Statistical analysis and agent-based microstructure
modeling of high frequency financial trading

Linda Ponta, Member, IEEE, Enrico Scalas, Marco Raberto, and Silvano Cincotti*

Abstract—A simulation of high-frequency market data is per-
formed with the Genoa Artificial Stock Market. Heterogeneous
agents trade a risky asset in exchange for cash. Agents have zero
intelligence and issue random limit or market orders depending
on their budget constraints. The price is cleared by means of
a limit order book. A renewal order-generation process is used
having a waiting-time distribution between consecutive orders
that follows a Weibull law, in line with previous studies. The
simulation results show that this mechanism can reproduce
fat-tailed distributions of returns without ad-hoc behavioral
assumptions on agents. In the simulated trade process, when the
order waiting-times are exponentially distributed, trade waiting
times are exponentially distributed. However, if order waiting
times follow a Weibull law, analogous results do not hold. These
findings are interpreted in terms of a random thinning of the
order renewal process. This behavior is compared with order
and trade durations taken from real financial data.

Index Terms—High frequency financial time-series, Random
thinning, Weibull distribution, Artificial Stock Market.

I. INTRODUCTION

N recent years, thanks to the availability of large databases

of financial data, the statistical properties of high-frequency
financial data and market microstructural properties have
been studied by means of different tools, including phe-
nomenological models of price dynamics and agent-based mar-
ket simulations [1]-[18]. Various studies on high-frequency
econometrics appeared in the literature including the autore-
gressive conditional duration models [19]-[23]. Among these
approaches, agent-based based simulations [7], [8], [11]-[13]
are particularly flexible as they allow the study of both the
behaviour of agents and the influence of market structures in
a well-controlled way. Since the early 1990s, artificial financial
markets based on interacting agents have been developed. It is
worth noting that besides some early Monte Carlo simulations
(e.g., [24], [25]), microscopic simulations of financial markets
initially aimed more to provide mechanisms for bubbles and
crashes rather than to look at statistical features of the so gen-
erated time series. The first artificial market has been built at
the Santa Fe Institute [26]-[28]. It is characterized by hetero-
geneous agents with limited rationality. While early attempts at
microscopic simulations of financial markets appeared unable
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to account for the ubiquitous scaling laws of returns (and
were, in fact, not devised to explain them), the recent models
seem to be able to explain some of the statistical properties
of financial data, but in most cases the attention is focused
only on one stylized fact. Generally speaking, the objective of
artificial markets is to reproduce the statistical features of the
price process with minimal hypotheses about the intelligence
of agents [29]. Several artificial markets populated with simple
agents have been developed and have been able to reproduce
some stylized facts, e.g., fat tails of returns and volatility
autocorrelation [7], [8], [30]-[33]. For a detailed review on
microscopic agent-based models of financial markets see [34],
[35].

Stochastic models alternative to artificial markets have also
been proposed, e.g., diffusive models, ARCH-GARCH mod-
els, stochastic volatility models, models based on fractional
processes, models based on subordinate processes [36]-[42].
In particular, studies on stock-markets vulnerability by collec-
tive behaviour of large group of agents have been proposed.
This led to consider collective behaviour that could reflect
herding phenomena [36], [43], [44]. More recently, the role
of heterogeneity, agents’ interactions and trade frictions on
stylized facts of stock market returns have also been consid-
ered [45].

Here, the focus is on the influence of the double auction
clearing mechanism where the price is fixed by the order book.
An important empirical variable is the waiting time between
two consecutive transactions [10], [46]. Empirically, in the
market, during a trading day the activity is not constant [47]
leading to fractal-time behavior [48], [49].

Due to the double auction mechanism, waiting times between
two trades are themselves a stochastic variable [50]-[52]. They
may also be correlated to returns [53] as well as to traded
volumes. Indeed, trading via the order book is asynchronous
and a transaction occurs only if a trader issues a market order.
For liquid stocks, waiting times can vary in a range between
some seconds and a few minutes, depending on the specific
stock and on the market considered. In ref. [53], the reader
can find a study on General Electric stocks traded in October
1999. Waiting times between consecutive prices exhibit 1-day
periodicity, typical of variable intraday market activity. More-
over, the survival probability (the complementary cumulative
distribution function) of waiting times is not exponential [54]
but is well fitted by a Weibull function [19], [20].

In this paper, we simulate different distributions of waiting
times between consecutive limit orders, namely the Weibull
distribution and the power-law distribution. Orders are then
selected by means of the limit order book mechanism imple-
mented in the Genoa Artificial Stock Market (GASM) and



described in Section II-B The resulting distribution of waiting
times between consecutive trades is then compared to a zero-
order theory of order selection described in Section II-C.
Section IV compares the simulation results with the empirical
data extracted from the historical database of the London Stock
Exchange. Finally, Section III is devoted to discussion and
conclusions.

II. MODEL MICROSTRUCTURE

In the implemented simulation, agents in the GASM trade
one single stock in exchange for cash. They are liquidity
traders and, therefore, the decision making process is nearly
random and depends on the finite amount of cash plus stock
available. At the beginning of the simulation, cash and stocks
are uniformly distributed among agents.

A. Order generation

Trading is divided into M daily sections. Each trading day
is divided into T elementary time steps of size one second.
During the day, at given time steps ¢, a trader k is randomly
chosen to issue an order. Order waiting times 777 = tj, —tp_1
are drawn according to a Weibull distribution. The Weibull
probability density function is:
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with 7° > 0, where 7 is the scale parameter and (3 is the
shape parameter, also known as slope, as it is the slope of the
regression line in a probability plot. The Weibull distribution
reduces to the exponential distribution for 8 = 1. In these
computational experiments we considered values of /3 less than
of equal to one. The order generation process is then described
as a general renewal process where the waiting times between
two consecutive orders, 7°, are independent and identically
distributed (i.i.d.) random variables following (1). In the case
B = 1, the order generation process is Poisson with an
exponential waiting-time distribution. For further information
on renewal processes the reader is referred to ref. [55].

B. Order selection and trading

A trader issues a buy or sell order with probability 1/2. Let
a(tp—1) and d(tp—1) be the values of the ask and bid prices
stored in the book at time step ¢;,—1. In case the order issued
at time step t, is a sell order, the limit price s; associated to
the sell order is:

sk(tn) = ni(tn) - a(th-1) 2

where ny(t;) is a random draw by trader k at time step tj
from a Gaussian distribution with mean ;¢ = 1 and standard
deviation o. If sp(tn) > dr(th—1) then the limit order is
recorded in the book and no trade occurs, else the order
becomes a market order and a transaction takes place at the
price S(tp) = d(tp—1). In the latter case, the sell order is
partially or totally fulfilled and the bid price is updated. The
quantity of stock offered for sale is a random fraction of the

quantity owned by the trader. In case the order is a buy order,
the limit price by (t) is now:

bi(tn) = ni(tn) - d(th—1), 3)

where ny(ty) is determined as above. If by (ty) < ax(tp—1)
then the limit order is recorded in the book and no trade occurs,
else the order becomes a market order and a transaction takes
place at the price S(t;,) = a(tp—1). The quantity of stock
ordered depends on the cash of trader k£ and on the value of
bi(tr). In this framework, agents compete for liquidity. If a
buy order is issued by an agent, its benchmark is the best limit
buy order given the bid price. As p = 1, for half of the times,
the agent offers a more competitive buy order (if by(ty) >
d(tp—1)), that can result in a trade if by (tn) > a(tn—1). The
same is valid for sell limit orders.

