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Abstract

We consider distributed algorithms for data aggregation and function computation in sensor

networks. The algorithms perform pairwise computations along edges of an underlying commu-

nication graph. A token is associated with each sensor node, which acts as a transmission permit.

Nodes with active tokens have transmission permits; they generate messages at a constant rate

and send each message to a randomly selected neighbor. By using different strategies to control

the transmission permits we can obtain tradeoffs between message and time complexity. Gossip

corresponds to the case when all nodes have permits all the time. We study algorithms where

permits are revoked after transmission and restored upon reception. Examples of such algo-

rithms include Simple-Random Walk(SRW), Coalescent-Random-Walk(CRW) and Controlled

Flooding(CFLD) and their hybrid variants. SRW has a single node permit, which is passed on

in the network. CRW, initially initially has a permit for each node but these permits are revoked

gradually. The final result for SRW and CRW resides at a single(or few) random node(s) making

a direct comparison with GOSSIP difficult. A hybrid two-phase algorithm switching from CRW

to CFLD at a suitable pre-determined time can be employed to achieve consensus. We show

that such hybrid variants achieve significant gains in both message and time complexity. The

per-node message complexity for n-node graphs, such as 2D mesh, torii, and Random geometric

graphs, scales as O(polylog(n)) and the corresponding time complexity scales as O(n). The

reduced per-node message complexity leads to reduced energy utilization in sensor networks.

1 Introduction

Large sensor systems have remarkable potential in a wide range of applications from environmen-

tal monitoring to intrusion detection. Such systems are now viable thanks to recent progress in

integration and communication technologies, yet their size precludes classical telemetry to collect

sensory data and poses algorithmic challenges in handling the high data volume. The principle of

gossip offers an appealing and scalable solution approach to this issue: In broad terms, gossip algo-
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rithms are decentralized methods to compute statistics of system-wide data based on asynchronous

message passing between sensors that are within immediate communication range. The purpose of

this paper is to introduce and analyze token-based gossip algorithms, and put them in perspective

with previously studied gossip algorithms with respect to computation time, energy consumption,

accuracy, and robustness.

The generic gossip algorithm has been well-studied in the context of computing averages [7, 15,

22], and has roots in load balancing (see, for example, [5, Section7.4]). Here it is assumed that

each sensor has a local scalar value and it is of interest to compute the average of these values.

Gossip algorithms accomplish this task by randomly choosing two neighboring sensor nodes at each

time and replacing their current values by their average. It turns out that under mild conditions

this process over time converges to the average of all sensor values at all the sensors, i.e., the

sensors asymptotically achieve a consensus. The algorithm executes autonomously at each sensor;

it is robust to communication errors and sensor failures; and a final state of consensus provides

robustness and convenience in reading the average from the system. Such consensus algorithms

have been recently explored in other contexts such as detection [1, 20].

Nevertheless, these algorithms have fundamental disadvantages from an energy efficiency perspec-

tive. For example it is well known that in grids and in tori with n nodes, the number of message

transmissions per node to complete the computational task scales as Ω(n) [7, 21], which can be sig-

nificant for a large sensor network. The fundamental reason is that energy efficiency resulting from

in-network processing is offset by ad-hoc message passing that results in redundant computations,

i.e., the same set (or largely similar set) of nodes repeatedly fuse their information at different

points in time. In a related problem involving distributed detection, the significant energy scaling

can be attributed to the loopy nature of the network where messages sent from one node repeatedly

arrive at the node at different points in time. In order to ensure that no information from any node

is forgotten, each node must re-inject its value into the network to reinforce its information [20]. At

a fundamental level the significant scaling of energy arises due to the slow mixing rate of large net-

works, which can be attributed to rather large second eigenvalues of certain connectivity matrices

associated with the underlying communication graph [7][Theorem 3].

Another important disadvantage of generic gossip algorithms concerns accuracy. Stopping criterion

of gossip is based on tail probabilities of a normalized distance between current system state and

state of consensus [7]. In turn, these algorithms provide only probabilistic guarantees on final

consensus and therefore they should be considered as approximation algorithms. It should also be

noted that even when such a guarantee holds and the final normalized error happens to be small,

the actual error may be substantial if the normalizing constant is large. Such situations arise in

large networks in which a small set of sensor values significantly influence the sought value.

To put the present paper in perspective with gossip algorithms it helps to consider signal processing

and communications separately. Here we adopt the objective of exact computation of a function of

distributed data, and consider performance of a novel class of communication algorithms towards

that end. In this view conventional gossip may be considered as a communication algorithm to ap-
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proximate the same function. This approximation is clearly one specific instantiation; and there are

other wide range of approximation criteria that may be useful to consider from a signal processing

perspective. From a signal processing point of view it also makes sense to incorporate prior signal

information, such as boundedness, distribution of values etc. While these issues are important our

focus here is primarily on the communication aspects for exact distributed computation.

1.1 Token-Based Algorithms

We present a novel concept of token-based gossip for distributed computing. This concept preserves

the ad-hoc network operation but entails perfect accuracy of computation and exponential savings

in energy-consumption over the existing local message passing algorithms. Under the algorithms

studied here, a transmitting node becomes inactive and does not transmit further messages until

it is reactivated by a message reception from another node. An active node generates messages

at constant rate and sends each message to a randomly selected neighbor. Hence network nodes

implement interactive sleep-wake schedules. Active nodes are interpreted to hold imaginary tokens

that act as transmission permits. The total energy consumption is controlled by managing the

number of tokens in the network.

We describe different instances of token based algorithms: (i) Algorithm SRW maintains a single

active node (i.e. a single token), whose trajectory is a random walk on the communication graph.

Local processing at each active node exploits a decomposability property of the considered function

to guarantee that the function is computed when each node becomes active at least once. In turn

performance of this algorithm is closely related to the cover time [24] of random walks. (ii) Under

algorithm CRW all nodes are initially active but when two active nodes communicate with each

other their tokens coalesce and therefore the number of tokens in the system reduces by one. The

computation is completed when a single token remains in the system. This latter algorithm is closely

related with coalescing random walks [8] that have been studied as duals of a class of interacting

particle systems coined as voter models. The two algorithms are illustrated in Figures 1(a)-(b).

A range of distributed algorithms can be obtained by variations of the token-based communication

concept. For example, conventional gossip can be considered as a token-based algorithm where each

node maintains a token at all times. The local processing upon each message exchange in this case

is illustrated in Figure 2(a). Alternatively, one may consider hybrid schemes to improve message

and time complexity. One hybrid scheme involves with a fixed but arbitrary number of tokens.

Tokens progress from an active node to an inactive node while updating local values exactly as in

SRW. If two active nodes interact then they both relax their values as in conventional gossip, and

remain active. An illustration of such a scheme is given in Figure 2(b). Another hybrid scheme

involves switching at some time t, from CRW to Controlled Flooding (CFLD) [6], which is a token

based algorithm where tokens multiply at each local broadcast. In contrast to flooding, CFLD

follows additional rules to control the number of transmissions(see Section 5).
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Figure 1: Illustration of token-based algorithms: (a) SRW and (b) CRW. Each node is either active or

inactive. Active nodes are indicated with light color. Nodes can transmit information in the active state but

not in the inactive state. A node can transition from active to inactive or vice versa based on pre-defined

protocol. In SRW there is always one active node. In CRW every node is active initially but the number of

active nodes decrease in time, towards the final value one.

1x 2x

3x4x

1 20.5( )x x

3x4x 4x

1 20.5( )x x 1 20.5( )x x 1 2 30.5(0.5( ) )x x x

1 2 30.5(0.5( ) )x x x

(a)

1x 2x

3x4x 3x4x 4x

0 1 2x x 0 1 2 30.5( )x x x

1 2 30.5( )x x x

(b)

Figure 2: Illustration of two algorithms in the framework of the paper. (a) In conventional gossip all nodes

are active all the time. Transmission is two-way and two nodes that share information replace their prior

values with the fused values. (b) Hybrid token algorithm that maintains a constant (in this case 2) number

of active nodes. Transactions between an active and an inactive node are governed by the rules of SRW,

while transactions between two active nodes are governed by rules of conventional gossip.
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1.2 Time and Message Complexities

In this section we describe tradeoffs between time and message complexities for regular graphs

to illustrate some of the benefits of SRW and CRW. However, a fundamental difference between

Gossip algorithm and SRW/CRW makes this comparison potentially difficult. Note that in the

standard Gossip algorithm, the fused value is a consensus estimate at all the nodes. In contrast

SRW/CRW realize the fused value at a random node in the network. In practice it is desirable

to have access to the fused value at a designated node(s). Consequently, to meet this requirement,

SRW/CRW would have to transmit the fused estimate to the designated fusion center. This raises

two fundamental issues:

(A) How can a node recognize that it has the fused estimate?

(B) How to efficiently transmit the fused information to the designated fusion center?

