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Abstract

The problem of network-constrained averaging is to computethe average of a set of values distributed

throughout a graphG using an algorithm that can pass messages only along graph edges. We study this

problem in the noisy setting, in which the communication along each link is modeled by an additive

white Gaussian noise channel. We propose a two-phase decentralized algorithm, and we use stochastic

approximation methods in conjunction with the spectral graph theory to provide concrete (non-asymptotic)

bounds on the mean-squared error. Having found such bounds,we analyze how the number of iterations

TG(n; δ) required to achieve mean-squared errorδ scales as a function of the graph topology and the

number of nodesn. Previous work provided guarantees with the number of iterations scaling inversely

with the second smallest eigenvalue of the Laplacian. This paper gives an algorithm that reduces this graph

dependence to the graph diameter, which is the best scaling possible.

I. INTRODUCTION

The problem of network-constrained averaging is to computethe average of a set of numbers distributed

throughout a network, using an algorithm that is allowed to pass messages only along edges of the graph.

Motivating applications include sensor networks, in whichindividual motes have limited memory and

communication ability, and massive databases and server farms, in which memory constraints preclude

storing all data at a central location. In typical applications, the average might represent a statistical estimate

of some physical quantity (e.g., temperature, pressure etc.), or an intermediate quantity in a more complex

algorithm (e.g., for distributed optimization). There is now an extensive literature on network-averaging,

consensus problems, as well as distributed optimization and estimation (e.g., see the papers [7], [12], [10],

[30], [20], [3], [4], [8], [23], [22]). The bulk of the earlier work has focused on the noiseless variant, in
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which communication between nodes in the graph is assumed tobe noiseless. A more recent line of work

has studied versions of the problem with noisy communication links (e.g., see the papers [18], [15], [27],

[2], [29], [19], [24] and references therein).

The focus of this paper is a noisy version of network-constrained averaging in which inter-node com-

munication is modeled by an additive white Gaussian noise (AWGN) channel. Given this randomness, any

algorithm is necessarily stochastic, and the corresponding sequence of random variables can be analyzed in

various ways. The simplest question to ask is whether the algorithm is consistent—that is, does it compute

an approximate average or achieve consensus in an asymptotic sense for a given fixed graph? A more refined

analysis seeks to provide information about this convergence rate. In this paper, we do so by posing the

following question: for a given algorithm, how does number of iterations required to compute the average to

within δ-accuracy scale as a function of the graph topology and number of nodesn? For obvious reasons,

we refer to this as thenetwork scalingof an algorithm, and we are interested in finding an algorithmthat

has near-optimal scaling law.

The issue of network scaling has been studied by a number of authors in the noiseless setting, in which the

communication between nodes is perfect. Of particular relevance here is the work of Benezit et al. [5], who

in the case of perfect communication, provided a scheme thathas essentially optimal message scaling law

for random geometric graphs. A portion of the method proposed in this paper is inspired by their scheme,

albeit with suitable extensions to multiple paths that are essential in the noisy setting. The issue of network

scaling has also been studied in the noisy setting; in particular, past work by Rajagopal and Wainwright [27]

analyzed a damped version of the usual consensus updates, and provided scalings of the iteration number

as a function of the graph topology and size. However, our newalgorithm has much better scaling than the

method [27].

The main contributions of this paper are the development of anovel two-phase algorithm for network-

constrained averaging with noise, and establishing the near-optimality of its network scaling. At a high

level, the outer phase of our algorithm produces a sequence of iterates{θ(τ)}∞τ=0 based on a recursive

linear update with decaying step size, as in stochastic approximation methods. The system matrix in this

update is a time-varying and random quantity, whose structure is determined by the updates within the inner

phase. These inner rounds are based on establishing multiple paths between pairs of nodes, and averaging

along them simultaneously. By combining a careful analysisof the spectral properties of this random matrix

with stochastic approximation theory, we prove that this two-phase algorithm computes aδ-accurate version

of the average using a number of iterations that grows with the graph diameter (up to logarithmic factors).1 As

1The graph diameter is the minimal number of edges needed to connect any two pairs of nodes in the graph.
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we discuss in more detail following the statement of our mainresult, this result is optimal up to logarithmic

factors, meaning that no algorithm can be substantially better in terms of network scaling.

The remainder of this paper is organized as follows. We beginin Section II with background and

formulation of the problem. In Section III, we describe our algorithm, and state various theoretical guarantees

on its performance. We then provide the proof of our main result in Section IV. Section V is devoted to

some simulation results that confirm the sharpness of our theoretical predictions. We conclude the paper in

Section VI.

Notation: For the reader’s convenience, we collect here some notationused throughout the paper. The

notationf(n) = O(g(n)) means that there exists some constantc ∈ (0,∞) andn0 ∈ N suchf(n) ≤ cg(n)

for all n ≥ n0, whereasf(n) = Ω(g(n)) means thatf(n) ≥ c′g(n) for all n ≥ n0. The notationf(n) =

Θ(g(n)) means thatf(n) = O(g(n)) andf(n) = Ω(g(n)). Given a symmetric matrixA ∈ Rn×n, we denote

its ordered sequence of eigenvalues byλ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A) and also itsl2-operator norm by

|||A|||2 = sup‖v‖2=1 ‖Av‖2. Finally we use〈· , ·〉 to denote the Euclidean inner product.

II. BACKGROUND AND PROBLEM SET-UP

We begin in this section by introducing necessary background and setting up the problem more precisely.

A. Network-constrained averaging

Consider a collection{θi(0), i = 1, . . . , n} of n numbers. In statistical settings, these numbers would

be modeled as identically distributed (i.i.d.) draws from an unknown distributionQ with meanµ. In a

centralized setting, a standard estimator for the mean is the sample averageθ := 1
n

∑n
i=1 θi(0). When all

of the data can be aggregated at a central location, then computation ofθ is straightforward. In this paper,

we consider the network-constrained version of this estimation problem, modeled by an undirected graph

G = (V, E) that consists of a vertex setV = {1, . . . , n}, and a collection of edgesE joining pairs of vertices.

For i ∈ V, we view each measurementθi(0) as associated with vertexi. (For instance, in the context of

sensor networks, each vertex would contain a mote and collect observations of the environment.) The edge

structure of the graph enforces communication constraintson the processing: in particular, the presence of

edge(i, j) indicates that it is possible for sensorsi andj to exchange information via a noisy communication

channel. Conversely, sensor pairs that arenot joined by an edge are not permitted to communicate directly.2

Every node has a synchronized internal clock, and acts at discrete timest = 1, 2, · · · . For any given pair of

2Moreover, since the edges are undirected, there is no difference between edge(i, j) and(j, i); moreover, we exclude self-edges,
meaning that(i, i) /∈ E for all i ∈ V.
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sensors(i, j) ∈ E , we assume that the message sent fromi to j is perturbed by an independent identically

distributedN(0, σ2) variate. Although this additive white Gaussian noise (AWGN) model is more realistic

than a noiseless model, it is conceivable (as pointed out by one of the reviewers) that other stochastic channel

models might be more suitable for certain types of sensor networks, and we leave this exploration for future

research.