C. Random thinning for order selection and trading

As a zero-order model of order selection and trading, let
us consider the random thinning [55] of the order generation
process. This has been studied by Gnedenko and Kovalenko
[56]. In order to define the thinning procedure, one first defines
the epochs of events (orders) ¢ as
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Then, the sequence 9,19, ...,t%, ... is decimated according to
this rule. Every epoch is independently kept with probability
q or deleted with probability p = 1 — ¢ with 0 < ¢ < 1. In
order to compute the probability density function (Ty¢)(7),
the probability density function fx(¢) of the sum of k waiting
times is needed. As waiting times are i.i.d. variables, fi(t) is
given by the k-fold convolution of ¢:
t
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(Ty)(T) can be obtained by purely probabilistic arguments,
by noting that, after a kept event, the next one of the original
process is kept with probability ¢ but dropped in favor of the
second next with probability pg and, in general, n — 1 events
are dropped in favor of the n-th next with probability p"~1q.
Therefore one has:
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Let fn = f e %' f,,(t) dt be the Laplace transform of
fn(t). From the behavior of the Laplace transform of a
convolution, it turns out that the Laplace transform of eq. (6)
is:
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from which, in principle, we can reconstruct by Laplace
inversion the probability density function of the thinned pro-
cess. Eq. (6) or eq. (7) can be used to estimate the density
of waiting times between two consecutive transaction from
the knowledge of the order waiting-time probability density

n=1



function. Alternatively, a Monte Carlo simulation can be used,
in which the thinning procedure is preformed directly on a
pseudo-random sequence of waiting times. Random thinning
for order selection and trading is a rough approximation as it
does not take into account many features which are present in a
market, including price and volume feedback and partial order
fulfillment. However the distributions obtained by random
thinning can be easily generated and compared with those
obtained with GASM by the procedure described in Section
II-B.

III. SIMULATION RESULTS

The simulations are performed with the following parame-
ters. The number of daily sections M is set equal to 50. The
length of the daily sections is 7' = 25,200 s (corresponding
to 7 hours of trading activity). In Fig. 1, data are presented
for Weibull-distributed orders with 8 = 1 (exponential case).
In Fig. 2, the case 8 = 0.4 is discussed. The average waiting-
time (7°) between orders is set to 20 s for every simulation.
The scale factor 7 is related to (7°) according to
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where I'(+) is Euler’s Gamma function.The survival probability
P- (1) corresponding to the Weibull density (1) is

P (1) = exp(—7/n)”. 9)

The lifespan of orders is 600 seconds, a time much larger
than (7°). Sell and buy limit prices are computed following
(2) and (3), respectively. The random numbers n;(t;) are
draw from a normal distribution with parameters p = 1 and
o = 0.005. The number of agents is 10,000. The initial stock
price is 100.00 units of cash, say Euros, and each trader
owns an equal amount of cash and shares: 100,000 Euros
and 1,000 shares. These simulations produce realistic intraday
price paths [8]. In Fig. 1, the survival probability distribution
of order waiting times is compared with that for trade waiting
times with 5 = 1. This case corresponds to exponentially
distributed order waiting times. As a consequence of the
GASM order selection procedure, the waiting time between
trades, (%), is still exponentially distributed, with a larger
average waiting time. The hollow circles in Fig. 1 correspond
to a Monte Carlo simulation of random thinning with a
probability ¢ = (7°)/(r*) = 0.36. The agreement between
the GASM order selection and the random thinning procedure
is good.

In Fig. 2, the survival probability distribution of order waiting
times is compared with that for trade waiting times with
B = 0.4. This case corresponds to Weibull-distributed order
waiting times. As a consequence of the GASM order selection
procedure, the waiting time between trades, <’7’t>, no longer
follows the Weibull distribution. In Fig. 2, the dashed line
is the Weibull fit of the trade waiting-time survival function
and a Kolmogorov-Smirnov test rejects the null hypothesis
of Weibull-distributed trade waiting times at the 5% signif-
icance level. The hollow circles in Fig. 2 correspond to a
Monte Carlo simulation of random thinning with a probability
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Fig. 1. Survival probability distribution of order waiting times (dots) and
of trade waiting times (crosses) in the case 8 = 1 (exponential distribution).
The two lines represent the corresponding exponential fits. The hollow circles
represent the results of a Monte Carlo simulation of random thinning with
probability ¢ = 0.36.
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Fig. 2. Survival probability distribution of order waiting times (dots) and
of trade waiting times (crosses) in the case 8 = 0.4 (Weibull distribution).
The two lines represent the corresponding Weibull fits. The hollow circles
represent the results of a Monte Carlo simulation of random thinning with
probability ¢ = 0.36.

q = (1°)/(r") = 0.36. Again, the agreement between the
GASM order selection and the random thinning procedure is
good.

