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Abstract—We study the conflict between two links in a
multiple-input single-output interference channel. Thissetting is
strictly competitive and can be related to perfectly compstive
market models. In such models, general equilibrium theory $
used to determine equilibrium measures that are Pareto optnal.
First, we consider the links to be consumers that can trade
goods within themselves. The goods in our setting correspdrto
beamforming vectors. We utilize the conflict representatia of the
consumers in the Edgeworth box, a graphical tool that depict
the allocation of the goods for the two consumers, to provide
closed-form solution to all Pareto optimal outcomes. Aftewards,
we model the situation between the links as a competitive miet
which additionally defines prices for the goods. The equilibum
in this economy is called Walrasian and corresponds to the pces
that equate the demand to the supply of goods. We calculate
the unique Walrasian equilibrium and propose a coordinatian
process that is realized by an arbitrator which distributes the
Walrasian prices to the consumers. The consumers then callate
in a decentralized manner their optimal demand correspondig
to beamforming vectors that achieve the Walrasian equilibium.
This outcome is Pareto optimal and dominates the noncoopetiae

outcome of the systems. Thus, based on the game theoretic

model and solution concept, an algorithm for a distributed
implementation of the beamforming problem in multiple-input
single-output interference channels is provided.

I. INTRODUCTION

Two transmitter-receiver pairs utilize the same spectaalb
simultaneously. Each transmitter is equipped witrantennas

Pareto optimal point is an achievable utility tuple from ahnit

is impossible to increase the performance of one link withou
degrading the performance of another. Consequently, ¢aret
optimality ensures efficient exploitation of the wirelesswnel
resources. For this purpose, there has been several work on
characterizing the set of beamforming vectors that areaalke

for Pareto optimal operation in the MISO IFC| [4]+-[8]. Next,
we will discuss these approaches.

A. Characterization of Pareto Optimal Points

Designing a Pareto optimal mechanism requires finding the
joint beamforming vectors used at the transmitters thad lea
to the Pareto optimal point. The set of feasible beamforming
vectors for each transmitter is af-dimensional complex ball
where N is the number of used antennas. The importance of
characterizing the set of beamforming vectors necessary fo
the links’ Pareto optimal operation is twofold. First, thet of
relevant beamforming vectors to consider for finding a Raret
optimal point is reduced to a relatively small subset of all
feasible beamforming vectors. Second, the characteriteaf s
efficient beamforming vectors is parameterized by a number
of scalars which can even reduce the complexity for indacati
the required beamforming vectors.

In [4], the efficient beamforming vectors are parameterized
by K(K — 1) complex-valued parameters, whefé is the

and each receiver with a single antenna. This setting corfsimber of links. For the special two-user case, the efficient
sponds to the multiple-input single-output (MISO) inteeilece 0€amforming vectors are proven to be a linear combination
channel (IFC)[[2]. The systems’ performance in such a ggttiff maximum ratio transmission and zero forcing transmissio

operation is generally not efficient [3]. Therefore, coaation Z€f0 and one to characterize all Pareto optimal operating

between the links is needed in order to improve their joilﬂoints. The extension to a real-valued parametrizatiortHer

outcome.

generalK-user case is conducted in [5+-[7] whek& K — 1)

Generally, of interest is to devise coordination mechasisrffal-valued parameters are required to achieve all Pareto
in which the operating point of the links is Pareto optimal. APtimal points. Recently in [8], parametrization of the @&t
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beamforming vector is provided in the multi-cell MISO segfi
with general linear transmit power constraint at the traitsm
ters. For the case of MISO IFC and total power constraint at
the transmitter, the number of required parametessis— 1.

In this work, we provide a single real-valued parametriza-
tion of the beamforming vectors that are necessary and suf-
ficient to achieve all Pareto optimal points. This result is
gained when we model the two-user MISO IFC apwe
exchange economf@]. The links are consumers and they
possess goods which correspond to beamforming vectors. In a
pure exchange economy, the consumers can trade their goods
within themselves to improve their utility. The utility fation
of the consumers in our case is the signal to interference plu
noise ratio (SINR) which is formulated in terms of the goods.
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Utilizing the Edgeworth box [9], which is a graphical toobth spectrum manager which adjusts the prices to achieve the
depicts the preferences of the consumers over the distibutequilibrium. In [16], competitive spectrum market is catsi
of the goods, we provide a closed-form solution to all Paretyed where the users, sharing a common frequency band, can
optimal points of the SINR region. A subset of all Paretpurchase their transmit power subject to budget constraint
optimal points satisfy that both links jointly achieve higgh An agent, referred to as the market, determines the unit
utility than at the noncooperative point. These points atked prices of the power spectra. Existence of the equilibrium is
exchange equilibriand are related to the solution concept, theroven and conditions for its uniqueness are provided. 9}, [1
core, from coalitional game theory. the competitive equilibrium is used for simultaneous béra
allocation for multiple video streams and the Edgeworth box
[15] is used to illustrate the conflict between the streams. |
the context of cognitive radio, spectrum trading is sudtelys

All of the mentioned efforts to parameterize the efficieodeled by economic models and market-equilibrium, and
beamforming vectors in the MISO are valuable for desigmompetitive and cooperative pricing schemes are developed
ing efficient low complexity distributed resource allocati in [20]. Moreover, in [21], hierarchical spectrum sharirgy i
schemes such as in [10]=[12]. [n[10] and[11], the real-®dlu modeled as an interrelated market. The pricing mechanism
parametrization for the two-user case frold [4] is utilizeor the bandwidth allocations between the systems equiates t
and bargaining algorithms are proposed to improve the joiswpply to the demand.
performance of the systems from the noncooperative statte. A In our case, the links are the consumers and the parameters
extension to these works is made Inl[12] where a strategif the beamforming vectors are the goods the consumers
bargaining process is proposed and proven to terminate gbassess. We formulate the consumers’ demand functions and
Pareto optimal outcome. Also based on a strategic bargpingalculate the Walrasian prices which equate the demandkto th
approach, a coordination mechanism is proposed_in [13] fsupply of each good. To achieve the Pareto optimal Walrasian
the two-user MISO IFC where the Han-Kobayashi schemedguilibrium, the arbitrator coordinates the transmissidithe
applied. In theK-user MISO IFC, a low complexity one-links. We consider two cases for the coordination mechanism
shot coordination mechanism is given in_[14], where eagkssuming the arbitrator has full knowledge of the setting, h
transmitter independently maximizes its virtual SINR. Htg can calculate the Walrasian prices and forward these to the
two-user case, the proposed mechanism is proven to achitnks. The links independently calculate their beamfomnin
a Pareto optimal solution. vectors according to their demand function. Assuming the

In this paper, we propose a coordination mechanism berbitrator has limited knowledge of the setting, we propose
tween two MISO interfering links which is Pareto optimah price adjustment process, also referred to as tatonrtemen
and achieves for each link a utility higher than at the noncte reach the Walrasian prices. In each iteration, the links
operation point. Our analysis is based on relating the MIS§&nd their demands to the arbitrator which updates thesprice
IFC setting to a competitive market![9]. To the best of owiccording to the excess demand of each good.
knowledge, this is the first time the beamforming problem in Outline: The outline of the paper is as follows. The system
the MISO IFC is related to and analyzed using competitiand channel model, as well as the definition of the SINR
market models. In a competitive market, as proposed by tegion and the beamforming vectors that are relevant fatBar
Walras [15], [16], there exists a population in which eacbptimal operation are given in Sectiéd Il. In Sectlod IlI, we
individual possesses an amount of divisible goods. Thelhwodxamine a pure exchange economy between the links. We
of these goods makes up the budget of each individual. Eadlodel the parametrization of efficient beamforming vectors
individual has a utility function which reveals his demands goods and the links as consumers which trade these goods
on consuming goods. Moreover, each individual would useithin themselves. We characterize all Pareto optimal {soin
the revenue from selling all his goods to buy amounts d@f closed form and define the equilibria which correspond
goods such that his utility is maximized. This economic mode the core of a coalition between the links. In Secfion IV,
is competitive because each consumer seeks to maximize consider a competitive market model and assume that the
his profit independent of what the other consumers demamgods are bought by the consumers at prices determined by an
Walras investigated if there exists prices for the goodssuarbitrator. The equilibrium of this market model is detemed,
that the market has neither shortage nor surplus. The agisteand we provide two coordination mechanisms to achieve it. In
of such prices, called Walrasian prices, was later explbsed Section[V, we illustrate the results of this paper before we
Arrow [17]. The prices in this economy are usually assumesbnclude in Sectiof VI.
to be fixed and not determined by the consumers. It is assumedlotations: Column vectors and matrices are given in low-
that the market or an auctioneer acts as an arbitrator drcase and uppercase boldface letters, respectjllyis the
determine the Walrasian prices. Euclidean norm ofa € C¥. |p| is the absolute value of

The competitive market model has found a few applicationse C. signa) denotes the sign of, € R. ()7 and (-)#
for resource allocation in communication networks. [In| [18Henote transpose and Hermitian transpose, respectively. T
the Walrasian equilibrium is formulated as a linear compl@rthogonal projector onto the column spaceZfis II; :=
mentarity problem for a multi-link multi-carrier settingd Z(Z* Z)~'Z" . The orthogonal projector onto the orthogonal
decentralized price-adjustment process is proposed vithere complement of the column space &f is 1'[§ =1 —1lg,
users send their power allocations in each iteration to therel is an identity matrixCA'(0, A) denotes a circularly-

B. Coordination to Achieve Pareto Optimal Points



symmetric Gaussian complex random vector with covarian@éis results in the achievable rBtng(l + ¢ (w1, wy)) for
matrix A. Throughout the paper, the subscriptd are from link & when single user decoding is performed at the receivers.

the set{1, 2}. The SINR regionis the set of all achievable SINR tuples
defined as
Il. PRELIMINARIES P = {(¢1 (w1, w2), po(wy, w2)) : wil* <1}, (3)
A. System and Channel Model In the SINR region, tuples can be ranked according to their

Pareto efficiency. An SINR tuplé¢], ¢s) € @ is Pareto

superior to (¢1,¢2) € @ if (¢}, ¢L) > (é1,¢p2), where
the inequality is componentwise and strict for at least one

The quasi-static block flat-fading channel vector from $ran
mitter k to receiver/ is denoted byh,, € CV. We assume

that transmission consists of scalar coding followed bwbeacomponent. The transition froffiy, é») to (¢, ¢,) is called

forming. The beamforming vector used by transmitteis : L :

N . a Pareto improvementSituations where Pareto improvements
wi € CV. The matched-filtered, symbol-sampled complex . leB imal Th :
baseband data received at receiiqeid%]/ are not possible are calleBareto optima T ese points

constitute thePareto boundanof the SINR region. Formally,

Yk = hiwksk + hchgSg T, k£ 1) the set of Pareto optimal points @fare defined as [23, p. 18]

P(®) :={x € ¢ : there is noy € ¢ with y > x,y # =},
4)

wheres;, ~ CN(0,1) is the symbol transmitted by transmitter
k, and ny ~ CN(0,0?) is additive Gaussian noise. Each

. . where the inequality in({4) is componentwise.
transmitter has a total power constraint Bf:= 1 such that E 9 Y in{4) P :
9 : . . . 9 or the two-user MISO IFC, the set of beamforming vectors
|lwg]|* < 1. We define the signal to noise ratio (SNR)lg&~.

Th ) dtoh toct local ch that are relevant for Pareto optimal operation are paramete
e transmitters are assumed to have perfect local changg by a single real-valued parameter € [0, 1] for each

state information (CSI), i.e., each transmitter has perf ¢ :
. ansmitterk = ¢ as [4, Corollary 1
knowledge of the channel vectors only between itself and Ee ! 7 : y 1l

two receivers. Further information at the transmitteraunesy IIn,, i Hﬁkehkk
for the coordination mechanism is discussed later in Sectio @k(A\e) = V Ak M herl] Y F T hul ®)
ke

This parametrization is valuable for designing efficient lo
r:%pmplexity distributed resource allocation schemes [IRE
set of beamforming vector ifJ(5) includes maximum ratio
transmission (MRT) X} = (| n,, hiell® /|l hir])?) and zero
forcing transmission (ZF)X;" = 0). According to [4, Corol-

We assume there exists anbitrator who coordinates the
operation of the transmitters. The arbitrator could be a
central controller which is connected to both links. Geltgra
the practical identification of the arbitrator depends angbe-

nario. For example, in hierarchical networks in which saler , :
tiers of networks operate in the same area it is possible th3¥ 2l it suffices that the parametexs only be from the set

higher network tiers benefit from coordinating the operate |0 Ak | for Pareto optimal operation. Note that a transmikter
the networks in lower tiers such as in the model used in [21]2S t© know the channel vectdiis, andhi, k # ¢, perfectly
Moreover, the arbitrator can be the base station of a maitrod8 0rder to calculate the beamforming vectors [i (5). Since
which can coordinate the transmission of smaller micredall W€ ar€ interested in transmissions that lead to Pareto aptim
its coverage rangé [22]. The macrocell base station is lysudfUtcomes, we will confine the strategy set of each transmitte
connected to the microcell base stations via a high capadi/the set in((5) and formulate the SINR expressiorLin (2) in
link which enables the exchange of channel information riEMS of the parameteds. For this purpose, we first formulate
quired for the coordination process. The applicability af o & POWEr gains at the receivers. o

system model in a cognitive radio network is not suitablégft ~ -€Mma 1:The power gains at the receivers in terms of the
transmitters are restricted to take into account the ieterfce Parametrization inl(5) are

Ieve_ls t_hey are allowed to _induce at prima_lry re_ceivers. Our IR w12 = (Vege + VI = M)dn)2, (6)
setting is suitable for cognitive network settings, in whibe H 9

users dynamically adapt their transmissions accordindnéo t (Pkewi (A)I™ = Akgre, K # £ @)
environmgnt these users exist in. A cognitive trans_mitan Cwhere A, € [0, W] and gy = |[Tn,hull?s gr =
choose with whom it can cooperate and exchange mformatlﬂnﬂiuhkkw’ gre = || b2, wherek  ¢.

to improve its utility. Proof: The proof is provided in Appendix]A. n

The SINR of link & can be rewritten using Lemnid 1 in
terms of the parameters inl (5) as

B. SINR Region and Efficient Transmission

2
The signal to interference plus noise ratio (SINR) at rezeiv (\/)\kgk +(1 = /\k)gk)
k is Dr(A1, Az) =

| wic|?
W 0@

, L#k. 8
o2 + Negen 7 ®

Pk (wl’ w2) B 2\We represent the preference of a link over the used beamigregctors
with the SINR utility function in[(2). The results in this papalso hold for
any SINR based utility function which is strictly increagimith SINR such
1Throughout the paper, the subscripts? are from the se{1, 2}. as the achievable rate function.



Notice in [8) that the interference terty g, scales linearly x5 | a . @
with \,. With this respect, the parameter can be interpreted Y 1 Lz, 1) AYRT | Loz, 45)
as a scaling of interference at the counter receiver. A raotuc
in ¢ increases the SINR of link for fixed \;. Assuming
that the links are not cooperative, their operation poimt lsa

. . . . (1) 1(2)
predicted using noncooperative game theory. The outcome ist’z T — — — 1 |
a solution of a strategic game |24, Section 2.1] between the , , > — -
links. O1 /(R D 0 2/ AR g

. . C 1. b) C 2.
C. Game in Strategic Form () Consumer (b) Consumer

In [3], the outcome of a strategic game between the links ffig. 1. Preference representation of the consunderand; are indifference
studied. The game in strategic form consists of the set gfrpla{: lirves of consumet and2 respectively.
ers,{1,2}, corresponding to the two links. The pure strategies

of playerk are the real-valued parametevs € [0, A\}*"] in (B). _ ® _

The utility function of playerk is log, (14 ¢ (A1, X2)), where If consumerk givesz,’ to the other consumer, this means
ér (A1, A2) is given in [8). The outcome of this strategic gamghat transmitterk uses the beamforming vector inl (5) which

is the same also when the utility function is chosen to b@rrespondsta“,gm—xg). Hence, ifI;(f) increases, transmitter
ér(A1, \2). This is due to the fact that the preference relatioh reduces the interference at receivesy using a beamform-

of the players which is represented through the utility fiorc  ing vector nearer to ZF. The utility function of a consumer
is invariant to positive monotonic transforms [9, Theore@{1 represents his preference over the goods. We use the SINR in
In the above described game, a player always chooses {Bras the utility function of the consumer which we rewrite
MRT strategy independent of the choice of the other play#t terms of the goods as

[3], i.e., MRT is a dominant strategy for each player. Hence,
the unique Nash equilibrium I\]*", \§*"). The extension of 2
(k) 1— 2™
zy, gk + /(1 —2p7) g

the two-player strategic game described above taithglayer

case is straightforward. The Nash equilibrium correspdonds m(xg’“),xg’“)) = @) ,
the strategy profile in which each player chooses MRT. The o + AP gk — ; Gew
outcome in Nash equilibrium is generally not Pareto optimal

In order to achieve Pareto improvements from the Nagh.re we substituted, — 2 and Ay = M — 28 p £}
equilibrium, coordination between the players is required ¢, Q. k ¢ e ’

(10)

I1l. EQUILIBRIA IN EXCHANGE ECONOMY Theorem 1:¢>k(a:§’“),x§k)) in (I0) is continuous, strongly
A. Exchange Economy Model increasing, and strictly quasiconcave [OnA®"] x [0, AY¥T].
In this section, we will use a pure exchange economy Proof: The proof is provided in AppendixIB. u

model [9, Chapter 5.1] to determine equilibria which lie on The preference of consumeisand 2 over the goods is
the Pareto boundary of the SINR region i (3). This modelotted in Fig[1(d) and Fig. I(b), respectively. For consum
assumes that there exists a set of consumers which volyntati (@analogously consume), O, is the origin of the coordinate
exchange goods they possess to increase their payoff. Byystem which ha&ﬁl), the amount from good, at the x-
set of consumerg1,2} corresponds to the two links in ouraxis andxgl), the amount from goo&, at the y-axis.l}, is
setting. The goods correspond to the parametrization of the indifference curveof consumerk which represents the
beamforming vectors i 15). That is, there are two goods apglirs (="', 2{*)) such that the consumer achieves the same
A1 will stand for goodl and A, for good2. The consumers payoff as with (2", 2/{"), ie., ¢p(2, 2y = ¢ =

are initially endO\_/ved with amounts _of these go_o.ds.. We W'&Lk(:c’gk),:v’ék)). The dark region abovd),, corresponds to
assume that the links start the trade in Nash equilibriunusTh the pairs (xgk)’xgk)) where the consumer achieves higher

consumerk is initially endowed withA}"" from his good and payoff than at the indifference curve. The region beldw

nothing from the good of the other consumer. Specifically, V\E%rresponds to less payoff for consunierAccording to the
define(A{™, 0) and (0, AF™) as theendowmentsf consumers properties of the utility function in Theorelm 1, the indiéece

1 a’?dz- respectlvely. . _..curves, which correspond to the boundaries of the level sets
Since during exchange each consumer will possess diffef-

(k) (k) i i i
ent amounts from both available goods, we introduce ne%\g/r q:ﬁ((fl réng O)f, 'I'arzgorcgr?glzx'to-rglstariﬁsgltulr?i Leeqilgiiicl)itig
variables that indicate these. When consurketrades an P q

amount of his good: to consumer # k, this amount will the consumer d_emand problem [0 (25). Morepver, T*.‘_eofem
(0) R proves the existence of at least one Walrasian equilibrium
be represented by,’ < \}*". The amount left for consume

) ) © _ Mwhich is considered in SectidmlV.
k from his good isz;” = AX" — x;”’. In connection to the

R ' Next, we provide two alternative formulations for the indif
parametrization in[{5), we define the amounts of posses§ed . . .
goods as erence curves. Both formulations are required to detegmin

" " special allocations in the Edgeworth box.
T, =X,z =N = A, #E () Proposition 1: The indifference curves;, (z!" as a func-



tion of ng)), are calculated for given fixed payoffs, as

2
. o (Voo a—a)
I (x , /Y — )\MRT 4+ = ’
1( 1 1) 2 go1 ¢>/1921

(11)

2) 2 ?
2 < 2§ 92+\/(1—$§))§2>

L), ¢h) = N+ T —
2( 2 2) 1 912 ¢/2912

(12)

Proof: The indifference curvd;, for a given utility ¢),

satisfies
2
k k) «
(Voo +y/a =)o)
, LH£Ek. (13) Fig. 2. Anillustration of an Edgeworth box.

¢, =

o + XX g, — fﬁk)gék
Exchanging the LHS and the denominator at the RH$ df (13)
we get vectors(:c’(l), :z:’él)) and (a:’§2),:c’§2)) make up theallocation
2 (@2 1D), @, 2/§?)) in the box. Every point in the
(\/x;’”gk + \/(1 - :cgf))gk) box denotes an allocation, i.e., an assignment of a possessi
(b/

vector to each consumer. The consumers’ preferences in the
Edgeworth box can be revealed according to their indiffeeen
curves. The dark region in Figl 2 is called taechange lens
and contains all allocations that are Pareto improvements t
thﬁ outcome ir((x’gl),:z:’gl)), (x'?),x’g?))). The locus of all

0% + N g — 2 gur = ,
(14)
Solving for:vék), we get the expressions ih {11) and](12k
Note that Propositioh]1 characterizes a family of indiffere

curves. Each indifference curve has a domain and range wh . d . .
depends on the fixed SINR valug,. Thus, for selected Fareto optimal points in the Edgeworth box is called the

fixed SINRs, the indifference curves should be restrictecémtraCt curve[25]. On these p_omts, the |nd|ffer§ence Curves
. are tangent, and are characterized by the following canditi

to take values in the feasible parameter set fréin (5), |.T\2,5 21]:
L, ¢) e [0, and L(z®,¢,) e [0,\%]. The <P <
indifference curves can be alternatively formulated toaobt W @ @ @
2" as a function of:!". ol (551 ) T ) O¢a (551 » T )
Proposition 2: The indifference curveg;, (x,(f) as a func- &Egl) 8x§2)
tion of xﬁk)), are calculated for given fixed payoffs as [12, @) (2 1) (1)
Proposition 1] B 92 (551 » Lo ) 9¢1 (551 » L9 ) 17
= > - .
oy o Bacg ) 5)965)
I 91) = T , (5 , - .
iz 0 = | X b1 (/\“fRT,)\gRT - xé”) (13) The convexity of the consumers’ indifference curves imgplie
that these can only be tangent at a single point. Thus, the
- & condition in [IT) is necessary and sufficient for an allarati
I ( (2) (b/) = f| A 2 (16)
2Ty 7 P2) = 2 5 ST @ ywer) | to be on the contract curve.
¢2( N ) Theorem 2:The contract curvec : [0, \y¥'] — [0, \Y™"]
where f(a,b) := (vab — /T = @) —0))2. (2{") as a function ofz{?) is the solution of the following

Similarly, the values of the indifference curves in ProfiosiZ ~ Cubic equatioff
; : o (1
have to be in the f2ea3|ble parameter set suchlhi(a:tg ), Py) € RE PRE W
[0, 1] and T (22, ¢}) € [0, A4, afs"] +b[aV] +e[alV] + =0, (18)

B. Edgeworth Box where

The Edgeworth box[[25],[]9, Chapter 5], illustrated in .
Fig. [@, is a graphical representation that is useful for the ® — —(g1+9)(C = g12)*, =g, (19)
analysis of an exchange economy. The box is constructed® = (C — g12)(291(C + %) + 91(20° + C — g12)), (20)
by joining Fig. and Fig[_I(b). Thus, the Edgeworth ¢ = —g,(C + 0?)* 4 0%g1(2g12 — 2C — 02), (21)
box has two points of origin0®; and O, corresponding
to consumerl and 2, respectively. The initial endowments , , . . -
of the consumers define the size of the box. The width gﬁzladm#cl,ﬁ'glfofzr\],zlrj;n Sgnssel}f{?ff;,;?,,e condition provided bygédorth 125
the box is thus\f*", and the height iS\Y*". The possession “This result is independently obtained in26].

]



equilibria can be achieved requiring the links to negotwmte
bargain (as for instance is proposed [in|[12]). Next, we will
consider decentralized operation of the links and include t
arbitrator to coordinate transmission of the links.

A. Competitive Market Model

In a competitive market, the consumers buy quantities of
goods and also sell goods they possess such that they maxi-
mize their profit. Each good has a price and every consumer
takes the prices as given. The prices of the goods are not
determined by consumers, but arbitrated by markets. In our
case, the arbitrator determines the prices of the goods. Let
pr denote the unit price of good. In order to be able to
Fig. 3. An illustration of the allocations in the core. buy goods, each consumkeilis endowed with a budget!~"p;,
which is the worth of his initial amounts of go&ié’hebudget

) setof consumetrk is the set of bundles of goods he can afford
andC is a function ofxé ) given as to possess defined as

(VP 1= o))

By o= {09, ) € B 2l + 2 < 277}

. (22) (24)
g o 1 .. .
< —z‘qé) A/ ‘1‘(];—@)) (qul + A3 — Ig )) The budget set of consumeiis illustrated by the grey area in
2 2 . . . n
) ) o o Fig.[4. The boundary of the budget set is a line which connects
The root of interest in[(18) lies if0, \{™] and satisfies the points(AY¥", 0) and (0, \¥*"p, /ps). Thus, the boundary has
_ ) ) ) a slope of—p, /ps. For the consumers, the prices of the goods
5'9”(0 /912 +x " — Cy ) are measures for their qualitative valuation.plf is greater

. 1 1 thanp,, then goodl has more value than godd Given the

= S'gn(UQ/gm + :vg ) +C00 - :vg )))‘ (23) pricesp; andps, consumen demands the amounts of goods
Proof: The proof is provided in[1, Appendix A]. = xgl) andxgl) such that these maximize his utility in {10). Thus,

According to Edgeworth [25], the outcome of an exchang@nsumerk solves the following problem:

between the consumers must lie on the contract curve. The

solution concept by Edgeworth is related to that of coaigio maximize ¢ (xg’”,zg’“))

games called the coré [27] which defines equilibria in our , (k) (k) .

exchange economy. The situation between the two links can be subjectto  piz; +pawy” < AL pr-

represented as a coalitional game without transferablefpayI

[24’. C_:_hapter 13'.5]' In our case, the core .Of this game [ZéIINR of link & and the constraint is defined by the budget
Definition 268.3] is the set of all allocations in the Edgethor . : . .
et of consumerk in [@24). The physical interpretation of

box in W.h'Ch no player can achieve hlgh_er payoffs W'thOl.{SEe budget set constraint can be related to an interference
cooperating with the other player. In Figl 3, the core is

illustrated as the set of allocations on the contract curfriehv Constraint. Considering consumerthe constraint in{25) can

is bounded by the indifference curves corresponding to th reformulated to

initial endowments. That is, the core allocations correspio LU < ywer _ P2 (1) (26)

all Pareto optimal points which dominate the Nash equilitori L= p 2

in the SINR region. With the initial endowments correspordi

to the Nash equi“briurr(A’\fRT,)\gRT), the indifference curves Where, as mentioned beforegl) — )\1 c [O’A“{'RT] is the

can be calculated from Propositioh 2 or Proposifion 1. Thgaling of interference transmittér produces at receivez.

bounds for the core, as illustrated in Hig. 3, can be Ca|ed|atAnalogously,x§1) — \IFT_ )\, is the scaling for interference

as the intersection points of the indifference curvesis@@t roqyction from transmitteR at receiverl. Hence, the con-

the endowment allocation and the contract curve charae@ri gt 5int in [26) dictates the tradeoff between the amount of

in Theoreni 2. Later in SectidnV, the bounds for the core wihterference transmitter can generate at receiverand the

be used to determine the Kalai-Smorodinsky solution frognount of interference receivéris to tolerate. The prices;

axiomatic bargaining theory. andp, can be interpreted as parameters to control the fairness
between the links by regulating the amount of interferehee t

IV. WALRASIAN EQUILIBRIUM IN EXCHANGE ECONOMY  links generate on each other.

(25)

the above consumer problem, the objective function is the

In the preceding section, we have determined the Pareto
optimal equilibria in our pure exchange economy. TheseSThis case corresponds to the Arrow-Debreu market madél [16]
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Fig. 4. An illustration of the budget set of consumier

Fig. 5. Anillustration of an Edgeworth boX; andIs are indifference curves
of consumerl and 2 respectively. The line with slope} /p5 separates the

Theorem 3:The unique solution to the problem i25) isbudget sets of the consumers in Walrasian equilibrium.

*(1) _ 1
T (prp2) = v gor 2L 7, (27) where the corresponding indifference curve is tangent ¢o th
1+ 4 <1 + 02+>\’\2ARTg21P§\’YIRTg21§—;> boundary of the budget set.
(1) DL e (1) The next result provides a significant property that the good
@y (P, p2) = p_g()\l ! ), (28) in our setting possess. Later in Sectioi IV-B and Section
this property is required to prove the uniqueness of
for consumerl, and the Walrasian equilibrium and also to guarantee the global
e (pr,pa) = 1 (29) convergence of the price adjustment process.
2 ’ _ g1a22 2’ Lemma 2:The goods in our setting amgross substitutes
1+ % <1 + a2+AqARTg12plAgﬂRTg12§_§> i.e., increasing the price of one good increases the demiand o
«(2) D2 (@) the other good.
217 (p1sp2) = ]?_1()‘2 — Ty )v (30) Proof: Decreasing the rati@, /p, can be interpreted as

) . decreasing; or increasing,. Consider theaggregate excess
for consumer2, where gy, gi, gre are defined in Lemmal 1. demandof good1 defined as

The feasible prices ratio are in the range:

z1(p1,p2) = I;(l)(plaPQ) + SCT(Q) (p1,p2) = A%, (32)

A3 g1z pL_ = 02+ Mgy
=g, S S e —— (31 *(1) £(2) ,
= 2+ A2 T p2 ATRTg21 wherex; "’ (p1, p2) andz; " (p1, p2) are the demand functions
Proof: The proof is provided in Appendix]C. m ©of good 1 in (Z7) and [3D) from Theorem]3. Ip:/ps

TheoreniB characterizes the demand functions of each c8gereases, then; " (p1, p2) increases. Ifp,/p, decreases,
sumer. In economic theory, these functions are caladshal- then ffT(Q)(Pl,pz) also increases sincg;/p; increases and
lian demand functionfg] or Walrasian demand functiorig8]. =3 (p1,p2) decreases. Thus, the aggregate excess demand
Note that each consumer calculates his demands indepéndesft good 1 in (32) increases ip; /p. decreases. The analysis
without knowing the other consumer’s demands. From Theis-analogous for the second good. |
rem[3, consumer 1 (analogously consumer 2) needs to knowf each consumer is to demand amounts of goods without
the constantgy;, §i, and go;. The measurer® + \4%7g,; in  considering the demands of the other consumer, then it is
(I0) is the noise plus interference power in Nash equiliioriu important that the consumers’ demands equal the consumers’
This measure is reported from receiveto its transmitter at supply of goods. Prices which fulfill this requirement are
Nash equilibrium which is the initial state of the links befo called Walrasianand are calculated next.
coordination takes place.

The demand functions of the consumgr_s_in Theo@mB3 Walrasian Equilibrium
are homogenous of degree zefd [9, Definition A2.2] with
the pricesp; and p,. That is, the demand of consumeér
for good 1 (analogously consume2 for good 2) satisfies
2t (tpy, tps) = 7™ (p1, po) for t > 0. Hence, given only a

rices ratiop; /p2, we can calculate a prices pair@as= p1/p . o :
gndpg _ ?p\jv/h}:f:h leads to the samepdemzfnd ]Zis Vﬁ%\éﬁ% (p3, p3) that lead to a Walrasian equilibrium satisfy
p2. With this respect, a consumer need only know the price (2) — \MRT

. . . (p1,p2) = ATY, (33)
ratio p; /p from the arbitrator to calculate his demands. In X(1) (2) -

Fig.[4, the demand of consuméris illustrated as the point and zy " (p1,p2) + 25 (p1,p2) = A (34)

In a Walrasian equilibrium, the demand equals the supply
of each good[]9, Definition 5.5]. According to the properties
of the utility function in Theorem]1, there exists at leaseon
Walrasian equilibrium[9, Theorem 5.5]. The Walrasian esic

*(1 *
x1( )(p17p2)+171



TABLE |
In our setting in which only two goods exist, Walras’ 1aw [9, Requirep INFORMATION AT THE ARBITRATOR AND TRANSMITTERS TO

Chapter 5.2] provides the property that if the demand equals  IMPLEMENT THE WALRASSIAN EQUILIBRIUM IN ONE-SHOT.
the supply of one good, then the demand would equal the

supply of the other good. Hence, in order to calculate the | Information

. . . - . Arbitrator | hi1, hi2, ho1, hao, 02
WaIra.1§|an prices, it is sufficient to consider only one of the Transmitterl | hi1, hiz, 0% + NSRT|[hoy |12, [y ||2
conditions in [(3B) and (34). Transmitter2 | hoo, ho1, 02 + AWRT||hia|?, || h12|?
Theorem 4:The ratio of the Walrasian prices is the unique

REQUIRED INFORMATION AT THE ARBITRATOR AND TRANSMITTERS FOR
THE PRICE ADJUSTMENT PROCESS

5 4 3 2
a[’i] +b{&} +c{’i] +d[’i] +e[’i]+f_o, (35) ,
P2 p2 P2 P2 P2 | Information

Arbitrator | |[h21]?, [[Ra2%, AYRT, AURT, 52
that satisfies the condition if_(31). The constant coeffisien Transmitterl | hi1, ki, 02 + A¥T||hoy |2, || o1 |2
are Transmitter2 h22, h217 o2 —+ A'\lﬂRT||h12||2, Hh12H2
a=TTiT3, b= —2T3T5(T2Ss + T15:),
¢ = 2Ty TSy + 48, SoToTs + T1 ST, C. Coordination Mechanism
d=—28545:T5 — AT T55255 — S1T4Ss, In this section, we provide two coordination mechanisms
hich require different amount of information at the artitr.
e =28355(ToS2 + T1S1), f=—S515255, w _
352(T25% 151), S 1728 If the arbitrator has full knowledge of all parameters of the
where setting, then he can calculate the Walrasian prices fronoThe
rem[4 and forward these to the transmitters. The transmitter
91— 90/ (g1+ 1), To= N5 +062/g1a, calculate their demands from Theordmh 3 and choose the

AT T L2 . 9 L \2 beamforming vectors accordingly. This mechanism that uses
L= MONT, - Ta= (31— 9191 +91) /(91 +90)°, the results irgwl Theorefd 3 and 'Igh)ézorEln 4 leads directly to the
92 — G2)/(92 +§2), So = N + 0%/ gor, Walrasian equilibrium. In Tabl€l I, the required informatio
1= MTN, Sy= (95 — gog2 + 95) /(92 + g2)>,  at the arbitrator and the transmitters to implement this- one
shot mechanism are listed. We assume that each transmitter
and g, gx, gre are defined in Lemmil 1. forwards the channel information it has to the arbitratasteN
Proof: Substituting [(2l7) and(30) in_(83) and collectinghat each transmittér initially knows the channel vectois;,
p1/p2 we get the expression il _(85). The condition [n1(31and hy¢, k& # ¢, which are required to calculate the efficient
states the set of feasible prices such that the demands of lkkamforming vectors in(15). Also, transmittér knows the
consumers are feasible. At least one price pair is in this stm o + \%"||hy||°, k # ¢, since this is the noise plus
since a Walrasian equilibrium always exists in our settininterference in Nash equilibrium forwarded through fee#ba
In addition, having the property that the goods are grof®m the intended receiver. The arbitrator, which now has
substitutes in Lemnid 2, implies that the Walrasian equilinr full knowledge of all channels, can then forward the missing
in our setting is unique [28, Proposition 17.F.3]. Note ttet information on the channel gairhngQ to a transmitter .
roots in [3%) can be easily calculated using a Newton methodlf the arbitrator has limited information about the setting
And due to the uniqueness of the Walrasian prices, only one could still achieve the Walrasian prices through an fikeza
root satisfies the condition i (B1). B price adjustment process. For fixed arbitrary initial psice
According to the First Welfare Theorem| [9, Theorem 5.7the transmitters can calculate their demands and forward
the Walrasian equilibrium is Pareto optimal. Moreoveiiilg these to the arbitrator. The arbitrator exploits the demand
to the results in the previous section, the Walrasian dgpuilin  information to update the prices of the goods. Specifically,
lies in the core[[9, Theorem 5.6]. In other words, the Wathe arbitrator would increase the price of the good which
rasian equilibrium dominates the Nash equilibrium outcombas higher demand than its supply. Due to the properties of
In Fig. [3, the allocation in Walrasian equilibrium whichthe goods in Lemmal2, this price adjustment process, also
corresponds to the Walrasian prices ratig'p; is illustrated called tatonnement, is globally convergent to the Wadnasi
in the Edgeworth box. It is the point on the contract curverices given in Theoref 4[29]. The price adjustment process
which intersects the line that passes through the endowmegnuires the information listed in Tablg Il to be availabte a
point (Nash equilibrium) with slope-p;/p5 (with respect to the arbitrator and the transmitters. In contrast to Tablad,
the coordinate system of consumiér The grey area in Fidll5 arbitrator requires aS|de from the noise powéonly the cross
is the budget set of consumeéras described in Figd4. Thechannel gaing|ha ||, ||hi2||> and the parametersi=", \y=t
white area in the Edgeworth box is the budget set of consunfeym the transmitters. This information is required onlythae
2. According to the axis transformation in constructing thbeginning of the price adjustment process in order to cateul
Edgeworth box, the boundaries of the consumers’ budget stte bounds for the feasible pricgsandﬁ given in [31).
coincide. The indifference curves of the consumers aregiaing In Algorithm [, the price adjustment process is described.
to this line and also tangent to one another which illussrat@his process is essentially a bisection method which finds th
the Pareto optimality of the Walrasian equilibrium. roots of the excess demand function described in the proof of

=
= (
= (
=



Algorithm 1: Distributed price adjustment process. | | SNR;lO dB |

joint ZF—»

Input: (", 22 2§ 2 0.6} T
1 initialize: accuracy, n = 0, B(O) =3, 89 = 3in @),

DR U - i

o — 2 2 ! fa) N SNR=0dB

P2 X
2 while 3" — 8 > ¢ do ol
s | receive demands!”, 2(? 2{" 2 SNR=-54

4 n=n++1;

O = ¥e-joint MRT
. SNR =-10 dB
s | if oY +2{? > A% then ‘ ‘ ‘ ‘ ‘ ‘ ‘
(rH o(n) _ 5(n—-1) -0.2 0 0.2 0.4 0.6 0.8 1
P . . . . . .
6 é(n) — zﬁ’ =7 : 0
B I R R 1
ps" 2 , Fig. 7. Course of the contract curve in the Edgeworth box fferént SNR
8 else values.
—1) 7)) _ pnY
9 é(n) _ ﬁ(n ), B = p%n—l)’
2
(n) _(")+ (n)
10 B = A i QE ; @D).
L P2
. (n)y (n)
Output: pi") /p} V. DISCUSSION ANDILLUSTRATIONS

In Fig.[d, the contract curve characterized in Theoiém 2 is

plotted for different SNR values. The number of antennas at

Lemma2. The accuracy measure conditioning the terminatigfy transmitters is two and we generate independent imstant
of the algorithm is defined as. The terms$ and 5 are negus channelay, identically distributed a€A/ (0, I). The
the lower and upper bounds on the price ratio giverLil (3Qgntract curve is calculated by taking)? samples ofz?
respectively. The prices ratio is initialized to the midstidue uniformly spaced in(0, \4") to obtain values Ofrgl)_ The

of these bounds and forwarded to the links. The links Se'agurse of the contract curve fd0 dB SNR is near to the
their demands calculated from Theoréin 3 to the arbitrat%rdge of the Edgeworth box where joint ZF is marked. This
I the de”_’a”d of good is greater tha_n its supply, ther_1 themeans that Pareto optimal allocations require either tnéter
arbitrator increases the ratio of thg prices to half th_eanse to choose beamforming vectors near to ZF. For decreasing
to the_ upper boungB. Thus, the price of good relative to SNR, the contract curve moves away from the ZF edge. For
thg price of good INCreases. Thellower bound on the PrCeR v SNR, the contract curve is then close to the edge with
ratio 5 is updated to the price ratio of the previous iteratio oint MRT. These observations conform with the analysis in

I t_he_ dgmand of g((j)%dllfishlezs_ than its Sﬁpﬁ)ly’ thi pricde[3O] where Pareto optimal maximum sum utility transmission
ratio is decremented half the distance to the lower boind .o ¢t \died in low and high SNR regimes.

The upper bound is set to the prices ratio of the previous
iteration. The algorithm terminates when the distance betw 0.3F
the updated upper and lower bounds on the prices ratio
below an accuracy measute

0.251 contract curve

Walrasian
equilibrium

3 , , ; , , , : , S

upper bound on prices ratio

N
1
I
o
[y

indifference curve
(consumer 2)

\ m Walrasian prices ratip 0 0.05 0.1 0.15 0.2 0.25 03 035 04 0.45
X ray

=
[

prices ratio (Q/pz)
N

@
Xl

=

lower bound on prices ratio

05 Fig. 8. Edgeworth box which depicts the allocation for thelfd&an prices.

1 2 3 4 5 6 7 8 9 10
iteration In Fig.[8, an Edgeworth box is plotted for a sample channel
Fig. 6. Convergence of the price ratio in the price adjustnpeacess to the €alization with two transmit antennas at both transnstteor
Walrasian price ratio. the prices calculated from Theoréin 4 we obtain the Walrasian
equilibrium allocation on the contract curve where the cor-
In Fig.[8, the prices ratio in the price adjustment processsponding indifference curves are tangent. The indiffeee
is marked with a cross and is shown to converge after a feurves are obtained from Propositioh 1. The line passing
iterations to the Walrasian prices ratio from Theofém 4. Thlkrough Walrasian equilibrium allocation defines the budge

dashed lines correspond to the upper and lower boundssits of the consumers as is illustrated in Eig. 5.
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maximum sum SINR In Fig.[d, two solutions from axiomatic bargaining theory,

namely the Nash bargaining solution (NBS) and the Kalai-
Smorodinsky (KS) solution are plotted. These solutions lie
in the core and differ by the axioms that define them. The
virtual SINR coordination interested reader is referred to_[23] for a comprehensive

Pareto boundary

)

fx_” core allocations theory on axiomatic bargaining. According to simulations,

% . L these two solutions are not far from each other. The pragserti
S 7P Walrasian equilibrium . s -

& 05l that the Walrasian equilibrium and the NBS or KS solution

Nash bargaining solution’|  haye in common is that they are Pareto optimal and lie in
Kalai-Smorodinsky solution  the core, i.e., each user achieves higher utility than at the

MR Y Nash equilibrium. The difference between the solutionhés t
: ‘ ‘ ‘ ‘ ‘ fairness aspects in allocating the Pareto optimal uslitiethe
0o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 players. The current advantage in the Walrasian equihioriu
(VX)) over NBS and KS solution is that it can be characterized in

closed-form using Theorel 3 and Theorlegm 4. In addition, we
Fig. 9. SINR region of a two-user MISO IFC with SNR = 0 dB and twodevise a coordination mechanism to implement the Walrasian
antennas at the transmitters. equilibrium in Sectior IV-=C. Next, we will describe how the

NBS and KS solutions are obtained. The NBS|[24, Chapter

In Fig. [9, the SINR region is plotted. The points Iyingls] s the solution of the following problem:

inside the SINR region correspond to the beamforming vector maximize (¢1 — ¢1%)(¢2 — #3°)
characterized in{5), where a subset of these points arédPare subject to (¢1,#2) € @,

optimal. The Pareto boundary corresponds to the allocaitton - uRT A MRT ) _—
the contract curve calculated in TheorEn 2. The weak Parépfgere_‘bk = dp(AY ’/\_2 )_ is the SINR in Nash equ_lllbrlu_m
d® is the SINR region in[{3). Note that the NBS is defined

boundary consists of weak Pareto optimal points in whié;H-' " ; o
or convex utility regions only, and the SINR regidnin our

the links cannot strictly increase their utility simultansly. : " is sh inMRia. 9
Formally, the weak Pareto optimal points of the SINR regio?‘fa‘s? IS not necessarily Convex as 1S snown |n[B|g. - However,
- 7 solving the optimization problem ih_(B8) by grid search over
® are defined as [23, p. 14] 3 . . .
- 103 generated Pareto optimal points from Theofdm 2 gives a
W(®) := {@ € & : there is noy €  with y >z}, (36) single sqlution which we plot in Fid.]9. The KS solution is
the solution of the following problem [31]:
where the inequality il (36) is componentwise. Pareto ogitim o b1 — SN o — P
points P(®) in (@) define a stronger optimality for a utility maximize min <¢CORE_ A" GOoRE NE) (39)
tuple than weak Pareto optimal points. A weak Pareto optimal b ! o Lo 2
point is not necessarily Pareto optimal. But all Paretoroati subject to (¢1,¢2) € @,
points are also weak Pareto optimal, i(®) C W(®). whereg{°* (analogouslys5°Fe) is the solution of the following
The core allocations are all Pareto optimal points tharoblem:
dominate the Nash equilibrium (joint MRT). Assuming the maximize
: . o ) ¢1
links are rational, only allocations in the core can be afiiast _ e (40)
for the links. In other words, the links will not cooperateife subject to (¢1,¢57) € @.
link would achieve lower payoff than at the Nash equilibriumThe two Pareto optimal POINtEATORE, #5F) and (hE, ¢SO7F)
The Walrasian equilibrium from Theorel 4 always lies in thgre the bounds to the core and are marked with circles on
core. In Fig[9, we also plot the maximum sum SINR whickhe Pareto boundary in Fifll 9. These bounds, as discussed in
is obtained by grid search over the allocations on the Par&ectionTII-B, can be calculated in the Edgeworth box as the
boundary. The virtual SINR coordination point correspondtersection of the contract curve and the indifferencevesir
to the coordination mechanism in_[14], where the minimuorresponding to the Nash equilibrium. The KS solution Wwhic
mean square error (MMSE) transmit beamforming vectors solves the problem i (39) using the core bounds is then found
) Hi_1 by grid search over the generated Pareto optimal points from
wl\lgMSE _ [G I+ hklhl[e{l] Pk ’ k 7& é, (37) TheorenD.
10T + hiehy] = |

are proven to achieve a Pareto optimal point. These beafh-Difficulties in the Extension té-User MISO IFC

forming vectors require only local channel state informati  While the tools in the paper can be applied to general
at the transmitters which is an appealing property in terfns & consumer and)M goods economy as can be found in
the low overhead in information exchange between the lin8], [28], the application to the beamforming problem in the
The virtual SINR coordination and the maximum sum SINRIISO IFC can currently be done only for the two-user case.
points do not necessarily lie in the core. Hence, these poifithis is mainly because of the structure of the parametdnati
are not suitable for distributed implementation betwees tlavailable for the efficient beamforming vectors in the gaher
rational links. case.

(38)
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Using the parametrization ir](5) for two-users, we hav&rategic game between the links. We propose a coordination
chosen in Sectioh Il the amount of goddfor consumerl mechanism between the links which achieves a Pareto optimal
as :vg ) = A1 and the amount of good for consumer2 as outcome in the core. For this purpose, the situation between
xg = AY"T_\;. With this relation between the parameters andne links is modeled as a competitive market where now each
the goods and due to the structure of the expressmiﬂ in &), gpnsumer is endowed with a budget and can consume the
SINR in (Z0) for link 1 depends only or:rl andazgl which goods at specific prices. The equilibrium in this economy is
are the amounts from goddand good for consumer. This called Walrasian and corresponds to the prices that egoate t
method of defining the goods in terms of the parameters dd¢tmand to the supply of goods. The unique Walrasian prices
not carry on for theK-user MISO IFC case. We illustrate@re calculated and the coordination mechanism is executed

this drawback based on an example in thaser case. The Py an arbitrator that forwards the prices to the consumers.

parametrization for the beamforming vectors are [7] The consumers then calculate in a decentralized manner thei
optimal demand corresponding to beamforming vectors that
w1 (A1, M2, A\13) achieve the Walrasian equilibrium. This outcome is Pareto
optimal and dominates the Nash equilibrium in the SINR
= Umax ()\thlhﬁ - )\12h12h{é - )\13h13h{{3)7 (41) r(f ; a
gion.
wa (A21, A2z, A23) APPENDIX A

PrROOF OFLEMMA [1]

The direct and interference power gain#,i wy(A)|?
and |h 2w, (M) |2,k # ¢, are calculated as functions of the
w3(A31, A32, A33) parameters\; by using the expression for the beamforming

_ 'vmam(_A31h3lh§€ ~ Asshaoht 4 )\33h33h§13), (43) Vectorsin [[5). The direct power gain is calculated as:
|hiwi(Ak) [

= Umaz (—/\zlhzlhg + )\22h22h§2 - )\23h23h513)7 (42)

where v,,...(Z) is the eigenvector that corresponds to the

largest eigenvalue o and g1 + A\g2 + Ak3 = 1,k = 1,2, 3. R Ty, , b hkkﬂh Rk

Note that different real-valued parameterizations are pt®- = VA 1T, ;fkk” +V1 ||H Z i (44)
vided in [8], [6], [8] which also lead to the same conclusian i M b TRK

terms of the application of the exchange economy model. We — (1/ k| h,, k]| + /1 — /\kHHthkkH) . (45)

use the parametrization ihl[7] in order to highlight the wesag

of the different parameters. I (41)=(43), three goods can Bhe interference power is:
directly distinguished each corresponding to the pararsete |h wi ()2

of each transmitter. We can choose the amount of gbod RETERAAR

(analogously for good& and 3) to be divided between the RETI, R —hITLG hyg ?

three links amgl) = A1y for link 1, xf) = A2 for link 2, =V ||Iif1hul;ikk|| + — M (| 117 ;ikk” (46)
andxgg) = MAi3 for link 3. In order to model this setting as an RETL. B H

exchange economy, the utility (SINR) of link should only — )\km = Ae || e |2 (47)
depend on the amounts of good&”, 2" 2", However, I, P |

with the parametrization il (41)-(%3), the SINR expressidn These expressions lead {d (6) ahd (7) in Leniina 1.
a link £ would depend on all parameters. Hence, in formulating

the demand of consuméras is done in the two-user case in APPENDIXB

(28), the solution depends also on the demands of the other PROOF OFTHEOREM[I
consumers. In this case, each consumer cannot find his dpt|m¢Irst

it is easy to see that the SINR expression[in (10)
demand of goods independently without knowing what tr]

€ continuous. The SIN 2 2{F) is strongl increas—
other consumers demand. Due to this fact, it is currently not Row(er”, z57) d y

i (k) (k) /(k)
possible to find the Walrasian equilibrium in the genekal ing with tkhe goodsz;” and IQk it o’y % ,3> -
( ) h /( ) ( ) ( ) 2§ d
user MISO IFC case. (b’“( xk?) W (ir)]ever( 2y7) # T2 ) an
( ) 9 Def|n|t|on Al 17] Def|ne the
VI. CONCLUSIONS dlrect|onal derlvat|ve ofz)k at (xg ), (k) ) in directionz as
In this work, we model the interaction between two links in i (I(k) 2 )
the MISO IFC as an exchange economy. The links are consid- Va o2
ered as the consumers anc_i.the exchange_d goods cprrespond qﬁk((xgk),xék)) —|—tz) ¢k( (k)7 (k )
to beamforming vectors. Utilizing the conflict represeiotat = tlin% " , (48)
—

in the Edgeworth box, all Pareto optimal points could be
characterized in closed form. The equilibria of the conside Since¢k(x1 a;g )) is differentiable, the limit above can be
exchange economy are related to a solution concept frgjiven as|[9, Chapter A.2]

coalitional game theory called the core. These allocations ® ® k)

are Pareto optimal and dominate the Nash equilibrium of a Vo (I1 ) ) = Vor (501 ) )z, (49)
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where V(bk(:cl , é’“)) is the gradient ofp; at (:cgk),:cé )) strictly concave, we build the second derivativefcéfrgf)) as

written as follows:
(k) 2
000 (2 90 (o194 ( R
(k) ’ ’ gi/zy g/ (1 — ")
Vor(af.a”) = 2® T g ’ d v v
k ¢

(k) (k)Y -
) (2?) - (\/xk Ik + \/(1 - Ty )gk)

with ¢ # k. The directional derivative otz)k(:cgk Ty )
defines the slope of the tangentcