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Abstract—We study the conflict between two links in a
multiple-input single-output interference channel. Thissetting is
strictly competitive and can be related to perfectly competitive
market models. In such models, general equilibrium theory is
used to determine equilibrium measures that are Pareto optimal.
First, we consider the links to be consumers that can trade
goods within themselves. The goods in our setting correspond to
beamforming vectors. We utilize the conflict representation of the
consumers in the Edgeworth box, a graphical tool that depicts
the allocation of the goods for the two consumers, to provide
closed-form solution to all Pareto optimal outcomes. Afterwards,
we model the situation between the links as a competitive market
which additionally defines prices for the goods. The equilibrium
in this economy is called Walrasian and corresponds to the prices
that equate the demand to the supply of goods. We calculate
the unique Walrasian equilibrium and propose a coordination
process that is realized by an arbitrator which distributes the
Walrasian prices to the consumers. The consumers then calculate
in a decentralized manner their optimal demand corresponding
to beamforming vectors that achieve the Walrasian equilibrium.
This outcome is Pareto optimal and dominates the noncooperative
outcome of the systems. Thus, based on the game theoretic
model and solution concept, an algorithm for a distributed
implementation of the beamforming problem in multiple-input
single-output interference channels is provided.

I. I NTRODUCTION

Two transmitter-receiver pairs utilize the same spectral band
simultaneously. Each transmitter is equipped withN antennas
and each receiver with a single antenna. This setting corre-
sponds to the multiple-input single-output (MISO) interference
channel (IFC) [2]. The systems’ performance in such a setting
is degraded by mutual interference, and their noncooperative
operation is generally not efficient [3]. Therefore, coordination
between the links is needed in order to improve their joint
outcome.

Generally, of interest is to devise coordination mechanisms
in which the operating point of the links is Pareto optimal. A
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Pareto optimal point is an achievable utility tuple from which it
is impossible to increase the performance of one link without
degrading the performance of another. Consequently, Pareto
optimality ensures efficient exploitation of the wireless channel
resources. For this purpose, there has been several work on
characterizing the set of beamforming vectors that are relevant
for Pareto optimal operation in the MISO IFC [4]–[8]. Next,
we will discuss these approaches.

A. Characterization of Pareto Optimal Points

Designing a Pareto optimal mechanism requires finding the
joint beamforming vectors used at the transmitters that lead
to the Pareto optimal point. The set of feasible beamforming
vectors for each transmitter is anN -dimensional complex ball
whereN is the number of used antennas. The importance of
characterizing the set of beamforming vectors necessary for
the links’ Pareto optimal operation is twofold. First, the set of
relevant beamforming vectors to consider for finding a Pareto
optimal point is reduced to a relatively small subset of all
feasible beamforming vectors. Second, the characterized set of
efficient beamforming vectors is parameterized by a number
of scalars which can even reduce the complexity for indicating
the required beamforming vectors.

In [4], the efficient beamforming vectors are parameterized
by K(K − 1) complex-valued parameters, whereK is the
number of links. For the special two-user case, the efficient
beamforming vectors are proven to be a linear combination
of maximum ratio transmission and zero forcing transmission.
Thus, two real-valued parameters are required each between
zero and one to characterize all Pareto optimal operating
points. The extension to a real-valued parametrization forthe
generalK-user case is conducted in [5]–[7] whereK(K − 1)
real-valued parameters are required to achieve all Pareto
optimal points. Recently in [8], parametrization of the efficient
beamforming vector is provided in the multi-cell MISO setting
with general linear transmit power constraint at the transmit-
ters. For the case of MISO IFC and total power constraint at
the transmitter, the number of required parameters is2K − 1.

In this work, we provide a single real-valued parametriza-
tion of the beamforming vectors that are necessary and suf-
ficient to achieve all Pareto optimal points. This result is
gained when we model the two-user MISO IFC as apure
exchange economy[9]. The links are consumers and they
possess goods which correspond to beamforming vectors. In a
pure exchange economy, the consumers can trade their goods
within themselves to improve their utility. The utility function
of the consumers in our case is the signal to interference plus
noise ratio (SINR) which is formulated in terms of the goods.
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Utilizing the Edgeworth box [9], which is a graphical tool that
depicts the preferences of the consumers over the distribution
of the goods, we provide a closed-form solution to all Pareto
optimal points of the SINR region. A subset of all Pareto
optimal points satisfy that both links jointly achieve higher
utility than at the noncooperative point. These points are called
exchange equilibriaand are related to the solution concept, the
core, from coalitional game theory.

B. Coordination to Achieve Pareto Optimal Points

All of the mentioned efforts to parameterize the efficient
beamforming vectors in the MISO are valuable for design-
ing efficient low complexity distributed resource allocation
schemes such as in [10]–[12]. In [10] and [11], the real-valued
parametrization for the two-user case from [4] is utilized
and bargaining algorithms are proposed to improve the joint
performance of the systems from the noncooperative state. An
extension to these works is made in [12] where a strategic
bargaining process is proposed and proven to terminate at a
Pareto optimal outcome. Also based on a strategic bargaining
approach, a coordination mechanism is proposed in [13] for
the two-user MISO IFC where the Han-Kobayashi scheme is
applied. In theK-user MISO IFC, a low complexity one-
shot coordination mechanism is given in [14], where each
transmitter independently maximizes its virtual SINR. Forthe
two-user case, the proposed mechanism is proven to achieve
a Pareto optimal solution.

In this paper, we propose a coordination mechanism be-
tween two MISO interfering links which is Pareto optimal
and achieves for each link a utility higher than at the nonco-
operation point. Our analysis is based on relating the MISO
IFC setting to a competitive market [9]. To the best of our
knowledge, this is the first time the beamforming problem in
the MISO IFC is related to and analyzed using competitive
market models. In a competitive market, as proposed by L.
Walras [15], [16], there exists a population in which each
individual possesses an amount of divisible goods. The worth
of these goods makes up the budget of each individual. Each
individual has a utility function which reveals his demand
on consuming goods. Moreover, each individual would use
the revenue from selling all his goods to buy amounts of
goods such that his utility is maximized. This economic model
is competitive because each consumer seeks to maximize
his profit independent of what the other consumers demand.
Walras investigated if there exists prices for the goods such
that the market has neither shortage nor surplus. The existence
of such prices, called Walrasian prices, was later exploredby
Arrow [17]. The prices in this economy are usually assumed
to be fixed and not determined by the consumers. It is assumed
that the market or an auctioneer acts as an arbitrator to
determine the Walrasian prices.

The competitive market model has found a few applications
for resource allocation in communication networks. In [18],
the Walrasian equilibrium is formulated as a linear comple-
mentarity problem for a multi-link multi-carrier setting.A
decentralized price-adjustment process is proposed wherethe
users send their power allocations in each iteration to the

spectrum manager which adjusts the prices to achieve the
equilibrium. In [16], competitive spectrum market is consid-
ered where the users, sharing a common frequency band, can
purchase their transmit power subject to budget constraints.
An agent, referred to as the market, determines the unit
prices of the power spectra. Existence of the equilibrium is
proven and conditions for its uniqueness are provided. In [19],
the competitive equilibrium is used for simultaneous bitrate
allocation for multiple video streams and the Edgeworth box
[15] is used to illustrate the conflict between the streams. In
the context of cognitive radio, spectrum trading is successfully
modeled by economic models and market-equilibrium, and
competitive and cooperative pricing schemes are developed
in [20]. Moreover, in [21], hierarchical spectrum sharing is
modeled as an interrelated market. The pricing mechanism
for the bandwidth allocations between the systems equates the
supply to the demand.

In our case, the links are the consumers and the parameters
of the beamforming vectors are the goods the consumers
possess. We formulate the consumers’ demand functions and
calculate the Walrasian prices which equate the demand to the
supply of each good. To achieve the Pareto optimal Walrasian
equilibrium, the arbitrator coordinates the transmissionof the
links. We consider two cases for the coordination mechanism.
Assuming the arbitrator has full knowledge of the setting, he
can calculate the Walrasian prices and forward these to the
links. The links independently calculate their beamforming
vectors according to their demand function. Assuming the
arbitrator has limited knowledge of the setting, we propose
a price adjustment process, also referred to as tâtonnement,
to reach the Walrasian prices. In each iteration, the links
send their demands to the arbitrator which updates the prices
according to the excess demand of each good.