Given this set-up, of interest to us are stochastic algorithms that generate sequences{θ(t)}∞t=0 of iterates

contained withinRn, and we require that the algorithm begraph-respecting, meaning that in each iteration,

it is allowed to send at most one message for each direction ofevery edge(i, j) ∈ E . At time t, we measure

the distance betweenθ(t) and the desired averageθ via the average (per node) mean-squared error, given

by

MSE(θ(t)) :=
1

n

n∑

i=1

E[(θi(t)− θ)2]. (1)

In this paper, our goal is for every node to compute the average θ up to an error toleranceδ. In addition,

we require almost sure consensus among nodes, meaning

P[θi(t) = θj(t) ∀ i, j = 1, 2, · · · , n]→ 1 as t→∞.

Our primary goal is in characterizing the rate of convergence as a function of the graph topology and the

number of nodes, to which we refer as thenetwork-scaling functionof the algorithm. More precisely, in

order to study this network scaling, we consider sequences of graphs{Gn} indexed by the number of nodes

n. For any given algorithm (defined for each graphGn) and a fixed tolerance parameterδ > 0, our goal is

to determine bounds on the quantity

TG(n; δ) := inf
{
t = 1, 2, . . . | MSE(θ(t)) ≤ δ

}
. (2)

Note thatTG(n; δ) is a stopping time, given by the smallest number of iterations required to obtain mean-

squared error less thanδ on a graph of typeG with n nodes.

B. Graph topologies

Of course, the question that we have posed will depend on the graph type, and this paper analyzes three

types of graphs, as shown in Figure 1. The first two graphs haveregular topologies: the single cycle graph

in panel (a) is degree two-regular, and the two-dimensionalgrid graph in panel (b) is degree four-regular.

In addition, we also analyze an important class of random graphs with irregular topology, namely the class

of random geometric graphs. As illustrated in Figure 1(c), arandom geometric graph (RGG) in the plane
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(a) Single cycle. (b) Two-dimensional grid. (c) Random geometric graph.

Fig. 1. Illustration of graph topologies. (a) A single cycle graph.(b) Two-dimensional grid with four-nearest-
neighbor connectivity. (c) Illustration of a random geometric graph (RGG). Two nodes are connected if their
distance is less thanr(n). The solid circles represent the center of squares.

is formed according by placingn nodes uniformly at random in the unit square[0, 1] × [0, 1], and the

connecting two nodes if their Euclidean distance is less than some radiusr(n). It is known that an RGG

will be connected with high probability as long asr(n) = Ω(
√

logn
n ); see Penrose [26] for discussion of

this and other properties of random geometric graphs.

A key graph-theoretic parameter relevant to our analysis isthe graph diameter, denoted byDn =

diam(Gn). The path distance between any pair of nodes is the length of the shortest path joining them

in the graph, and by definition, the graph diameter is the maximum path distance taken over all node pairs

in the graph. It is straightforward to see thatDn = Θ(n) for the single cycle graph, and thatDn = Θ(
√
n)

for the two-dimensional grid. For a random geometric graph with radius chosen to ensure connectivity, it is

known thatDn = Θ
(√

n
logn

)
.

Finally, in order to simplify the routing problem explainedlater, we divide the unit square into subregions

(squares) of side length
√

1
n in case of grid, and for some constantc > 0, of side length

√
c lognn in case

of RGG. We assume that each node knows its location and is aware of the center of thesem2 subregions

namely(xi, yj) i, j = 1, 2, · · · ,m, wherem =
√
n for the regular grid, andm =

√
n

c logn for the RGG.

As a convention, we assume that(x1, y1) is the left bottom square, to which we refer to as the first square.

By construction, in a regular grid, each square will containone and only one node which is located at the

center of the square. From known properties of RGGs [26], [17], each of the given subregions will contain at

least one node with high probability (w.h.p.). Moreover, anRGG is regular w.h.p, meaning that each square

containsΘ(log n) nodes (see Lemma 1 in the paper [12]). Accordingly, in the remainder of the paper, we

assume without loss of generality that any given RGG is regular. Note that by construction, the transmission

radiusr(n) is selected so that each node in each square is connected to every other node in four adjacent

squares.
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III. A LGORITHM AND ITS PROPERTIES

In this section we state our main result which is followed by adetailed description of the proposed

algorithm.

A. Theoretical guarantees

Our main result guarantees the existence of a graph-respecting algorithm with desirable properties. Recall

the definition of the graph respecting scheme, as well as the definition of our AWGN channel model given

in Section II. In the following statement, the quantityc0 denotes a universal constant, independent ofn, δ,

andσ2.

Theorem 1. For the communication model in which each link is an AWGN channel with varianceσ2, there

is a graph-respecting algorithm such that:

a) Nodes almost surely reach a consensus. More precisely, wehave

θ(t)
a.s.−→ θ̃ ~1 as t→∞, (3)

for someθ̃ ∈ R.

b) After T = TG(n; δ) iterations, the algorithm satisfy the following bounds on theMSE(θ(T )):

i) For fixed toleranceδ > 0 sufficiently small, we haveMSE(θ(T )) ≤ 3 σ2δ after

Tcyc(n; δ) ≤ c0 n max

{
1

δ
log

1

δ
,
MSE(θ(0))

σ2δ2

}

iterations for a single cycle graph.

ii) For fixed toleranceδ > 0 sufficiently small, we haveMSE(θ(T )) = O
(
σ2δ

)
after

Tgrid(n; δ) ≤ c0
√
n max

{
1

δ
log

1

δ
,
MSE(θ(0))

σ2δ2

}

iterations for the regular grid in two dimensions.

iii) Assume thatδ = δ̃
(logn)2 , for some fixed̃δ sufficiently small. Then we haveMSE(θ(T )) = O

(
σ2δ̃

)

after

TRGG(n; δ) ≤ c0
√
n(log n)3 max

{
1

δ̃
log

(log n)2

δ̃
,
MSE(θ(0))

σ2δ̃2

}

iterations for a regular random geometric graph.

Here c0 is some constant independent ofn, δ, andσ2, whose value may change from line to line.
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Remarks: A few comments are in order regarding the interpretation of this result. First, it is worth mentioning

that the quality of the different links does not have to be thesame. Similar arguments apply to the case where

noises have different variances. Second, although nodes almost surely reach a consensus, as guaranteed in

part (a), this consensus value is not necessarily the same asthe sample mean̄θ. The choice of̃θ is intentional

to emphasize this point. However, as guaranteed by part (b),this consensus value is withinσ2δ distance of the

actual sample mean. Since the sample mean itself representsa noisy estimate of some underlying population

quantity, there is little point to computing it to arbitraryaccuracy. Third, it is worthwhile comparing part (b)

with previous results on network scaling in the noisy setting. Rajagopal and Wainwright [27] analyzed

a simple set of damped updates, and showed thatTcyc(n; δ) = O
(
n2

)
for the single cycle, and that

Tgrid(n) = O (n) for the two-dimensional grid. By comparison, the algorithmproposed here and our analysis

thereof has removed factors ofn and
√
n from this scaling.