As it turns out, both of these questions can be addressed satisfactorily. To address the first

issue we augment the distributed computation problem with a secondary distributed computation

procedure. This secondary computation determines when fusion has been realized. To transmit

this information to the designated node(s) we flood the entire network through CFLD. The overall

message complexity for CFLD for a single message scales as the number of communication links in

the network. The time complexity scales as the diameter of the network [14]. Furthermore, other

choices can result in superior performance. For instance, nodes follow the CRW protocol until a

predesignated time t and switch to CFLD after time t.

Table 1 (see Section 4 and 6) illustrates completion times and per-node transmission counts for

regular topologies. For the d-dimensional lattice torus with n sensors, we the completion time of

CRW is Θ(n(log n)α) and energy requirement per sensor node is O((log n)α+1) where α = 1 for

d = 2 and α = 0 for d ≥ 3. The algorithm thus has a favorable energy scaling, furthermore its

performance is almost insensitive to changes in the network connectivity represented by different

values of d ≥ 2, hinting at the possibility of predictable performance over mesh topologies. Both

the time and the per-node energy requirement of the generic gossip algorithm of [7] scale as Ω(n)

on the 2-dimensional torus with n nodes. We also depict results for the two phase CRW + CFLD

algorithm. For the 2D torus the time complexity is similar to GOSSIP and the message complexity

is similar to CRW. Therefore, this two-phase scheme is an improvement over both GOSSIP and

CRW. Recent results indicate that the energy scaling can be improved significantly via variations

of gossip that require location awareness capability for each sensor [11, 16]. Similar variations of

token-based gossip may also yield reduction in energy complexity, though that direction is not

pursued in this paper.

The conclusions of Table 1 (see Sections 4 and 6) for regular topologies is presented in Section 3.2

and is largely based on existing results in applied probability literature. Preliminary work along

these lines has also been described by the authors [21]. This paper develops results for general

topologies based on a deeper analysis of hitting-time computations on the communication graph.

While our approach can lead to conservative estimates for general graphs, it turns out that for
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CRW SRW GOSSIP CRW + CFLD

Clique Θ(log n) Θ(log n) Θ(n) Θ(log n)

Ring Θ(n) Θ(n) Θ(n2) Θ(n)

Torus (d = 2) O(log2 n) Θ(log2 n) Θ(n) O(log2 n)

Torus (d ≥ 3) O(log n) Θ(log n) Θ(n2/d) O(d+ log n)

(a)

CRW SRW GOSSIP CRW + CFLD

Clique Θ(n) Θ(n log n) Θ(n) Θ(n)

Ring Θ(n) Θ(n log n) Θ(n2) Θ(n)

Torus (d = 2) Θ(n log n) Θ(n log2 n) Θ(n) Θ(n)

Torus (d ≥ 3) Θ(n) Θ(n log n) Θ(n2/d) Θ(n)

(b)

Table 1: (a) Message and (b) time complexities with n nodes.

graphs with local neighborhood structure, such as grids and random geometric graphs(RGG), these

estimates are relatively tighter. Our message complexity for RGG scales as O(log2(n)) and can

be combined with CFLD to realize consensus with significant improvement in message and time

complexity over GOSSIP.

Robustness: Similar to other token-based communication algorithms such as token rings, robust-

ness of the introduced algorithms suffers from the potential of losing tokens. Packet losses do not

contribute to this potential if reliable link protocols are adopted. However permanent node failures

may have an impact on system performance if a node fails while holding a token. The issue may be

mitigated by running multiple independent instances of a token-based algorithm simultaneously, in

order to reduce the likelihood of losing all tokens simultaneously at a failing node, without altering

the scaling of time and message complexities. As will be clear in the sequel, a token-bearing node

knows explicitly the number of sensor values fused in its current value; and that value may be useful

partial information in case of node failures. Alternatively a hybrid scheme with multiple tokens

may be invoked, thereby providing a robustness akin to conventional gossip.

Paper Organization: The paper is organized as follows. In Section 2 we formalize a general dis-

tributed computation problem that includes computation of statistics of spatially dispersed sensory

data. The two token-based gossip algorithms SRW and CRW are formally specified in Section 3 and

their correctness is established. Section 3.2 illustrates time and message complexities for regular

topologies as summarized by Table 1. Section 5 describes two-phase algorithms that combine CRW

with CFLD to realize a consensus fused estimate. Section 6 gives a novel analysis of coalescing

random walks on arbitrary graphs and thereby determines the complexity of CRW in the general

setting.
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2 Problem formulation

We consider a collection of n networked sensors. The communication graph of this collection is

an undirected graph G = (V,E) in which each sensor is uniquely represented by a node in V . An

edge in E indicates that the two sensors corresponding to its incident nodes have a bidirectional

communication link. In order to avoid trivialities G is assumed to be connected; otherwise it is

arbitrary.

Each sensor i has a value xi and we are interested in computing a function Fn(x1, x2, · · · , xn) of

the n sensor values. The function Fn(·) is assumed to be symmetric so that for any permutation π

of {1, 2, · · · , n}
Fn(x1, x2, · · · , xn) = Fn(xπ1 , xπ2 , · · · , xπn).

Furthermore we assume existence of an atomic function f(·) such that for each 1 ≤ k ≤ n

Fn(x1, x2, · · · , xn) = f(Fk(xπ1 , · · · , xπk), Fn−k(xπk+1
, xπk+2

, · · · , xπn)). (1)

In particular

f(xi, xj) = F2(xi, xj). (2)

For example if f(xi, xj) = max(xi, xj) or if f(xi, xj) = xi + xj then Fn(·) is respectively the

maximum or the sum of x1, x2, · · · , xn. If each xi = (yi, wi) is a vector and f(·) is the vector-valued

function

f(xi, xj) = ((wi + wj)
−1(wiyi + wjyj) , wi + wj),

then Fn(·) is the tuple

Fn(x1, x2, · · · , xn) =

(
n∑
i=1

wi∑n
j=1wj

yi ,

n∑
i=1

wi

)
.

Weighted average computations of this sort are particularly relevant to applications of Kalman

filtering in distributed tracking [19].

We finally assume existence of a special value e that acts as an identity element for f(·) so that for

any value x

f(x, e) = f(e, x) = f(e, e) = e.

This element is not a fundamental requirement, and in fact it makes the upcoming algorithm spec-

ifications look somewhat mysterious, but it is useful in giving a concise reasoning about correctness

of the algorithms introduced next.

3 Token-based Gossip Algorithms

We specify two algorithms, namely SRW and CRW. A pseudo-code for these algorithms is given in

Figure 1. Under each algorithm, each node maintains three variables value, status, and count.
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Algorithm 1 Pseudo-code for algorithms SRW and CRW at node i. Send() is activated by the local

Poisson clock at the node, and Receive() is activated by message reception from some other node. The two

algorithms differ in the initialization of the variable status. Each algorithm terminates when count is equal

to the number of nodes in system.

Variables: status, value, count.

Initialize: value ← xi; count ← 1;

SRW : status←

{
‘active’ if i = io;

‘inactive’ else.

CRW : status← ‘active’.

Procedure Send()

if( status == ‘active’ ) {
choose neighbor;

send(neighbor , value, count);

value ← e;

count ← 0;

status ← ‘inactive’;

}

Procedure Receive( value in, count in) {
value ← f(value, value in);

count ← count + count in;

status ← ‘active’;

}

Content of value is an estimate of Fn(x1, x2, · · · .xn). Initially value= xi and count= 1 at each

node i. The variable status is either ‘active’ or ‘inactive’ and it indicates whether the node is

holding a token or not. Let

vi(t) = content of value at node i at time t,

ξi(t) =

{
1 if status of node i is ‘active’ at time t,

0 else.

ci(t) = content of count at node i at time t.

Hence vi(0) = xi and ci(0) = 1 for each node i. The initial value ξi(0) (i.e. of status) depends on

the particular algorithm: Under SRW ξi(0) = 1 for exactly one node, say node io, whereas under

CRW ξi(0) = 1 for all nodes i.

Variables value, status evolve according to the same rules under both algorithms: Namely, each

node has an independent Poisson clock that ticks at unit rate. When the local clock of a node

ticks, the node does not take any action unless it is active at that time. If the node is active, then

it chooses a neighbor at random, sends its current value and count to that neighbor, and becomes
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inactive. The Send() subroutine of the algorithm maintains value and carries the identity e. The

count is 0 at each inactive node at all times. If the selected neighbor was inactive at the time of

reception, then it simply adopts the variables of the sender and it activates itself. Otherwise, the

node executes a step towards computation of Fn and adds the received count value to its own.

For each time t define ξ(t) , (ξ1(t), ξ2(t), · · · , ξn(t)). The process (ξ1(t), ξ2(t), · · · , ξn(t)) of activity

indicators is Markovian due to the randomness of the choice of neighbor by active nodes: For SRW

the unique 1 in (ξ1(t), ξ2(t), · · · , ξn(t)) follows a simple random walk on the communication graph.

For CRW (ξ1(t), ξ2(t), · · · , ξn(t)) indicates sites occupied by n simple random walks each of which

evolves independently until it meets another and makes identically the same transitions with that

walk afterwards.