Outline: The outline of the paper is as follows. The system
and channel model, as well as the definition of the SINR
region and the beamforming vectors that are relevant for Pareto
optimal operation are given in Section II. In Section III, we
examine a pure exchange economy between the links. We
model the parametrization of efficient beamforming vectors
as goods and the links as consumers which trade these goods
within themselves. We characterize all Pareto optimal points
in closed form and define the equilibria which correspond
to the core of a coalition between the links. In Section IV,
we consider a competitive market model and assume that the
goods are bought by the consumers at prices determined by an
arbitrator. The equilibrium of this market model is determined,
and we provide two coordination mechanisms to achieve it. In
Section V, we illustrate the results of this paper before we
conclude in Section VI.

Notations: Column vectors and matrices are given in low-
ercase and uppercase boldface letters, respectively.‖a‖ is the
Euclidean norm ofa ∈ CN . |b| is the absolute value of
b ∈ C. sign(a) denotes the sign ofa ∈ R. (·)T and (·)H
denote transpose and Hermitian transpose, respectively. The
orthogonal projector onto the column space ofZ is ΠZ :=
Z(ZHZ)−1ZH . The orthogonal projector onto the orthogonal
complement of the column space ofZ is Π

⊥
Z := I − ΠZ ,

whereI is an identity matrix.CN (0,A) denotes a circularly-
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symmetric Gaussian complex random vector with covariance
matrix A. Throughout the paper, the subscriptsk, ℓ are from
the set{1, 2}.

II. PRELIMINARIES

A. System and Channel Model

The quasi-static block flat-fading channel vector from trans-
mitter k to receiverℓ is denoted byhkℓ ∈ CN . We assume
that transmission consists of scalar coding followed by beam-
forming. The beamforming vector used by transmitterk is
wk ∈ CN . The matched-filtered, symbol-sampled complex
baseband data received at receiverk is1

yk = h
H
kkwksk + h

H
ℓkwℓsℓ + nk, k 6= ℓ, (1)

wheresk ∼ CN (0, 1) is the symbol transmitted by transmitter
k, and nk ∼ CN (0, σ2) is additive Gaussian noise. Each
transmitter has a total power constraint ofP := 1 such that
‖wk‖2 ≤ 1. We define the signal to noise ratio (SNR) as1/σ2.

The transmitters are assumed to have perfect local channel
state information (CSI), i.e., each transmitter has perfect
knowledge of the channel vectors only between itself and the
two receivers. Further information at the transmitters required
for the coordination mechanism is discussed later in Section
IV-C.

We assume there exists anarbitrator who coordinates the
operation of the transmitters. The arbitrator could be any
central controller which is connected to both links. Generally,
the practical identification of the arbitrator depends on the sce-
nario. For example, in hierarchical networks in which several
tiers of networks operate in the same area it is possible that
higher network tiers benefit from coordinating the operation of
the networks in lower tiers such as in the model used in [21].
Moreover, the arbitrator can be the base station of a macrocell
which can coordinate the transmission of smaller microcells in
its coverage range [22]. The macrocell base station is usually
connected to the microcell base stations via a high capacity
link which enables the exchange of channel information re-
quired for the coordination process. The applicability of our
system model in a cognitive radio network is not suitable if the
transmitters are restricted to take into account the interference
levels they are allowed to induce at primary receivers. Our
setting is suitable for cognitive network settings, in which the
users dynamically adapt their transmissions according to the
environment these users exist in. A cognitive transmitter can
choose with whom it can cooperate and exchange information
to improve its utility.

B. SINR Region and Efficient Transmission

The signal to interference plus noise ratio (SINR) at receiver
k is

φk(w1,w2) =
|hH

kkwk|2
|hH

ℓkwℓ|2 + σ2
, k 6= ℓ. (2)

1Throughout the paper, the subscriptsk, ℓ are from the set{1, 2}.

This results in the achievable rate2 log2(1 + φk(w1,w2)) for
link k when single user decoding is performed at the receivers.
The SINR regionis the set of all achievable SINR tuples
defined as

Φ :=
{
(φ1(w1,w2), φ2(w1,w2)) : ‖wk‖2 ≤ 1

}
. (3)

In the SINR region, tuples can be ranked according to their
Pareto efficiency. An SINR tuple(φ′

1, φ
′
2) ∈ Φ is Pareto

superior to (φ1, φ2) ∈ Φ if (φ′
1, φ

′
2) ≥ (φ1, φ2), where

the inequality is componentwise and strict for at least one
component. The transition from(φ1, φ2) to (φ′

1, φ
′
2) is called

a Pareto improvement. Situations where Pareto improvements
are not possible are calledPareto optimal. These points
constitute thePareto boundaryof the SINR region. Formally,
the set of Pareto optimal points ofΦ are defined as [23, p. 18]

P(Φ) := {x ∈ Φ : there is noy ∈ Φ with y ≥ x,y 6= x},
(4)

where the inequality in (4) is componentwise.
For the two-user MISO IFC, the set of beamforming vectors

that are relevant for Pareto optimal operation are parameter-
ized by a single real-valued parameterλk ∈ [0, 1] for each
transmitterk 6= ℓ as [4, Corollary 1]

wk(λk) =
√

λk

Πhkℓ
hkk

‖Πhkℓ
hkk‖

+
√

1− λk

Π
⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖
. (5)

This parametrization is valuable for designing efficient low
complexity distributed resource allocation schemes [12].The
set of beamforming vector in (5) includes maximum ratio
transmission (MRT) (λMRT

k = ‖Πhkℓ
hkk‖2/‖hkk‖2) and zero

forcing transmission (ZF) (λZF
k = 0). According to [4, Corol-

lary 2], it suffices that the parametersλk only be from the set
[0, λMRT

k ] for Pareto optimal operation. Note that a transmitterk
has to know the channel vectorshkk andhkℓ, k 6= ℓ, perfectly
in order to calculate the beamforming vectors in (5). Since
we are interested in transmissions that lead to Pareto optimal
outcomes, we will confine the strategy set of each transmitter
to the set in (5) and formulate the SINR expression in (2) in
terms of the parametersλk. For this purpose, we first formulate
the power gains at the receivers.

Lemma 1:The power gains at the receivers in terms of the
parametrization in (5) are

|hH
kkwk(λk)|2 = (

√

λkgk +
√

(1− λk)ǧk)
2, (6)

|hH
kℓwk(λk)|2 = λkgkℓ, k 6= ℓ, (7)

where λk ∈ [0, λMRT
k ] and gk := ‖Πhkℓ

hkk‖2, ǧk :=
‖Π⊥

hkℓ
hkk‖2, gkℓ := ‖hkℓ‖2, wherek 6= ℓ.

Proof: The proof is provided in Appendix A.
The SINR of link k can be rewritten using Lemma 1 in

terms of the parameters in (5) as

φk(λ1, λ2) =

(√
λkgk +

√

(1− λk)ǧk

)2

σ2 + λℓgℓk
, ℓ 6= k. (8)

2We represent the preference of a link over the used beamforming vectors
with the SINR utility function in (2). The results in this paper also hold for
any SINR based utility function which is strictly increasing with SINR such
as the achievable rate function.
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Notice in (8) that the interference termλℓgℓk scales linearly
with λℓ. With this respect, the parameterλℓ can be interpreted
as a scaling of interference at the counter receiver. A reduction
in λℓ increases the SINR of linkk for fixed λk. Assuming
that the links are not cooperative, their operation point can be
predicted using noncooperative game theory. The outcome is
a solution of a strategic game [24, Section 2.1] between the
links.

C. Game in Strategic Form

In [3], the outcome of a strategic game between the links is
studied. The game in strategic form consists of the set of play-
ers,{1, 2}, corresponding to the two links. The pure strategies
of playerk are the real-valued parametersλk ∈ [0, λMRT

k ] in (5).
The utility function of playerk is log2(1+φk(λ1, λ2)), where
φk(λ1, λ2) is given in (8). The outcome of this strategic game
is the same also when the utility function is chosen to be
φk(λ1, λ2). This is due to the fact that the preference relation
of the players which is represented through the utility function
is invariant to positive monotonic transforms [9, Theorem 1.2].
In the above described game, a player always chooses the
MRT strategy independent of the choice of the other player
[3], i.e., MRT is a dominant strategy for each player. Hence,
the unique Nash equilibrium is(λMRT

1 , λMRT
2 ). The extension of

the two-player strategic game described above to theK-player
case is straightforward. The Nash equilibrium correspondsto
the strategy profile in which each player chooses MRT. The
outcome in Nash equilibrium is generally not Pareto optimal.
In order to achieve Pareto improvements from the Nash
equilibrium, coordination between the players is required.