B. Optimality of the results

As we now discuss, the scalings in Theorem 1 are optimal for the cases of cycle and grid and near-optimal

(up to logarithmic factor) for the case of RGG. In an adversarial setting, any algorithm needs at leastΩ(Dn)

iterations, whereDn denotes the graph diameter, in order to approximate the average; otherwise, some node

will fail to have any information from some subset of other nodes (and their values can be set in a worst-case

manner). Theorem 1 provides upper bounds on the number of iterations that, at most, are within logarithmic

factors of the diameter, and hence are also within logarithmic factors of the optimal latency scaling law.

For the graphs given here, the scalings are also optimal in a non-adversarial setting, in which{θi(0)}ni=1

are modeled as chosen i.i.d. from some distribution. Indeed, for a given nodej ∈ V, and positive integert,

we letN (j; t) denote the deptht neighborhood ofj, meaning the set of nodes that are connected toj by a

path of length at mostt. We then define the graph spreading functionψG(t) = minj∈V |N (j; t)|. Note that

the functionψG is non-decreasing, so that we may define its inverse functionψ−1
G (s) = inf{t | ψG(t) ≤ s}.

As some examples:

• for a cycle onn nodes, we haveψG(t) = 2t, and henceψ−1
G (s) = s/2.

• for a n-grid in two dimensions, we have the upper boundψG(t) ≤ 2t2, and hence the lower bound

ψ−1
G (s) ≥

√
s
2 .

• for a random geometric graph (RGG), we have the upper boundψG(t) = Θ(t2 log n), which implies

the lower boundψ−1
G (s) = Θ

(√
s

logn

)

After t steps, a given node can gather the information of at mostψG(t) nodes. For the average based on

ψG(t) nodes to be comparable toθ, we require thatψG(t) = Ω(n), and hence the iteration numbert should

be at leastΩ(ψ−1
G (n)). For the three graphs considered here, this leads to the sameconclusion, namely that
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Ω(Dn) iterations are required. We note also that using information-theoretic techniques, Ayaso et al. [1]

proved a lower bound on the number of iterations for a generalgraph in terms of the Cheeger constant [9].

For the graphs considered here, the Cheeger constant is of the order of the diameter.

C. Description of algorithm

We now describe the algorithm that achieves the bounds stated in Theorem 1. At the highest level, the

algorithm can be divided into two types of phases: an inner phase, and an outer phase. The outer phase

produces a sequence of iterates{θ(τ)}, whereτ = 0, 1, 2, . . . is the outer time scale parameter. By design

of the algorithm, each update of the outer parameters requires a total ofM message-passing rounds (these

rounds corresponding to the inner phase), where in each round the algorithm can pass at most two messages

per edge (one for each direction). To put everything in a nutshell, the algorithm is based on establishing

multiple routes, averaging along them in an inner phase and updating the estimates based on the noisy

version of averages along routes in an outer phase. Consequently, if we use the estimateθ(τ), then in the

language of Theorem 1, it corresponds toT =Mτ rounds of message-passing. Our goal is to establish upper

bounds onT that guarantee the MSE isO(σ2δ). Figure 2 illustrates the basic operations of the algorithm.

Two-phase algorithm for distributed consensus:

• Inner phase:

– Deciding the averaging direction

– Choosing the head nodes

– Establishing the routes

– Averaging along the routes

• Outer phase:

– Based on the averages along the routes, update the estimatesaccording to

θ(τ + 1) = θ(τ)− ǫ(τ)
{
L(τ)θ(τ) + v(τ)

}

Fig. 2: Basic operations of a two-phase algorithm for distributed consensus.

1) Outer phase:In the outer phase, we produce a sequence of iterates{θ(τ)}∞τ=1 according to the recursive

update

θ(τ + 1) = θ(τ)− ǫ(τ)
{
L(τ)θ(τ) + v(τ)

}
. (4)

Here {ǫ(τ)}∞τ=1 is a sequence of positive decreasing stepsizes. For a given precision,δ, we setǫ(τ) =

1/(1δ + τ). For eachτ , the quantityL(τ) ∈ Rn×n is a random matrix, whose structure is determined by the

8



inner phase, andv(τ) ∈ Rn is an additive Gaussian term, whose structure is also determined in the inner

phase. As will become clear in the sequel, even thoughL andv are dependent, they are both independent

of θ. Moreover, givenL, the random vectorv is Gaussian with bounded variance.

2) Inner phase:The inner phase is the core of the algorithm and it involves a number of steps, as we

describe here. We uses = 1, 2, . . . ,M to index the iterations within any inner phase, and use{γ(s)}Ms=1

to denote the sequence of inner iterates withinRn. For the inner phase corresponding to outer update

from θ(τ)→ θ(τ + 1), the inner phase takes the initializationγ(1) ← θ(τ), and then reduces as output

γ(M)→ θ(τ +1) to the outer iteration. In more detail, the inner phase can bebroken down into three steps,

which we now describe in detail.

a) Step 1, deciding the averaging direction:The first step is to choose a direction in which to perform

averaging. In a single cycle graph, since left and right are viewed as the same, there is only one choice, and

hence nothing to be decided. In contrast, the grid or RGG graphs require a decision-making phase, which

proceeds as follows. One node in the first (bottom left) square, wakes up and chooses uniformly at random

to send in the horizontal or vertical direction. We code thisdecision using the random variableζ ∈ {−1, 1},

whereζ = −1 (respectivelyζ = +1) represents the horizontal (respectively vertical) direction. To simplify

matters, we assume in the remainder of this description thatthe averaging direction is horizontal, with the

modifications required for vertical averaging being standard.

b) Step 2, choosing the head nodes:This step applies only to the grid and RGG graphs. Given our

assumption that the node in the first square has chosen the horizontal direction, it then passes a token message

to a randomly selected node in the above adjacent square. Thepurpose of this token is to determine which

node (referred to as the head node) should be involved in establishing the route passing through the given

square. After receiving the token, the receiving node passes it to another randomly selected node in the above

adjacent square and so on. Note that in the special case of grid, there is only one node in each square, and so

no choices are required within squares. Afterm rounds, one node in each square(x1, yj), j = 1, 2, · · · ,m

((xi, y1), i = 1, 2, · · · ,m) receives the token, as illustrated in Figure 3. Note that again in a single cycle

graph, there is nothing to be decided, since the direction and head nodes are all determined.

c) Step 3, establishing routes and averaging:In this phase, each of head nodes establishes a horizontal

path, and then perform averaging along the path, as illustrated in Figure 3(b). This part of algorithm involves

three substeps, which we now describe in detail.

