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Abstract—We develop an efficient learning framework to
construct signal dictionaries for sparse representation by selecting
the dictionary columns from multiple candidate bases. By sparse,
we mean that only a few dictionary elements, compared to
the ambient signal dimension, can exactly represent or well-
approximate the signals of interest. We formulate both the
selection of the dictionary columns and the sparse representation
of signals as a joint combinatorial optimization problem. The
proposed combinatorial objective maximizes variance reduction
over the set of training signals by constraining the size of the
dictionary as well as the number of dictionary columns that can
be used to represent each signal. We show that if the available
dictionary column vectors are incoherent, our objective function
satisfies approximate submodularity. We exploit this property
to develop SDSoxrp and SDS;r4, two greedy algorithms with
approximation guarantees. We also describe how our learning
framework enables dictionary selection for structured sparse
representations, e.g., where the sparse coefficients occur in
restricted patterns. We evaluate our approach on synthetic signals
and natural images for representation and inpainting problems.

I. INTRODUCTION
An important problem in machine learning, signal

processing and computational neuroscience is to deter-
mine a dictionary of basis functions for sparse repre-
sentation of signals. A signal y € R? has a sparse
representation with y = Da in a dictionary D € RIX™,
when k < d coefficients of « can exactly represent or
well-approximate y. Myriad applications in data analysis
and processing—from deconvolution to data mining and
from compression to compressive sensing—involve such
representations. Surprisingly, there are only two main
approaches for determining data-sparsifying dictionaries:
dictionary design and dictionary learning.

In dictionary design, researchers assume an abstract
functional space that can concisely capture the underly-
ing characteristics of the signals. A classical example is
based on Besov spaces and the set of natural images,
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for which the Besov norm measures spatial smoothness
between edges (c.f., [1] and the references therein).
Along with the functional space, a matching dictionary
is naturally introduced, e.g., wavelets (V) for Besov
spaces, to efficiently calculate the induced norm. Then,
the rate distortion of the partial signal reconstructions y,?
is quantified by keeping the k largest dictionary elements
via an ¢, norm, such as o,(y,y7) = |y — yP|, =

Z;f:l i _yl?iup)l p; the faster o,(y,yP) decays
with k, the better the observations can be compressed.
While the designed dictionaries have well-characterized
rate distortion and approximation performance on sig-
nals in the assumed functional space, they are data-
independent and hence their empirical performance on
the actual observations can greatly vary: og(y,y}gv) =
O(k=%1) (practice) vs. O(k~%9) (theory) for wavelets
on natural images [2].

In dictionary learning, researchers develop algo-
rithms to learn a dictionary for sparse representation
directly from data using techniques such as regular-
ization, clustering, and nonparametric Bayesian infer-
ence. Regularization-based approaches define an objec-
tive function that minimize the data error, regularized
by the ¢1 or the total variation (TV) norms to enforce
sparsity under the dictionary representation. The pro-
posed objective function is then jointly optimized in the
dictionary entries and the sparse coefficients [3], [4], [5].
Clustering approaches learn dictionaries by sequentially
determining clusters where sparse coefficients overlap on
the dictionary and then updating the corresponding dic-
tionary elements based on singular value decomposition
[6]. Bayesian approaches use hierarchical probability
models to nonparametrically infer the dictionary size
and its composition [7]. Although dictionary learning
approaches have great empirical performance on many
data sets in denoising and inpainting of natural images,
they lack theoretical rate distortion characterizations of
the dictionary design approaches.

In this paper, we investigate a hybrid approach be-
tween dictionary design and learning. We propose a
learning framework based on dictionary selection: We
build a sparsifying dictionary for a set of observations by
selecting the dictionary columns from multiple candidate



bases, typically designed for the observations of interest.
We constrain the size of the dictionary as well as
the number of dictionary columns that can be used to
represent each signal with user-defined parameters n
and k, respectively. We formulate both the selection
of basis functions and the sparse reconstruction as a
joint combinatorial optimization problem. Our objective
function maximizes a variance reduction metric over the
set of observations.

We then propose SDSpyp and SDSjps4, two com-
putationally efficient, greedy algorithms for dictionary
selection. We show that under certain incoherence as-
sumptions on the candidate vectors, the dictionary se-
lection problem amounts to optimizing a function that
is approximately submodular. We then use this insight
to derive theoretical performance guarantees for our
algorithms. We also demonstrate that our framework
naturally extends to dictionary selection with restrictions
on the allowed sparsity patterns in signal representation.
As a stylized example, we study a dictionary selection
problem where the sparse signal coefficients exhibit
block sparsity, e.g., sparse coefficients appear in pre-
specified blocks.