III. E QUILIBRIA IN EXCHANGE ECONOMY

A. Exchange Economy Model

In this section, we will use a pure exchange economy
model [9, Chapter 5.1] to determine equilibria which lie on
the Pareto boundary of the SINR region in (3). This model
assumes that there exists a set of consumers which voluntarily
exchange goods they possess to increase their payoff. The
set of consumers{1, 2} corresponds to the two links in our
setting. The goods correspond to the parametrization of the
beamforming vectors in (5). That is, there are two goods and
λ1 will stand for good1 andλ2 for good2. The consumers
are initially endowed with amounts of these goods. We will
assume that the links start the trade in Nash equilibrium. Thus,
consumerk is initially endowed withλMRT

k from his good and
nothing from the good of the other consumer. Specifically, we
define(λMRT

1 , 0) and(0, λMRT
2 ) as theendowmentsof consumers

1 and2, respectively.
Since during exchange each consumer will possess differ-

ent amounts from both available goods, we introduce new
variables that indicate these. When consumerk trades an
amount of his goodk to consumerℓ 6= k, this amount will
be represented byx(ℓ)

k ≤ λMRT
k . The amount left for consumer

k from his good isx(k)
k = λMRT

k − x
(ℓ)
k . In connection to the

parametrization in (5), we define the amounts of possessed
goods as

x
(k)
k = λk, x

(k)
ℓ = λMRT

ℓ − λℓ, ℓ 6= k. (9)

O1

λMRT
2

λMRT
1

x
(1)
2

x
(1)
1

x′(1)
2

x′(1)
1

I1(x
(1)
1 , φ′

1)

(a) Consumer 1.

O2

x′(2)
1

λMRT
2 x

(2)
2x′(2)

2

λMRT
1

x
(2)
1

I2(x
(2)
2 , φ′

2)

(b) Consumer 2.

Fig. 1. Preference representation of the consumers.I1 andI2 are indifference
curves of consumer1 and2 respectively.

If consumerk gives x(ℓ)
k to the other consumer, this means

that transmitterk uses the beamforming vector in (5) which
corresponds toλMRT

k −x
(ℓ)
k . Hence, ifx(ℓ)

k increases, transmitter
k reduces the interference at receiverℓ by using a beamform-
ing vector nearer to ZF. The utility function of a consumer
represents his preference over the goods. We use the SINR in
(8) as the utility function of the consumer which we rewrite
in terms of the goods as

φk(x
(k)
1 , x

(k)
2 ) =

(√

x
(k)
k gk +

√

(1− x
(k)
k )ǧk

)2

σ2 + λMRT
ℓ gℓk − x

(k)
ℓ gℓk

, (10)

where we substitutedλk = x
(k)
k andλℓ = λMRT

ℓ − x
(k)
ℓ , ℓ 6= k,

from (9).

Theorem 1:φk(x
(k)
1 , x

(k)
2 ) in (10) is continuous, strongly

increasing, and strictly quasiconcave on[0, λMRT
1 ]× [0, λMRT

2 ].

Proof: The proof is provided in Appendix B.

The preference of consumers1 and 2 over the goods is
plotted in Fig. 1(a) and Fig. 1(b), respectively. For consumer
1 (analogously consumer2), O1 is the origin of the coordinate
system which hasx(1)

1 , the amount from good1, at the x-
axis andx(1)

2 , the amount from good2, at the y-axis.Ik is
the indifference curveof consumerk which represents the
pairs (x

(k)
1 , x

(k)
2 ) such that the consumer achieves the same

payoff as with (x′(k)
1 , x′(k)

2 ), i.e., φk(x
(k)
1 , x

(k)
2 ) = φ′

k :=

φk(x
′(k)
1 , x′(k)

2 ). The dark region aboveIk, corresponds to
the pairs (x(k)

1 , x
(k)
2 ) where the consumer achieves higher

payoff than at the indifference curve. The region belowIk
corresponds to less payoff for consumerk. According to the
properties of the utility function in Theorem 1, the indifference
curves, which correspond to the boundaries of the level sets
of φk(x

(k)
1 , x

(k)
2 ), are convex. This result is required later

for the proof of Theorem 3 to obtain a unique solution to
the consumer demand problem in (25). Moreover, Theorem
1 proves the existence of at least one Walrasian equilibrium
which is considered in Section IV.

Next, we provide two alternative formulations for the indif-
ference curves. Both formulations are required to determine
special allocations in the Edgeworth box.

Proposition 1: The indifference curvesIk (x(k)
ℓ as a func-
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tion of x(k)
k ), are calculated for given fixed payoffsφ′

k as

I1(x
(1)
1 , φ′

1) = λMRT
2 +

σ2

g21
−

(√

x
(1)
1 g1 +

√

(1− x
(1)
1 )ǧ1

)2

φ′
1g21

,

(11)

I2(x
(2)
2 , φ′

2) = λMRT
1 +

σ2

g12
−

(√

x
(2)
2 g2 +

√

(1− x
(2)
2 )ǧ2

)2

φ′
2g12

.

(12)

Proof: The indifference curveIk for a given utility φ′
k

satisfies

φ′
k =

(√

x
(k)
k gk +

√

(1− x
(k)
k )ǧk

)2

σ2 + λMRT
ℓ gℓk − x

(k)
ℓ gℓk

, ℓ 6= k. (13)

Exchanging the LHS and the denominator at the RHS of (13)
we get

σ2 + λMRT
ℓ gℓk − x

(k)
ℓ gℓk =

(√

x
(k)
k gk +

√

(1− x
(k)
k )ǧk

)2

φ′
k

,

(14)
Solving for x(k)

ℓ , we get the expressions in (11) and (12).
Note that Proposition 1 characterizes a family of indifference
curves. Each indifference curve has a domain and range which
depends on the fixed SINR valueφ′

k. Thus, for selected
fixed SINRs, the indifference curves should be restricted
to take values in the feasible parameter set from (5), i.e.,
I1(x

(1)
1 , φ′

1) ∈ [0, λMRT
2 ] and I2(x

(2)
2 , φ′

2) ∈ [0, λMRT
1 ]. The

indifference curves can be alternatively formulated to obtain
x
(k)
k as a function ofx(k)

ℓ .
Proposition 2: The indifference curves̃Ik (x(k)

k as a func-
tion of x(k)

ℓ ), are calculated for given fixed payoffsφ′
k as [12,

Proposition 1]

Ĩ1(x
(1)
2 , φ′

1) = f



λMRT
1 ,

φ′
1

φ1

(

λMRT
1 , λMRT

2 − x
(1)
2

)



, (15)

Ĩ2(x
(2)
1 , φ′

2) = f



λMRT
2 ,

φ′
2

φ2

(

λMRT
1 − x

(2)
1 , λMRT

2

)



, (16)

wheref(a, b) := (
√
ab−

√

(1− a)(1− b))2.
Similarly, the values of the indifference curves in Proposition 2
have to be in the feasible parameter set such thatĨ1(x

(1)
2 , φ′

1) ∈
[0, λMRT

1 ] and Ĩ2(x
(2)
1 , φ′

2) ∈ [0, λMRT
2 ].

B. Edgeworth Box

The Edgeworth box [25], [9, Chapter 5], illustrated in
Fig. 2, is a graphical representation that is useful for the
analysis of an exchange economy. The box is constructed
by joining Fig. 1(a) and Fig. 1(b). Thus, the Edgeworth
box has two points of origin,O1 and O2, corresponding
to consumer1 and 2, respectively. The initial endowments
of the consumers define the size of the box. The width of
the box is thusλMRT

1 , and the height isλMRT
2 . The possession

exchange lens

O1

O2

I1

I2

x′(2)
2

x′(1)
1

x′(2)
1

x′(1)
2

contract curve

x
(2)
1

x
(1)
2

x
(1)
1

x
(2)
2

Fig. 2. An illustration of an Edgeworth box.

vectors(x′(1)
1 , x′(1)

2 ) and(x′(2)
1 , x′(2)

2 ) make up theallocation
((x′(1)

1 , x′(1)
2 ), (x′(2)

1 , x′(2)
2 )) in the box. Every point in the

box denotes an allocation, i.e., an assignment of a possession
vector to each consumer. The consumers’ preferences in the
Edgeworth box can be revealed according to their indifference
curves. The dark region in Fig. 2 is called theexchange lens
and contains all allocations that are Pareto improvements to
the outcome in((x′(1)

1 , x′(1)
2 ), (x′(2)

1 , x′(2)
2 )). The locus of all

Pareto optimal points in the Edgeworth box is called the
contract curve[25]. On these points, the indifference curves
are tangent, and are characterized by the following condition3

[25, p. 21]:

∂φ1

(

x
(1)
1 , x

(1)
2

)

∂x
(1)
1

∂φ2

(

x
(2)
1 , x

(2)
2

)

∂x
(2)
2

=
∂φ2

(

x
(2)
1 , x

(2)
2

)

∂x
(2)
1

∂φ1

(

x
(1)
1 , x

(1)
2

)

∂x
(1)
2

. (17)

The convexity of the consumers’ indifference curves implies
that these can only be tangent at a single point. Thus, the
condition in (17) is necessary and sufficient for an allocation
to be on the contract curve.