3.1 Algorithm Correctness

We first establish correctness of the introduced algorithms by showing that each algorithm computes

the quantity Fn(x1, x2, · · · , xn) in finite time.

Lemma 3.1 Under both SRW and CRW, and for all t > 0,

Fn(v1(t), v2(t), · · · , vn(t)) = Fn(x1, x2, · · · , xn).

Proof. We prove the lemma by induction. Let t0 = 0 and let tk be the time of kth message

passing in the system. The claim is true at time t0 due to the initialization of each algorithm.

Since the system state remains constant in the interval (tk, tk+1), it is enough to show the claim

holds at time tk+1 provided that it holds at time tk. To this end suppose the claim holds at time

tk. Without loss of generality, suppose that the k+ 1st message has sender 1 and receiver 2. Then

v1(tk+1) = e, v2(tk+1) = f(v1(tk), v2(tk)) and vl(tk+1) = vl(tk) for 3 ≤ l ≤ n. Therefore

Fn(v1(tk+1), v2(tk+1), · · · , vn(tk+1)) = Fn(e, f(v1(tk), v2(tk)), v3(tk), · · · , vn(tk))

= f( F2(e, f(v1(tk), v2(tk))) , Fn−2(v3(tk), · · · , vn(tk)) )

= f( F2(v1(tk), v2(tk)) , Fn−2(v3(tk), · · · , vn(tk)) )

= Fn(v1(tk), v2(tk), · · · , vn(tk)),

where the second and fourth equalities are due to (1) and the third equality is due to (2). This

establishes the induction step and in turn the desired conclusion. �

We first consider SRW and define

τS = inf{t : each node becomes active at least once by time t }.

Let a(t) denote the node that is active at time t ≥ τS . Since each node has been active at least

once by time t, every node other than a(t) should have turned inactive by sending the token to a

neighbor. Therefore at each node i 6= a(t) the value is vi(t) = e. From Equations (1)–(2) we get

Fn(v1(t), · · · , vn(t)) = F2(vi(t)(t), e) = vi(t)(t).

9



Therefore by Lemma 3.1 the value va(t)(t) of node a(t) is equal to Fn(x1, · · · , xn).

The above argument applies verbatim to CRW also, by taking a(t) to be the unique active node at

time t ≥ τC where τC is defined as

τC = inf{t :
∑
i

ξi(t) = 1}.

It should be clear that for SRW τS is the cover time of the communication graph G and it is finite

with probability 1. Under CRW,
∑

i ξi(t) is a non-increasing process with an absorption state at

1. In this case τC is the absorption time of this process and it is almost surely finite. Hence under

each algorithm the desired quantity Fn(x1, · · · , xn) is available at some node within finite time.

It remains to establish how the termination times τS , τC can be recognized. Towards this end

note that the update mechanism for variable count reflects a secondary distributed computation

procedure with f(ci, cj) = ci + cj and

Fn(c1(0), · · · , cn(0)) =
∑
i

ci(0) = n.

The general conclusions obtained above are valid in this special case, and in turn ci(t)(t) = n for

t ≥ τS under SRW and for t ≥ τC under CRW. Therefore at such time instants node i can identify

itself as the unique bearer of the desired quantity by verifying the condition ci(t) = n. In other

words variable count keeps an account of how many sensor values have been fused so far to form

the content of variable value; this serves as a pilot signal with a known terminal value that signals

the end of each algorithm. We collect these observations in the following theorem:

Theorem 3.1 Both SRW and CRW compute the exact value of Fn(x1, · · · , xn) in finite time. Each

algorithm terminates with the correct value when the content of variable count reaches n, the system

size, at some node in the system.

3.2 Time and Message Complexities

We present execution time and message complexity for SRW and CRW. We begin this section with

the definitions of message and time complexities.

Definition 3.1 Average time complexity of SRW (resp. CRW) refers to E[τS ] (resp. E[τC ]).

In adopting a measure of messaging complexity, let ηS(t) and ηC(t) be the total number of trans-

mitted messages in the network by time t under algorithms SRW and CRW respectively:

Definition 3.2 Average per-node message complexity of SRW (resp. CRW) refers to n−1E[ηS(τS)]

(resp. n−1E[ηC(τC)]).

Note that (ξ(t) : t ≥ 0) is a Markov process under both algorithms. More precisely, (ξ(t) : t ≥ 0)

is a random walk on G under SRW, and a coalescing random walk on G under CRW. In particular
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the average time complexity of SRW is the mean cover time of G. Average message complexities

of the algorithms are characterized by the following lemma:

Lemma 3.2

E[ηS(τS)] = E

[∫ τS

0

∑
i

ξi(t)dt

]
= E[τS ],

E[ηC(τC)] = E

[∫ τC

0

∑
i

ξi(t)dt

]
.

Proof. We provide a proof that applies verbatim to both algorithms. Let η(t) represent ηS(t)

for SRW and ηC(t) for CRW. Let Ft denote the sigma-field generated by (ξ(s) : s ≤ t) and let

(φ(t) : t ≥ 0) be a Poisson process with unit rate. Note that η(t) has the same distribution as

φ(
∫ t

0

∑
i ξi(s)ds) since each carrier node transmits messages at unit rate and inactive nodes do not

engage in message transmission, and thus
∑

i ξi(t) is the instantaneous rate of message generation

in the network at time t. In particular the process (µ(t) : t ≥ 0) with

µ(t) = η(t)−
∫ t

0

∑
i

ξi(s)ds (3)

is a martingale adapted to {Ft}. Both τS and τC are {Ft}-stopping times and they are almost

surely finite. In addition supt≥0

∑
i ξi(t) ≤ n; hence it follows by the optional sampling theorem [12,

Theorem 2.2.13] that E[µ(τS)] = E[µ(τC)] = 0. Using this observation in equality (3) establishes

the lemma. �

4 Regular Topologies

Since the two algorithms are closely related to random walks, their time and message complexities

for special topologies of the communication graph G can be deduced by referring to related work

in applied probability. Before giving an analysis for general topologies in the next section, we

consider here the cases when G is completely connected (i.e. clique) and d-dimensional torus for

d ≥ 1. Recall that average time complexity of SRW is the mean cover time of G and by the above

lemma this is proportionally related to the mean message complexity. We refer the reader to [2,

Chapter 5] for the cover time results, which are summarized in Table 1 in the column SRW. We

articulate on the time/message complexity of CRW in more detail, as that entails consideration of

coalescing random walks, which are relatively obscure in engineering applications.

Completely connected graph: A completely connected graph is a graph where each vertex has

an edge with every other vertex. In such graphs the process (
∑

i ξi(t) | t > 0) is also Markovian.

11



This follows from the fact that the transition matrix at any time instant is invariant to permutation.

For CRW this process has initial state
∑

i ξi(0) = n and at time t < τC it decreases by one at

instantaneous rate ( ∑
i ξi(t)

2

)
,

that is, the number of edges that are incident on two actives nodes at time t. This process has been

studied in detail in [23] and the results therein are summarized in Table 1. While a completely

connected graph reflects a limited set of cases of practical importance, its analysis interestingly

sheds considerable light on mesh-type topologies that are considered next.

Ring and d-dimensional torus: A d-dimensional torus is a graph where all the vertices have

exactly 2d neighbors and it can be formed by joining the facing boundaries of a grid hence yielding

a completely symmetric structure. A ring is simply a 1-dimensional torus. Consider n = Nd for a

d-dimensional torus. Let

sN =


N2 if d = 1

N2 logN if d = 2

Nd if d ≥ 3.

An asymptotic analysis of coalescing random walks on d-dimensional torus for large N is given

by Cox [8]. It is established that the time-scaled the process
∑

i ξi(sN t) on a d-dimensional torus

converges in distribution to
∑

i ξi(t) on a completely connected graph as N → ∞. (Note that∑
i ξi(t) is not even Markovian unless G is completely connected.) This result in turn leads to the

following theorem on the time complexity for CRW:

Theorem 4.1 [8, Theorem 6]

0 < lim inf
N→∞

E[τC ]/sN = lim sup
N→∞

E[τC ]/sN < ∞.

The average message complexity of CRW can also be quantified by building on the asymptotic

characterization of [8]. Towards that end consider a typical sample path of the process (
∑

i ξi(t) |
t > 0) illustrated in Figure 3. By Lemma 3.2 the average aggregate message complexity of the

algorithm is the mean of the shaded area under the trajectory of
∑

i ξi(t) : 0 < t ≤ τC . The average

per-node message complexity is then this quantity divided by the total number of nodes n.

Let

mN =


N2 if d = 1

N2(logN)2 if d = 2

Nd logN if d ≥ 3.

The following theorem provides an upper bound for the message complexity of CRW.

Theorem 4.2 [21, Theorem 7]

lim sup
N→∞

E[ηC(τC)]/mN < ∞.
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Figure 3: A sample path of the number of active nodes under algorithm CRW. σk denotes the first time that

k active nodes remain in the network so that τC = σ1. The mean of the shaded area is the mean aggregate

number of transmitted messages in the network.