Lastly, we first evaluate the performance of our al-
gorithms in both on synthetic and real data. Our main
contributions can be summarized as follows:

1) We introduce the problem of dictionary selection
and cast the dictionary learning/design problems
in a new, discrete optimization framework.

2) We propose new algorithms and provide their theo-
retical performance characterizations by exploiting
a geometric connection between submodularity
and sparsity.

3) We extend our dictionary selection framework to
allow structured sparse representations.

4) We evaluate our approach on several real-world
sparse representation and show that it provides
practical insights to existing image coding stan-
dards. We also provide an image inpainting exam-
ple to understand the limitations of our approach
as compared to dictionary learning.

This work extends our earlier work [9]. Compared to
[9], we introduce a new structured sparsity model for
dictionary selection in this paper to enforce sparsity on
average for the given collection of training signals. We
show that this model leads to a matroid constraint that
can be readily handled within our dictionary selection
framework. Additional experiments on natural images
show that learning with the average sparsity model leads
to better dictionaries for sparse representation on test
data. Our preliminary results were also presented at [8].

The paper is organized as follows. Section II sets the

stage by introducing the dictionary selection for sparse
representation and describing its computational chal-
lenges. Section III unifies key geometric and combinato-
rial properties in dictionary selection, which motivate the
use of two computationally scalable greedy approxima-
tion algorithms. Section IV then describes the algorithms
along with their theoretical guarantees. Sections V and
VI discuss structured models in dictionary selection for
the sparse representation of individual signals as well
as the signal ensembles. Section VII provide extensive
numerical studies that support the effectiveness of our
algorithms. Section VIII presents concluding remarks
and discusses promising directions for future research.

II. THE DICTIONARY SELECTION PROBLEM

In the dictionary selection problem (DiSP), we seek
a dictionary D to sparsely represent a given collection
of signals YV = {y1,...,ym} € R¥>™ We compose
D using the variance reduction metric, defined below,
by selecting a subset out of a candidate set of vectors
® = {¢1,...,¢n}, indexed by set V = {1,...,N},
and where each ¢; € R?. Without loss of generality, we
assume ||y;ll2 < 1 and ||¢i]|2 = 1, Vi. In the sequel,
we define ® 4 = [¢;,,...,P;,] as a matrix containing
the vectors in ® as indexed by A = {i1,...,iQ} where
A CYV and Q = | A| is the cardinality of the set .A. We
do not assume any particular ordering of V.

DiSP objectives: For a fixed signal ys; and a set of
vectors A, we define the reconstruction accuracy as

Ls(A) = U%(?Js»?JA) = H}li)n llys — (I>Aw||%' (1

The problem of optimal k-sparse representation with
respect to a fixed dictionary D then requires solving the
following discrete optimization problem:

As = argmin Lg(A), 2)
ACD,| A<k

where k is the user-defined sparsity constraint on the
number of columns in the reconstruction.

In DiSP, we are interested in determining a dictionary
D C V that obtains the best possible reconstruction
accuracy for not only a single signal but all signals ) on
the average. Each signal ys can potentially use different
columns A, C D for representation; we thus define

Fs(D)=Ls0) — i Ls(A), 3
(D) = Ls(0) = | min  Ls(A) 3)
where Lg(0) = ||ys||3 and Fy(D) measures the im-

provement in reconstruction accuracy, also known as
variance reduction, for the signal ys and the dictionary



D. Moreover, we define the average improvement for all
signals as

1
F(D)=— Fy (D). 4
(D) =— Z (D) “
The optimal solution to the DiSP is then given by
D* = argmax F(D), 5)

IDl<n

where n is a user-defined constraint on the number of
dictionary columns. For instance, if we are interested in
selecting a basis, we have n = d.

DiSP challenges: The optimization problem in (5)
presents two combinatorial challenges. (C1) Evaluating
F,(D) requires finding the set A of k basis functions—
out of exponentially many options—for the best recon-
struction accuracy of ys. (C2) Even if we could evaluate
F,, we would have to search over an exponential number
of possible dictionaries to determine D* for all signals.
Even the special case of k = n is NP-hard [10]. To cir-
cumvent these combinatorial challenges, the existing dic-
tionary learning work relies on continuous relaxations,
such as replacing the combinatorial sparsity constraint
with the ¢1-norm of the dictionary representation of the
signal. However, these approaches result in non-convex
objectives, and the performance of such relaxations is
typically not well-characterized for dictionary learning.

III. SUBMODULARITY IN SPARSE REPRESENTATION

In this section, we first describe a key structure in the
DiSP objective function: approximate submodularity.
We then relate this structure to a geometric property
of the candidate vector set, called incoherence. We use
these two concepts to develop efficient algorithms with
provable guarantees in the next section.

