefide)};°, is required to satisfy the conditios,”, €(t) = oo
and) 2, €(t)® < oo for somea > 1. The asymptotic behavior of these stochastic updates camélgzed

in terms of the ordinary differential equation (ODE)

— = = —h(), (28)

whereh(6) := E[H(0,v)]. Under mild regularity conditions, it is known thétt) = v*, where~* is the
attractor of the ODEL(28).

Recalling the update equatidn {12), our problem can be cidisinvthis framework. In particular, the state
sequence if3(7)}>2,, the noise sequence is formed by zero-mean i.i.d. randonorgedhe decreasing
sequence is(7) = 1/(3 + 7), and finally H(8,v) = (L3 + UTv) is a linear function withi(8) = E[L]A.
Note because we removed the zero eigenvalue from the avémggacian matrix, the matridt[L] has

all positive eigenvalues, and sg* = 0 is the unique stable point of the linear differential eqomati
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dji—(f) = —[E[L]v. Therefore, an application of the ODE method![21], [6] gudeas that

B(r) 30 asT — oo. (29)
Substituting the result$ (27) and {29) into equation (26, oktain
0(1) 2% (0 —w)l ast — oo.

In other words, nodes will almost surely reach a consensoseoner, the consensus vale= 0 —w, is

oAl ~ distance of the true sample mean.

within PN

V. SIMULATION RESULTS

In order to demonstrate the effectiveness of the propoggatiim, we conducted a set of simulations.
More specifically, we apply the proposed algorithm to fouanest-neighbor square grids of different sizes.
We initially generate the daté;(0), : = 1,2,--- ,n as randomN (1, 1) variables and fix them throughout
the simulation. So for each run of the algorithm the initiatalis fixed. In implementing the algorithm, we
adopto? = 1 as the channel noise variance, and we set the tolerance giaram= 0.1, leading to the step
sizee(r) = ﬁ We estimated the mean-squared error, defined in equaipbytaking the average over
50 sample paths. As discussed in Secfigh Ill, every outesehipdate required/ = O (1/n) time steps.

Figure[6 shows the mean-squared error versus the numbeteafloap iterations; the panel contains two
different curves, one for a graph with = 30> nodes, and the other for = 50 nodes. As expected, the
MSE monotonically decreases as the number of iteratiomeases, showing convergence of the algorithm.
More importantly, the gap between the two plots is neglgifilhis phenomenon, which is predicted by our
theory, is explored further in our next set of experiments.

In order to study the network scaling of the grid more prdgjder a given set of graph sizes, we compute
the number of theouter iterationst = 7(n, ), such thatMSE(f(7M)) < o26. Recall that this stopping
time is the focus of Theorem 1(b). Figure 7 provides a box pfothis stopping timer versus the graph
sizen. Theoren{ll(b) predicts that this stopping time should bersely proportional to the spectral gap
of the Laplacian matrixS, which for the grid scales aQ(1) (in particular, see Lemmil 3). As shown in
Figure[7, over a range of graphs of size varying frara- 1000 to n = 10000, the stopping time is roughly

constant £ ~ 25), which is consistent with the theory.

V1. DISCUSSION

In this paper, we proposed and analyzed a two-phase grapkatng algorithm for computing averages

in a network, where communication is modeled as an additik#genwGaussian noise channel. We showed
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Mean-squared Error
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Fig. 6. Mean-squared error versus the number of outer loop iterafior grids withn € {302,50%} nodes. As
expected the MSE monotonically decreases, which suppuetsdnvergence claim.
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Fig. 7. Stopping timer = 7(n,d) vs. the graph size. For different graph sizes, we compute the first outer
phase time instance,(n, §), such thatMSE(6(7M)) < 025. Here we have fixed the parametersotd = 1,
andj = 0.1. As you can see, over a range of graphs of size varying fron® 10A0000, this stopping time
is roughly constant= 25), which is consistent with the theory (Theoréin 1(b) and Lexffij

that it achieves consensus, and we characterized the ratmeérgence as a function of the graph topology
and graph size. For our algorithm, this network scaling ithimilogarithmic factors of the graph diameter,
showing that it is near-optimal, since the graph diametewvides a lower bound for any algorithm.

There are various issues left open in this work. First, wkile AWGN model is more realistic than
noiseless communication, many channels in wireless n&svoray be more complicated, for instance
involving fading, interference and other types of memory.principle, our algorithm could be applied
to such channels and networks, but its behavior and asedaianvergence rates remain to be analyzed. In
a separate direction, it is also worth noting that gosspetglgorithms can be used to solve more complicated
types of problems, such as distributed optimization pnoisid€e.g., [[25], [[28],T183]). Studying the issue of

near-optimal network scaling for such problems is also térigst.
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