To complement Theorem 4.2 a lower on the growth rate of E[ηC(τC)] is provided by Theorem 4.1:

Since
∑

i ξi(t) ≥ 1 for all t it follows that E[ηC(τC)] ≥ E[τC ]; in turn

lim inf
N→∞

E[ηC(τC)]/sN ≥ lim inf
N→∞

E[τC ]/sN > 0.

By comparing sN and mN we conclude that this bound is tight for a ring, i.e. a 1-d torus, and

it is off by at most a factor logN for d ≥ 2. For a relatively concrete view of these quantities

Figure 4 provides a summary of numerical simulations for time and message complexities of CRW

on 2-dimensional tori of varying sizes.

5 Two-Phase Algorithms

The algorithm would work as follows: In the first phase the nodes in the network follow a CRW

protocol upto some designated deterministic time t. At this time there are ηC(t) tokens left in the

system. The set of nodes that have tokens at time time t then flood their messages to all the nodes

as described below.

Controlled Flooding (CFLD) algorithm assumes no network topology. It works by forwarding the

message over all links. From the source node message is sent to all neighbors. Each node, v,

receiving its first message from vertex u sends messages to all neighbors except u. Also, each node

will transmit its packet at most once [6]. If no message is received then it does nothing. It is well

known that the message complexity scales as Θ(|edges|) since each edge delivers the message either

once or twice [6]. The time complexity scales as Θ(diam(G)) since we must reach all nodes [14].

We can adapt CFLD algorithm to our scenario where we have a random number ηC(t) tokens left

in the system. At time t all nodes cease to implement CRW. Nodes with tokens separately CFLD

messages. Each node then fuses the data once all the messages are received.
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There are two fundamental questions that arise:

(1) How do nodes realize that they have all the messages;

(2)Can we ensure that consensus is achieved through this process.

The answer to the second question lies in Lemma 3.1, which asserts that the data fusion is invariant

to order of reception. Consequently, we are left to address the first requirement. Here we invoke

the secondary distributed computation scheme described in Figure 1 and Section 3. Each active

node at time t has its individual variable count. During the CFLD phase each node forwards this

count variable in addition to its fused value. Each node can then determine whether it has received

all the messages by updating its private count variable.

There are three principal advantages for combining CRW and CFLD:

(A) Consensus is obtained in finite time.

(B) CRW slows down when there are few tokens increasing time complexity. The two phase

algorithm substantially improves time complexity.

(C) Analytical bounds for message and time complexities for general graphs can be established.

This is because it is easier to determine the expected number of tokens left in the system at any

time.

Next we will present message and time complexity for the combined algorithm. Recall the n-node

communication graph G = (V,E) with link set E and nodes V ; Let dv denote the degree of node

v ∈ V ; and diam(G) denote the diameter of the graph.

To simplify the exposition we denote,

N(t) = E

[
n∑
i=1

ξi(t)

]
(4)

Note that 1 ≤ N(t) ≤ n and N(0) = n, and ξi(t) is as before the state of node i at time t.

We compute the time it takes for the expected number of active tokens to be below some positive

integer γ. This leads to the following definition.

Definition 5.1 γ-time complexity is the time Tγ it takes for the CRW on an n-node graph to have

an average of γ active tokens left in the system, i.e.,

Tγ = min {t ≥ 0 | N(t) ≤ γ} , γ = 2, 3, . . . , n

Observe that unlike the termination time, τC defined in the Section 3.2, Tγ is no longer a random

variable, which as we will see in Section 6 will simplify our analysis.

Define message complexity for the CRW until time t:

MC(t) =

∫ t

0
N(s)ds. (5)

The time complexity, T, is the sum of the time complexities corresponding to the two phases.

Consequently, for the case when all the tokens during the CFLD phase are transmitted at a unit
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rate we have:

T ≤ Tγ +O(diam(G)) (6)

Theorem 5.1 The overall message complexity, M(t) for the two phase scheme where nodes follow

CRW upto time t and CFLD after time t is less than M(t) + 2(
∑

v∈V dv)N(t). For t = Tγ, the

overall message complexity is less than MC(Tγ) + 2(
∑

v∈V dv)N(Tγ).

Proof. Suppose, the CFLD phase starts at time t then the overall number of messages, η(t) is the

sum of messages transmitted during the CRW phase, ηC(t), and that transmitted during the CFLD

phase, ηF (t) starting at time t. Specifically, we have η(t) = ηC(t) + ηF (t). Taking expectations on

both sides we obtain: E(η(t)) = M(t) + E(ηF (t)). We can simplify the expression for the second

phase by noting that(see [6]), E(ηF (t)) ≤ 2(
∑

v∈V dv)N(t). The proof now follows by substitution.

�

6 Time and Message Complexities for General Graphs

This section describes techniques for estimating the message and time complexity of CRW for gen-

eral graphs in both continuous and discrete time settings. Bounds for SRW reduces to computation

of cover times. Cover time bounds for many of the graphs considered in this paper are available in

the literature and we do not develop these results here.

To develop results for CRW we will follow the two-phase procedure outlined in the previous section.

The advantages of the two-phase algorithm has already been outlined in Section 5. We recall one

main advantage that is pertinent here, namely, from Theorem 5.1 it follows that we do not have to

seek bounds for the stopping times τC . Rather we only need to determine the expected number of

active tokens at a deterministic time t.

This section is organized as follows. First we establish straightforward results for general graphs

based on bounds on the worst-case mean hitting time. We show that the number of active tokens

at time t decays as O(n exp(− t
σ )), where σ is the worst-case mean hitting time on the graph. We

compute σ network-circuit resistance analogy. We then compute complexity bounds for a number of

graphs such as expanders and meshes. While this bound is general, it turns out to be conservative

in estimating the message complexity. The main reason is that the worst-case mean hitting time is

generally large for many graphs and a local analysis is required. This motivates a careful study of

message complexity based on local analysis of random walks. Specifically, we consider graphs with

geometric structure. We show that for such graphs the message complexity scales as O(log2(n))

paralleling our results for the torus in Section 4.

As before let Xt denote the state of a random walk on a graph G = (V,E). For continuous time

we consider unit rate random walks and assume that multiple random walks are independent.

Analogously we also consider discrete time independent simple symmetric random walks and al-

low self-loops in the graphs. Our definitions and results typically apply to both continuous and
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discrete setups based on the so called jump-and-hold description1 and a continuization argument

as described in [2]. Nevertheless, wherever appropriate we will point out specifically whether our

results apply to discrete or continuous time scenarios.

Analogous to Equation 5 for the continuous time setup, the message complexity in the discrete

setup is given by,

MC(t) =
t∑

s=0

N(s) (7)

We denote the first hitting time of node v by Tv, i.e., Tv = inf{t ≥ 0 | Xt = v}. We also denote by

Tvw the hitting time for a random walk starting at v and hitting w for the first time.

Tvw = inf{t ≥ 0 | X0 = v, Xt = w}

The worst-case hitting time is denoted as σ, i.e.,

σ = max
v,w∈V

E(Tvw)

Let Cvw be the first time that two independent unit rate continuous time random walks, Xt, Yt,

on graph G = (V,E) started at nodes v and w coalesce(meet), i.e.,

Cvw = inf{t ≥ 0 | Xt = Yt, , X0 = v, Y0 = w}

The meeting times for two independent copies of random walks in continuous time is related to the

worst-case hitting time. Specifically, Aldous [2] (Proposition 5, Chap 14) uses Martingale arguments

to show that,

max
v,w

E(Cvw) ≤ σ (8)

Let αs(A) denote the worst-case coalescing time probability on a subset A ⊂ V , i.e.,

αs(A) = min
v,w∈A

Prob(Cvw ≤ s) (9)

Note that by union bounding we obtain, αs(A) ≥ αs(V ). Now through Markov inequality together

with Equation 8 we get a bound on the probability of meeting time, i.e.,

αs(A) ≥ αs(V ) ≥ 1− σ

s
(10)

1Specifically, as described in [2] the continuous walk can be constructed by the two step procedure, namely, (1)

Run a discrete time chain with the simple symmetric transition matrix; (2) Given the sequence of states, vj ∈ V, j =

1, 2, . . . ,m visited by the discrete time chain, the duration of time spent at each state, vm is a unit rate exponentially

distributed random variable. This continuization is particularly useful since useful quantities such as mean hitting

times etc. in the continuous case corresponds directly to the mean number of discrete time steps required in the

discrete time chain.