Approximate submodularity in DiSP: To define this
concept, we first note that F(()) = 0 and whenever
D C D then F(D) < F(D'), ie., F increases
monotonically with D. In the sequel, we will show that
F' is approximately submodular: A set function F' is

called approximately submodular with constant ¢, if for
DCD CVandwveV\D it holds that

F(DU{v}) — F(D) > F(D' U {v}) — F(D') —¢. (6)

In the context of DiSP, the above definition implies that
adding a new column v to a larger dictionary D’ helps
at most € more than adding v to a subset D C D’. When
e = 0, the set function is called submodular.

A fundamental result by [11] proves that for mono-
tonic submodular functions G with G(0)) = 0, a simple
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Fig. 1. Example geometry in DiSP. (Left) Minimum error decom-
position. (Right) Modular decomposition.

greedy algorithm that starts with the empty set Dy = (),
and at every iteration ¢ adds a new element via

v; = argmax G(D;_; U {v}),
veEV\D

(7

where D; = {v1,...,v;}, obtains a near-optimal solu-
tion. That is, for the solution D,, returned by the greedy
algorithm, we have the following guarantee:

G(Dy,) > (1—-1/e) ‘%1&}7{1 G(D).

®)

The solution D,, hence obtains at least a constant fraction
of (1—1/e) =~ 63% of the optimal value. Using similar
arguments, [12] show that the same greedy algorithm,
when applied to approximately submodular functions,
instead inherits the following—slightly weaker—guarantee

F(D,) > (1—-1/e) max F(D) — ne. )

IDI<n
In Section IV, we explain how this greedy algorithm
can be adapted to DiSP. But first, we elaborate on how
€ depends on the candidate vector set ®y,.

Geometry in DiSP (incoherence): The approximate
submodularity of F' explicitly depends on the maximum

incoherency p of ®y = [¢1,...,oN]:
= max 0 = max |cos; ],
K V(i,j)#jwl i)l ij)si j‘ Yidl

where 1); ; is the angle between the vectors ¢; and ¢;.

The following theorem establishes a key relationship
between ¢ and p for DiSP.

Theorem 1: If @y, has incoherence u, then the vari-
ance reduction objective F' in DiSP is e-approximately
submodular with € < 4kpu.

Proof: Let ws, = (¢u,ys)?>. When @y, is an
orthonormal basis, the reconstruction accuracy in (1) can
be written as follows

Ly(A) = |

2
|, = Il =" we

veEA

Q
Ys — Z bi, (Ys, Pi,)
q=1



Hence the function Rg(A) Ls(0) — Ls(A)
Y ved Ws,p is additive (modular). It can be seen that then
Fs(D) = max 4cp 4)<k Rs(A) is submodular.

Now suppose Py is incoherent with constant u.
Let A C Vand v € V\ A Then we claim that
|Rs(A U {v}) — Rs(A) — wsy| < p. Consider the
special case where y; is in the span of two subspaces
A and v, and w.lo.g., ||ys||> = 1; refer to Fig. 1 for
an illustration. The reconstruction accuracy as defined
in (1) has a well-known closed form solution: L¢(A) =
miny, ||ys—®4w||3 = ||ys— <I>A<I>Ays||2, where T denotes
the pseudoinverse; the matrix product P = & A<I>IL4 is
simply the projection of the signal y, onto the sub-
space of A. We therefore have R,(A) = 1 — sin?(f),
Rs(AU {v}) = 1, and R,({v}) = 1 —sin®(¢y — 0),
where 6 and 1) are defined in Fig. 1. We thus can bound

= |Rs(AU {v}) — Rs(A) — w, | by

gs < max ’sinQ(d} -

6) + sin?(9) — 1|
—20)| = p

= |cos | max |cos (v

If ys is not in the span of A U {v}, we apply above
reasoning to the projection of y, onto their span.
Define }AB/S\(.A) = > vedWsp- Then, by induction,
we have |Rs(A) — Rs(A)] < kp. Note that the
function Fy(D) = max ACD| A\<k§ (A) is submod-
ular. Let A; = ar rgmax 4cp, 14j<k Rs(A) and A, =
argmax 4cp | A<k R4 (A). Therefore, it holds that

Fy(D) = Ry(Ay) < R(A) 4k < R(A)+hu=Fy (D) +kpe.

Similarly, Fy(D) < Fy(D) + ku. Thus, |Fy(D) —
Fs(D)| < ku, and hence |F(D) — F(D)| < ku holds
for all candidate dictionaries D. Therefore, whenever
D C D and v ¢ D', we can obtain the following

F(DU{v}) - F(D) — F(D'U{v}) + F(D)
>F(D U {v}) ~ F(D) - F(D' U{v}) + F(D') - 4kp
> — 4kp,
which proves the claim. [ ]

When the incoherency g is small, the approximation
guarantee in (9) is quite useful. There has been a
significant body of work establishing the existence and
construction of collections V of columns with low coher-
ence u. For example, it is possible to achieve incoherence
1~ d~Y/2 with the union of d/2 orthonormal bases
(c.f. Theorem 2 of [13]). In general settings, the Welch
bound can be used to obtain a lower-bound on the value
of .