• For j = 1, 2, · · · ,m, each head nodes1j selects a nodes2j uniformly at random (u.a.r.) from within the

right adjacent square, and passes to it the quantityγ1j(1). Given the Gaussian noise model, nodes2j then

9
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Fig. 3. (a) The node labeleds11 in the first square, chooses the horizontal direction for averaging (ζ = −1); it
passes the token vertically to inform other nodes to averagehorizontally. Nodes who receive the token pass it
to another node in the above adjacent square. (b) The head nodess1j j = 1, 2, · · · , as determined in the first
step, establish routes horizontally (Pj , j = 1, 2, · · · ,m) and then average along these paths.

receives the quantity

γ̃1j(1) = γ1j(1) + v1j, wherev1j ∼ N(0, σ2),

and then updates its own local variable asγ2j(2) = γ2j(1) + γ̃1j(1). We then iterate this same procedure—

that is, nodes2j selects anothers3j u.a.r. from its right adjacent square, and passes the message γ2j(2).

Overall, at roundi of this update procedure, we have

γ(i+1)j(i+ 1) = γ(i+1)j(i) + γ̃ij(i),

whereγ̃ij(i) = γij(i) + vij, andvij ∼ N(0, σ2). At the end of roundm, nodesmj can compute a noisy

version of the average along the pathPj : s1j → s2j → · · · → smj, in particular via the rescaled quantity

ηj :=
γmj(m)

m
=

1

m

m∑

i=1

θsij (t) + vj j = 1, 2, · · · ,m.

Here the variablevj ∼ N (0, σ
2

m ), since the noise variables associated with different edgesare independent.

• At this point, for eachj = 1, 2, . . . ,m, each nodesmj which has the noisy version,ηj , of the path

average along routePj ; can share this information with other nodes in the path by sending ηj back to

the head node. A naive way to do this is as follows: nodesmj makesm copies ofηj—namely,η(l)j = ηj ,

l = 1, 2, · · · ,m—and starts transmitting one copy at a time back to the head node. Nodes along the path

simply forward what they receive, so that afterm − i + m − 1 time steps, nodesij receivesm noisy

copies of the average,̃η(l)ij = η
(l)
j + v

(l)
ij wherev(l)ij ∼ N (0, (m− i)σ2). Averaging them copies, nodesij

10



can compute the quantity

γij(3m− i− 1) :=
1

m

m∑

l=1

η̃
(l)
ij =

1

m

m∑

l=1

θslj (τ) +wij ,

wherewij = vj +
1
m

∑m
l=1 v

(l)
ij . Since the noise on different links and different time stepsare independent

Gaussian random variables, we havewij ∼ N (0, σ2i ), with

σ2i =
1

m
σ2 + (1− i

m
)σ2 = (1− (i− 1)

m
)σ2 ≤ σ2.

Therefore, at the end ofM = Θ(m) rounds, for eachj = 1, 2, . . . ,m, all nodes have the average of the

estimates in the pathPj that is perturbed by Gaussian noise with variance at mostσ2. Sincem = Θ(Dn),

we haveM = Θ(Dn).

• At the end of the inner phaseτ , nodes that were involved in a path use their estimate of the average

along the path to updateθ(τ), while estimate of the nodes that were not involved in any route remain the

same. A given nodesij on a path updates its estimate via

θsij(τ + 1) =
{
1− ǫ′(τ)

}
θsij(τ) + ǫ′(τ)γij(M), (5)

whereǫ′(τ) = O
(

1
τ+1/δ

)
. On the other hand, using〈· , ·〉 to denote the Euclidean inner product, we have

γij(M) = 〈w , θ(τ)〉+ vsij , wherew is the averaging vector of the routePj with the entriesw(sℓj) =
1
m

for ℓ = 1, 2, · · · ,m, and zero otherwise. Combining the scalar updates (5) yields the matrix-form update

θ(τ + 1) = θ(τ)− ǫ′(τ)
{
(I −W (τ))θ(τ) + v′(τ)}, (6)

where the matrixW (τ) =W (τ ;P1,P2, · · · ,Pm, ζ) is a random averaging matrix induced by the choice

of routesP1,P2, · · · ,Pm and the random directionsζ. The noise vectorv′(τ) ∼ N (0, C ′) is additive

noise. Note that for any given time, the noise at different nodes are correlated via the matrixC ′, but for

different time instantsτ 6= τ ′, the noise vectorsv′(τ) and v′(τ ′) are independent. Moreover, from our

earlier arguments, we have the upper boundmax
i=1,...,n

C ′
ii ≤ σ2.

IV. PROOF OFTHEOREM 1

We now turn to the proof of Theorem 1. At a high-level, the structure of the argument consists of

decomposing the vectorθ(τ) ∈ Rn into a sum of two terms: a component within the consensus subspace

(meaning all values of the vector are identical), and a component in the orthogonal complement. Using this

decomposition, the mean-squared error splits into a sum of two terms and we use standard techniques to

bound them. As will be shown, these bounds depend on the parameter δ, noise variance, the initial MSE,
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and finally the (inverse) spectral gap of the update matrix. The final step is to lower bound the spectral gap

of our update matrix.

A. Setting up the proof

Recalling the averaging matrixW (τ) from the update (6), we define the Laplacian matrixS(τ) := I −W (τ).

We then define the average matrixW := E [W (τ)], where the expectation is taken place over the randomness

due to the choice of routes;3 in a similar way, we define the associated (average) Laplacian S := I −W .

Finally, we define the rescaled quantities

ǫ(τ) := λ2(S) ǫ
′(τ), L(τ) :=

1

λ2(S)
S(τ), and v(τ) :=

1

λ2(S)
v′(τ), (7)

where we recall thatλ2(·) denotes the second smallest eigenvalue of a symmetric matrix. In terms of these

rescaled quantities, our algorithm has the form

θ(τ + 1) = θ(τ)− ǫ(τ)[L(τ)θ(τ) + v(τ)], (8)

as stated previously in the update equation (4). Moreover, by construction, we havev(τ) ∼ N (0, C) where

C = 1
(λ2(S̄))2

C ′. We also, for theoretical convenience, set

ǫ′(τ) =
1

λ2(S̄)(τ +
1
δ )
, (9)

or equivalentlyǫ(τ) = 1
(τ+ 1

δ
)

for τ = 1, 2, · · · .

We first claim that the matrixW is symmetric and (doubly) stochastic. The symmetry followsfrom the

fact that different routes do not collide, whereas the matrix is stochastic because every row ofW (depending

on whether the node corresponding to that row participates in a route or not) either represents an averaging

along a route or is the corresponding row of the identity matrix. Consequently, we can interpretW as

the transition matrix of a reversible Markov chain. It is an irreducible Markov chain, because within any

updating round, there is a positive chance of averaging nodes that are in the same column or row, which

implies that the associated Markov chain can transition from one state to any other in at most two steps.