Theorem 2:The contract curvecc : [0, λMRT
2 ] → [0, λMRT

1 ]

(x(1)
1 as a function ofx(2)

2 ) is the solution of the following
cubic equation4

a
[

x
(1)
1

]3

+ b
[

x
(1)
1

]2

+ c
[

x
(1)
1

]

+ d = 0, (18)

where

a = −(g1 + ǧ1)(C − g12)
2, d = g1σ

4, (19)

b = (C − g12)
(
2ǧ1(C + σ2) + g1(2σ

2 + C − g12)
)
, (20)

c = −ǧ1(C + σ2)2 + σ2g1(2g12 − 2C − σ2), (21)

3In multiple consumer settings, the condition provided by Edgeworth [25]
should hold for every consumer pair.

4This result is independently obtained in [26].
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I2 contra
ct curve

x
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1
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(1)
2

x
(1)
1

x
(2)
2

core

b

endowments

Fig. 3. An illustration of the allocations in the core.

andC is a function ofx(2)
2 given as

C =

(√

x
(2)
2 g2 +

√

(1 − x
(2)
2 )ǧ2

)

(
√

g2

x
(2)
2

−
√

ǧ2

1−x
(2)
2

)(
σ2

g21
+ λMRT

2 − x
(1)
2

) . (22)

The root of interest in (18) lies in[0, λMRT
1 ] and satisfies

sign
(

σ2/g12 + x
(1)
1 − Cx

(1)
1

)

= sign
(

σ2/g12 + x
(1)
1 + C(1− x

(1)
1 )
)

. (23)

Proof: The proof is provided in [1, Appendix A].
According to Edgeworth [25], the outcome of an exchange

between the consumers must lie on the contract curve. The
solution concept by Edgeworth is related to that of coalitional
games called the core [27] which defines equilibria in our
exchange economy. The situation between the two links can be
represented as a coalitional game without transferable payoff
[24, Chapter 13.5]. In our case, the core of this game [24,
Definition 268.3] is the set of all allocations in the Edgeworth
box in which no player can achieve higher payoffs without
cooperating with the other player. In Fig. 3, the core is
illustrated as the set of allocations on the contract curve which
is bounded by the indifference curves corresponding to the
initial endowments. That is, the core allocations correspond to
all Pareto optimal points which dominate the Nash equilibrium
in the SINR region. With the initial endowments corresponding
to the Nash equilibrium(λMRT

1 , λMRT
2 ), the indifference curves

can be calculated from Proposition 2 or Proposition 1. The
bounds for the core, as illustrated in Fig. 3, can be calculated
as the intersection points of the indifference curves starting at
the endowment allocation and the contract curve characterized
in Theorem 2. Later in Section V, the bounds for the core will
be used to determine the Kalai-Smorodinsky solution from
axiomatic bargaining theory.

IV. WALRASIAN EQUILIBRIUM IN EXCHANGE ECONOMY

In the preceding section, we have determined the Pareto
optimal equilibria in our pure exchange economy. These

equilibria can be achieved requiring the links to negotiateor
bargain (as for instance is proposed in [12]). Next, we will
consider decentralized operation of the links and include the
arbitrator to coordinate transmission of the links.

A. Competitive Market Model

In a competitive market, the consumers buy quantities of
goods and also sell goods they possess such that they maxi-
mize their profit. Each good has a price and every consumer
takes the prices as given. The prices of the goods are not
determined by consumers, but arbitrated by markets. In our
case, the arbitrator determines the prices of the goods. Let
pk denote the unit price of goodk. In order to be able to
buy goods, each consumerk is endowed with a budgetλMRT

k pk
which is the worth of his initial amounts of goods5. Thebudget
setof consumerk is the set of bundles of goods he can afford
to possess defined as

Bk :=
{

(x
(k)
1 , x

(k)
2 ) ∈ R

2
+ : x

(k)
1 p1 + x

(k)
2 p2 ≤ λMRT

k pk

}

.

(24)
The budget set of consumer1 is illustrated by the grey area in
Fig. 4. The boundary of the budget set is a line which connects
the points(λMRT

1 , 0) and(0, λMRT
1 p1/p2). Thus, the boundary has

a slope of−p1/p2. For the consumers, the prices of the goods
are measures for their qualitative valuation. Ifp1 is greater
thanp2, then good1 has more value than good2. Given the
pricesp1 andp2, consumer1 demands the amounts of goods
x
(1)
1 andx(1)

2 such that these maximize his utility in (10). Thus,
consumerk solves the following problem:

maximize φk

(

x
(k)
1 , x

(k)
2

)

subject to p1x
(k)
1 + p2x

(k)
2 ≤ λMRT

k pk.
(25)

In the above consumer problem, the objective function is the
SINR of link k and the constraint is defined by the budget
set of consumerk in (24). The physical interpretation of
the budget set constraint can be related to an interference
constraint. Considering consumer1, the constraint in (25) can
be reformulated to

x
(1)
1 ≤ λMRT

1 − p2
p1

x
(1)
2 , (26)

where, as mentioned before,x(1)
1 = λ1 ∈ [0, λMRT

1 ] is the
scaling of interference transmitter1 produces at receiver2.
Analogously,x(1)

2 = λMRT
2 − λ2 is the scaling for interference

reduction from transmitter2 at receiver1. Hence, the con-
straint in (26) dictates the tradeoff between the amount of
interference transmitter1 can generate at receiver2 and the
amount of interference receiver1 is to tolerate. The pricesp1
andp2 can be interpreted as parameters to control the fairness
between the links by regulating the amount of interference the
links generate on each other.

5This case corresponds to the Arrow-Debreu market model [16].
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λMRT
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O1 λMRT
1
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1
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1

increasing utility

indifference curves

(budget set)

Fig. 4. An illustration of the budget set of consumer1.

Theorem 3:The unique solution to the problem in (25) is

x
∗(1)
1 (p1, p2) =

1

1 + ǧ1
g1

(

1 +
g21

p1
p2

σ2+λMRT
2 g21−λMRT

1 g21
p1
p2

)2 , (27)

x
∗(1)
2 (p1, p2) =

p1
p2

(

λMRT
1 − x

∗(1)
1

)

, (28)

for consumer1, and

x
∗(2)
2 (p1, p2) =

1

1 + ǧ2
g2

(

1 +
g12

p2
p1

σ2+λMRT
1 g12−λMRT

2 g12
p2
p1

)2 , (29)

x
∗(2)
1 (p1, p2) =

p2
p1

(

λMRT
2 − x

∗(2)
2

)

, (30)

for consumer2, where ǧk, gk, gkℓ are defined in Lemma 1.
The feasible prices ratio are in the range:

β :=
λMRT
2 g12

σ2 + λMRT
1 g12

≤ p1
p2

≤ β :=
σ2 + λMRT

2 g21
λMRT
1 g21

. (31)

Proof: The proof is provided in Appendix C.
Theorem 3 characterizes the demand functions of each con-

sumer. In economic theory, these functions are calledMarshal-
lian demand functions[9] or Walrasian demand functions[28].
Note that each consumer calculates his demands independently
without knowing the other consumer’s demands. From Theo-
rem 3, consumer 1 (analogously consumer 2) needs to know
the constantsg1, ǧ1, and g21. The measureσ2 + λMRT

2 g21 in
(10) is the noise plus interference power in Nash equilibrium.
This measure is reported from receiver1 to its transmitter at
Nash equilibrium which is the initial state of the links before
coordination takes place.