16



We next consider decomposition of the original graph into disjoint subgraphs and bound the total

coalescing time by the union of the coalescing times for the subgraphs. Let btc denote the greatest

integer smaller than t. Suppose Ai, i = 1, 2, . . . , m(t) be a partition of the vertices of the graph

and At denotes the collection, i.e.,

m(t)⋃
i=1

Ai = V, Ai
⋂
Aj = ∅, i 6= j, At = {A1, A2, . . . , Am(t)}

The worst-case coalescing time, αs(At), over this sub-collection is defined by

αs(At) = min
1≤j≤m(t)

αs(Aj) (11)

Theorem 6.1 Consider the partition of the graph into subsets, {Ak}, as described above. Suppose

1 ≤ m(t) ≤ N(t)
2 i.e., the number of partitions is smaller than one half the expected number of active

tokens at time t. It follows for both continuous and discrete time setups that,

N(t+ s) ≤ N(t) exp

(
−1

2
αs(At)

)
; 0 ≤ s ≤ t, N(t) ≥ 2. (12)

Furthermore, suppose t ≤ r ≤ r + s ≤ 2t and the number of partitions are chosen such that

1 ≤ m(t) ≤ N(t)
4 and N(t) ≤ 2N(2t), then it follows that,

N(2t) ≤ N(t) exp

(
−
⌊
t

2s

⌋
αs(At)

)
; 0 ≤ s ≤ t, N(t) ≥ 2. (13)

The proof of the theorem appears in the appendix and is based on the arguments presented in

Cox [8] for the torus. We exploit the salient steps there to extend it to general graphs.

Observe that if the coalescing time of two walks is a constant then the number of active tokens

decreases exponentially fast. However, the meeting time can be large, namely, the probability that

two walks meet in a short time can be very small. Note that since 0 ≤ αs(At) ≤ 1 the right hand

sides of Equation 12 is larger than N(t)/
√
e. Consequently, Theorem 6.1 is not useful for large

incremental times s. Therefore, this result will be used as an intermediate step in an iterative

process over many increments to provide useful bounds.

We will now use Theorem 6.1 to prove the γ time and message complexities for arbitrary connected

graphs. We have the following theorem.

Theorem 6.2 Consider the algorithm CRW on an arbitrary connected graph, G = (V,E). The γ

time complexity for γ ≥ 2 scales2 as O(σ log(n/γ)). The γ message complexity for γ ≥ 2 scales as

O(nσ log(n/γ)).

Proof. In Theorem 6.1 we choose a single partition, i.e., At = {V }. For this case we note that the

worst-case meeting time αs(At) = αs(V ). Consequently, we can apply Markov inequality described

2The O(·) notation here and in the rest of this section for time and message complexity implies that the bound

holds for sufficiently large time for a fixed n-node graph.
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by Equation 10 to obtain αs(V ) ≥ 1−σ/s. This bound only makes sense if s > σ. We choose time

increments s = 2σ and partition T = 4σ log(n/γ) into 2 log(n/γ) increments. For each increment s

we obtain from Equation 13 that,

N(t+ s) ≤ N(t) exp(−(1− σ/s)) = N(t) exp(−1/2)

Repeating this 2 log(n/γ) times we get

N(T ) ≤ N(0)(exp(−1/2))2 log(n/γ) = γ

where the last equality follows from the fact that N(0) = n. The γ message complexity directly

follows from Equation 5. �

In the next section we will now apply Theorem 6.2 for specific graphs to obtain bounds on time

and message complexities.

6.1 Time and Message Complexity Based on Hitting Time Characterization

Our goal in this section is to use well known bounds on hitting times for some well known graphs

together with Theorem 6.2.

For general graphs Aleliunas et al [3] showed a general upper bound σ = O(|E||V |), for the worst-

case hitting time, where |E| is the number of edges and |V | is the number of nodes (vertices). If

the maximal degree of the graph is Dmax then |E| ≤ nDmax and |V | = n. This implies that the γ

time complexity scales as

Tγ = O
(
n2Dmax log(n/γ)

)
We note that this result is generally conservative in comparison to the time complexity of 2D torus

described in the previous sections. This is because this hitting time bound is conservative. We

invoke resistance characterization of hitting time to obtain sharper bounds.

6.1.1 Resistance characterization for Connected graphs

Chandra et al[9] establish bounds for hitting time between any two nodes based on resistance

of electrical networks. Note that the resistance bounds apply generally to discrete time walks.

However, note that there is a close relationship between the discrete and continuous time random

walks based on the so called jump-and-hold description described earlier, which results in similar

results for continuous time with appropriate time scaling.

The electrical network is obtained by replacing each edge in the graph with a one-ohm resistor. It

turns out that the worst-case mean hitting time satisfies

σ ≤ max
u,v∈V

2|E|ρuv
∆
= ρ∗ (14)
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where ρuv is the effective resistance between nodes u and v. Consequently, if Dmax is the maximum

degree for the graph and ρ∗ is the maximum effective resistance between any two nodes in the

network, we get

Tγ ≤ 2n log(n/γ)Dmaxρ
∗ (15)

Expander Graphs: An (n,Dmax, α) expander is a graph G = (V,E) on n vertices of maximal

degree Dmax such that every subset A ⊂ V satisfying |A| ≤ n/2 has |N(A)−A| ≥ α|A|, where

N(A) = {v ∈ V | (u, v) ∈ E, u ∈ A} (16)

For an (n,Dmax, α) expander graph with minimum degree Dmin, the worst-case resistance is equal

to

ρ∗ =
24

α2(Dmin + 1)
.

Consequently, the γ time complexity scales as:

Tγ ≤ 48
n log(n/γ)Dmax

α2(Dmin + 1)
, γ ≥ 2

For an expander graph, where Dmin ≈ Dmax we get a γ time complexity scaling as

Tγ = O(n log(n/γ))

We note that this result is close to the time complexity bounds obtained for a completely connected

network in the previous section.

2D Mesh: From the resistance calculations it turns out that

ρ∗ = O(log(n))

for 2D mesh [9] with n nodes. Consequently, for the 2D mesh we obtain

Tγ = O(n log2(n/γ)), γ ≥ 2

This is within a log(n) factor of the bound obtained for the 2D torus using more elaborate martingale

calculations in the previous section. Note that unlike the 2D torus the 2D mesh is not symmetric

and results of the previous section cannot be directly applied here.

Random Geometric Graphs (RGG): A 2D Random Geometric Graph with n nodes and radius

r(n), denoted by Gr(n) = (V,E), is a graph where nodes are uniformly distributed in the unit square

and (u, v) ∈ E if and only if the Euclidian distance between nodes u and v is smaller than or equal

to r(n).

It is well known that when the radius of connectivity is chosen as r(n) =
√

2 log n/n, the graph is

connected with high probability. Furthermore, Avin and Ercal [4] (Theorem 5.3) show that, with

high probability, the resistance scales as

ρ∗ = O(1/nr2(n))

19



and the number of edges scales as |E| = O(n2r2(n)) (see [4] Corollary 3.5) for this choice of

connectivity radius. Consequently, the worst-case mean hitting time scales as σ = O(n) with high

probability. This implies that for geometric random graphs with r(n) =
√

2 log n/n the γ time

complexity scales as

Tγ = O(n log(n/γ)), γ ≥ 2.

While the time-complexity bounds obtained using resistance characterization appears to be tight

for several cases, the γ-message complexity is overly conservative. This is because the worst-case

mean hitting time, σ is Ω(n) in general. Theorem 6.2 implies that the γ message complexity

scales as O(n2 log(n)) even for a 2D torus. This is significantly weaker than the complexity bounds

obtained for the torus in Section 3.2. Motivated by these reasons we develop a new characterization

of message and time complexities based on local geometric analysis of random walks.

6.2 Logarithmic Bounds for Message Complexity

The main conservatism in Theorem 6.2 arises from the fact that the meeting time is bounded in

terms of the worst-case hitting time. Specifically, if two random walks start relatively close to each

other we expect that the meeting time is relatively small, i.e., the meeting time should typically

scale with initial distance between the two walks. In this section we develop these ideas further

for graphs that have a geometric neighborhood structure. We focus on discrete time walks since

the analysis is technically simpler. Each active token follows an independent, simple, symmetric

random walks on the graph G = (V,E). Specifically, at each step an active token moves to a

neighbor of its current location, chosen uniformly at random and the moves of all the active tokens

are synchronized (this assumption is not restrictive since we allow self-loops).

The basic idea is based on local behavior of random walks. Specifically, it turns out that for

graphs that are endowed with a geometric neighborhood structure it is possible to characterize the

probability that two random walks meet in terms of their initial graph distance. We emphasize that

while in general there is always a non-zero probability that two random walks meet, this probability

has often been characterized in terms of the entire graph. Indeed this was the basic reason for the

conservatism of resistance based bounds derived in the previous section. Therefore, to overcome

this issue we will develop results based on local behavior of random walks. Our main result in this

section (see Theorem 6.3) will establish that under certain regularity conditions on the graph the

expected number of active tokens at time step t decays inversely with t, i.e.,

N(t) = O

(
n log(t+ 1)

t

)
, N(t) ≥ 2 (17)

We again emphasize that the O(·) notation above and in the rest of this section refers to time

asymptotics for a fixed n-node graph. The result implies a bound on both γ time complexity and γ

message complexity. The γ time complexity scales as

Tγ ≤ C
n log(n)

γ
, γ = 2, 3, . . . , n
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Note that the γ time complexity bounds are order-wise similar to those derived using resistance

arguments in the previous section. However, the main advantage here is that we can now obtain a

bound on message complexity based on Equations 7, 21:

M(Tγ) ≤ C
Tγ∑
t=1

n log(1 + t)

γt
≤ Cn

γ

(
log2(n) + o(log(n))

)
(18)

Thus the message complexity per node scales as n−1ηγ = O(log2(n)).