Unfortunately, when n Q(d) and e 4kp, the
guarantee (9) is vacuous since the maximum value of
F for DiSP is 1. In Section IV, we will show that if,

instead of greedily optimizing F', we optimize a modular
approximation Fy of Fy (as defined below), we can
improve the approximation error from O(nkpu) to O(ku).

A modular approximation to DiSP: The key idea
behind the proof of Theorem 1 is that for incoherent
dictionaries the variance reduction Rs(A) = Lg(0) —
Ls(A) is approximately additive (modular). We exploit
this observation by optimizing a new objective F' that
approximates F' by disregarding the non-orthogonality
of ®y in sparse representation. We do this by replac-
ing the weight calculation ws 4 = <I>T4y8 in F' with
Ws, A = (I)Eys:

Fy(D) =

max
ACDLM<k

1 ~
Zw”’ andF = mZS:FS(D)

(10)
where ws,, = (¢y,ys)? for each y; € R? and ¢, € ®y.
We call F a modular approximation of F' as it relies on
the approximate modularity of the variance reduction R.
Note that in contrast to (3), Fs(D) in (10) can be exactly
evaluated by a greedy algorithm that simply picks the
k largest weights ws,. Moreover, the weights must be
calculated only once during algorithm execution, thereby
significantly increasing its efficiency.

The corollary below follows directly from the proof
of Theorem 1 and summarizes the essential properties of
F:

Corollary 1: Suppose @y is incoherent with constant
p. Then, for any D C V, we have |F(D) — F(D)| < kp.
Furthermore, F' is monotonic and submodular.

Proof: Using the same arguments in Theorem

1, we first note that |Fi(A U {v}) — Fs(A) —
wsy| < p. By concatenation, we then have |F'(D) —
ZveA,AgD,\A\gk Wsu| < kp, proving the desired result.
|

Corollary 1 shows that F is a close approximation
of the DiSP set function F'. We exploit this modular
approximation to motivate a new algorithm for DiSP
and provide better performance bounds in Section IV.

IV. SPARSIFYING DICTIONARY SELECTION

In this section, we describe two sparsifying dictionary
selection (SDS) algorithms with theoretical performance
guarantees: SDSppp and SDSjpr4. Both algorithms
make locally greedy choices to handle the combinatorial
challenges C1 and C2, defined in Section II. Pseudo-
code for the algorithms is presented in Algorithm 1.
The algorithms differ only in the way they address
C1, which we further describe below. Both algorithms
tackle C2 by the same greedy scheme in (7). That is,
both algorithms start with the empty set and greedily



Input: Collection of N candidate column vectors
®; collection of m signals Y; desired
sparsity level k; bound on number n of
columns selected; approximation method
M e {OMP,MA}

Output: Dictionary D

begin

D «+ (;

for /=1 to n do

if M=OMP then
i* < argmax;ey\p Fomp(DU{i}; @, Y, k);
else if M=MA then
i = argmax;cy\ p F(DU{i}; ®,Y,k);
Set D + DU {i*};
end

end

Algorithm 1: The SDSpup and SDSjp;4 algo-
rithms

Input: Collection of N candidate column vectors
®; collection of m signals Y; desired
sparsity level k; candidate dictionary D

Output: Value F(D) = F(D; ®, ), k)

begin

for s=1to m do

for v=1to N do s, + ¢Lys;

Sort wWg 1, ..., Ws N, and let i1 # -+ - # iy
S gy =0 > iy
koo
Ts < Zzzl Ws,ig
end

1 m
return - > " 7

end

Input: Collection of N candidate column vectors
®; collection of m signals }V; desired
sparsity level k; candidate dictionary D

Output: Value Foup(D) = Foup(D; @,V k)

begin

for s =1 to m do

Use OMP to approximately solve
As = argmin e p.)a) <k Ls(A);
rs < Ls(0) — Ls(As);

end

return L 57 1,

end

Algorithm 2: Algorithm for computing Fopysp

add dictionary columns to solve DiSP. Interestingly,
while SDSj;4 has better theoretical guarantees and is
much faster than SDSppsp, Section VII empirically
shows that SDSpsp often performs better.