The demand functions of the consumers in Theorem 3
are homogenous of degree zero [9, Definition A2.2] with
the pricesp1 and p2. That is, the demand of consumer1
for good 1 (analogously consumer2 for good 2) satisfies
x
∗(1)
1 (tp1, tp2) = x

∗(1)
1 (p1, p2) for t > 0. Hence, given only a

prices ratiop̄1/p̄2, we can calculate a prices pair asp1 = p̄1/p̄2
andp2 = 1 which leads to the same demand as withp̄1 and
p̄2. With this respect, a consumer need only know the price
ratio p1/p2 from the arbitrator to calculate his demands. In
Fig. 4, the demand of consumer1 is illustrated as the point

O1

O2

I1

I2

co
ntra

ct
cu

rve

slope− p ∗

1
p ∗

2

B1

B2

(budget set)

(budget set)

x
∗(1)
1

x
∗(1)
2

x
∗(2)
1

x
∗(2)
2

x
(2)
1

x
(1)
2

x
(1)
1

x
(2)
2

Fig. 5. An illustration of an Edgeworth box.I1 andI2 are indifference curves
of consumer1 and 2 respectively. The line with slope -p∗1/p

∗

2 separates the
budget sets of the consumers in Walrasian equilibrium.

where the corresponding indifference curve is tangent to the
boundary of the budget set.

The next result provides a significant property that the goods
in our setting possess. Later in Section IV-B and Section
IV-C, this property is required to prove the uniqueness of
the Walrasian equilibrium and also to guarantee the global
convergence of the price adjustment process.

Lemma 2:The goods in our setting aregross substitutes,
i.e., increasing the price of one good increases the demand of
the other good.

Proof: Decreasing the ratiop1/p2 can be interpreted as
decreasingp1 or increasingp2. Consider theaggregate excess
demandof good1 defined as

z1(p1, p2) = x
∗(1)
1 (p1, p2) + x

∗(2)
1 (p1, p2)− λMRT

1 , (32)

wherex∗(1)
1 (p1, p2) andx∗(2)

1 (p1, p2) are the demand functions
of good 1 in (27) and (30) from Theorem 3. Ifp1/p2
decreases, thenx∗(1)

1 (p1, p2) increases. Ifp1/p2 decreases,
then x

∗(2)
1 (p1, p2) also increases sincep2/p1 increases and

x
∗(2)
2 (p1, p2) decreases. Thus, the aggregate excess demand

of good1 in (32) increases ifp1/p2 decreases. The analysis
is analogous for the second good.

If each consumer is to demand amounts of goods without
considering the demands of the other consumer, then it is
important that the consumers’ demands equal the consumers’
supply of goods. Prices which fulfill this requirement are
calledWalrasianand are calculated next.

B. Walrasian Equilibrium

In a Walrasian equilibrium, the demand equals the supply
of each good [9, Definition 5.5]. According to the properties
of the utility function in Theorem 1, there exists at least one
Walrasian equilibrium [9, Theorem 5.5]. The Walrasian prices
(p∗1, p

∗
2) that lead to a Walrasian equilibrium satisfy

x
∗(1)
1 (p1, p2) + x

∗(2)
1 (p1, p2) = λMRT

1 , (33)

and x
∗(1)
2 (p1, p2) + x

∗(2)
2 (p1, p2) = λMRT

2 . (34)
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In our setting in which only two goods exist, Walras’ law [9,
Chapter 5.2] provides the property that if the demand equals
the supply of one good, then the demand would equal the
supply of the other good. Hence, in order to calculate the
Walrasian prices, it is sufficient to consider only one of the
conditions in (33) and (34).

Theorem 4:The ratio of the Walrasian prices is the unique
root of

a

[
p1
p2

]5

+b

[
p1
p2

]4

+c

[
p1
p2

]3

+d

[
p1
p2

]2

+e

[
p1
p2

]

+f = 0, (35)

that satisfies the condition in (31). The constant coefficients
are

a = T1T
2
2 T 3, b = −2T3T2(T2S2 + T1S1),

c = 2T4T2S3 + 4S1S2T2T3 + T1S4T3,

d = −2S4S2T3 − 4T1T2S2S3 − S1T4S3,

e = 2S3S2(T2S2 + T1S1), f = −S1S
2
2S3,

where

T1 = (g1 − ǧ1)/(g1 + ǧ1), T2 = λMRT
1 + σ2/g12,

T3 = (1 − λMRT
1 )λMRT

1 , T4 =
(
ǧ21 − ǧ1g1 + g21

)
/(g1 + ǧ1)

2,

S1 = (g2 − ǧ2)/(g2 + ǧ2), S2 = λMRT
2 + σ2/g21,

S3 = (1 − λMRT
2 )λMRT

2 , S4 =
(
ǧ22 − ǧ2g2 + g22

)
/(g2 + ǧ2)

2,

and ǧk, gk, gkℓ are defined in Lemma 1.
Proof: Substituting (27) and (30) in (33) and collecting

p1/p2 we get the expression in (35). The condition in (31)
states the set of feasible prices such that the demands of the
consumers are feasible. At least one price pair is in this set
since a Walrasian equilibrium always exists in our setting.
In addition, having the property that the goods are gross
substitutes in Lemma 2, implies that the Walrasian equilibrium
in our setting is unique [28, Proposition 17.F.3]. Note thatthe
roots in (35) can be easily calculated using a Newton method.
And due to the uniqueness of the Walrasian prices, only one
root satisfies the condition in (31).

According to the First Welfare Theorem [9, Theorem 5.7],
the Walrasian equilibrium is Pareto optimal. Moreover, linking
to the results in the previous section, the Walrasian equilibrium
lies in the core [9, Theorem 5.6]. In other words, the Wal-
rasian equilibrium dominates the Nash equilibrium outcome.
In Fig. 5, the allocation in Walrasian equilibrium which
corresponds to the Walrasian prices ratiop∗1/p

∗
2 is illustrated

in the Edgeworth box. It is the point on the contract curve
which intersects the line that passes through the endowment
point (Nash equilibrium) with slope−p∗1/p

∗
2 (with respect to

the coordinate system of consumer1). The grey area in Fig. 5
is the budget set of consumer1 as described in Fig. 4. The
white area in the Edgeworth box is the budget set of consumer
2. According to the axis transformation in constructing the
Edgeworth box, the boundaries of the consumers’ budget sets
coincide. The indifference curves of the consumers are tangent
to this line and also tangent to one another which illustrates
the Pareto optimality of the Walrasian equilibrium.

TABLE I
REQUIRED INFORMATION AT THE ARBITRATOR AND TRANSMITTERS TO

IMPLEMENT THE WALRASSIAN EQUILIBRIUM IN ONE-SHOT.

Information
Arbitrator h11,h12,h21,h22, σ2

Transmitter1 h11,h12, σ2 + λMRT
2 ‖h21‖

2, ‖h21‖
2

Transmitter2 h22,h21, σ2 + λMRT
1 ‖h12‖

2, ‖h12‖
2

TABLE II
REQUIRED INFORMATION AT THE ARBITRATOR AND TRANSMITTERS FOR

THE PRICE ADJUSTMENT PROCESS.

Information
Arbitrator ‖h21‖

2, ‖h12‖
2, λMRT

1 , λMRT
2 , σ2

Transmitter1 h11,h12, σ2 + λMRT
2 ‖h21‖

2, ‖h21‖
2

Transmitter2 h22,h21, σ2 + λMRT
1 ‖h12‖

2, ‖h12‖
2

C. Coordination Mechanism

In this section, we provide two coordination mechanisms
which require different amount of information at the arbitrator.
If the arbitrator has full knowledge of all parameters of the
setting, then he can calculate the Walrasian prices from Theo-
rem 4 and forward these to the transmitters. The transmitters
calculate their demands from Theorem 3 and choose the
beamforming vectors accordingly. This mechanism that uses
the results in Theorem 3 and Theorem 4 leads directly to the
Walrasian equilibrium. In Table I, the required information
at the arbitrator and the transmitters to implement this one-
shot mechanism are listed. We assume that each transmitter
forwards the channel information it has to the arbitrator. Note
that each transmitterk initially knows the channel vectorshkk

andhkℓ, k 6= ℓ, which are required to calculate the efficient
beamforming vectors in (5). Also, transmitterk knows the
sum σ2 + λMRT

ℓ ‖hℓk‖2, k 6= ℓ, since this is the noise plus
interference in Nash equilibrium forwarded through feedback
from the intended receiver. The arbitrator, which now has
full knowledge of all channels, can then forward the missing
information on the channel gain‖hℓk‖2 to a transmitterk .