IV. EMPIRICAL ANALYSIS

In this section, simulation results are compared to the
behaviour of real data for the sake of completeness. The
waiting-time empirical data have been extracted from the
historical database of the London Stock Exchange where
orders and quotes are stored for the electronic market; these
data are a significant fraction, but do not include all the
orders and quotes. The data set analyzed consists of waiting
times between orders and trades for both Glaxo Smith Kline
(GSK) and Vodafone (VOD) stocks traded in the following
months: March, May, and October 2002. Both limit and
market orders have been included. The use of one-month
high-frequency data is a trade-off between the necessity of
managing enough data for significant statistical analysis and,
on the other hand, the goal of minimizing the effect of external
economic fluctuations. Figs. 3 and 4 show the waiting-time
survival functions for the orders (blue dots), trades (blue



crosses) and the results of the random thinning (red hollow
circles) of the GSK and VOD stocks respectively. The blue
line represents the Weibull fit of orders, the blue dashed line
the one of trades and the red point line the one of the thinning
results. The empirical analysis summarized in Figs. 3 and
4 shows that the random thinning of orders approximately
reproduces the statistical behavior of trade duration. For other
data, [52], [57], the waiting time of trade duration follows the
Weibull distribution. However, in our case, Weibull distibution
fits, performed with the moment methods, are presented in
Figs. 3 and 4. The results show that neither order not trade
durations follow the Weibull distribution. These finding are
also corroborated by Kolmogorov-Smirnov test rejecting the
null hypothesis of Weibull distribution data.

V. DISCUSSION AND CONCLUSIONS

The simulation results described in Section III can be

interpreted as follows. When the waiting-time distribution
between orders is exponential, then the GASM order selection
procedure described is Section II-B leads to exponentially
distributed waiting times between consecutive traders. When
the order waiting times follow a Weibull renewal process with
0 < B < 1, then the trade waiting -time distribution is no
longer ruled by the Weibull law. However, in both cases, in
regard to waiting times, the outcome of the order selection
process is well-mimicked by a simple random thinning with
probability g given by the ratio between the average order wait-
ing time and the average trade waiting time: ¢ = (7°)/(7%). In
other words, the GASM selection process of the order book is
equivalent to a random thinning for the simulation parameters
investigated.
In other words, the GASM selection process of the order book
is equivalent to a random thinning for the simulation param-
eters investigated. This random thinning procedure seems to
work also for empirical data, meaning that it is able to predict
the unconditional distribution of trade durations from the
knowledge of the unconditional distribution of order durations.
It could be argued that there is no strong reason for inde-
pendent market investors to place buy and sell orders in a
time-correlated way. This argument would lead one to expect
a Poisson process for orders. Therefore, if price formation
were a simple thinning of the bid-ask process, then exponential
waiting times should be expected between consecutive trades
as well [55]. Eventually, even if empirical analysis should
show that time correlations are already present at the order
level, it would be interesting to understand why they are there.
In other words, the empirical results on the survival probability
set limits on statistical market models for price formation.
A possibly correlated result has been recently obtained by
Fabrizio Lillo and Doyne Farmer, who find that the signs of
orders in the London Stock Exchange obey a long-memory
process [58]-[60]. However, non-exponential unconditional
survival probability can also be explained by a mixture of
exponentials due to variable activity during a trading day. In
this case, one has
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Fig. 3. Survival probability distribution of order waiting times (dots) and of
trade waiting times (crosses) for the GSK stock of LSE for March 2002 (a),
May 2002, (b) and October 2002 (c). The hollow circles represent the results
of random thinning with probability g equal to the ratio between the length
of the trade and the orders series. The three lines represent the corresponding
Weibull fits.

where a; are suitable weights whose sum Zivzl a; must be
1, to fulfill the condition P~ (0) = 1 [10]. Further empirical
studies on market microstructure will be necessary to clarify
these points.
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Fig. 4. Survival probability distribution of order waiting times (dots) and of
trade waiting times (crosses) for the VOD stock of LSE for March 2002 (a),
May 2002, (b) and October 2002 (c). The hollow circles represent the results
of random thinning with probability equal to ¢ equal to the ratio between
the length of the trade and the orders series. The three lines represent the
corresponding Weibull fits.
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