SDSonp: SDSonp employs the orthogonal matching
pursuit (OMP) [14] to approximately solve the sparse
representation problem in (2). It greedily maximizes
Founrp (pseudo code for evaluating Fiopsp is given in Al-
gorithm 2), and has the following theoretical guarantee:

Theorem 2: SDSoup uses the scheme in (7) to build
a dictionary Dgymp one column at a time such that

F(DOMP) (1—1/6) HlaXF( )—

k 2—-1 .
max (6n+2—1/e)u

Before we prove Theorem 2, we state the following
result whose proof directly follows from Theorem 1
and Corollary 1.

Algorithm 3: Algorithm for computing F

Proposition 1: At each iteration, SDSppp approxi-
mates F' with a value Fppsp such that |Foprp(D) —
F(D)| < ku over all dictionaries D.

Proof of Theorem 2: From Theorem 1 and Propo-
sition 1 we can see that Fpy/p is 6knu-approximately
submodular. Thus, according to [12]:

(1—-1/e) ‘111)1‘3@{ Forp(D) — 6knp.
(1)
Using Proposition 1, we substitute F'(Domp) + kp >

FOMP(DOMP) and max|p|<n FOMP(D) > max|p|<n
F (D) — kp into (11) to prove the claim. [ |

Fonrp(Domp) >

SDS4: SDSps4 greedily (according to (7)) optimizes
the modular approximation (MA) F of the DiSP
objective F' (pseudo code for evaluating F' is given in
Algorithm 3) and has the following guarantee:
Theorem 3: SDSjr4 builds a dictionary Dya s.t.

F(Dpya) > (1—1/e) max F(D) — (2—1/e)ku. (12)

|D|<n

Corollary 1 and Theorem 2 directly imply Theorem 3.

In most realistic settings with high-dimensional sig-
nals and incoherent dictionaries, the term (2 — 1/e)ku
in the approximation guarantee (12) of SDSj;4 is
negligible. Note that the approximation guarantee of
Theorems 2 and 3 is stated in terms of the variance
reduction F', instead of the residual reconstruction error.
We leave the derivation of approximation guarantees for
the reconstruction error as an open problem for future
work.

At the time of this publication, [15] improved our ad-
ditive bounds on dictionary selection with multiplicative
bounds by using a new concept called submodularity
ratio.



V. SPARSIFYING DICTIONARY SELECTION
FOR BLOCK SPARSE REPRESENTATION

Structured sparsity: While many man-made and natural
signals can be described as sparse in simple terms, their
sparse coefficients often have an underlying, problem de-
pendent order. For instance, modern image compression
algorithms, such as JPEG, not only exploit the fact that
most of the DCT coefficients of a natural image are
small. Rather, they also exploit the fact that the large
coefficients have a particular structure characteristic of
images containing edges. Coding this structure using an
appropriate model enables transform coding algorithms
to compress images close to the maximum amount pos-
sible and significantly better than a naive coder that just
assigns bits to each large coefficient independently [16].
We can enforce structured sparsity for sparse co-
efficients over the learned dictionaries in DiSP, cor-
responding to a restricted union-of-subspaces (RUS)
sparse model by imposing the constraint that the feasible
sparsity patterns are a strict subset of all k-dimensional
subspaces [17]. To facilitate such RUS sparse models
in DiSP, we must not only determine the constituent
dictionary columns, but also their arrangement within the
dictionary. While analyzing the RUS model in general
is challenging, we here describe below a special RUS
model of broad interest to explain the general ideas.

Block-sparsity: Block-sparsity is abundant in many ap-
plications. In sensor networks, multiple sensors simul-
taneously observe a sparse signal over a noisy chan-
nel. While recovering the sparse signal jointly from
the sensors, we can use the fact that the support of
the significant coefficients of the signal are common
across all the sensors. In DNA microarray applications,
specific combinations of genes are also known a priori to
cluster over tree structures, called dendrograms. In com-
putational neuroscience problems, decoding of natural
images in the primary visual cortex (V1) and statistical
behavior of neurons in the retina exhibit clustered sparse
responses.

To address block-sparsity in DiSP, we replace (3) by

min
ACD,|AI<k

Fy(D) = Ls(0) - > Ls(A),  (13)
seB; SEB,;

where B; C {1,...,m} is the i-th block of signals (e.g.,
simultaneous recordings by multiple sensors) that must
share the same sparsity pattern. Accordingly, we redefine
F(D) =), F;(D) as the sum across blocks, rather than
individual signals, as Section VII further elaborates.
This change preserves (approximate) submodularity.

VI. DICTIONARY SELECTION FOR AVERAGE
SPARSITY

When facing a large collection of natural signals, it is
only expected that some signals carry a lot of information
(e.g., faces in natural images), whereas other signals can
be compressed using a only few non-zero coefficients
(e.g., flat background). In such settings, it may be
advantageous to use different amounts of compression
for different signals. Thus, a valid question is whether
sparsifying dictionaries can be selected for which signals
can be represented using a small number of columns on
average.