If the arbitrator has limited information about the setting,
we could still achieve the Walrasian prices through an iterative
price adjustment process. For fixed arbitrary initial prices,
the transmitters can calculate their demands and forward
these to the arbitrator. The arbitrator exploits the demand
information to update the prices of the goods. Specifically,
the arbitrator would increase the price of the good which
has higher demand than its supply. Due to the properties of
the goods in Lemma 2, this price adjustment process, also
called tâtonnement, is globally convergent to the Walrasian
prices given in Theorem 4 [29]. The price adjustment process
requires the information listed in Table II to be available at
the arbitrator and the transmitters. In contrast to Table I,the
arbitrator requires aside from the noise powerσ2 only the cross
channel gains‖h21‖2, ‖h12‖2 and the parametersλMRT

1 , λMRT
2

from the transmitters. This information is required only atthe
beginning of the price adjustment process in order to calculate
the bounds for the feasible pricesβ andβ given in (31).

In Algorithm 1, the price adjustment process is described.
This process is essentially a bisection method which finds the
roots of the excess demand function described in the proof of
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Algorithm 1: Distributed price adjustment process.

Input : x(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2

1 initialize: accuracyǫ, n = 0, β
(0)

= β, β(0) = β in (31),
p
(0)
1

p
(0)
2

= β
(0)

2 +
β(0)

2 ;

2 while β
(n) − β(n) > ǫ do

3 receive demandsx(1)
1 , x

(2)
1 , x

(1)
2 , x

(2)
2 ;

4 n = n+ 1;

5 if x
(1)
1 + x

(2)
1 > λMRT

1 then

6 β(n) =
p
(n−1)
1

p
(n−1)
2

, β
(n)

= β
(n−1)

;

7
p
(n)
1

p
(n)
2

=
β
(n)

+β(n)

2 ;

8 else

9 β(n) = β(n−1), β
(n)

=
p
(n−1)
1

p
(n−1)
2

;

10
p
(n)
1

p
(n)
2

=
β
(n)

+β(n)

2 ;

Output : p(n)1 /p
(n)
2

Lemma 2. The accuracy measure conditioning the termination
of the algorithm is defined asǫ. The termsβ and β are
the lower and upper bounds on the price ratio given in (31),
respectively. The prices ratio is initialized to the middlevalue
of these bounds and forwarded to the links. The links send
their demands calculated from Theorem 3 to the arbitrator.
If the demand of good1 is greater than its supply, then the
arbitrator increases the ratio of the prices to half the distance
to the upper boundβ. Thus, the price of good1 relative to
the price of good2 increases. The lower bound on the prices
ratio β is updated to the price ratio of the previous iteration.
If the demand of good1 is less than its supply, the price
ratio is decremented half the distance to the lower boundβ.
The upper boundβ is set to the prices ratio of the previous
iteration. The algorithm terminates when the distance between
the updated upper and lower bounds on the prices ratio is
below an accuracy measureǫ.

1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

iteration

pr
ic

es
 r

at
io

 (
p 1/p

2)

upper bound on prices ratio

lower bound on prices ratio

Walrasian prices ratio

Fig. 6. Convergence of the price ratio in the price adjustment process to the
Walrasian price ratio.

In Fig. 6, the prices ratio in the price adjustment process
is marked with a cross and is shown to converge after a few
iterations to the Walrasian prices ratio from Theorem 4. The
dashed lines correspond to the upper and lower bounds in

−0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

x
1
(1)

x 2(1
)

 

 

SNR = 0 dB

SNR = −5 dB

joint ZF

SNR = 5 dB

SNR = 10 dB

SNR = −10 dB joint MRT

Fig. 7. Course of the contract curve in the Edgeworth box for different SNR
values.

(31).

V. D ISCUSSION ANDILLUSTRATIONS

In Fig. 7, the contract curve characterized in Theorem 2 is
plotted for different SNR values. The number of antennas at
the transmitters is two and we generate independent instanta-
neous channelshkℓ identically distributed asCN (0, I). The
contract curve is calculated by taking103 samples ofx(2)

2

uniformly spaced in(0, λMRT
2 ) to obtain values ofx(1)

1 . The
course of the contract curve for10 dB SNR is near to the
edge of the Edgeworth box where joint ZF is marked. This
means that Pareto optimal allocations require either transmitter
to choose beamforming vectors near to ZF. For decreasing
SNR, the contract curve moves away from the ZF edge. For
low SNR, the contract curve is then close to the edge with
joint MRT. These observations conform with the analysis in
[30] where Pareto optimal maximum sum utility transmission
is studied in low and high SNR regimes.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

x
1
(1)

x 2(1
)

contract curve

indifference curve 
(consumer 1)Walrasian

equilibrium

indifference curve
(consumer 2)

Fig. 8. Edgeworth box which depicts the allocation for the Walrasian prices.

In Fig. 8, an Edgeworth box is plotted for a sample channel
realization with two transmit antennas at both transmitters. For
the prices calculated from Theorem 4 we obtain the Walrasian
equilibrium allocation on the contract curve where the cor-
responding indifference curves are tangent. The indifference
curves are obtained from Proposition 1. The line passing
through Walrasian equilibrium allocation defines the budget
sets of the consumers as is illustrated in Fig. 5.
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Fig. 9. SINR region of a two-user MISO IFC with SNR = 0 dB and two
antennas at the transmitters.

In Fig. 9, the SINR region is plotted. The points lying
inside the SINR region correspond to the beamforming vectors
characterized in (5), where a subset of these points are Pareto
optimal. The Pareto boundary corresponds to the allocations on
the contract curve calculated in Theorem 2. The weak Pareto
boundary consists of weak Pareto optimal points in which
the links cannot strictly increase their utility simultaneously.
Formally, the weak Pareto optimal points of the SINR region
Φ are defined as [23, p. 14]

W(Φ) := {x ∈ Φ : there is noy ∈ Φ with y > x}, (36)

where the inequality in (36) is componentwise. Pareto optimal
pointsP(Φ) in (4) define a stronger optimality for a utility
tuple than weak Pareto optimal points. A weak Pareto optimal
point is not necessarily Pareto optimal. But all Pareto optimal
points are also weak Pareto optimal, i.e.P(Φ) ⊆ W(Φ).

The core allocations are all Pareto optimal points that
dominate the Nash equilibrium (joint MRT). Assuming the
links are rational, only allocations in the core can be of interest
for the links. In other words, the links will not cooperate ifone
link would achieve lower payoff than at the Nash equilibrium.
The Walrasian equilibrium from Theorem 4 always lies in the
core. In Fig. 9, we also plot the maximum sum SINR which
is obtained by grid search over the allocations on the Pareto
boundary. The virtual SINR coordination point corresponds
to the coordination mechanism in [14], where the minimum
mean square error (MMSE) transmit beamforming vectors

wMMSE
k =

[σ2I + hkℓh
H
kℓ]

−1hkk

‖[σ2I + hkℓh
H
kℓ]

−1hkk‖
, k 6= ℓ, (37)

are proven to achieve a Pareto optimal point. These beam-
forming vectors require only local channel state information
at the transmitters which is an appealing property in terms of
the low overhead in information exchange between the links.
The virtual SINR coordination and the maximum sum SINR
points do not necessarily lie in the core. Hence, these points
are not suitable for distributed implementation between the
rational links.