This result is based on the fact that for many graphs the probability that two walks at a distance

R meet in time R2 is bounded from below by the 1/ log(R). To precisely describe these ideas we

introduce some notation. Let d(u, v) be the graph distance between the nodes u, v ∈ V , i.e., the

minimal number of edges in any edge path connecting u and v. We denote by B(u,R) the ball

centered at node u and radius R, i.e.,

B(u,R) = {v ∈ V | d(u, v) < R}

The volume of a set, A ⊂ V , denoted by V ol(A), is the number of edges contained in the ball. The

volume of the ball, B(u,R) is denoted by V ol(u,R) for simplicity. Note that if dv is the degree of

node v then we have,

V ol(u,R) = V ol(B(u,R)) =
∑

v∈B(u,R)

dv

Next we denote by P (u, v) the 1-step transition probability of going from node u to node v. Since

we consider simple symmetric random walks, this transition probability is the inverse of the degree

of node u if u and v are connected and zero otherwise. We also use Pt(u, v) to denote the t-step

transition probability for going from u to v. We next present a precise characterization when

Equation 17 holds. We will see that this bound holds when one has a geometric neighborhood

structure as described below:

Definition 6.1 A Graph G = (V,E) is said to satisfy a geometric neighborhood structure if there

exists constants, C0, C1 such that

C0R
2 ≤ |B(u,R)|; |B(u,R)

⋂
B(u,R+ ∆)| ≤ C1∆R, ∀ u ∈ V, 0 < ∆ ≤ R. (19)

where, 0 ≤ R ≤ Rmax and Rmax is the diameter of the graph.

Typically a graph that is approximately regular and has a geometric neighborhood structure sat-

isfies such a property. The geometric random graph described earlier asymptotically satisfies the

geometric neighborhood property. Indeed, note that due to the uniform distribution of the nodes

in the unit cube this property is satisfied for sufficiently large n with high probability (see [4] for

more details). The theorem below will evidently require only the lower bound. However, it turns

out that to ensure a suitable bound on the meeting time probability the upperbound will also be

necessary.
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Theorem 6.3 Suppose the graph G = (V,E) has a geometric neighborhood structure as described

in Equation 19 and the meeting time probability satisfies:

αt2(B(u, t)) ≥ C2

log(t)
, t > 0, u ∈ V (20)

for some constant C2 independent of time t. Note that αt2(B(u, t)) is the meeting time probability

(see Equation 9) for any two walks starting in the ball B(u, t) in time t2. Then the expected number

of active tokens at time step t satisfies

N(t) ≤ C
(
n log(t+ 1)

t

)
, t ≥ 1 (21)

where C = 16
C0

max(8, log(2)
C2

) when the number of active tokens is greater than 4.

Note that smaller the constant C0 the larger the number of active tokens at time t. We are now left

to determine the conditions under which Equation 20 is satisfied. Surprisingly, it turns out that

the logarithmic bound holds if:

(a) The t-step transition probability is approximately Gaussian.

(b) Geometric neighborhood property as described in Theorem 6.3 holds.

This result is stated below.

Lemma 6.1 Consider the graph G = (V,E) satisfying the geometric neighborhood property as

described in Equation 19. Suppose the t-step transition probability satisfies the so called Gaussian

bound, i.e.,

C3

t
exp

(
−d

2(u, v)

C4t

)
≤ Pt(u, v) + Pt+1(u, v); ∀ u, v ∈ V, 1 ≤ d(u, v) ≤ t (22)

where C3, C4, are positive constants independent of time. Then the probability of meeting time

satisfies Equation 20 for some suitable constant C2. Consequently, these conditions also imply the

γ message complexity bound described by Equation 21.

Note that the Gaussian t-step transition estimate bounds the sum of the transitions at t and t+ 1.

Note that for bi-partite graphs we must have either Pt or Pt+1 equal to zero. Therefore, we cannot

hope to improve this situation in general. However, if each node has self-loops it turns out that we

can lower bound the t step transition probability directly, i.e., for non-bipartite graphs we have

C3

t
exp

(
−d

2(u, v)

C4t

)
≤ Pt(u, v); ∀ u, v ∈ V, 1 ≤ d(u, v) ≤ t (23)

Our problem now reduces to finding those graphs that satisfy the t-step Gaussian transition prop-

erty. It turns out that weak homogeneity conditions lead to the Gaussian t-step transition property.

We describe what these conditions are next.
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Volume Doubling Property: A graph G = (V,E) is said to satisfy volume doubling property

if volume of a ball centered at any point, u, with increasing radius satisfies

V ol(u, 2R) ≤ C5V ol(u,R), ∀ u ∈ V, R > 0 (24)

We again point out that a 2D mesh satisfies such a property. The volume at a graph radius R and

2R is smaller than R2 and 4R2 respectively for any R. A similar result holds for random geometric

graphs(RGG) due to the so called geo-dense property [4]. For a constant µ ≥ 1, a graph is said to

be µ-geo-dense if every square bin of size A ≥ r2(n)/µ (in the unit square) has nA nodes. Recall

from Section 6.1.1 that any two nodes at a Euclidean distance r(n) is connected. Lemma 3.2 of [4]

shows that with high probability if r2(n) = cµ log(n)/n then RGG is µ geo-dense. Furthermore,

if RGG is µ geo-dense then, (i) Each node, v, has degree dv = Θ(nr2(n)); (ii) |E| = Θ(n2r2(n)).

Consequently, we immediately see that the volume doubling property holds since RGG is evidently

close to a 2D mesh in terms of volumes at the different radii except for a log(n) factor.

Constant Resistance Property: For any subsets A ⊂ B ⊂ V consider an electrical network

with one-ohm resistors for each edge on the graph G = (V,E). Define the resistance, ρ(A,B),

between A and B as the power dissipated when a one-volt potential is applied to all the nodes in

A and the nodes in the complement of B, i.e., Bc are all grounded. The graph G = (V,E) is said

to satisfy the constant resistance property if:

C6 ≤ ρ(B(u,R), B(u,MR)) ≤ C7 (25)

where M is any number larger than one and C6 and C7 are constants that can depend on M but

not on R.

Again consider first the example of a 2D mesh. Due to symmetry all the nodes at distance R+ ∆

have the same potential. Consequently we can short all the nodes at this distance. Due to the

geometric neighborhood property, there are about R + ∆ nodes connected to nodes at a distance

R+ ∆− 1. Since this is a parallel set of resistances the effective resistance is 1/(R+ ∆). Summing

over these resistances we obtain,

ρ(B(u,R), B(u,MR)) =
MR∑
∆=1

1

R+ ∆
≈ log(

MR

R
) = log(M)

which establishes the fact. A similar but more elaborate argument is required for RGG. Basically

the short cut principle along with the geo-dense property ensures a lower bound of Ω(log(M)). To

obtain an upper bound we need to construct a flow along the lines of [4] that satisfies the Kirchoff

current law.

Uniform Isoperimetry Property: We consider the subgraph, G(u,R), formed by restricting

the graph G = (V,E) to the subset of vertices in the ball, B(u,R). Consider any partition of

23



G(u,R) into S, Sc. We say that the graph G = (V,E) satisfies a uniform isoperimetry property if

for every u and every R we have,

C8

R
≤ Cut(S, Sc)

min(V ol(S), V ol(Sc))
(26)

where C8 is some constant independent of R and Cut(S, Sc) =
∑

u∈S, v∈Sc 1u,v.

For the 2D mesh this is a well-known property (see [10]). The corresponding property for an RGG

is a direct consequence of Theorem 4.1 of [4].

We are ready to state our result.

Lemma 6.2 Consider a graph G = (V,E) that is in general infinite and satisfies the properties de-

scribed in Equations 24, 25, 26, then the t-step transition probability satisfies the Gaussian estimate

described in Equation 22.

Proof. The proof is a direct consequence of the results in Merkov [17] and Grigoryan and Telcs

[13]. Theorem 3.1 in Grigoryan and Telcs [13] states that if a graph G = (V,E) satisfies the volume

doubling property, the resistance property and the Elliptic Harnack Inequality, the t-step transition

matrix satisfies Equation 22. Merkov [17] shows that the isoperimetry property implies the Elliptic

Harnack inequality. �

6.3 Message and Time Complexity for Achieving Consensus

We will utilize Theorem 5.1 to characterize message and time complexity for achieving consensus

in general graphs. For general graphs we note from the resistance arguments of Equation 15 that,

Tγ ≤ 2n log(n/γ)Dmaxρ
∗ =⇒ T ≤ Tγ +O(diam(G)) ≤ 2n log(n/γ)Dmaxρ

∗ +O(n)

As we described earlier this bound is not useful for characterizing message complexity. To obtain

better bounds we restrict our attention to graphs satisfying volume doubling, constant resistance

and uniform isometry described in the previous section. We note that the message complexity from

Theorem 5.1 can be bounded as:

M(Tγ) ≤MC(Tγ) + 2γ
∑
v∈V

dv ≤ O(
n

γ
log2(n)) + 2γ

∑
v∈V

dv

where, dv is the degree of node v and we have used Equation 18 to determine a bound on MC(Tγ).

We now let γ = log(n). It follows that the message complexity for the two phase scheme is:

M(Tγ) ≤ O(n log(n)) + 2γ
∑
v∈V

dv =⇒ M(Tγ) ≤ O(n log(n))

where in the final inequality we have used the fact that dv ≤ 4 for two-dimensional Grid graphs.

The time complexity for grid graphs follows from Equation 6,

T ≤ Tγ +O(diam(G)) ≤ O(n)
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where we note that Tγ for γ = O(log(n)) scales as O(n) and O(diam(G)) scales as O(
√
n).

For RGG we note that with high probability the number of links is of O(log(n)). Consequently,

following along the same lines as the previous computation for 2D grid graphs we obtain

M(Tγ) ≤ O(n log2(n))

By noting that for RGG diam(G) = O(
√
n/ log(n)) we get a bound on the time complexity:

T ≤ O(n log(n/γ)) +O(diam(G)) ≤ O(n)

6.4 Numerical Results

Numerical verification of the analytical results of Table 1 on a 2 − d torus is presented in Fig. 4.

Figure 4 provides a summary of numerical simulations for time and message complexities of CRW

on 2-dimensional tori of varying sizes.

An important consideration is that GOSSIP achieves consensus at all nodes while SRW and CRW

realize their solution at a random node. Therefore, strictly speaking for the comparisons to be

meaningful we need to add the time and message complexities to obtain similar consensus estimates

for SRW and CRW. We can obtained consensus through CFLD. The time complexity of CFLD for

torii scales as O(
√
n), which is insignificant relative to time complexity of SRW/CRW. Message

complexity-per-node of CFLD on torii scales as O(log(n)), which is again insignificant relative to

message complexity of CRW O(log2(n)). Consequently, the qualitative nature of the plots is similar

even when we incorporate these additional costs.

We also simulate numerically time and message complexity for random geometric graphs. To

simulate a 2 dimensional geometric random graph we distributed n nodes in a unit square and

formed edges whenever two nodes were at a distance smaller than
√

2 log n/n. We discarded

graphs that were not connected. Again to compare CRW/SRW against GOSSIP consensus costs

must be incorporated. We can obtained consensus through CFLD. The time complexity of CFLD

for RGG scales as O(
√
n/ log(n)), which is insignificant relative to time complexity of SRW/CRW.

Message complexity-per-node of CFLD on RGG scales as O(log(n)), which is again insignificant

relative to message complexity of CRW O(log2(n)). Consequently, the qualitative nature of the

plots is similar even when we incorporate these additional costs.

We next describe Gossip algorithm as studied in [7] for the sake of completion. Gossip algorithms

refer to distributed randomized algorithms that are based on pairwise relaxations between randomly

chosen node pairs. In the present context a pairwise relaxation refers to averaging of two values

available at distinct nodes. In what follows a stochastic matrix P = [Pij ]n×n is called admissible

for G if Pij = 0 unless nodes i and j are neighbors in G. The algorithm is parameterized by such

a P :

Algorithm GOSSIP-AVE(P ): Each node i maintains a real valued variable with initial value zi(0) =

xi. At the tick of a local Poisson clock, say at time to, node i chooses a neighbor j with respect to
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Figure 4: Average execution times and message complexities per node for CRW and GOSSIP on the 2-

dimensional torus with n nodes. Note for an accurate comparison time and message complexity of CFLD

needs to be added to that of CRW. Nevertheless, both time and message complexity are insignificant relative

to that of CRW (see Section 6.3) for the torus.

the distribution (Pij : j = 1, 2, · · · , n) and both nodes update their internal variables as zi(to) =

zj(to) = (zi(t
−
o ) + zj(t

−
o ))/2. We associate each node with a real value and consider the problem of

computing its mean value. In order to make a fair comparison of GOSSIP-AVE with CRW and SRW we

need to use a stopping criterion for GOSSIP-AVE. Let x̄ denote the average of x1, x2, · · · , xn, let z(t)

denote the vector (z1(t), z2(t), · · · , zn(t)) of node values at time t, and 1 denote the vector of all 1s.

Define τk as the kth time instant such that some local clock ticks and thereby triggers messaging

in the network. For ε > 0 let the deterministic quantity K(ε, P ) be defined by

K(ε, P ) = sup
z(0)

inf

{
k : Pr

(
‖z(τk)− x̄1‖2
‖z(0)‖2

> ε

)
6 ε

}
.

In [7] K(ε, P ) is considered as a termination time for Algorithm GOSSIP-AVE(P ) and minimization

of K(ε, P ) is sought by proper choice of P . Here we adopt the same interpretation for compar-

ison purposes. It should perhaps be noted here that this is a fairly weak stopping criterion as

‖z(τK(ε,P ))− x̄1)‖∞/|x̄| may be much larger than ε.

The numerical results of average number of messages and run times for 2-D torus appear in Figure 4.

The corresponding results for geometric random graphs and a illustrative comparison with Gossip

is presented in Fig. 5. We have also plotted a bound 2 log(n) for comparison purposes. Notice that

from the scale of the two plots it should be clear that the bound will have a similar qualitative

relationship to the message complexity for the torus. These bounds reveal that the empirical

per node message complexity appears to be closer to O(log(n)) which is much smaller than the

O(log2(n)) theoretical message complexity bound of Equation 18. One possibility for this difference

is that our theoretical message complexity bound is for worst-case distribution of initial node values,
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Figure 5: Average run times and number of messages per node on random geometric graphs (RGG).

The solid curve represents simulation results for CRW, the dashed curve for SRW whereas the dotted curve

represent lower bounds for GOSSIP-AVE(P ) based on a lower bound for K(ε, P ). Note also that exact value

of Fn(x1, x2, · · · , xn) is obtained at the termination of CRW or SRW whereas no such claim can be made for

GOSSIP-AVE(P ). Note for an accurate comparison, time and message complexity of CFLD needs to be added

to that of CRW. Nevertheless, for RGG both time and message complexity are insignificant relative to that

of CRW (see Section 6.3).

while the empirical result is for an average case distribution of the node values.

7 Appendix

7.1 Proof of Theorem 6.1

We follow the argument of [8] and provide a detailed proof to point out that the proof goes through

for general graphs. The proof applies to both discrete and continuous settings and basically utilizes

Markovianity. Let ΛB(t) : t ≥ 0, B ⊂ V denote the occupied nodes (state) at time t of a coalescing

random walk whose initial state is B. Observe that irrespective of the initial state, B, if 0 ≤ s ≤ t,
E(|ΛB(t)|) ≤ E(|ΛB(s)|).

We then have the following lemma:

Lemma 7.1 Suppose (Xt | t ≥ 0) is a simple symmetric unit rate continuous time random walk

on graph Γ and B ⊂ A ⊂ V , then

E[|ΛB(s)|] ≤ |B| − (|B| − 1)αs(A). (27)

Proof. If B = ∅, Equation (27) trivially holds therefore assume B is non-empty. Our approach

is to find an upper bound for the number of coalescences occurring in the time interval [0, s]. Our
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analysis begins with starting random walks with active tokens at v ∈ B\w and at w, and see

whether their paths ever meet. To formalize this approach define an indicator function I(·) to

indicate whether or not active tokens v and w meet in time t. Then,

Z(s) =
∑

v∈B\w

I(Cv,w ≤ s) (28)

the random quantity Z(s) is the number of active tokens B\w which coalesces with w at some time

0 ≤ t ≤ s. It follows through conservation of active tokens that,

|ΛB(s)| ≤ |B| − Z(s)

Now,

E(Z(s)) =
∑
v 6=w

Prob(Cvw ≤ s) ≥ min
v,w∈B

Prob(Cvw ≤ s)(|B| − 1) = αs(A)(|B| − 1)

The result now follows by taking expectations on both sides in Equation 28 and substituting the

above expression. �

Now consider the partition Ai, i = 1, 2, . . . , m(t) of the vertices of the graph as in the hypothesis

of the theorem and let Bj = Aj ∩B.