In this section, we explain how our dictionary se-
lection framework allows to handle an average sparsity
structure for signal ensembles for the dictionary selec-
tion problem. To define our model, we reformulate the
variance reduction objective F'(D) from (4) as

LS (Ea0) - ().

s

szg (D) =

max
Aiye Am ED

|As <k 3, [As|[<mk
(14)

Thus, the value of a dictionary D is the average variance
reduction across all signals, where each signal s is
represented using a set A of at most &’ columns from D.
For generality, we also impose an additional constraint
that at most mk columns are selected overall, where k£’
is given as a parameter.

At first glance, the problem

s Fo(®)

appears to be more challenging: Previously, in order to
evaluate F'(D), we had to solve m sparse reconstruction
problems with fixed sparsity budget for each signal. Now,
in addition, we have to optimize over the number of
columns |A;s| selected for each signal s.

Fortunately, we can still resort to our modular approxi-
mation technique: Reusing the notation from Section III,
we define the modular approximation

~ Y R(A),

s

Favg (D) =

max
-Al 7---7-Am gD

ALK, [As|[<mk

where Ry(A) = > ved Wsyw is the modular approxima-
tion to the variance reduction for signal s using columns
A.

We have the following result, which strictly general-
izes Corollary 1:

Theorem 4: Suppose ®y is incoherent with constant
fe. Then, for any D C V, we have |Fj,4(D)— Foug(D)| <
k' 1. Furthermore, ﬁavg 1s monotonic and submodular.

Proof: Similar arguments as used in the proof of
Theorem 1 show that |Rs(A) — Rs(A)| < k'u for all



signals s and sets A s.t. |A| < k. This immediately
proves the first claim. Monotonicity of ﬁavg is immediate
as well. It remains to prove the submodularity of ﬁavg.
Define the set V' = {1,...,m} x V of all pairs of
signals and columns of ®. Any subset A" C @ can
thus be interpreted as a “joint support set”, indicating
which columns of V are used as support in each of the
m signals. Define set function G : 2" — R as

GA) = D wey,

(s,v)eA

i.e., is the total weight of the joint support in the modular
approximation. G is a modular function. Call a subset
A’ C V' independent if | A'| < mk and, for all s, |({s} x
V)N A'| < K. Thus, a candidate joint support set A’
is independent if it respects the constraints dictated by
average sparsity. Now fix a subset W C V', and let
I(W') C 2" be the collection of all subsets A’ C W'
that are independent. It can be seen that for any W', the
pair (W', Z(W')) forms a matroid, and Z(W;) C Z(Ws)
whenever W; C W. Further,

max
Avye A CD

A<k 5, [ A <mk

S
Proposition 3.2 of [11] now proves that the function
Fhoo(D) = ma; G(A
o (P) AET(U, omdovim}x {o}) (4)

is submodular. [ ]
Thus, the results of Theorems 2 and 3 generalize, with
k replaced by &'. In addition, the proof of Theorem 4
suggests an efficient algorithm for evaluating F,,4(D).
The problem

max Z fis(.As)

At yeey A CD
A<k, S, [As|<mk ®

requires maximizing a modular function subject to a ma-
troid constraint, which is optimally solved using a greedy
algorithm: We start with As = () for all s, and then
greedily choose the pair (s,v) such that all constraints
remain satisfied, and w- - is maximized. We then add
column v* to set Ag-. We continue until no more ele-
ments can be added. The resultant collection of support
sets A1, ..., Ap, satisfies Fjq(D) = % Yo Rs(As).

Note that if we set &’ = Q(+/d), then even for the case
of incoherent (y = Q(ﬁ)) collections V of columns, the
guarantees of Theorem 4 can be rather weak. However,
in practice, one likely intends to limit the maximum
number of coefficients used to represent each signal &/,
for example, to counter overfitting. In such cases, where
k' is a small constant, the guarantees of Theorem 4 are
quite useful.

> Ry(As) = max G(A).
A'€T({1,....m}xD)

VII. EXPERIMENTS

We evaluate our SDSppp and SDSj;4 algorithms
on several sparse representation problems both on syn-
thetic and real data. In our implementation, we use lazy
evaluations [18] to speed up the SDSpasp and SDS 14
algorithms.

Finding a dictionary in a haystack: To understand
how the theoretical performance reflects on the actual
performance of the proposed algorithms, we first perform
experiments on synthetic data.

We generate a collection &y with 400 columns by
forming a union of five orthonormal bases and a nor-
malized tight frame with d = 64, including the discrete
cosine transform (DCT), different wavelet bases (Haar,
Daub4, Coiflets), noiselets, and the Gabor frame. This
collection ®;; is not incoherent—in fact, the various
bases contain perfectly coherent columns. As alterna-
tives, we first create a separate collection ®g from Py,
where we greedily removed columns based on their
incoherence, until the remaining collection had inco-
herence of pg = 0.5. The resulting collection contains
245 columns. We also create a collection ®r with 150
random columns, which results in pr = 0.2.