In Fig. 9, two solutions from axiomatic bargaining theory,
namely the Nash bargaining solution (NBS) and the Kalai-
Smorodinsky (KS) solution are plotted. These solutions lie
in the core and differ by the axioms that define them. The
interested reader is referred to [23] for a comprehensive
theory on axiomatic bargaining. According to simulations,
these two solutions are not far from each other. The properties
that the Walrasian equilibrium and the NBS or KS solution
have in common is that they are Pareto optimal and lie in
the core, i.e., each user achieves higher utility than at the
Nash equilibrium. The difference between the solutions is the
fairness aspects in allocating the Pareto optimal utilities to the
players. The current advantage in the Walrasian equilibrium
over NBS and KS solution is that it can be characterized in
closed-form using Theorem 3 and Theorem 4. In addition, we
devise a coordination mechanism to implement the Walrasian
equilibrium in Section IV-C. Next, we will describe how the
NBS and KS solutions are obtained. The NBS [24, Chapter
15] is the solution of the following problem:

maximize (φ1 − φNE
1 )(φ2 − φNE

2 )

subject to (φ1, φ2) ∈ Φ,
(38)

whereφNE
k := φk(λ

MRT
1 , λMRT

2 ) is the SINR in Nash equilibrium
andΦ is the SINR region in (3). Note that the NBS is defined
for convex utility regions only, and the SINR regionΦ in our
case is not necessarily convex as is shown in Fig. 9. However,
solving the optimization problem in (38) by grid search over
103 generated Pareto optimal points from Theorem 2 gives a
single solution which we plot in Fig. 9. The KS solution is
the solution of the following problem [31]:

maximize min

(
φ1 − φNE

1

φCORE
1 − φNE

1

,
φ2 − φNE

2

φCORE
2 − φNE

2

)

subject to (φ1, φ2) ∈ Φ,

(39)

whereφCORE
1 (analogouslyφCORE

2 ) is the solution of the following
problem:

maximize φ1

subject to (φ1, φ
NE
2 ) ∈ Φ.

(40)

The two Pareto optimal points(φCORE
1 , φNE

2 ) and (φNE
2 , φCORE

2 )
are the bounds to the core and are marked with circles on
the Pareto boundary in Fig. 9. These bounds, as discussed in
Section III-B, can be calculated in the Edgeworth box as the
intersection of the contract curve and the indifference curves
corresponding to the Nash equilibrium. The KS solution which
solves the problem in (39) using the core bounds is then found
by grid search over the generated Pareto optimal points from
Theorem 2.

A. Difficulties in the Extension toK-User MISO IFC

While the tools in the paper can be applied to general
K consumer andM goods economy as can be found in
[9], [28], the application to the beamforming problem in the
MISO IFC can currently be done only for the two-user case.
This is mainly because of the structure of the parametrization
available for the efficient beamforming vectors in the general
case.
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Using the parametrization in (5) for two-users, we have
chosen in Section III the amount of good1 for consumer1
as x

(1)
1 = λ1 and the amount of good1 for consumer2 as

x
(2)
1 = λMRT

1 −λ1. With this relation between the parameters and
the goods and due to the structure of the expression in (5), the
SINR in (10) for link 1 depends only onx(1)

1 andx(1)
2 which

are the amounts from good1 and good2 for consumer1. This
method of defining the goods in terms of the parameters does
not carry on for theK-user MISO IFC case. We illustrate
this drawback based on an example in the3-user case. The
parametrization for the beamforming vectors are [7]

w1(λ11, λ12, λ13)

= vmax

(

λ11h11h
H
11 − λ12h12h

H
12 − λ13h13h

H
13

)

, (41)

w2(λ21, λ22, λ23)

= vmax

(

−λ21h21h
H
21 + λ22h22h

H
22 − λ23h23h

H
23

)

, (42)

w3(λ31, λ32, λ33)

= vmax

(

−λ31h31h
H
31 − λ32h32h

H
32 + λ33h33h

H
33

)

, (43)

where vmax(Z) is the eigenvector that corresponds to the
largest eigenvalue ofZ andλk1 +λk2 + λk3 = 1, k = 1, 2, 3.
Note that different real-valued parameterizations are also pro-
vided in [5], [6], [8] which also lead to the same conclusion in
terms of the application of the exchange economy model. We
use the parametrization in [7] in order to highlight the usage
of the different parameters. In (41)-(43), three goods can be
directly distinguished each corresponding to the parameters
of each transmitter. We can choose the amount of good1
(analogously for goods2 and 3) to be divided between the
three links asx(1)

1 = λ11 for link 1, x(2)
1 = λ12 for link 2,

andx(3)
1 = λ13 for link 3. In order to model this setting as an

exchange economy, the utility (SINR) of linkk should only
depend on the amounts of goodsx(k)

1 , x
(k)
2 , x

(k)
3 . However,

with the parametrization in (41)-(43), the SINR expressionof
a link k would depend on all parameters. Hence, in formulating
the demand of consumerk as is done in the two-user case in
(25), the solution depends also on the demands of the other
consumers. In this case, each consumer cannot find his optimal
demand of goods independently without knowing what the
other consumers demand. Due to this fact, it is currently not
possible to find the Walrasian equilibrium in the generalK-
user MISO IFC case.

VI. CONCLUSIONS

In this work, we model the interaction between two links in
the MISO IFC as an exchange economy. The links are consid-
ered as the consumers and the exchanged goods correspond
to beamforming vectors. Utilizing the conflict representation
in the Edgeworth box, all Pareto optimal points could be
characterized in closed form. The equilibria of the considered
exchange economy are related to a solution concept from
coalitional game theory called the core. These allocations
are Pareto optimal and dominate the Nash equilibrium of a

strategic game between the links. We propose a coordination
mechanism between the links which achieves a Pareto optimal
outcome in the core. For this purpose, the situation between
the links is modeled as a competitive market where now each
consumer is endowed with a budget and can consume the
goods at specific prices. The equilibrium in this economy is
called Walrasian and corresponds to the prices that equate the
demand to the supply of goods. The unique Walrasian prices
are calculated and the coordination mechanism is executed
by an arbitrator that forwards the prices to the consumers.
The consumers then calculate in a decentralized manner their
optimal demand corresponding to beamforming vectors that
achieve the Walrasian equilibrium. This outcome is Pareto
optimal and dominates the Nash equilibrium in the SINR
region.

APPENDIX A
PROOF OFLEMMA 1

The direct and interference power gains,|hH
kkwk(λk)|2

and |hH
kℓwk(λk)|2, k 6= ℓ, are calculated as functions of the

parametersλk by using the expression for the beamforming
vectors in (5). The direct power gain is calculated as:

|hH
kkwk(λk)|2

=

(
√

λk

hH
kkΠhkℓ

hkk

‖Πhkℓ
hkk‖

+
√

1− λk

hH
kkΠ

⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖

)2

(44)

=
(√

λk‖Πhkℓ
hkk‖+

√

1− λk‖Π⊥
hkℓ

hkk‖
)2

. (45)

The interference power is:

|hH
kℓwk(λk)|2

=

∣
∣
∣
∣
∣

√

λk

hH
kℓΠhkℓ

hkk

‖Πhkℓ
hkk‖

+
√

1− λk

hH
kℓΠ

⊥
hkℓ

hkk

‖Π⊥
hkℓ

hkk‖

∣
∣
∣
∣
∣

2

(46)

= λk

|hH
kℓΠhkℓ

hkk|2
‖Πhkℓ

hkk‖2
= λk‖hkℓ‖2. (47)

These expressions lead to (6) and (7) in Lemma 1.

APPENDIX B
PROOF OFTHEOREM 1

First, it is easy to see that the SINR expression in (10)
is continuous. The SINRφk(x

(k)
1 , x

(k)
2 ) is strongly increas-

ing with the goodsx(k)
1 and x

(k)
2 if φk(x

′(k)
1 , x′(k)

2 ) >

φk(x
(k)
1 , x

(k)
2 ) whenever (x′(k)

1 , x′(k)
2 ) 6= (x

(k)
1 , x

(k)
2 ) and

(x′(k)
1 , x′(k)

2 ) ≥ (x
(k)
1 , x

(k)
2 ) [9, Definition A1.17]. Define the

directional derivative ofφk at (x(k)
1 , x

(k)
2 ) in directionz as

∇zφk

(

x
(k)
1 , x

(k)
2

)

= lim
t→0

φk

((

x
(k)
1 , x

(k)
2

)

+ tz
)

− φk

(

x
(k)
1 , x

(k)
2

)

t
, (48)

Sinceφk(x
(k)
1 , x

(k)
2 ) is differentiable, the limit above can be

given as [9, Chapter A.2]

∇zφk

(

x
(k)
1 , x

(k)
2

)

= ∇φk

(

x
(k)
1 , x

(k)
2

)

z, (49)
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where∇φk(x
(k)
1 , x

(k)
2 ) is the gradient ofφk at (x(k)

1 , x
(k)
2 )

written as

∇φk

(

x
(k)
1 , x

(k)
2

)

=




∂φk

(

x
(k)
1 , x

(k)
2

)

∂x
(k)
k

,
∂φk

(

x
(k)
1 , x

(k)
2

)

∂x
(k)
ℓ



,

(50)
with ℓ 6= k. The directional derivative ofφk(x

(k)
1 , x

(k)
2 )

defines the slope of the tangent toφk(x
(k)
1 , x

(k)
2 ) at the point

(x
(k)
1 , x

(k)
2 ) in the directionz. Hence, if the directional deriva-

tive is positive forz = (z1, z2)
T with z1 andz2 nonnegative

and satisfying‖z‖ =
√

z21 + z22 = 1, then the utility function
φk(x

(k)
1 , x

(k)
2 ) is strongly increasing. Consequently, the direc-

tional derivative in (49) is strictly positive if the components
of the gradient∇φk(x

(k)
1 , x

(k)
2 ) are strictly positive. The first

component of∇φk(x
(k)
1 , x

(k)
2 ) is

∂φk

(

x
(k)
1 , x

(k)
2

)

∂x
(k)
k

=

(√

x
(k)
k gk +

√

(1 − x
(k)
k )ǧk

)(
√

gk

x
(k)
k

−
√

ǧk

1−x
(k)
k

)

σ2 + λMRT
ℓ gℓk − x

(k)
ℓ gℓk

.