Lemma 7.2 |ΛB(s)| ≤
∑m(t)

j=1 |ΛBj (s)| ∀ s ≥ 0

Proof. Let cij(s) be the number of active tokens starting in Ai and coalescing with active tokens

starting in Aj . Then,

|ΛB(s)| =
m(t)∑
j=1

|Bj | −
m(t)∑
i=1

m(t)∑
j=1

cij(s) ≤
m(t)∑
j=1

(|Bj | − cjj(s)) =

m(t)∑
j=1

|ΛBj (s)| (29)

�

Now using the Markov property we can upperbound the number of active tokens at any time as

follows. In the beginning all the nodes of the graph G = (V,E) are active. Hence we need to

analyze N(t) = E [|ΛV (t)|]. Suppose Oi ⊂ V be an arbitrary subset of V . Since V is finite the

collection of all subsets, {Oi, i ∈ I}, can be indexed by a finite index set I. Denote Oij = Ai ∩Oj .
It follows that,

N(t+ s) = E [|ΛV (t+ s)|] (30)

= E [E [|ΛV (t+ s)| | ΛV (t)]] =
∑
j∈I

Prob(ΛV (t) = Oj)E [|ΛV (t+ s)| | ΛV (t) = Oj ]

(a)
=

∑
j∈I

Prob(ΛV (t) = Oj)E
[
|ΛOj (s)|

]
(b)

≤
∑
j∈I

Prob(ΛV (t) = Oj)

m(t)∑
i=1

E
[
|ΛOj∩Ai(s)|

] =
∑
j∈I

Prob(ΛV (t) = Oj)

m(t)∑
i=1

E
[
|ΛOij (s)|

]
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where, (a) follows from Markovianity, (b) follows from Lemma 7.2. Next, since for all i, j we have

Oij ⊂ Ai ⊂ V we can apply Lemma 7.1 and obtain:

m(t)∑
i=1

E[|ΛOij (s)|] ≤
m(t)∑
i=1

(|Oij | − (|Oij | − 1)αs(At))

= (1− αs(At))
m(t)∑
i=1

|Oij |+m(t)αs(At) = (1− αs(At))|Oj |+m(t)αs(At)

Substituting this result in the inequality (30) we obtain

N(t+ s) = E[|ΛV (t+ s)|] ≤ (1− αs(At))
∑
j∈I

Prob(ΛV (t) = Oj)|Oj |+m(t)αs(At)

= (1− αs(At))E[|ΛV (t)|] +m(t)αs(At) (31)

(a)

≤
(

1− αs(At)
2

)
E[|ΛV (t)|] ≤ exp

(
−αs(At)

2

)
N(t)

where (a) follows from the choice of the number of partitions that it is one half of the number of

active tokens at time t. To prove Equation 13 we note from Equation 31 that for any r and s such

that t ≤ r ≤ r + s ≤ 2t we have,

N(r + s) ≤ (1− αs(At))N(r) +m(t)αs(At) ≤ (1− αs(At))N(r) +
αs(At)

2
N(2t)

≤ (1− αs(At))N(r) +
αs(At)

2
N(r) ≤

(
1− αs(At)

2

)
N(r) ≤ exp

(
−αs(At)

2

)
N(r)

where the third inequality follows from the fact that since r ≤ 2t we have N(2t) ≤ N(r). Now

iterating over s
⌊
t
s

⌋
Equation 13 follows.

8 Proof of Theorem 6.3

We first consider the case where

2 ≤ N(t)

4
≤ N(2t)

2
(32)

This implies that N(t) ≥ 8 and 2N(2t) ≥ N(t). If these assumptions are violated then we are in

the case where either N(t) ≤ 8 or

N(2t) ≤ 1

2
N(t)

First, consider the situation when Equation 32 is satisfied. We will choose the collection At and

the time step s so that assumptions underlying Equation 13 are satisfied. Specifically, we let At be

the collection of balls B(u,Rt) of radius Rt for suitable vertices u ∈ V to cover the graph G. We

select radius, Rt as follows:

Rt =

√
8n

C0N(t)
, s = st = R2

t
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where C0 is the constant satisfying Equation 19. We can assume that, s ≤ t/2. This is because if

this condition is violated then, we have

N(t) ≤ 128n

C0t
(33)

which satisfies the condition of the Theorem and there is nothing to prove.

So we suppose s ≤ t/2. The number of partitions,

m(t) ≤
⌊

n

C0R2
t

⌋
+ 1 ≤

⌊
N(t)

8

⌋
+ 1 ≤

⌊
N(t)

4

⌋
.

This ensures that assumptions underlying Equation 13 are satisfied. Consequently, we get

N(2t) ≤ N(t) exp

(
−
(

t

2R2
t

)
C2

log(Rt)

)
Denoting

ft =
N(t)

n

t

log(t)
, t ≥ 2

and substituting for

Rt =

√
8n

C0N(t)
=

√
8t

C0ft log(t)

we get,

f2t ≤ ft
2 log(t)

log(2t)
exp

(
−
(

t

2R2
t

)
C2

log(Rt)

)
≤ ft exp

(
log(2)−

(
t

2R2
t

)
C2

log(Rt)

)
≤ ft exp

(
log(2)−

(
C0ft log(t)

16

)
C2

0.5 log( 8t
C0ft log(t))

)

≤ ft exp

(
log(2)− C0C2

8
ft

log(t)

log( 8
C0

)− log(ft) + log( t
log(t))

)
where the second inequality follows from the fact that log(t)/ log(2t) ≤ 1. Now we note that

ft ≤ t/ log(t). Consequently, if 8
C0

< ft then

log(t)

log( 8
C0

)− log(ft) + log( t
log(t))

≥ 1.

Also simultaneously if ft ≥ 8 log(2)
C0C2

we get f2t ≤ ft. On the other hand if any of these conditions

are violated we get

f2t ≤ 2 max(
8

C0
,
8 log(2)

C0C2
)

∆
= C̃.

This implies that,

f2t ≤ max
(
C̃, ft

)
=⇒ N(2t) ≤ max

(
C̃
n log(2t)

2t
,
N(t)

2
(1 + 1/ log(t))

)
Finally, we have two cases to consider: (1) if Equation 32 itself is violated we have, N(2t) ≤ 1

2N(t);

(2) Equation 33 holds. In all of these cases Eq. 21 is satisfied and the result follows.
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8.1 Proof of Lemma 6.1

Proof. The proof follows directly along the lines of Pettarin et al [18] (Lemma 9). We provide a

brief sketch of their proof here for the sake of completion. First, let Pt(x, y) denote the probability

that a walk starting at node x at time zero is at node y at time t. Now consider two walks, one

starting at node u and another starting at node w at time zero. Note that the two walks are

independent and they have their own corresponding transition probabilities. Let N(u,w, T0) be

the mean number of times the two walks starting at u and w meet in the time interval [0, T0]. Then

noting that the two walks could meet at any node v at any time t ∈ [0, T0] we obtain,

N(u,w, T0) =

T0∑
t=0

∑
v

Pt(u, v)Pt(w, v)

This is because Pt(u, v)Pt(w, v) is the probability that both walks starting at u and w respectively

are at the same node v at time t. Summing over the different possibilities leads to the above result.

Using this fact Pettarin et al establish that,

αR2(B(u,R)) ≥ N(u,w,R2)

maxv∈B(u,R)N(v, v,R2)
, w ∈ B(u,R)

Here, N(v, v,R2) is the number of times two walks starting at the same node v meet again in

the time interval [0, R2]. The problem now boils down to lower bounding N(u,w,R2) and upper

bounding N(v, v,R2). We are now ready to substitute the Gaussian t-step bounds to establish the

result. Specifically, let

D = {v ∈ V | d(v, u) ≤ 2R, d(v, w) ≤ 2R}

We also note that since B(u,R) ⊂ D and the graph satisfies the geometric neighborhood property

we have |D| ≥ C0R
2. So

N(u,w,R2) =
R2∑
t=0

∑
v

Pt(u, v)Pt(w, v) ≥
R2∑

t=R2/2+1

∑
v∈D

Pt(u, v)Pt(w, v)

≥
R2∑

t=R2/2+1

∑
v∈D

(
C3

t

)2

exp(−d
2(v, u) + d2(v, w)

C4t
)

By bounding d2(v, u) and d2(v, w) with 4R2 we obtain N(u,w,R2) = Ω(1). Next we use the fact

that there are no more than C1k∆ nodes in any annulus of size ∆ at distance k to obtain an

upper bound for N(v, v,R2). Specifically, by taking an annulus of size one, our geometric condition

implies that there are no more than C1R nodes at distance R. So,

N(v, v, T ) =

T∑
t=0

∑
x

Pt(v, x)Pt(v, x) ≤ 1 +

T∑
t=1

t∑
k=1

∑
d(v,x)=k

Pt(v, x)Pt(v, x)

≤ 1 +

T∑
t=1

t∑
k=1

C1k

(
C3

t

)2

exp

(
−2k2

t

)
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The computation of the above sum follows along the same lines as in Pettarin et al (Lemma 9).

It follows that N(v, v, T ) = O(log(T )) which is O(log(R)) for T = R. Consequently, there is a

constant C2 such that,

αR2(B(u,R)) ≥ N(u,w,R2)

maxv∈B(u,R)N(v, v,R2)
=

C2

log(R)
, w ∈ B(u,R)

�
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