For each of &y, &g and i with respective index
sets Vy, Vs and Vg, we repeatedly (50 trials) pick at
random a dictionary D* C V (where V € {Vy, Vs, Vr})
of size n = 64 and generate a collection of m = 100
random 5-sparse signals with respect to the dictionary
D*. Our goal is to recover the true dictionary D* using
our SDS algorithms. For each random trial, we run
SDSoamp and SDSjr4 to select a dictionary D of size
64. We then look at the overlap |D N D*| to measure
the performance of selecting the “hidden” basis D*. We
also report the fraction of remaining variance after sparse
reconstruction.

Figures 2(a), 2(b), and 2(c) compare SDSp/p and
SDS 4 in terms of their variance reduction as a func-
tion of the selected number of columns. Interestingly, in
all 50 trials, SDSpasp perfectly reconstructs the hidden
basis D* when selecting 64 columns for &g and ®p.
SDS 4 performs slightly worse than SDSoasp.

Figures 2(e), 2(f), and 2(g) compare the performance
in terms of the fraction of incorrectly selected basis
functions. Note that, as can be expected, in case of
the perfectly coherent ®;;, even SDSpap does not
achieve perfect recovery. However, even with high co-
herence, 1 = 0.5 for &g, SDSppp exactly identifies
D*. SDSjs4 performs a slightly worse but nevertheless
correctly identifies a high fraction of D*.

In addition to exact sparse signals, we also gener-
ate compressible signals, where the coefficients have
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improved dictionary selection performance.

power-law with decay rate of 2. These signals can
be well-approximated as sparse; however, the residual
error in sparse representation creates discrepancies in
measurements which can be modeled as noise in DiSP.
Figures 2(d) and 2(h) repeat the above experiments for
®g; both SDSoprp and SDSjys4 perform quite well.

Figure 2(i1) compares SDSpasp and SDSjpr4 in run-
ning time. As we increase the dimensionality of the prob-
lem, SDSjs4 is several orders of magnitude faster than
SDSonp in our MATLAB implementation. Figure 2(j)
illustrates the performance of the algorithms as a func-
tion of the incoherence. As predicted by Theorems 2 and
3, lower incoherence p leads to improved performance of
the algorithms. Lastly, Figure 2(k) compares the residual
variance as a function of the training set size (number of
signals). Surprisingly, as the number of signals increase,
the performance of SDS);4 improves, and even exceeds
that of SDSoMmp.

We also test the extension of SDS;;4 to block-
sparse signals as discussed in Section V. We generate

200 random signals each with fixed sparsity pattern,
comprising 10 blocks, consisting of 20 signals each. We
then compare the standard SDSj,;4 algorithm with the
block-sparse variant SDS ;45 described in Section V
in terms of their basis identification performance (see
Figure 2(1)). SDS ;4 p drastically outperforms SDS /4,
and even outperforms the SDSp,/p algorithm which is
computationally far more expensive. Hence, exploiting
prior knowledge of the problem structure can signifi-
cantly aid dictionary selection.

A battle of bases on image patches: In this experiment,
we try to find the optimal dictionary among an existing
set of bases to represent natural images. Since the
conventional dictionary learning approaches cannot be
applied to this problem, we only present the results of
SDSOMP and SDSMA.

We sample image patches from natural images, and
apply our SDSpyp and SDSj;4 algorithms to select
dictionaries from the collection ®;;, as defined above.
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Figures 3(a) (for SDSpyp) and 3(b) (for SDSjyra)
show the fractions of selected columns allocated to the
different bases constituting ®;; for 4000 image patches
of size 8 x 8. We restrict the maximum number of dictio-
nary coefficients k for sparse representation to 10% (6).
We then observe the following surprising results. While
wavelets are considered to be an improvement over the
DCT basis for compressing natural images (JPEG2000
vs. JPG), SDSormp prefer DCT over wavelets for
sparse representation; the cross validation results show
that the learned combination of DCT (global) and Gabor
functions (local) are better than the wavelets (multiscale)
in variance reduction (compression). In particular,
Fig. 3(d) demonstrates the performance of the learned
dictionary against the various bases that comprise Py
on a held-out test set of 500 additional image patches.
The variance reduction of the dictionary learned by
SDSomp is 8% lower than the variance reduction
achieved by the best basis, which, in this case, is DCT.