(51)

The partial derivative in (51) is strictly larger than zero when
x
(k)
k < gk/(ǧk + gk). Substitutingǧk and gk from Lemma 1

we get

x
(k)
k <

gk
ǧk + gk

=
‖Πhkℓ

hkk‖2
‖hkk‖2

= λMRT
k . (52)

Sincex(k)
k ∈ [0, λMRT

k ], the partial derivative in (51) is strictly
larger than zero except forx(k)

k = λMRT
k . The second component

of ∇φk(x
(k)
1 , x

(k)
2 ) is

∂φk

(

x
(k)
1 , x

(k)
2

)

∂x
(k)
ℓ

= gℓk

(√

x
(k)
k gk +

√

(1− x
(k)
k )ǧk

)2

(

σ2 + λMRT
ℓ gℓk − x

(k)
ℓ gℓk

)2 ,

(53)
with ℓ 6= k, which is strictly larger than zero forx(k)

ℓ ∈
[0, λMRT

ℓ ]. Hence, the directional derivative in (49) is strictly
positive for (x(k)

1 , x
(k)
2 ) ∈ [0, λMRT

1 ] × [0, λMRT
2 ] except for the

casex(k)
k = λMRT

k and z = (1, 0). Since λMRT
k is the upper

bound onx(k)
k , the slope of the functionφk(x

(k)
1 , x

(k)
2 ) in the

directionx
(k)
k as is restricted by the conditionz = (1, 0) is

not of interest.
Next, we will prove that the SINR function is jointly

quasiconcave with the goods. Consider the SINR expression in

(10), and definef(x(k)
k ) :=

(√

x
(k)
k gk +

√

(1− x
(k)
k )ǧk

)2

and g(x
(k)
ℓ ) := σ2 + λMRT

ℓ gℓk − x
(k)
ℓ gℓk. The function

φk(x
(k)
1 , x

(k)
2 ) = f(x

(k)
k )/g(x

(k)
ℓ ) is strictly quasiconcave

if f(x
(k)
k ) is strictly concave andg(x(k)

ℓ ) is convex [32,
Proposition 2]. It is clear thatg(x(k)

ℓ ) is convex since the
function is linear inx(k)

ℓ . In order to show thatf(x(k)
k ) is

strictly concave, we build the second derivative off(x
(k)
k ) as

follows:

d2f(x(k)
k )

d2x(k)
k

=

(√

gk/x
(k)
k −

√

ǧk/(1− x
(k)
k )

)2

−
(√

x
(k)
k gk +

√

(1− x
(k)
k )ǧk

)

×





√
gk

(x
(k)
k )3

+

√

ǧk

(1− x
(k)
k )3



 (54)

=
gk

x
(k)
k

+
ǧk

(1− x
(k)
k )

− 2

√

gkǧk

(1− x
(k)
k )(x

(k)
k )

− gk

x
(k)
k

− ǧk

(1− x
(k)
k )

−

√
√
√
√

(1− x
(k)
k )gkǧk

(x
(k)
k )3

−

√
√
√
√

x
(k)
k gkǧk

(1− x
(k)
k )3

(55)

= −2

√

gkǧk

(1− x
(k)
k )(x

(k)
k )

−

√
√
√
√

(1− x
(k)
k )gkǧk

(x
(k)
k )3

−

√
√
√
√

x
(k)
k gkǧk

(1− x
(k)
k )3

< 0. (56)

The second derivative off(x(k)
k ) is strictly less than zero.

Thus,f(x(k)
k ) is strictly concave. Accordingly,φk(x

(k)
1 , x

(k)
2 )

is strictly quasiconcave.

APPENDIX C
PROOF OFTHEOREM 3

Since the functionφk(x
(k)
1 , x

(k)
2 ) is strictly quasiconcave,

then this function has a unique maximum. Considering con-
sumer1 (analogously consumer2), the Lagrangian function
to the constrained optimization problem in (25) is

L
(

x
(1)
1 , x

(1)
2 , µ

)

= φ1

(

x
(1)
1 , x

(1)
2

)

+ µ
(

λMRT
1 p1 − x

(1)
1 p1 − x

(1)
2 p2

)

,
(57)

whereµ is a Lagrange multiplier. The Karush–Kuhn–Tucker
(KKT) conditions for optimality are necessary and sufficient
given as:

∂L
(

x
(1)
1 , x

(1)
2 , µ

)

∂x
(1)
1

=
∂φ1

(

x
(1)
1 , x

(1)
2

)

∂x
(1)
1

− µp1 = 0 (58)

∂L
(

x
(1)
1 , x

(1)
2 , µ

)

∂x
(1)
2

=
∂φ1

(

x
(1)
1 , x

(1)
2

)

∂x
(1)
2

+ µp2 = 0 (59)

∂L
(

x
(1)
1 , x

(1)
2 , µ

)

∂µ
= λMRT

1 p1 − x
(1)
1 p1 − x

(1)
2 p2 = 0 (60)

According to conditions (58) and (59), we get

∂φ1

(

x
(1)
1 , x

(1)
2

)

∂x
(1)
1

1

p1
= −

∂φ1

(

x
(1)
1 , x

(1)
2

)

∂x
(1)
2

1

p2
(61)
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⇒

(√

x
(1)
1 g1 +

√

(1− x
(1)
1 )ǧ1

)( √
g1

√

x
(1)
1

−
√
ǧ1

√

1−x
(1)
1

)

σ2 + λMRT
2 g21 − x

(1)
2 g21

=

(√

x
(1)
1 g1 +

√

(1− x
(1)
1 )ǧ1

)2

g21

(

σ2 + λMRT
2 g21 − x

(1)
2 g21

)2

p1
p2

(62)

⇒
√
g1

√

x
(1)
1

−
√
ǧ1

√

1− x
(1)
1

=

(√

x
(1)
1 g1 +

√

(1− x
(1)
1 )ǧ1

)

g21

(σ2 + λMRT
2 g21 − x

(1)
2 g21)

p1
p2

. (63)

Substitutingx(1)
2 from (60) we get

√

(1− x
(1)
1 )g1 −

√

x
(1)
1 ǧ1

=

(

x
(1)
1

√

(1− x
(1)
1 )g1 + (1− x

(1)
1 )

√

x
(1)
1 ǧ1

)

(
σ2

g21
+ λMRT

2 − λMRT
1

p1
p2

︸ ︷︷ ︸

B

+x
(1)
1

p1

p2
)

p1
p2

(64)

⇒
√

(1− x
(1)
1 )g1B −

√

x
(1)
1 ǧ1B − x

(1)
1

p1
p2

√

x
(1)
1 ǧ1

= (1 − x
(1)
1 )

√

x
(1)
1 ǧ1

p1
p2

(65)

⇒
√

x
(1)
1 ǧ1

(

B +
p1
p2

)

=

√

(1− x
(1)
1 )g1B (66)

Squaring both sides on the condition thatB ≥ 0 we can write

x
(1)
1 ǧ1

(

B +
p1
p2

)2

= (1 − x
(1)
1 )g1B

2. (67)

We solve forx(1)
1 to get

x
(1)
1 =

(

1 +
ǧ1
g1

(

1 +
p1
p2B

)2
)−1

. (68)

SubstitutingB from (64) we get the expression in (27).x(1)
2

is calculated according to (60).
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