Moreover, the stationary distribution of the chain is uniform (i.e.,π = ~1/n).

We now use these properties to simplify our study of the sequence {θ(τ)}∞τ=1 generated by the up-

date equation (8). SinceS is real and symmetric, it has the eigenvalue decompositionS = UΛUT ,

where U =
[
u1 u2 · · · un

]
is a unitary matrix (that is,UTU = In). Moreover, we haveΛ =

3 For the single cycle graph, there is only one route that involves all the nodes at each round, soW (τ ) is deterministic in this
case.
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diag{λ1(S), λ2(S), · · · , λn(S)}, whereλi(S) is the eigenvalue corresponding to the eigenvectorui, for

i = 1, . . . , n. SinceL = 1

λ2(S)
(I −W ), the eigenvalues ofL andW are related via

λi(L) =
1

λ2(S)
(1− λn+1−i(W ))

=
1

1− λn−1(W )
(1− λn+1−i(W )).

Since the largest eigenvalue of an irreducible Markov chainis one (with multiplicity one) [16], we have

1 = λn(W ) > λn−1(W ) ≥ · · · ≥ λ1(W ), or equivalently

0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L),

with λ2(L) = 1. Moreover, we haveS~1 = L~1 = ~0, so that the first eigenvectoru1 = ~1/
√
n corresponds

to the eigenvalueλ1(L) = 0. Let Ũ denote the matrix obtained fromU by deleting its first column,u1.

Since the smallest eigenvalue ofL is zero, we may writeL = Ũ Λ̃ŨT , whereΛ̃ = diag{λ2(L), · · · λn(L)},

ŨT Ũ = In−1, andŨ ŨT = In − ~1~1T

n . With this notation, our analysis is based on the decomposition

θ(τ) = α(τ)
~1√
n
+ Ũβ(τ), (10)

where we have definedα(τ) := 〈~1/√n , θ(τ)〉 ∈ R andβ(τ) := ŨT θ(τ) ∈ Rn−1. Since~1TL(τ) = ~0T for

all τ = 1, 2, · · · , from the decomposition (10) and the form of the updates (8),we have the following

recursions,

α(τ + 1) = α(τ) − ǫ(τ)
~1T√
n
v(τ), and (11)

β(τ + 1) = β(τ)− ǫ(τ)
(
L(τ)β(τ) + ŨT v(τ)

)
. (12)

HereL is an (n− 1)× (n− 1) matrix defined by the relation

UTL(τ)U =


0

~0T

~0 L(τ)




n×n

.

B. Main steps

As we show, part (a) of the theorem requires some intermediate results of the proof of part (b). Accordingly,

we defer it to the end of the section. With this set-up, we now state the two main technical lemmas that

form the core of Theorem 1. Our first lemma concerns the behavior of the component sequences{α(τ)}∞τ=0

and{β(τ)}∞τ=0 which evolve according to equations (11) and (12) respectively.
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Lemma 2. Given the random sequence{θ(τ)} generated by the update equation(4), we have

MSE(θ(τ)) =
1

n
var (α(τ))

︸ ︷︷ ︸
e1(τ)

+
1

n
E[‖β(τ)‖22]

︸ ︷︷ ︸
e2(τ)

. (13)

Furthermore,e1(τ) and e2(τ) satisfy the following bounds:

(a) For each iterationτ = 1, 2, . . ., we have

e1(τ) ≤
σ2 δ

[λ2(S̄)]2
. (14)

(b) Moreover, for each iterationτ = 1, 2, . . . we have

e2(τ) ≤
σ2

[λ2(S̄)]2
log(τ + 1

δ − 1)

τ + 1
δ − 1

+ e2(0)
1
δ − 1

τ + 1
δ − 1

, (15)

From Lemma 2, we conclude that in order to guarantee anO( σ2δ
[λ2(S̄)]2

) bound on the MSE, it suffices to

takeτ such that

1
δ − 1

τ + 1
δ − 1

≤ σ2 δ

e2(0)[λ2(S̄)]2
, and

log(τ + 1
δ − 1)

τ + 1
δ − 1

≤ δ.

Note that the first inequality is satisfied whenτ ≥ e2(0)
σ2δ2 [λ2(S̄)]

2. Moreover, doing a little bit of algebra,

one can see thatτ = 2
δ log

1
δ − (1δ − 1) is sufficient to satisfy the second inequality. Accordingly, we take

τ = max

{
2

δ
log

1

δ
,
e2(0)[λ2(S̄)]

2

σ2δ2

}

outer iterations.

The last part of the proof is to bound the second smallest eigenvalue of the Laplacian matrixS. The

following lemma, which we prove in Section IV-D to follow, addresses this issue. Recall thatλ2(·) denotes

the second smallest eigenvalue of a matrix.

Lemma 3. The averaged matrixS that arises from our protocol has the following properties:

(a) For a cycle and a regular grid we haveλ2(S̄) = Ω(1), and

(b) for a random geometric graph, we haveλ2(S̄) = Ω( 1
logn), with high probability.

It is important to note that the averaged matrixS is not the sameas the graph Laplacian that would arise from

standard averaging on these graphs. Rather, as a consequence of establishing many paths and averaging along

them in each inner phase, our protocol ensures that the matrix behaves essentially like the graph Laplacian

for the fully connected graph.

As established previously, each outer step requiresM = O(Dn) iterations. Therefore, we have shown
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that it is sufficient to take a total of

T = O
(
Dn max

{
2

δ
log

1

δ
,
e2(0)[λ2(S̄)]

2

σ2δ2

})

transmissions per edge in order to guarantee a3 σ2δ
[λ2(S̄)]2

bound on the MSE. As we will see in the next section,

assuming that the initial values are fixed, we havee1(0) = 0, henceMSE(θ(0)) = e2(0). The claims in

Theorem 1 then follow by standard calculations of the diameters of the various graphs and the result of the

Lemma 3.

It remains to prove the two technical results, Lemma 2 and 3, and we do so in the following sections.

C. Proof of Lemma 2

We begin by observing that

E

[
(θ(τ)− θ̄~1)(θ(τ)− θ̄~1)T

]
= F1 + F2 + F3,

whereF1 := E
[
(α(τ) −√nθ̄)2

] ~1~1T

n , the second term is given byF2 := E

[
Ũβ(τ)β(τ)T ŨT

]
, and

F3 := E

[
(α(τ) −√nθ̄)

~1√
n
β(τ)T ŨT

]
+ E

[
(α(τ) −√nθ̄) Ũβ(τ)

~1T√
n

]
.

SinceŨ has orthonormal columns, all orthogonal to the all one vector (~1T Ũ = ~0), it follows thattrace(F2) = E
[
‖β(τ)‖22],

and trace(F3) = 0.