Moreover, SDSjr4, which trades off representation
accuracy with efficient computation, overwhelmingly
prefers Gabor functions that are used to model neuronal
coding of natural images. The overall dictionary con-

stituency varies for SDSpsp and SDS )/ 4; however, the
variance reduction performances are comparable. Finally,
Figure 3(c) presents the fraction of selected bases for
32 x 32 sized patches with k& = 102, which matches well
with the 8 x 8 DiSP problem above.

Figure 3(e) illustrates that the average sparsity as-
sumption can significantly improve the variance re-
duction objective, when applied to natural images. In
this example, we train the dictionary using the average
variance reduction criterion; however, we enforce hard
sparsity during representation. It is then surprising that
only 32 columns are selected with the average sparsity
criterion is able to achieve the same amount of the
variance reduction when trained with the hard sparsity
constraint. We believe that this formulation circumvents
the bias caused by the self similar patches, alleviating
the column selection process to explore a better column
range of the data.

Dictionary selection from dimensionality reduced
data: In this experiment, we focus on a specific image
processing problem, inpainting, to motivate a dictionary
selection problem from dimensionality reduced data.
Suppose that instead of observing ) as assumed in Sec-



tion II, we observe )’ = P11, ..., Pmym € RP, where
P; € R4 ;i are known linear projection matrices. In
the inpainting setting, P;’s are binary matrices which
pass or delete pixels. From a theoretical perspective,
dictionary selection from dimensionality reduced data is
ill-posed. For the purposes of this demonstration, we will
assume that P;’s are information preserving.

As opposed to observing a series of signal vectors, we
start with a single image in Fig. 4, albeit missing 50% of
its pixels. We break the noisy image into non-overlapping
8 x 8 patches, and train a dictionary for sparse reconstruc-
tion of those patches to minimize the average approxima-
tion error on the observed pixels. To form the candidate
vectors, we use DCT, Haar and Daub4 wavelets, Coiflets,
and Gabor frame. We test our SDSoyp and SDSj/4
algorithms, approaches based on total-variation (TV),
linear interpolation, nonlocal TV and the nonparametric
Bayesian dictionary learning (based on Indian buffet
processes) algorithms [4], [5], [7]. The TV and nonlocal
TV algorithms use the linear interpolation result as
their initial estimates. We set k£ = 6 (10%). Figure 4
illustrates the inpainting results for each algorithm sorted
in increasing peak signal to noise ratio (PSNR). Figure 4
also shows the PSNR value of the DCT basis alone
29.47dB. The other bases by themselves obtain 26.87dB
(Haar), 27.18dB (Daub4), 26.16 (Coiflet), and 11.64dB
(noiselet). Gabor frame obtains a denoising performance
of 12.36dB by itself with the same sparsity constraint.

The test image exhibits significant self similarities,
restricting the degrees-of-freedom of the sparse coeffi-
cients. Hence, for our modular and OMP-based greedy
algorithms, we ask the algorithms to select 64 x 32
dimensional dictionaries. While the modular algorithm
SDS 4 selects the desired dimensions, the OMP-based
greedy algorithm SDSpojsp terminates when the dic-
tionary dimensions reach 64 x 19. Given the selected
dictionaries, we determine the sparse coefficients that
best explain the observed pixels in a given patch and
reconstruct the full patch using the same coefficients. We
repeat this process for all the patches in the image that
differ by a single pixel. In our final reconstruction, we
take the pixel median of all the reconstructed patches.
SDSoayp performs on par with nonlocal TV while
taking a fraction of its computational time. While the
Bayesian approach takes significantly more time (a few
order of magnitudes slower), it best exploits the self
similarities in the observed image to result in the best
reconstruction.

VIII. CONCLUSIONS

Over the last decade, a great deal of research revolved
around recovering, processing, and coding sparse signals.

To leverage this experience in new problems, many
researchers are now interested in automatically determin-
ing data sparsifying dictionaries for their applications.
We discussed two alternatives that focus on this problem:
dictionary design and dictionary learning. In this paper,
we developed a combinatorial theory for dictionary se-
lection that bridges the gap between the two approaches.
We explored new connections between the combinatorial
structure of submodularity and the geometric concept of
incoherence. We presented two computationally efficient
algorithms, SDSop/p based on the OMP algorithm, and
SDSas4 using a modular approximation. By exploiting
the approximate submodularity property of the DiSP
objective, we derived theoretical approximation
guarantees for the performance of our algorithms. We
also demonstrated the ability of our learning framework
to incorporate structured sparsity representations in
dictionary learning. Compared to the dictionary design
approaches, our approach is data adaptive and has better
empirical performance on data sets. Compared to the
continuous nature of the dictionary learning approaches,
our approach is discrete and provides new theoretical
insights to the dictionary learning problem. We believe
that our results pave a promising direction for further
research, exploiting combinatorial optimization for
sparse representations, in particular submodularity.
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