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Abstract—This paper examines the ability of greedy algorithms ~ ordinary sparsity, unions of subspaces have been applied to
to estimate a block sparse parameter vector from noisy mease-  estimate signals as diverse as pulse streams [12], [13}j-mul
ments. In particular, block sparse versions of the orthogoal band communications [14]-[16], and block sparse vectors

matchin ursuit and thresholding algorithms are analyzed . .
under bgoth]J adversarial and Gaugsiang noise models. |I)’l/ the [11], [17]-[19], the latter being the focus of this paper.eTh

adversarial setting, it is shown that estimation accuracy emes Ccommon thread running through these applications is the
within a constant factor of the noise power. Under Gaussianoise, ability to exploit the union of subspaces structure in order
the Cramér—Rao bound is derived, and it is shown that the greedy to achieve accurate reconstruction of signals from a vemy lo
techniques come close to this bound at high SNR. The guararg® ,,mber of measurements.

are numerically compared with the actual performance of blak . . o .
and non-blockyalgori?hms, highlighting thepadvantages of bck The block sparsity model is base_d on th_e realization that in
sparse techniques. many practical sparse representation settings, not apatip
patterns are equally likely. Specifically, if a particuléeraent
of x is nonzero, then in many cases “similar’ elements in
x are also nonzero. The precise definition of similarity is
The success of signal processing techniques depends teoatext-dependent. For example, in Fourier-based diaties,
large extent on the availability of an appropriate modelalihi neighboring frequency bins are often jointly nonzero, el
captures our knowledge of the system under consideratiwavelet-based dictionaries, nonzero entries in a certefaild
and translates it to a productive mathematical frameworlgvel are likely to be correlated with nonzeros in higheradet
There is consequently an ongoing search for mathematit@lels. Consequently, the sparsity model does not incatpor
models which can accurately describe real-world signais. &ll of the structure present in the signal. The block sparsit
recent years, much research has been devoted to the spapggoach aims to partially overcome this drawback by par-
representation model, which stems from the observation thisioning the vectorz into blocks, each of which contains a
many signals can be approximated using a small numbersphall number of elements. The structure imposed by the block
elements, or “atoms,” chosen from a large dictionary [1llsparsity modelis that no more than a small nunibef blocks
[3]. Thus, we may writey = Dz + w, where the signal are nonzero. The model thus favors the use of related atoms,
y is a linear combination of a small number of columngather than sporadic dictionary columns. Consequentckbl
of the dictionary matrixD, corrupted by noisew. Since sparsity is well-suited for those situations describedvabm
only a small number of elements @& are required for this which specific atoms tend to be used together.
representation, the vectar is sparse, i.e., most of its entries The usefulness of a model depends on the existence of
equal0. It turns out that the sparsity assumption can be usefficient and effective methods for estimating a signdtom
to accurately estimate from y, even when the number ofits measurements. Fortunately, estimators designed fer th
possible atoms (and thus, the length @f is greater than ordinary sparsity model can be readily adapted to the block
the number of measurements 4n[2], [4], [5]. This model sparse setting. Thus, previous work has described tecksiqu
has been used to great advantage in many fundamental figdJdsh as block orthogonal matching pursuit (BOMP) [19] and
of signal processing, including compressed sensing [1], [2he mixed /5 /¢;-optimization (L-OPT) [11], [18], the latter
denoising [6], deblurring [7], and interpolation [8]. being a block version of the Lasso. In this paper, we also
The assumption of sparsity is an example of a much madescribe a block-sparse version of the thresholding afyuri
general class of signal models which can be described \alsich we refer to as block-thresholding (BTH). The BOMP
a union of subspaces [9]-[11]. Indeed, each support patteind BTH approaches are representatives of a class of smcall
defines a subspace of the space of possible parameter vectesedy algorithms, which attempt to identify the supportof
Saying that the parameter contains no more thamonzero by choosing at each step the most likely candidate. In this
entries is equivalent to stating that belongs to the union paper we restrict attention to these greedy techniques;hwhi
of all such subspaces. Unions of subspaces are proving todpe simpler (and more naive) than convex relaxation teclesiq
a powerful generalization of the sparsity model. Apart frorsuch as L-OPT, and are therefore more suitable for implemen-
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Israel Institute of Technology, Haifa 32000, Israel (edmdizvikabh@tx, Having described various estimation algorithms, it is nat-
yonina@eg.technion.ac.il). This work was supported in part by a Magne ural to ask what can be guaranteed analytically about the
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agreement no. 216715). performance guarantees exists for various algorithms runde
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different noise models. In particular, a distinction is raad Il. PROBLEM SETTING
between adversarial and random noise models. In the forrrAer

case, nothing is known about except that it is bounded, . L .
|[w|2 < ; in particular.w might be chosen so as to maximally The following notation is used throughout the paper. Matri-

harm a given estimation algorithm. Consequently, guaeznt&€S and vectors are denoted by boldface uppercase laiers
in this case are relatively weak, ensuring only that therémo and boldface lowercase letters respectively. Thé, norm of
2 is on the order of [2], [4], [5]. By contrast, when the noise & VECtorv is |[v||z and the spectral norm of a matrd is

is random, estimation performance is considerably immongH' The expgctation of a random vectmrwill_be_d(_anoted
for most noise realizations [4], [20], [21]. E{v} or, occasionallyE.{v}, where the subscript is intended

It | K . fth | hekbl to emphasize the fact that the expectation is a function ef th
tis natural to seek an extension of these results to t Ofeterministic guantitye. The adjoint and the Moore—Penrose

Spé‘lrSiE/ model. In the absef:nce of noise, SUCCE"SffuIIJre’;""’erpseudoinverse of a matridd are denoted, respectively, by
E 0% sparse pa(rquer:er romfmebasEregentg _d % as * and M, while the column space oM is R(M). We
een demonstrated in the past for both BOMP and L-OPT [1}j, e byv[i] the ith d-element block of a vectos of length

[19]. However, to the best of our knowledge, the only resulf, _ Md. Thus

providing analytical guarantees for a block sparse estimat

under noise was given in [11], where the performance of L- v[i] £ [V(i—1)d+15 V(i-1)d+2> - - - i)t 1<i< M. (1)
OPT was analyzed under adversarial noise. The goal of this

paper is to analyze the performance of the greedy algorithfi@nseauently,
BOMP and BTH under both adversarial and random noise v = [,UT[l]’”",UT[MHT' @)
models. As we will see, despite the fact that these greedy

algorithms are simpler and more efficient to implement,rtheSimilarly, given a matrix( havingN columns, the submatrix
performance is close to the optimal achievable results. ~ M{i] contains the column& — 1)d +1,(i — 1)d +2,...,id

Specifically, we first analyze the adversarial noise mod@f M. i-€., those columns oM which correspond to théth
and show that both BOMP and BTH achieve an error on tRiOCk. The supportupp(v) of v is defined as the set of indices
order ofe when the noise is bounded biyw||» < . These ©f nonzero blocks ob; formally
results generalize previous guarantees in several wayst, Fi supp(v) 2 {i : v[i] # 0}. 3)
when each block contains one element, we recover the non-
block sparsity guarantee of Donoho et al. [5]. Second, whé&iven an index set/, the vectorv; is constructed as the
the noise bound equalg), we obtain the noise-free guaranteesubvector ofv containing the blocks indexed b, in other
of Eldar et al. [19]. words, if I = {i1,...,4p}, then

We next turn to the random noise model, and examine in T[i1] vT[z' HT )
particular the case in whiclw is white Gaussian noise. We E Pl
derive the Cramér—Rao bound (CRB) for estimatingrom Likewise, the submatrixM; contains the column blocks
its measurements, and show that this bound equals the efnalexed by, so that
of the “oracle estimator” which knows the locations of the
nonzero blocks ofr. However, while the oracle estimator My = [M[il]v-'-vM[iP]]- ()
relies on information which is unavailab!e in prgcti(_:e, aCirB To uniquely definev; and M ;, we will assume as a conven-
is knqwn to be_ach|evable by the maximum likelihood (ML}ion that the elements of are sorted, i.ed; < io < -+ - < ip.
technique at high SNR. Unfortunately, the ML approach is
NP-complete, and thus can probably not be implemented effi- o
ciently. Nevertheless, we proceed to show that both BOMP aRd Problem Definition
BTH come within a nearly constant factor of the CRB at high Let z € CV be a deterministic block-sparse vector, i.e.,
SNR, for dictionaries satisfying suitable requirementsac® x consists ofM blocks z[1], ..., z[M] of size d, of which
again, when each block contains one element, we can recoaemostk are nonzero [19]. The maximum support sizés
previously known guarantees for non-block sparsity [2@hfr assumed to be known. The block sparsity restriction can then
our results. Furthermore, we show that in typical block sparbe written as
situations, the performance guarantees of block algostram
substantially better than that of non-block techniques.

The rest of this paper is organized as follows. The blodkor convenience, lefS £ supp(x) be the support of the
sparse setting is defined in Section Il, and the BOMP ampérameterz, and lets = |S|. Note the distinction between
BTH technigues are described in Section Ill. The adverbarifa and s: It is known that at mosk blocks are nonzero, but
noise model is then analyzed in Section IV. The treatmethte actual number of nonzero blockss unknown and may
of random noise begins with the derivation of the CRBe smaller thark. In the sequel, it will be useful to define
in Section V, while performance guarantees for this case
appear in Section VI. Finally, the guarantees and the CRB are
compared with the actual performance of BOMP and BTH in
a numerical study in Section VII.

Notation

we may write

'U]:[’U

xc X2 {veRY :|supp(v)| <k}. (6)

|Zimax| £ max ||z[d]]|2,

|xmin| £ %1;1”(12[2]”2 (7)



The block sparse model differs from the more common non- a) Block-Thresholding (BTH)We propose the following
block sparsity setting: in the latter, it is assumed that alsmstraightforward extension of the well-known thresholdalg
number of entries (rather than blocks) in the veciorare gorithm. Given a measurement vectgre C~, perform the
nonzero. To emphasize this difference, we will occasignalfollowing steps:
refer to the non-block sparsity model as “ordinary” or “sgal 1) Compute the correlations
sparsity.

We are given noisy observations pi = |D*[ilyll2, i=1,...,M. (15)
y = Dz +w (8) 2) Find thek largest correlations_ and denote_ thgirAindices
by i1,...,i,. In other words, find a set of indices =
where D € C**" is a known, deterministic dictionary, and {4, ... i,} such thatp; > p; for all i € S andj ¢ S.

w is a noise vector. Our goal is to estimate from the  3) The reconstructed signal is given by
measurementg. It will be convenient to denote thigh column N ) ~
(or “atom”) of D asd;. Thus we have TpTH = argl(ril)ngﬂy — Dz||>. (16)
x:supp(x)=
D= [\dl""’ddx di+1,- - dady o, AN-dt1, .. dn]. (9) b) Block Orthogonal Matching Pursuit (BOMP)The
D1 D[2] D[M] BOMP algorithm, based on the OMP algorithm [22], was first

We assume for simplicity that the dictionary atoms are nopfoposed in [19]. _
malized, ||d;|2 = 1. We also assume that the measurement Given a measurement vectgre C-, perform the following
system is underdetermined, i.e., the number of measuremenePs:

L is less than the number of parameté¥s thus, we must 1) Definer? =y.

utilize the structureX, for otherwise we have no hope of 2) For eact¥ =1,...,k, do the following:

recoveringz from its measurements. Finally, we require that a) Set

for any index setl of size|I| < k, the subdictionaryD; has ip = arg max || D*[i]r 1 5. (17)
full column rank. This latter assumption is needed to ensure i

that after a support set is chosen, one may estinzatsing b) Set

standard techniques for inverting an overcomplete senefli z’ = argmin ly — Dz|[.  (18)
equations, e.g., the least-squares approach. @:supp(&) {1, e}

We will provide performance guarantees for two separate c) Setr! =y — Dx’.
noise models. First, we consider the adversarial setting, i3) The estimate is given bfpone = .

which the noise is unknown but bounded, c) Oracle Estimator:We will find it useful to analyze the

|lw|s < e (10) oracle estimator, which is defined as the least-squarei@olu

. . within the true support set, i.e.,
for a known constant > 0. In this case the goal is to

provide performance guarantees which hold for all values of T, = argmin |z — 3. (19)
w satisfying (10). Second, we treat additive white Gaussian @:supp(@)C5
noise, in which Using the notation introduced above, we have
2
w ~ N(0,0°1I). (11) (Gor)s = (D5Ds)" Dy,
In this casew is unbounded, and the goal will be to provide (Zor)ge =0 (20)
guarantees which hold with high probability.
Following [19], we define the block coherence bf as whereS© = {1,..., M}\S is the complement of the support
1 set S. Note that the term “oracle estimator” is somewhat
pup = max EHD*[z’]D[j]H. (12) misleading, sincé,, relies on knowledge of the true support
17

. setS, and is therefore not a true estimator.
We also define the sub-coherence

UV = maXx

max |d;‘dj|. (13) IV. GUARANTEES FORADVERSARIAL NOISE
1<U<M (£—-1)d+1<i#j<td

We begin by stating our performance guarantees in the case
The block coherence and sub-coherence are generalizafionsf adversarial noise. The proofs of these results are quite

the concept of the coherence, which is defined as technical and can be found in Appendix A.
"w= 1<I-rf-)§zv |d; d;| (14) Theorem 1. Consider the setting of Section Il with adversarial
SUFIS

_ . _ noise(10). Suppose that
and applies to dictionaries regardless of whether they have

block structure. (1=(d=1)v)|zmin| > 26/ 1+ (d — 1)V+(2k—1)dﬂB|me(ax|-)
21
I1l. TECHNIQUES FORBLOCK-SPARSEESTIMATION Then, the BTH algorithm correctly identifies all elements of
For reference and in order to fix notation, we now descritsge support ofz, and its error is bounded by

the two greedy algorithms for which we provide performance . 9 g2
[ZerH — 3 < :
guarantees. 1—(d-1v—(k—1)dug

(22)



Theorem 2. Consider the setting of Section Il with adversariatan sometimes be weaker than that of OMP. Specifically, the
noise(10). Suppose that factor 2¢4/1 4 (d — 1)v in (23) is larger than the analogous
term 2¢ in (25)! This implies that if the sub-coherenceis
(1= (d=1)p)[emin| > 2e3/1 +(d — 1)”+(2k_1)d“3|x“(1i2“3|,') large, block sparse algorithms will not perform as well airth
. . - scalar counterparts. Such a result is to be expected: Highly
Thgn_t, the BO_ME alggrlghrk? identifies all elementswofp(x), correlated dictionary blocks may cause noise amplification
and ts error Is bounded by and in such cases, it may be preferable to separately carrela
g2 24 each atom with the measurements, rather than relying on the
d—1)v—(k—1)dup’ (24) combined correlation of the entire block. Indeed, it would
be quite surprising if a partition ofny dictionary D into

rer‘lr']r;elfglilq(()jwzlng remarks should be made concerning The%'rbitrary blocks could be shown to perform as well as a scalar

" . . . . sparsity algorithm, since the former adds a restrictionton t
e Scalar sparsity:The scalar sparsity setting, in which :
ossible support patterns of the vecter The lesson to be
has no more thak nonzero elements, can be recovered

choosingd — 1. In this case, BOMP and BTH reduce togarned from this analysis is that block sparsity techrsque

their scalar versions, which are called OMP and threshgldinare effective when the dictionary can be separated intokbloc

) whose elements are orthogonal or nearly orthogonal.
respectively, and the block-coherence equals the coherence . AT . .
= ) ¢ Noiseless caserhe situation in whichy = Dz, i.e., no
1 of (14). Theorems 1 and 2 then coincide with the well-known . " ; .
noise is present in the system, has been previously analyzed
results of Donoho et al. [5] for performance of scalar sparse L X .
; . ; in the context of block sparsity in [19]. This setting can be
signals under adversarial noise. As an example (and fordutu

reference), the OMP performance guarantee is given belo recovered by choosing the noise bound- 0. In this case,

“he condition (24) simplifies to
Corollary 1 (Donoho et al. [5]) Let y = Dx + w be a
measurement vector of a signalhaving sparsity|x|jo < k. (d =1+ (2k - Ddpp <1 (28)
Suppose that the coherengeof the dictionaryD satisfies  and Theorem 2 then amounts to a guarantee for perfect
(1= (2 — 1)) > 2. o5) recovery ofx if (28) holds. This result folr the noise-free
[minl (1= ( ) c (25) setting has been previously demonstrated in [19, Thm. 3].
Then, OMP recovers the correct support patternaofand Similarly, by substituting = 0 into Theorem 1, one obtains

o~ 2
€T — x5 <
|| BOMP ||2 =17 (

achieves an error bounded by a perfect recovery condition for BTH in the noiseless sgttin
, 2 Specifically, if the condition
[Zomp — 2|2 < —F——— (26)
1= (k=1 (d— DwlZmaxl o _ 1y, <1 (29)
Note that in the case of ordinary sparsity,= 1, and |Zamin]
therefore|zmin| can be defined simply as the magnitude dé satisfied, then BTH correctly recovetsfrom its noiseless
the smallest nonzero elementin measurementg = Dx.

e Benefits and limitations of block sparsity:is interesting Since BTH is a much simpler algorithm than BOMP, it is
to compare the achievable performance guarantees when paesurprising that the necessary condition (29) for BTH is
utilizes the block-sparse structure, as opposed to mesdyggu somewhat stronger than the corresponding condition (28) fo
ordinary (scalar) sparsity information. For concreteness BOMP. This difference between the conditions is indicatfe
focus in this discussion on a comparison between OMP atieg different strategies employed by the two techniqued, an
BOMP, but identical conclusions can be drawn by comparingll be further discussed in Section VI.
the thresholding algorithm with its block-sparse versiortB e Severity of the errorAs in the scalar sparsity scenario, the

Consider a block sparse signalas defined in Section Il. presence of adversarial noise severely limits the abifitsgriy
Such a signal can also be viewed as a scalar sparse signalgbrithm to perform denoising. This is evident from Thense
length N = Md, having no more thard nonzero elements. 1 and 2, which guarantee only that the distance between the
It is readily shown that the coherengesatisfiesy < p and estimates and the true value ®fis on the order of the noise
up < 1 [19]. Consequently, magnitudes. Given our detailed knowledge of the structure

22 22 of the signalz, one would expect more powerful denoising
< (27) capabilities for typical noise realizations. Consequgeitl the

1-(d-1v—(k-1dps = 1= (sd =1 remainder of this paper, we adopt the assumption of random
which implies that if the conditions for the performance guanoise, which cannot align itself so as to maximally intesfer
antees of both BOMP and OMP hold, then the performanggth the recovery algorithms.
guarantee (24) for BOMP will be at least as good as that of
OMP (26). Moreover, in typical block-sparse settings, both V. THE CRAMER—RAO BOUND
v and up will be substantially smaller thap [19], and the
guarantees for BOMP will then be considerably better. ¢

These results notwithstanding, it should be noted that
BOMP should not automatically be preferred over OMP in i1y remaining terms in (23) are always no worse than the sporeling
any setting. This is because the condition (23) of Theoremwe2ms in (25).

A central goal in assessing the quality of an estimator is
check its proximity to the best possible performance & th



given setting. To this end, it is common practice to computdDsDg)~! are larger thar /(1 — (d — 1)v — (k — 1)dug).
the CRB for unbiased estimators [23], i.e., those techrsgue Thus

for which the biash(xz) £ E,{2} — = equals zero. The CRB 1
is a lower bound on the mean-squared eké§E(z,z) = o  Tr((DsDs)™") < T 1 PR kdo®.

E.{|Z — |3} for any unbiased estimatar. — (A== (k= 1)dus

x 2 (32)

To utilize the information inherent in the block sparsityn other words, when the block coherence and sub-coherence
structure, we apply the constrained CRB [24]-{27] to thgf D are low, the bound of Theorem 3 will be close to
present setting. In the constrained estimation scenare, q:js2. This value is typically much lower than the total noise
often seeks estimators which are unbiased for all parama}gﬁanceE{”w”%} = Lo2. Thus, at least according to the
values in the constraint set [24], [25]. However, as we WIltRB, it is possible to achieve substantial denoising in the
see below, this requirement is too strict in the block sparggesence of random noise. This stands in contrast to therrath
Setting. |ndeed, in Theorem 3 we show that it is not pOSSih!ﬁsappointing guarantees presented for adversarial notbe
to constructany method which is unbiased for all feasibleprevious section. We may thus hope that the performance will
parameter values. Consequently, a weaker, local definitipg improved when considering random noise.
of unbiasedness is called for, which we refer to B  As opposed to the oracle estimator, which cannot be im-
unbiasedness [27]. plemented in practice, it is well-known that the CRB can be

Intuitively, an estimatorz is said to beX-unbiased at a asymptotically achieved at high SNR by the maximum like-
pointz € X if E.{z} = « holds at the pointr and at all |ihood (ML) estimator [23]. However, in the present setfing
pointsz in X which are sufficiently close ta:. To formally computing the ML estimator is NP-hard, and thus impractical
defineX-unbiasedness, we first recall the concept of a feasitt®nsequently, it is of interest to determine whether there
direction. A vectorv € CV is said to be a feasible directionexistefficienttechniques which come close to the performance
atz if, for any sufficiently smalkv, we havex +av € X. We  pound (31), at least for high SNR values. As we will show in

then say thatr is X-unbiased atc if E,{z} =« and if the next section, this question is answered in the affirraativ
ob(z + av) greedy_b_lock spgrsity techniques do indeed approach the CRB
R =0 (30) for sufficiently high SNR.
a=0

for any feasible directiom. In other words, the bias is zero at
x and remains unchanged, up to a first-order approximation,
when moving away fromer along feasible directions. This In this section, we analyze the performance of block sparse
definition yields the following result, whose proof can belgorithms when the noise is a Gaussian random variable
found in Appendix B. having mean zero and covariang&l. Our main performance

; , uarantees are summarized in Theorems 4 and 5. The proofs
Theorem 3 (Cramér—Rao bound for block-sparse signals f these theorems are found in Appendix C

Consider the setting of Section Il in which the block sparse
parameter vectorr is to be estimated from measurement§heorem 4. Consider the setting of Section Il with additive

VI. GUARANTEES FORGAUSSIAN NOISE

corrupted by Gaussian noigd1). white Gaussian noisev ~ N(0,c2I). Suppose it is known
(a) Suppose: contains fewer thatk nonzero blocks, i.es < that

k. Then, no f|n|t.e-var|ar_10e estimator j@-unb|a§ed ate. (1= (d = Do) |@min] — (2k — 1)dpun|ma]
(b) Suppose contains precisely: nonzero blocks, i.es, = k.

Then, any estimator which i&-unbiased atc satisfies >20+/2ad(1+ (d—1)v)log N (33)

MSE(z,x) > 02 Tr (D5Ds) ") . (31) for some constant > 1/(2dlog N). Then, with probability
N exceeding
We recall that both the MSE and the CRB are functions 0.8d(2ad log N)4/2~1

of the unknown vectorz, as is generally the case when 1- Nod—1 (34)

estimating a deterministic parameter. It follows immeeliat . . -
from Theorem 3 that no finite-variance estimator can satis?je .BTH algorithm identifies the correct support ofand
Er.{z} = « for all € X, which explains why we chieves an error bounded by

previously avoided this simpler definition of unbiasedniess ) 2a(1 + (d — 1)v) )

the constrained setting. Instead, restricting attentioa tocal |Zea — 2|3 < (1—(d—1)v— (k- 1)dug)? dko™log N.
unbiasedness requirement led to a finite CRB for almost all (35)
parameter values ir: specifically, those parameters whos
support is maximal|supp(x)| £ s = k.

For maximal-support values af, it is not difficult to show
that the CRB (31) coincides with the MSE of the oracl
estimator (20). In this case it is possible to get a sense for (1= (d — D)) |@min] — 2k — 1)dpp|min
the value of the bound, as follows. From (44) of Lemma 1
(see Appendix A), we have that none of the eigenvalues of > 20+/2ad(1 + (d — 1)v)log N (36)

q’heorem 5. Consider the setting of Section Il with additive
white Gaussian noisev ~ N(0,02I). Suppose it is known
&hat




for some constante > 1/(2dlog N). Then, with probability the same size, the simpler and more efficient BTH technique
exceeding(34), the BOMP algorithm identifies the correctcan be used.
support ofx and achieves an error bounded by e Scalar sparsitylt is interesting to note that known results
20(1 + (d— 1)) for scalar sparsity algorithms can be recovered from outrlblo
5 dko?log N. sparsity guarantees, by substituting- 1 into Theorems 4 and
1—(d=1)v—(k~1)dus) 37) 5. For example, consider the BOMP guarantee (Theorem 5).
In the scalar case, this algorithm is known as OMP, and its

We now provide some insights into the performance @ferformance guarantee can be written as follows.
block-sparse algorithms under random noise.

e Random noise vs. adversarial noisds noted in Sec- . : :
tion 1V, performance guarantees in the case of adversal"?laf'gnalm ha_vmg sparsity|
noise can ensure a recovery error on the order of the totsénof’ of D satisfies
magnitude. This is a result of the fact that the noise could, i |Zamin| (1 — (2k — 1)p) > QGW (38)
principle, be concentrated in a single nonzero component of
@, whereupon it would be indistinguishable from the signafor Somea > 1. Then, with probability exceeding

|\§BOMP—33H§ < (

Corollary 2. Lety = Dz + w be a measurement vector of
x|lo < k. Suppose the coherence

However, for random noise, such an event is highly unlikely. 0.8/v2
i i . 1l — 39
Consequently, Theorems 4 and 5 provide much tighter perfor No 1 /alg ¥ (39)

mance guarantees: both theorems demonstrate that, with hig

probability, the estimation error is on the orderddfr2 log N, the OMP algorithm recovers the correct support f and
i.e., within a constant timekg N of the CRB presented in achieves an error bounded by

Section V. Since the noise varian®{||w||*} is given by
No?2, and since typicalljdklog N < N, we conclude that
the block sparse algorithms have successfully removedya lar
portion of the noise, owing to the utilization of the uniofi-o
subspaces structure.

2«

— —  _ko’logN. (40
= (k- D7 el (40)
Corollary 2 is nearly identical to [21, Thm. 4], with the only
difference being that the constaiB/+/2 ~ 0.566 in (39) is

e BOMP vs. BTH: Comparing Theorems 4 and 5 Iead%fplaced _in [2.1] WiFh the slightly better constah_lﬁ ~
to an important insight concerning the advantage of the mo g0 ;l'hIS S“_ght glgcrepfafcy can 4b_e reso(ljve_zd tl; the m?ref
sophisticated BOMP algorithm over its simpler counter.pa§Ccura e version (88a) of Lemma 4 is used in the proof o

lZomp — 1’”% <

Indeed, the guarantee for BOMP requires condition (36 heorem 5, but the resulting expression becomes much more

which basically states thafr;,| must be larger than a

Umbersome in the block sparse case.
constant multiplied by the standard deviation of the noise. * Block sparsity vs. scalar sparsitys legitimate question

By contrast, for the BTH guarantee one requires the stroni%rgv r:etf:_er” the |_n(iorpotr.atlotp of lthe .mmk ;spa;ilty d;tn;etur
condition (33), which can be interpreted as requirjeg,| ubstantially assists estimation aigorithms. in otherdsptio

to be larger than a small constant times,.«|, plus another thed pBe_lr_fHormance gufarante;s Of_t:‘h?hbm(:k ﬁlgor't;'_ms SOMP
constant times the noise standard deviation. an compare tavorably wi € resulls achievable on

identical signals using scalar sparsity algorithms, siscOIsIP

To explain this difference, recall from Section Il that 4 thresholding? This question is examined numerically in
the BTH approach relies on a single support-identificatio@h INg= This question 1S exami umericaty i

stage in which the blocks most highly correlated with th e next section.
measurements are chosen as the estimated suppol.set
Thus, for BTH to correctly identify the support, each block VII. N UMERICAL EXPERIMENTS
in S must be sufficiently large in magnitude to overcome From a practical point of view, it is important to determine
interference from the noise and from the remaining blockahether the use of block sparse algorithms contributes sig-
Condition (33) can therefore be interpreted as a requiremaificantly to the performance of estimation algorithms. e&ft
that the magnitudér,,,;,| of the smallest nonzero block mustall, any block sparse signal containiignonzero blocks of
be larger than the sum of the interference from the larg&e d can also be viewed as a sparse signal contaiting
nonzero blocks (théxr,.x| term) and the noise. By contrastnonzero elements. Is there a significant benefit in using the
the BOMP algorithm iteratively identifies support elementdlock algorithms rather than the ordinary scalar versions?
maintaining a residual vectat’ containing the components of There are two possible approaches to answering this ques-
the measurement vector which have yet to be identified. Thtisn. First, one may compare the performance achieved in
BOMP requires only the ability to separately isolate eagbractice by block sparse and scalar sparse algorithms. This
nonzero block, and hence its weaker condition (36), whickquires a complete specification of the problem setting, in
necessitates only thét,,i,| be larger than the noise. cluding a choice of the parameter valsgwhich is unknown
Finally, it should be noted that when BTH and BOMHAN practice. Alternatively, one can compare the perforneanc
both identify the correct support set, the estimates of tigeiarantees for block sparse techniques, which were derived
two algorithms coincide, explaining the identical bounds oin Section VI, to the previously known guarantees for scalar
their performance. The conclusion from this analysis ig thapproaches [28]. The performance guarantees apply to all
BOMP should be preferred if a wide dynamic range of bloggarameter values having a specified sparsity level, and are
magnitudes is possible, but that when all blocks have rqughherefore more general. However, there may be a gap between



Problem Dimensions Coherence OMP Block-OMP Cramér—-Rao
Blocks  Block size Measurements  Sparsity
M d L k m up Guaranteer?  omax Guaranteef>  omax CRBIo?
1200 5 3000 1 010 0.026 301.0 0.033 37.0 0.160 5.0
1200 5 3000 2 0.10 0.026 — — 98.8 0.110 10.0
1200 5 3000 3 010 0.026 — — 204.4  0.063 15.1
1200 5 3000 4 010 0.026 — — 417.0 0.010 20.1
1200 5 3000 5 0.10 0.026 — — — — 25.2
1200 5 3000 3 0.10 0.026 — — 204.4 0.063 15.1
600 10 3000 3 010 0.015 — — 364.3 0.049 30.2
300 20 3000 3 0.10 o0.010 — — 879.1 0.008 60.8
200 30 3000 3 0.10 0.007 — — — — 91.8
1200 5 3000 1 0.10 0.026 301.0 0.033 37.0 0.160 5.0
1200 5 1000 1 017 0.043 — — 37.0 0.144 5.0
1200 5 500 1 0.25 0.060 — — 37.0 0.128 5.0
1200 5 100 1 051 0.133 — — 37.0 0.062 5.0
1200 5 50 1 071 0.165 — — 37.0 0.032 5.0
1200 5 20 1 090 0.197 — — 37.0 0.003 5.0
1200 5 10 1 098 0.200 — — — — 5.0
TABLE |
PERFORMANCEGUARANTEES FOROMP AND BLOCK-OMP
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Fig. 1. Median squared error as a function of the noise veeidor block and scalar sparse estimation algorithms. Theezh region indicates the range

of errors encountered for different parameter values. Tdtéed line plots the CRB. The thick solid line in Figs. 1(a)dah(b) indicates the performance
guarantees for the block sparse algorithms; no guarantedeanade for the scalar sparsity techniques in Figs. 1(c)léaid



the guarantee and the performance observed in practice plotted for a single, typical parameter value. Third, soossl|
order to take advantage of both approaches, in the followinf tightness undoubtedly results from the derivations @& th
we compare both the actual performance and the guarantdeorems, i.e., there may still be room for improved bounds.
of the various algorithms discussed in this paper. To measure the relative influence of these factors, we
In our experiments, we used dictionaries containing operformed another experiment, in which the guarantees were
thonormal blocks. Such dictionaries were constructed sy ficompared with the actual performance of the various algo-
generating a randorh x N matrix containing IID, zero-mean rithms. To overcome the aforementioned pessimistic efféct
Gaussian random variables, and then performing a Gram-guarantee which holds with overwhelming probability, in
Schmidt procedure separately on the columns of each blotiis second experiment we computed guarantees with a 50%
As a first experiment, we generated a variety of such diction@onfidence level. In other words, these are assurances on the
ies, and computed their coherencand block coherencegz. median of the distance between and its estimate, which
(The sub-coherence of dictionaries generated in this nrancaptures the typical estimation error. We also computed the
is necessarilyy = 0.) These values were used to computactual median error of the various algorithms for a varidty o
performance guarantees for BOMP (using Theorem 5) apdrameter values.
for OMP (using Corollary 2). We assumed throughout that The details of this experiment are as follows. We constdicte
the minimum norm|z.,i;,| among nonzero blocks equals a 3000 x 6000 dictionary D containingM = 1200 blocks
and that the minimum nonzero element equigls/d. Some of d = 5 atoms each, using the orthogonalization algorithm
typical results are listed in Table I. To compute the guarasit described above. The resulting coherenc®ofias;, = 0.094,
in this table, the smallest value afyielding a 99% probability the block coherence wasg = 0.026, and since each block
of success was chosen. The resulting guarantee is listedniss orthonormal, the sub-coherence was= 0. We then
multiples of o2, For example, a value of Guaranteé = 100 constructed a variety of block sparse vectaetseach having
means that|z — x||3 < 10002 for 99% of the noise realiza- s = 3 nonzero blocks, Withz i, | = 2v/d and |z .| = 3V/d.
tions. Also listed in Table | are the maximum noise standaklfe chose the parameter vectors so as to cover as wide a
deviationso,,x for which the performance guarantees stilfange of scenarios as possible, within the aforementioned
hold. A dash (—) indicates that no guarantee can be made fequirements. For example, some parameter vectors cedtain
the given setting even in the noise-free case. a block with a single nonzero component whose value was
It is evident from Table | that the block sparse algorithmr,,.x|, while other vectors contained a block with each of
BOMP is guaranteed to perform over a much wider randbe d elements receiving a value Of..|/v/d. Although
of problem settings than the scalar OMP approach. Furthéris clearly not feasible to cover the full range of possible
more, even when performance guarantees are provided farameter vectors, it is hoped that in this way some sense is
both techniques, those for BOMP are substantially stronggiven of the variability in performance for different pareter
To provide merely one striking example from Table |, notealues. Indeed, as shown below, different parameters often
that 50 measurements suffice for BOMP to identify a signalield widely differing estimation errors.
composed of a singlé-element block among a set @200 For each choice of a parameter veciir,noise realizations
possible blocks, whereas for OMP to identify such a signalere generated and the resulting measurement vecigas
at the same noise level, as many 390 measurements arecomputed using (8). The BOMP, BTH, OMP, and thresholding
required. The reason for this advantage is clear: the OMRjorithms were then applied to each of the measurement
algorithm must separately identify each nonzero componesgctors. For every technique and each parameter vector, the
of the signal, and must therefore choose among a total median estimation error (among the noise realizations) was
1200y '~ 2.1 . 10'3 possible support sets. This is obvioushcomputed. The range of median estimation errors obtained fo
more challenging than identifying one nonzero block amordifferent choices ofe is plotted as a shaded area in Fig. 1.
a set 0f1200 possibilities. Clearly, then, knowledge of a block- In the present setting, neither of the scalar sparsity algo-
sparse structure can substantially improve performanitésif rithms was capable of providing a performance guarantee. Fo
correctly utilized. BOMP and BTH, performance guarantees were available, and
Table | also compares the performance guarantees witlese are plotted as a solid line in Fig. 1. These guarantees
the CRB of Theorem 3. The CRB is listed for a randorare valid only up to a certain maximal noise variance, at
choice of support sef containing precisely nonzero blocks; which point the solid line in Fig. 1 stops. The results are
however, choosing different sefsonly has a small effect on also compared with the CRB of Theorem 3. It should be
the value of the bound. The gap between these lower amhphasized that the CRB is a bound on the MSE, rather
upper bounds is not inconsiderable, and is typically on thlean the median error, although in practice the differences
order of a factor of 10. There are several reasons for thietween these two quantities appear to be quite small. It is
gap. First, the performance guarantees plotted aboveaitedicalso worth recalling that the CRB is a bound on unbiased
an error which is obtained with 99% confidence, whereas thstimators, while all of the techniques discussed herein ar
CRB is a bound on the MSE. By its very nature, the MShBiased; nevertheless, it is evident that the CRB still piesi
averages out unusually disruptive noise realizations,thnd a rough measure of the optimal performance of the proposed
tends to be more optimistic. Second, different valuesrof algorithms.
may yield significantly different performance; the perfamae Several comments are in order concerning Fig. 1. First,
guarantees apply tall values of x, whereas the CRB is the performance of both block sparse algorithms exhibits a
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Fig. 2. Median squared error as a function of the noise veeidor block sparse estimation algorithms. The shaded meigidicates the range of errors
encountered for different parameter values. The dottesl piots the CRB. The thick solid line in Fig. 2(a) indicateg erformance guarantee for BOMP;
no guarantee can be made for BTH. The deteriorated perfmenahBTH is a result of the existence of low-magnitude blocks

transition: near-CRB performance for low noise levels detsurprising when one compares our problem setting with the
riorates substantially when the noise level crosses aioertguarantees of Section VI. Indeed, as we have seen, the grimar
threshold. This behavior qualitatively matches the priolic  difference between the BOMP and BTH algorithms is that the
of the performance guarantees, which ensure support rgcovene-shot support estimation employed by BTH causes large-
and near-CRB performance for sufficiently low noise levelsnagnitude blocks to overshadow small-magnitude nonzero
The threshold at which this transition occurs is identifiedlocks. In the setting of Fig. 1, the range of magnitudes
fairly accurately for BOMP, and less so for BTH, althougthetween|z x| = 3v/d and |Zmin| = 2v/d is not very large,

it is possible that there exist some (untested) parameteeva and therefore BTH performs nearly as well as BOMP. The
for which the BTH transition occurs at lower noise levelsadvantages of BOMP become readily apparent if one considers
However, the numeric value of the performance guarantaevider dynamic range. This is illustrated in Fig. 2, in which
is somewhat pessimistic: while the observed performancetli®e setup is identical to that of the previous experiment,
close to the CRB for all parameter values, analytically orexcept that parameter vectors havipg,,| = 0.1v/d and

can guarantee only that the median error will not be larger,,...| = v/d were chosen, yielding a 10-fold dynamic range
than approximately 10 times the CRB. This result is most the block magnitudes. In this case, while the guarantee fo
likely due to the various inequalities employed in the ppooBOMP is hardly changed, the conditions for Theorem 4 no
of Theorems 4 and 5. Indeed, since the correct supportlémger hold, so that nothing can be ensured concerning the
identified with high probability for most noise realizat&gn BTH technique. Indeed, in Fig. 2 we see that BTH performs
the BTH and BOMP algorithms will likely tend to coincidepoorly for some parameter values even when the noise level
with the oracle estimator, whose error equals that of the CRB low, and its performance is no longer proportional to the
The question of formally proving such a claim remains a topiCRB.

for further research.

The advantages of the block sparse approach become ev- VIIl. CONCLUSION

ident when compared with scalar sparsity algorithms (Figs.|n this paper, we analyzed the performance of the greedy
1(c) and 1(d)). For the scalar techniques, no performanggck algorithms BOMP and BTH under the adversarial and
guarantees can be made in the present setting. Unlike thk blgayssian noise models. In the adversarial setfimg, < ¢,
sparsity algorithms, the scalar approaches fail to rectver e showed that the estimation error equals a constant times
correct parameter vector even when the noise is negligibjge noise bound, which shows that performance in this case
and for some parameter values, their error does not conveygf not necessarily reduce the noise power. The situat®n i
to the CRB. The thresholding algorithm, in particular, @a® mych better in the presence of random noise, where we saw
improve (for some parameter values) as the noise is reducgt, under suitable conditions, greedy techniques otdain
while the OMP approach, although significantly better thagyror on the order ofiko2 log N with high probability; this is
thresholding, does not converge to the CRB as do the blogkpstantially lower than the input noise powse2. Indeed,
sparse techniques. This demonstrates the advantaged$inf utihe BTH and BOMP algorithms come close to the CRB and
ing the fact that the signal is known to have a block-sparg§e error of the oracle estimator.
structure. There remain many open questions concerning the perfor-
The performance of BOMP (Fig. 1(a)) is quite similar tanance of block sparse techniques under random noise. For ex-
that of BTH (Fig. 1(b)) in the experiment above. This is naample, for scalar sparsity, performance guarantees forecon
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relaxation techniques do not require assumptions on the. SNBY a generalization of the Gershgorin circle theorem [30,
An important challenge is to determine whether similar SNR-hm. 2], it follows that all eigenvalues of D} D; satisfy
independent results can be demonstrated for block convex

relaxation techniques such as L-OPT. Furthermore, it i$-wel  ||MT[i,i] — M| < Z IM[i, 5| < (6 —1)dup

known that scalar sparsity guarantees can be strengthened i

if the restricted isometry constants of the dictionddy are < (k—1)dug. (47)
known, as is the case, for example, whBnis chosen from

an appropriate random ensemble. Thus, it is also of intémest Now, from the definition of sub-coherence, the off-diagonal
provide guarantees for block techniques under random noidements ofM [i, 4] are no larger in magnitude than while
based on an extension of the RIP to the block sparse settitigz diagonal elements ¥/ [i, 7] all equall. Therefore, by the
One such extension has already been proposed in [11], and3tsshgorin circle theorem, given an arbitrary constgnall
application to the Gaussian noise model may provide tighteigenvalues of the x d matrix M [i,i] — \I are in the range
bounds for some performance algorithms. [1—A—(d—-1)v,1 - X+ (d—1)v]. Consequently

APPENDIXA [M[i,i] = M| > 1=\~ (d—1)r. (48)

PROOFS FORADVERSARIAL NOISE Combining with (47) and rearranging, we conclude that all

We begin by providing several lemmas which will proveeigenvalues ofD; D satisfy
useful for the analysis under both the adversarial and the

Gaussian noise models. A>1—(d-1v—(k—1dug. (49)
Lemma 1. Given a dictionaryD having block coherencep Consequently, the eigenvalues 6D D;)~! are no larger
and sub-coherence, we have than(1 — (d — 1)v — (k — 1)dup) "', establishing (44). m

|D*[I)D[j]|| < dpp forall i#j (41) Lemma 2. Consider the setting of Section II, and suppose it

is known that
and .
|D[]||? = |D*[i{]D[i]]| <1+ (d — 1)v. (42) ax [D*[jlwl2 <7 (50)
If 1—(d—1)r>0, then for a given valuer > 0. If the dictionary D satisfies
*s Ty — 1

[(D*[i] D[i]) || < T (@-1 (43) (1= (d = 1)v) [Tmax| > 27 + (25 — 1)dup|Tmax| ~ (51)
Supposd — (d—1)v — (k—1)dup > 0 and let be an index then
set with|] < k. Then max | D*[jlyllz > max | D" [jly]|. (52)

JES j¢s

1
(@~ v~ (k— Ddps’

Proof: The bound (41) follows directly from the definition
(12) of block coherence. To prove (42)-(43), observe that th
diagonal elements of the matri®*[i| D[:] equall, while the
off-diagonal elements are bounded in magnitude’byhere- ,qp
fore, by the Gershgorin circle theorem [29], all eigenvaloé

(44)

* -1
I(DTDN | < = where S = supp().

If (51)is replaced by the stronger condition

(1 —(d— 1)) |zmin| > 27 + (25 — 1)dpus|Tmax| (53)

D*[i]DJi] are in the rangél — (d—1)v, 1+ (d—1)v], demon- min D" [5lyll2 > may | D* ]yl (54)
strating (42). Furthermore, it follows that the eigenvalué
(D*[{]D[i])~* are in the rangeé(1 + (d — 1)v)~1, (1 — (d — Proof: The proof is an extension of [21, Lemma 3] to the
1)v)~1], leading to (43). block-sparse case, and is ultimately inspired by [5]. We firs
It remains to prove (44). To this end, Igt| = ¢ < k and note that
write D7D as
M[1,1] M[1,2] --- M[L,{] I}lgaSXHD*[j]sz = max D*[j]erZD*[j]D[i]m[i]
M[2,1] M[2,2] --- M]|2,/] i€s 2
DiD;=| | C (45) < max || D" a2 + xmax S D" G DL 7
M1 M2 - M ZGS (55)

where eachVI[i, j] is adx d matrix containing the correlations By (50), the first term in (55) is smaller than Together with
between two blocks of dictionary atoms. From the definitio&u) we obtain

of block coherence, we have

M, )|l < dps, for all i # ;. (ag) I D7Llyllz < 7 sdiplmax] S 7+ kdhp|Tmax] - (56)



On the other hand,

w—i—ZD* ]

max | D*[j]yll2 = max

€S 2
>IJn€aSXH 71D 5][4]]2
— max ||\ D[jlw + > D*[j|D[i]ai] (57)
! ies\ {5} )
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Substituting (50), (63), and (64) into (62) provides us with
min |.D"[j]yl2
> (1= (d = 1)V)|Zmin| —

= (1= (d—=1)v)|Zmin| —
+ kdpup|Tmax| + 7

(k= 1)dup|Tmax| — 7

(2k — 1)dup|Tmax| — 27
(65)

Finally, using (56) we obtain

min | D*[jly|l2 > max || D*[j]y|>
Jgs

As we have seen in the proof of Lemma 1, the eigenvalues of /¢°

D*[j]DJj] are bounded in the range— (d—1)v, 1+ (d—1)v].
Consequently

max || D*[j] D[j][j][l2 > max(1 - (d — Dv)[|z[j]]
Jjes jes

= (1—-(d - 1)v)|Zmax|- (58)
Combining this result with (57), we have

r;lax ID*[lyll2 > (1 — (d — 1)v)|Tmax]

— max Z |ID*[5]1D

ZGS\{J}

Jfilll2 — max [[D"{j]w]2.

(59)
Together with (50) and (41), this implies that

D*[jlyl2

> (1= (d—1)v)|Zmax| —
= (1 = (d = 1)v)|Tmax| —
+ k|Tmax|dus + 7.

max ||
JES

(k — 1)|Zmax|dup — 7
(2k — 1)|Zmax|dup — 27
(60)

Merging the results (56) and (60) yields

[yl
+ (1= (d=1)v)|zmax| —

max | D iyl > max D

(2k — 1)|Zmax|dup — 27.
(61)

Consequently, if (51) holds, then (52) follows, as required
In a similar fashion, observe that

min |07 [j]y[l2 = min > D*[jD[iJ[i] + D" [jlw
€S 2
2 min || D*[]D{jlz[j]]l-
— max Y ID*[DLi=lill2 — | D* [flw]2.
% ies\(}
(62)
As noted previously, all eigenvalues &*[j]D|j] are larger
than or equal td — (d — 1)v, and therefore
min [|D*[f]D[jla[jllla = (1 = (d = Dv)|zmin|.  (63)
JES

Furthermore, using (41) we have, fog 7,

D" [j]Dlilalillls < | D" 1Dl |#max| < dpp|zmax|-

(64)

+ (1= (d— Dv)|zmin] — (2k — 1)dpup|Tmax| — 27

(66)
Therefore, if the condition (53) is satisfied, then (54) Isold
completing the proof. ]

We are now ready to prove Theorems 1 and 2.
Proof of Theorem 1:Using (10) and (42), we have for
all 5

D" [flwlle < DI - lwlle < ev/1+(d -

Thus, (50) holds withr = ¢4/1 + (d — 1)v.

In light of (21), the condition (53) for the second part of
Lemma 2 holds, and therefore, by Lemma 2, we conclude
that (54) holds. It follows that all block®|:] with i € S are
more highly correlated than the off-support blodR$i], i ¢ S.
Thus, the estimated supp@tcontams the true support sét
(with the possible addition of superfluous indicessik k).

It follows from the definition (16) ofpry that (ZpTh)g =
Dgy, and thus

Dv.  (67)

|z — Zprul3 = |zz — (Tera)3l3
= ||DT§D§CU§ - D%yll%
< ||DT§||2 -|ly — Dg|)3

= |DL])? - [[ow]]3 (68)

where we have used the fact thBtTAD§ = I, which follows
from our assumption thab; has full row rank for any sef

of size s (see Section I).
Since|min| < |Zmax/, it follows from (21) that

1—(d—1v > (2k —1)dug. (69)
Therefore, we may apply (44), yielding
IDL|” = [(D5Ds) |
1
<
“1-(d-1)v—(k—-1)dug (70)

Combining this result with (68) and using (10), we obtain)(22
as required. ]
Proof of Theorem 2:As shown in the proof of Theorem 1,

it follows from (10) that (50) holds with = /1 + (d — 1)v.
From (23) we then have
(1= (d—1)v)|®min| > 27 + (2k — D)dpp|rmm|-  (71)

Since |Zmax| > |Zmin|, this implies the condition (51) for the
first part of Lemma 2. Thus, by Lemma 2, the dictionary block
most highly correlated withy is a block within the supporf



12

of . In other words, the first iteration in the BOMP algorithm{e, ..., ey}, and the feasible direction subspace is therefore
correctly identifies an element within the suppstt CV itself. Thus, for valuez containing fewer thai nonzero
The proof continues by induction. Assume we have reachbbbcks, a convenient choice of a basis for the feasible timec
the /th iteration with2 < ¢ < s and that all previous iterations subspace consists of the columns of the identity matrix.
have correctly identified elements §f In other words, using  Next, consider maximal-support parameter values, i.€- ve
the notation of Section Ill, we havg, ... i,_1 € S. tors « for which s = k. It is now no longer possible to add
By definition, we now have any vectore; to x without violating the constraints. Indeed, it
¢ -1 b1 is not difficult to see that the only feasible directions anear
r=y-Dz =Dz +w (72) combinations of the unit vectoes for which i belongs to one
wherez‘ ™" £ z— /-1 is the estimation error aftér 1 itera- of the blocks inS. These unit vectors can thus be chosen as
tions. Sinc&uppgw) = S and, by inductionsupp(z‘~!) ¢ S, a basis for the feasible direction subspace.
we havesupp(z‘~') c S. Furthermore/ — 1 < s, so that  Let U(x) be a matrix whose columns comprise the chosen
supp(z‘~!) contains less thas elements, and is thus a strictorthonormal basis for the feasible direction subspacer.at
subset ofS. It follows that at least one nonzero blockdi~'  Note that the dimensions &f (x) change withe; specifically,
is equal to the corresponding block in Therefore U(x) = Inxn When|S| < k, andU(z) is an N x sd
1. matrix otherwise. A necessary condition for a finite-vacen
max 1z 171ll2 2 |#minl (73) " %-unbiased estimator to exist at a points [27, Thm. 1]

1

To summarize, by (72)r® can be thought of as a noisy R(U(z)U*(z)) € R(U(2)U*(z)J (2)U ()U*(z)). (77)
measurement of the block sparse vedtor®, which contains B
a block whose norm is at lealst,,i,|. Using (73) and (23), we Whens < k, we haveU (x) = I. In this case, using (75), the
find that the condition (51) holds for this modified estimatiocondition (77) becomes
problem. Consequently, by Lemma 2, we have
i i CN CR(J(z)) = R(D*D). (78)
max | D*[j]r"" |2 > max [ D*[jlr™ 2. (74)
e 7 Since the dimensions dD are L x N with L < N, the rank
Therefore, by (17), théth iteration of the BOMP algorithm of D*D is at mostL, and thus’]?/(D*D) cannot include the
will choose an index, belonging to the correct support seentire space&™™. We conclude that in this case, (77) does not

S,aslong ag < s. hold, and therefore n&-unbiased estimator exists at poiats
Since the BOMP algorithm never chooses the same supp@ft which |S| < s, proving part (a) of the theorem.

S will be identified in the firsts iterations. Ifs < k, then \ye have seen above, in this case the mdlfix) consists of

the remaining iterations will identify some additionalmlents he columnse; for which i is an element of a block within

not in S, so that ultimately the estimated support $et=  the support ofc. Therefore, the produdPU (z) selects those

{in .oy will satlsfySTQ S. The estimat&gomp therefore  4toms of D belonging to blocks withirs, i.e., DU (z) = Ds.

satlsf_les(mBOMP)g = Dgy. Following the procedure (68)- ysing (75), this leads to

(70) in the proof of Theorem 1, we obtain in an identical

manner the required result (24). [ ] U*(z)J (2)U (z) = ;DSDS (79)
APPENDIXB which is invertible by assumption (see Section I1). It foll®
PROOF OFTHEOREM 3 that the condition (77) holds for maximal-support parameete

To compute the CRB, we must first determine the Fisher One can therefore apply [27, Thm. 1], which states that for
information matrixJ (x) for estimatinge from y of (8). This such values oft,
can be done using a standard formula [23, p. 85] and yields
) MSE(Z, z) > Tr(U(:c) (U (2)J (z)U (z))' U*(m)) .
J(x)==D*D. (75) (80)

o2 . . .
. . . Combining with (79) and using the fact thelt" (z)U (x) = I,
We now identify, for eache € X, an orthonormal basis e obtain (31), proving part (b) of the theorem.

for the feasible direction subspace, which is defined as the
smallest subspace @” containing all feasible directions at
x. To this end, denote by, the ith column of theN x N APPENDIXC

identity matrix. Consider first points € X for which s < k. PROOFS FORGAUSSIAN NOISE
In other words, these are parameter values whose support
contains fewer thak elements. For such values®f we have,
for anye and anyl <i < N,

We begin with two lemmas which prove some useful
properties of the Gaussian distribution. The first of these i
a generalization of a result due 8dak [31].

S | < < - .
|supp(z +eei)| < |S|+1 <k +1<k (76) Lemma 3. Let vy,...,v); be a set ofM jointly Gaussian

and thereforex + ce; € X for any ¢ and for anyi. random vectors. Suppose tiafv;} = 0 for all ¢, but that the
Consequently, the set of feasible directionsaatincludes covariances of the vectors are unspecified and that the rgecto



are not necessarily independent. We then have

Pr{llvillz < c1, lvallz < coy ooy lomll2 < ear}
> Pr{llvifls < e} - Pr{[jvall2 < ca} -

. -PI‘{”'U]\,{HQ S CM}. (81)
Proof: We will demonstrate that

Pr{[lvillz < c1,[Jvalla < e, vl < eur}
> Pr{flvillz < c1} Pr{[lvalla < ca,..., [lomll2 < e}

(82)

The result then follows by induction. For simplicity of neta
tion, we will prove that (82) holds for the casd = 2; the
general result can be shown in the same manner.

Denote byf(v;|v2) the pdf ofv; conditioned onv,. Ob-
serve that, for a deterministic value the pdff(v;|w) defines
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Lemma 4. Letu be ad-dimensional Gaussian random vector
having mean zero and covariande Then, for anyt > 1, we
have

2 2 N[d/2] 4 2,-t2/2
Pr{fuf} >} < . 72(1/2 1I‘(d/2)t (88a)
< 0.8dt12e1/2 (88b)
whereT'(z) £ [* t*~'e~'dt is the Gamma function and
nlts T (n—2i) (89)
0<i<n/2

is the double factorial operator.

Of the two bounds provided in (88), the first is some-
what tighter, but obviously more cumbersome. For analitica
tractability, we will use the latter bound in the sequel.

Proof of Lemma 4: The expressionju||3 is distributed

a Gaussian random vector whose mean depends linearlyasna chi-squared random variable wittdegrees of freedom.

w, but whose covariance is constantin Therefore, using a
result due to Anderson [32], it follows that

Pr{||vi]l2 < c1|v2 = aw} = / fui]aw)du (83)

luill2<es

is a non-increasing function ef.
Next, denoting byf(v2) the marginal pdf ofv,, we have

2 Pr{|lvills < 1] [lvalle < ea}

— Jiulazer Sl <e, (ulw)f (w) dw du

a Pr{|lva[l2 < c2}

Jjwlaze, Prillvillz < erfvs = w} f(w) dw

fH“’HzSCQ f(’lU) dw

aley, c2)

(84)

Thus, the functiona(ci,c2) is a weighted average of ex-
pressions of the fornPr{||vi|2 < ¢1]vea =w} for values

of w satisfying |Jw||2 < co. However, as we have shown,

Pr{||lv1]|2 < ¢1]v2 = w} is non-increasing injw||2. Conse-
quently,a(c1, c2) is non-increasing im;.

On the other hand, observe that@s— oo, the probability
of the eventl|vs||2 < co converged. Thus we have

czlgnoo CL(Cl, 02)

=Pr{[|lvifl2 < e1}. (85)
Combined with the fact that(c;, c2) is non-increasing ims,
we find that

CL(Cl,CQ) > PI‘{H’UlHQ < Cl} for all C1,C2. (86)

Using the definition ofa(ci, c2) and applying Bayes'’s rule,
we obtain

Pr{[|vi]l2 < c1, Jvall2 < 2}

> Pr{|lvif2 < c1} Pr{[jvall2 < ca} (87)

and thus complete the proof. [ ]
Our next lemma bounds the tail probability of the chi
squared distribution.

Therefore, its tail probability is given by [3316.3]

r'(d/2,t%/2)
I'(d/2)

whereI'(a, z) is the incomplete Gamma functidi(a, z)

[5te= e~ dt. It follows from the series expansion Bfa, z)
that [34,§6.5.32]

Pr{|ul} >t} = (90)

L

d ¢ et d—2
r(55) < gl @20
+(d—2)d—4t" + -+ (d—2)1™] (91)

wherem = 1 whend is odd andn = 2 whend is even. Note
that (91) holds with equality for evedh, but the inequality is
strict for oddd. Sincet > 1, we can enlarge each of the terms
in the square brackets in (91) by replacing it with— 2)!!%.
The total number of terms in brackets[ig/2], yielding

d tQ) <& Tya2g oy m

F<§’ 9 ) = 9d/2-1
Substituting into (90) demonstrates (88a).
To prove (88b), we distinguish between even and odd values
of d. Assume first thatl is even and denoté = 2p. We then

have
L(p) = (p—1)!

7752/

(92)

D(d/2) = (93)

and
(d—=2)!'=(2p—2)!' =2P"1(p —

1. (94)

Substituting these values into (88a) and simplifying yseld

d 2
Pr{|ulj > £} < St /2 (95)
which clearly satisfies (88b).
Similarly, assume thatl is odd and writed = 2p + 1.
Substituting the formula
2p — D!
ra/2)=rp+1/2) = ZZIT (o)
into (88a), we obtain
Pr{flull} > £} < /2 %t“e-*/z. (97)
m
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It is easily verified that Proof of Theorem 4:By Lemma 5, the evenB of (99)
T d+1 occurs with probability exceeding (34). Furthermore, gsin
\/>— <0.8d foralld>1. (98) (33), it follows from Lemma 2 that under the eveft all
blocks in the correct support sStare more highly correlated
Substituting back into (97) yields the required result. ®  with y than the off- -support blocks. Consequently, whBn
Our next result applies more specifically to the block sparg@curs, we haves C S, whereS is the support estimated by
estimation setting. Following [4], [21], we consider theeat the BTH algorithm. Note, however, that the estimated $et

will contain additional blocks not ir6 if s < k. It follows
5= { max, 1Dl < 7} 99 that
where |z — Zpruls = |25 — (Tsru)sl3
2 _
7° = 2doa(l + (d — 1)v)log N (100) = ||DT§D§;B§ - DTngg
for a givena > 1/(2dlog N). We then have the following <|(D5Dg)'|]? - [ DEwll3
lemma. X _ .-
<[(DEDg) P IID*[iJw]3 (108)
Lemma 5. Under the setting of Section Il, assume thats a ic§

Gaussian random vector with mean zero and covariarck

. —
Then, the probability of the evet of (99)is bounded by ~Where we have used the fact thmﬁaD = I, which is a
consequence of the assumption tag has full row rank
0.8(2adlog N)4/2~1

(see Section Il). Using (44) and (99), we have that wiien

>1-— .
Pr{B} >1 Nad1 (101) oCeuUrs
Proof: Observe thaD*[i]w is ad-dimensional Gaussian . 2 k2 109
random vector with mean zero and covarianéd)*[i] D[i]. lz — @prallz < (1—(d—1)v—(k—1)dup)* (109)
Therefore, the random vector Substituting the value (100) of yields the required result
1
= —(D*[i|D[i))"/*D"[ijw (102) (35 m
o Proof of Theorem 5:1t follows from Lemma 5 that the
is a d-dimensional Gaussian random vector with mean zeeyentB occurs with probability exceeding (34). Our goal in
and covariancd. We thus have this proof will thus be to show that, if3 does occur, then

_ et the BOMP algorithm correctly identifies all elements of the
* 2 21 _ 2 * 1/2, 112 2

Pr{||D*[ijw|3 < 7%} = PY{U [(D*[i]D[i]) " “ul5 < T } supportS of z (although some off-support elements may be
> Pr{o?|D*[i]D[i]|| - |[u||3 < 7}  identified as well ifs < k). The remainder of the proof will

) 72 then follow the steps of the proof of Theorem 4.
> pr{ Jul < 5 |

2+ (d= To demonstrate that the correct support is recovered, we
(103) begin by analyzing the first iteration of the BOMP algorithm.
This iteration chooses a blodk having maximal correlation

where, in the last step, we used (42). Using Lemma 4 alﬂg) [i1]y||2 with the measurementg. Now, Since|zmax| >

substituting the value (100) of*, we obtain |zmin|, the condition (36) implies (51), with given by (100).
Pr{||D*[i]w||2 < 72} >1-1 (104) C_:on_sequgntly, by Lemma 2,.u_nder the evBryvg find that the
first iteration of BOMP identifies an elemeitin the correct

where support sets.

To show that the next—1 iterations of the BOMP algorithm

A9 d/2—1 _
n=1-08d(2adlog N) exp(—dalog N) also identify support elements, we proceed by induction.

_,_ 0.8d(2adlog N)d/%l. (105) Specifically, assume thdt— 1 < s iterations have correctly
Nad identified elements,, . .., i,_1, all of which are in the support
Using Lemma 3, we have setS. As in the proof of Theorem 2, define the estimation error
M after ¢ — 1 iterations asz’ ' £ x — z/~1. By the induction
Pr{B} > HPF{HD*[Z']UJH% < 72} hypothesis,sup_p(i) c S, and C|ear.|ysupp(.w) = S. Thus
i supp(xz) C S, i.e., the support ofc is a strict subset of.
= (1M, (106) Using the same arguments as in the proof of Theorem 2, we

find thatz’~* contains a block whose norm is at ledst,in |-
Wheny > 1, the bound (101) is meaningless and the theoremherefore, we can consider a modified estimation problem, in
holds vacuously. Otherwise, when< 1, we have which rj ils a noisy measurement vector of the block sparse
signalz™ . Together with (36), this implies that (51) holds for
Pr{B} =1 - Mn (107) the modified setting. Therefore, by (52), the block-frhaving
where we used the fact thét — 1) > 1 — Mn whenever maximal correlation with the measurements is an eleme§t of
n < 1andM > 1. Substituting the value af from (105) and Consequently, BOMP will correctly identify a support elarhe
recalling thatNV = Md yields the required result. B in the /th iteration. Since the BOMP algorithm never selects a
We are now ready to prove Theorems 4 and 5. previously chosen support element, we find by induction that



the support sef5 will be identified in full afters iterations. [22]
If s < k, then the remaining: — s iterations will identify
arbitrary off-support elements.

Denoting by§ the completei-element support set identified[23]
by the BOMP approach, we thus hageC S. Following the

technique (108)-(109) used in the proof of Theorem 4 thl[.IZS4]
yields the required result (37). ]
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