It remains to computetrace(F1). Unwrapping the recursion (11) and using the fact that initializationθ(0)

impliesα(0) =
√
nθ yields

α(τ) =
√
nθ −

τ−1∑

l=0

ǫ(l) 〈
~1√
n
, v(l)〉, (16)

for all τ = 1, 2, . . .. Sincev(l), l = 0, 1, · · · , τ − 1, are zero mean random vectors, from equation (16) we

conclude thatE[α(τ)] =
√
nθ̄ 4 and accordingly,trace(F1) = var (α(τ)). Recalling the definition of the

MSE (1) and combining the pieces yields the claim (13).

(a) From equation (16), it is clear that eachα(τ) is Gaussian with mean
√
nθ. It remains to bound the

4Here we have assumed that the initial values,θi(0) i = 1, 2, · · · , n, are given (fixed).
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variance. Using the i.i.d. nature of the sequencev(i) ∼ N (0, C), we have

var (α(τ)) = E

[( τ−1∑

l=0

ǫ(l)〈
~1√
n
, v(l)〉

)2
]

=

τ−1∑

l=0

ǫ(l)2

n
〈~1 , C~1〉

=

τ−1∑

l=0

ǫ′(l)2
〈~1 , C ′~1〉

n
,

where we have recalled the rescaled quantities (7). Recalling the fact thatC ′
ii ≤ σ2 and using the Cauchy-

Schwarz inequality, we haveC ′
ij ≤

√
C ′
iiC

′
jj ≤ σ2. Hence, we obtain

var (α(τ)) ≤ nσ2
τ−1∑

l=0

ǫ′(l)2

=
nσ2

[λ2(S̄)]2

τ−1∑

l=0

1

(1δ + l)2

≤ nσ2

[λ2(S̄)]2

∫ ∞

1

δ

1

x2
dx =

n σ2δ

[λ2(S̄)]2
;

from which rescaling by1/n establishes the bound (14).

(b) DefiningH(β(τ), v(τ)) = L(τ)β(τ) + ŨT v(τ), the update equation (12) can be written as

β(τ + 1) = β(τ) − ǫ (τ)H(β(τ), v(τ)),

for τ = 1, 2, · · · . In order to upper bounde2(τ +1), defined in (13), we need to controle2(τ +1)− e2(τ).

Doing some algebra yields

e2(τ + 1)− e2(τ) =
1

n
E [〈β(τ + 1)− β(τ) , β(τ + 1) + β(τ)〉]

=
1

n
E [〈−ǫ (τ)H(β(τ, v(τ))) , −ǫ (τ)H(β(τ, v(τ))) + 2β(τ)〉] ,

and hence

e2(τ + 1)− e2(τ) =
1

n
ǫ(τ)2 E

[
‖H(β(τ), v(τ))‖22

]
− 2ǫ(τ)

n
E [〈H(β(τ), v(τ)) , β(τ)〉] .

Sinceβ(τ) is independent of bothL(τ) andv(τ), by conditioning on theβ(τ) and using the tower property

of expectation, we obtain

E [〈H(β(τ), v(τ)) , β(τ)〉] = E [〈E [L] β(τ) , β(τ)〉] .
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By construction all the eigenvalues ofE [L] are greater than one, hence

〈E [L]β(τ) , β(τ)〉 ≥ ‖β(τ)‖22.

Putting the pieces together, we obtain

e2(τ + 1) ≤ 1

n
ǫ(τ)2 E

[
‖H(β(τ), v(τ))‖22

]
+ (1− 2ǫ(τ)) e2(τ)

=
1

n
ǫ(τ)2 E

[
‖L(τ)β(τ)‖22

]
︸ ︷︷ ︸

F1

+
1

n
ǫ(τ)2 E

[
‖ŨT v(τ)‖22

]

︸ ︷︷ ︸
F2

+(1− 2ǫ(τ)) e2(τ), (17)

where we used the fact thatE
[
〈L(τ)β(τ) , ŨT v(τ)〉

]
= 0. We continue by upper bounding the terms

F1 = E
[
‖L(τ)β(τ)‖22

]
, andF2 = E

[
‖ŨT v(τ)‖22

]
. First, we bound the former. By definition of thel2-

operator norm, we have

E
[
‖L(τ)β(τ)‖22

]
≤ E

[
|||L(τ)|||22 ‖β(τ)‖22

]
.

On the other hand, using the fact thatL(τ) = 1
λ2(S̄)

ŨT (I −W (τ)) Ũ (recall the identities of the Section

IV-A) yields5

|||L(τ)|||2 ≤
1

λ2(S̄)
(1 + |||W (τ)|||2) =

2

λ2(S̄)
.

Therefore, we have the following bound onF1

F1 ≤
4

[λ2(S̄)]2
E
[
‖β(τ)‖22

]
. (18)

Turning to termF2, we have

F2 = E

[
v(τ)T (I −

~1~1T

n
)v(τ)

]
≤ trace

(
cov(v(τ))

)
≤ nσ2

[λ2(S̄)]2
. (19)

Substituting the inequalities (18) and (19) into (17), we obtain the following recursive bound one2(τ + 1)

e2(τ + 1) ≤ σ2

[λ2(S̄)]2
ǫ(τ)2 +

(
1− 2ǫ(τ) +

4ǫ(τ)2

[λ2(S̄)]2

)
e2(τ).

5Let v be an eigenvector of the matrixW (τ ) corresponding to the eigenvalueλ 6= 1. Since~1T v = 0, there exist an(n − 1)-
dimensional vectoru such thatv = Ũu. Therefore we have,

ŨT (I −W (τ ))Ũu = ŨT (I −W (τ ))v = (1− λ)ŨT v = (1− λ)u.

So by subtracting one from the eigenvalues ofŨT (I −W (τ ))Ũ , we obtain the non-one eigenvalues ofW (τ ).
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Recall the definitions (7) and (9). Ifδ ≤ [λ2(S̄)]2

4 , then1− 2ǫ(τ) + 4ǫ(τ)2

[λ2(S̄)]2
≤ 1− ǫ(τ), and hence we have

e2(τ + 1) ≤ σ2

[λ2(S̄)]2
ǫ(τ)2 + (1− ǫ(τ))e2(τ), (20)

for all τ = 1, 2, · · · . Unwrapping the inequality (20) yields

e2(τ + 1) ≤ σ2

[λ2(S̄)]2

τ∑

k=0

ǫ(k)2
τ∏

l=k+1

(1− ǫ(l)) +

τ∏

l=0

(1− ǫ(l)) e2(0). (21)

On the other hand, the product
∏τ

l=k+1(1− ǫ(l)) forms a telescopic series and is equal to
k+ 1

δ

τ+ 1

δ

. Substituting

this fact into the equation (21) yields

e2(τ + 1) ≤ σ2

[λ2(S̄)]2

τ∑

k=0

1

(k + 1
δ ) (τ +

1
δ )

+ e2(0)
1
δ − 1

τ + 1
δ

(a)

≤ σ2

[λ2(S̄)]2
log(τ + 1

δ )

τ + 1
δ

+ e2(0)
1
δ − 1

τ + 1
δ

,

where step (a) uses the following inequality

τ∑

k=0

1

k + 1
δ

≤
∫ τ+ 1

δ

1

δ
−1

1

x
dx ≤ log(τ +

1

δ
),

valid for δ ∈ (0, 12).

D. Proof of Lemma 3

In the case of cycle there is only one averaging path and all the nodes are involved in that at each round

so the averaging matrix,W , is fixed. More precisely, we haveW =W = 1
n
~1~1T . Therefore,W is a rank 1

matrix with λn−1(W ) = 0 and accordingly we haveλ2(S) = 1− λn−1(W ) = 1.

For the case of grid or random geometric graphs, we use the Poincare inequality [11]. A version of this

theorem can be stated as follows: LetA = [aij ] denote the transition matrix of an irreducible aperiodic

time reversible Markov chain with stationary distributionπ. For each ordered pair of nodes(s, u) in the

transition diagram, choose one and only one pathηsu = (s, s1, s2, · · · , sl, u) betweens andu and define

|ηsu| :=
1

π(s)ass1
+

1

π(s1)as1s2
+ · · ·+ 1

π(sl)aslu
. (22)

Then the Poincare coefficient is

κ := max
e∈E′

∑

ηsu∋e
|ηsu|π(s)π(u), (23)

whereE′ is the set of directed edges formed in the previous step. Defining this quantity, the theorem states
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that λn−1(A) ≤ 1− 1
κ or equivalently,

1− λn−1(A) ≥
1

κ
. (24)

We apply this theorem to the Markov chain formed byW ; the idea is to upper bound its Poincare coefficient.

1) Grid: We first define a pathηsu for every pair of nodes{s, u}. Two different cases can be distinguished

here. For an illustration of the pathηsu see Figure 4.

a) Case 1: Nodess and u do not belong to the same column or row. In this case, we consider a

two-hop pathηsu = (s→ w → u), wherew = (xu, ys) is the vertex of the rectangle constructed bys and

u. Note thatxu is thex-coordinate ofu andys is the y-coordinate ofs. Since nodes{s, w} and {w, u}

are averaged12 of the time, we haveWsw =Wwu = 1
2m . Substituting this into (22) and using the fact that

π = 1
n
~1 yields

|ηsu| =
1

Wswπ(s)
+

1

Wwuπ(w)
= 4mn.

b) Case 2: Nodess andu belong to the same row or column. In this case, we setηsu = (s → u)

which leads to

|ηsu| =
1

Wsuπ(s)
= 2mn.

Moreover, a given edgee = (s→ w) is involved in at mostm paths. As nodeu varies in the corresponding

column or row, we obtainm− 1 paths in case 1, and one path in case 2.

Combining the pieces, we compute the Poincare coefficient

κ = max
e∈E′

∑

ηsu∋e
|ηsu|π(s)π(u) ≤ m

4mn

n2
= 4.

Finally, from equation (24), we have

λ2(S) = 1− λn−1(W ) ≥ 1

κ
≥ 1

4

which concludes the proof for the case of a grid-structured graph.

2) Random geometric graph:For the RGG, we follow the same proof structure: namely, we first find a

path for each pair of nodes{s, u}, and then upper bound the Poincare coefficient for the MarkovchainW .

We first introduce some useful notation. LetC : V → {1, 2, · · · ,m}2 be the mapping that takes a node as

its input and returns the sub-square of that node. More precisely, for somes ∈ V we have

C(s) = (i, j) if s ∈ (i, j)-th squarei, j = 1, 2, · · · ,m.
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(a) Case 1. (b) Case 2.
Fig. 4. Illustration of the pathηsu for a grid-structured graph. (a) Case 1, where nodess andu do not belong
to the same column or row. (b) Case 2, where nodess andu belong to the same column or row. This choice
of ηsu yield a tight upper bound on the Poincare coefficient.

Furthermore, we enumerate the nodes in squareC(s) = (i, j) from 1 to nij wherenij denotes the total

number of nodes inC(s). We refer to the label of nodes asNC(s)(s) whereNC(s)(.) is the enumeration

operator for the squareC(s). Also let n∗ = mini,j nij denote the minimum number of nodes in one sub-

square which by assumption is greater thana log n for some constanta. We split the problem into three

different cases. Figure 5 illustrates these there different cases.

a) Case 1:Nodess andu do not belong to the the same column or row. In this case, a two hop path

ηsu = (s→ w → u) is considered. First, we pickC(w), the vertex of the rectangle constructed byC(s) and

C(u) with the samex-coordinate asC(u) and the samey-coordinate asC(s). Now choose a node,w, inside

C(w) such that

NC(w)(w) = NC(s)(s) +NC(u)(u) modn∗. (25)

Since each square has at leastn∗ nodes, such a choice can be made. On the other hand, since nodes in each

square is picked uniformly at random in the averaging phase and there are at mostb log n nodes in each

square (for some constantb) we haveWsw,Wwu ≥ 1
2m(b logn)2 , where the factor of 2 is due to the choice

of ζ, the averaging direction. Substituting this inequality into (22), we obtain

|ηsu| =
1

Wswπ(s)
+

1

Wwuπ(w)
≤ 4b2mn (log n)2.

Furthermore, from equation (25), we see that for a fixeds there are at mostba nodes in the squareC(u) that

result in choosingw. Therefore, edgee : (s→ w) is involved in at mostba(m− 1) such paths.

b) Case 2:Nodess andu belong to the same row or column. In this case, by settingηsu = (s→ u),

we obtain

|ηsu| =
1

Wsuπ(s)
≤ 2b2mn(log n)2.
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(a) Case 1. (b) Case 2. (c) Case 3.

Fig. 5. Illustration of the pathηsu for the case of RGG. (a) Case 1, where nodess and u belong to the
sub-squares in different row and columns (b) Case 2, where nodess andu belong to the sub-squares in the
same row or column. (c) Case 3, nodess andu belong to the same square.

Note that there is only one path containinge of this type.

c) Case 3:Nodess andu belong to the same square, meaningC(s) = C(u). In this case a nodew is

chosen in a square adjacent toC(s) according to (25) such thatC(w) is to the right ofC(s); unlessC(s) is

in the last column, in which caseC(w) is to the left ofC(s). The same argument as case 1 would give us

a bound on|ηsu|. As for the upper bound on the number of paths: the edgee : (s → w) is involved in at

most b
a such paths.

Combining all the pieces, we obtain

|ηsu| ≤ 4b2mn(log n)2 ∀ s, u ∈ V,

and

max
e∈E′

∑

s,u

I {ηsu ∋ e} ≤ m
b

a
+ 1.

Substituting these two inequalities into (23) yields

κ ≤
(
m
b

a
+ 1

) 4b2mn (log n)2

n2

≤ 2mb

a

4b2mn (log n)2

n2

= c1 log n

for some constantc1. Therefore, from Poincare Theorem, we have

λ2(S) = 1− λn−1(W ) ≥ 1

κ
≥ 1

c1 log n

which concludes the second part of Lemma 3.
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E. Proof of part (a) of Theorem 1

We now return to the proof of part (a) of Theorem 1. Combining equations (10) and (16) yields

θ(τ) = (θ − w(τ))~1 + Ũβ(τ), (26)

where w(τ) = 1√
n

∑τ−1
l=0 ǫ(l) 〈

~1√
n
, v(l)〉. As previously established, we know thatE [w(τ)] = 0 and

var (w(τ)) ≤ σ2δ
[λ2(S̄)]2

for all τ = 1, 2, · · · . Therefore, invoking a result on convergence of series with

bounded variance (Theorem 8.3 from Chapter 1 of [14]), we have

w(τ)
a.s.−→ w asτ →∞, (27)

for some random variablew. Sincew(τ) is a sum of independent Gaussian random variables (and hence

Gaussian), it is absolutely integrable [14]. Therefore, wehaveE [w] = limτ→∞ E [w(τ)] = 0 and also

var (w) = limτ→∞ var (w(τ)) ≤ σ2δ
[λ2(S̄)]2

.

Now we move on to the next part of the proof, analyzing the sequence{β(τ)}∞τ=1 using techniques from

stochastic approximation theory (e.g., see the books [21],[6]). These techniques apply to recursions that

generate a state sequence{θ(t)}∞t=1 according to

θ(t+ 1) = θ(t) − ǫ(t)H(θ(t), v(t)) t = 1, 2, · · · ,

wherev(t) is the noise vector that models the randomness coming into play in the algorithm. The parameter

ǫ(t) is a positive step size, and the sequence{ǫ(t)}∞t=1 is required to satisfy the conditions
∑∞

t=1 ǫ(t) =∞

and
∑∞

t=1 ǫ(t)
α <∞ for someα > 1. The asymptotic behavior of these stochastic updates can beanalyzed

in terms of the ordinary differential equation (ODE)

dγ(ζ)

dζ
= −h(γ), (28)

whereh(θ) := E[H(θ, v)]. Under mild regularity conditions, it is known thatθ(t)
a.s.−→ γ∗, whereγ∗ is the

attractor of the ODE (28).

Recalling the update equation (12), our problem can be cast within this framework. In particular, the state

sequence is{β(τ)}∞τ=1, the noise sequence is formed by zero-mean i.i.d. random vectors, the decreasing

sequence isǫ(τ) = 1/(1δ + τ), and finallyH(β, v) = (Lβ + ŨT v) is a linear function withh(β) = E[L]β.

Note because we removed the zero eigenvalue from the averageLaplacian matrix, the matrixE[L] has

all positive eigenvalues, and soγ∗ = 0 is the unique stable point of the linear differential equation
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dγ(ζ)
dζ = −E[L]γ. Therefore, an application of the ODE method [21], [6] guarantees that

β(τ)
a.s.−→ 0 asτ →∞. (29)

Substituting the results (27) and (29) into equation (26), we obtain

θ(τ)
a.s.−→ (θ − w)~1 asτ →∞.

In other words, nodes will almost surely reach a consensus; moreover, the consensus value,θ̃ = θ − w, is

within σ2δ
[λ2(S̄)]2

distance of the true sample mean.

V. SIMULATION RESULTS

In order to demonstrate the effectiveness of the proposed algorithm, we conducted a set of simulations.

More specifically, we apply the proposed algorithm to four nearest-neighbor square grids of different sizes.

We initially generate the dataθi(0), i = 1, 2, · · · , n as randomN(1, 1) variables and fix them throughout

the simulation. So for each run of the algorithm the initial data is fixed. In implementing the algorithm, we

adoptσ2 = 1 as the channel noise variance, and we set the tolerance parameterδ = 0.1, leading to the step

sizeǫ(τ) = 1
10+τ . We estimated the mean-squared error, defined in equation (1), by taking the average over

50 sample paths. As discussed in Section III, every outer phase update requiresM = O (
√
n) time steps.

Figure 6 shows the mean-squared error versus the number of outer loop iterations; the panel contains two

different curves, one for a graph withn = 302 nodes, and the other forn = 502 nodes. As expected, the

MSE monotonically decreases as the number of iterations increases, showing convergence of the algorithm.

More importantly, the gap between the two plots is negligible. This phenomenon, which is predicted by our

theory, is explored further in our next set of experiments.

In order to study the network scaling of the grid more precisely, for a given set of graph sizes, we compute

the number of theouter iterationsτ = τ(n, δ), such thatMSE(θ(τM)) ≤ σ2δ. Recall that this stopping

time is the focus of Theorem 1(b). Figure 7 provides a box plotof this stopping timeτ versus the graph

sizen. Theorem 1(b) predicts that this stopping time should be inversely proportional to the spectral gap

of the Laplacian matrixS, which for the grid scales asΩ(1) (in particular, see Lemma 3). As shown in

Figure 7, over a range of graphs of size varying fromn = 1000 to n = 10000, the stopping time is roughly

constant (τ ≈ 25), which is consistent with the theory.

VI. D ISCUSSION

In this paper, we proposed and analyzed a two-phase graph-respecting algorithm for computing averages

in a network, where communication is modeled as an additive white Gaussian noise channel. We showed
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Fig. 6. Mean-squared error versus the number of outer loop iterations for grids withn ∈ {302, 502} nodes. As
expected the MSE monotonically decreases, which supports the convergence claim.
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Fig. 7. Stopping timeτ = τ(n, δ) vs. the graph sizen. For different graph sizes, we compute the first outer
phase time instance,τ(n, δ), such thatMSE(θ(τM)) ≤ σ2δ. Here we have fixed the parameters toσ2 = 1,
andδ = 0.1. As you can see, over a range of graphs of size varying from 1000 to 10000, this stopping time
is roughly constant (≈ 25), which is consistent with the theory (Theorem 1(b) and Lemma 3).

that it achieves consensus, and we characterized the rate ofconvergence as a function of the graph topology

and graph size. For our algorithm, this network scaling is within logarithmic factors of the graph diameter,

showing that it is near-optimal, since the graph diameter provides a lower bound for any algorithm.

There are various issues left open in this work. First, whilethe AWGN model is more realistic than

noiseless communication, many channels in wireless networks may be more complicated, for instance

involving fading, interference and other types of memory. In principle, our algorithm could be applied

to such channels and networks, but its behavior and associated convergence rates remain to be analyzed. In

a separate direction, it is also worth noting that gossip-type algorithms can be used to solve more complicated

types of problems, such as distributed optimization problems (e.g., [25], [28], [13]). Studying the issue of

near-optimal network scaling for such problems is also of interest.
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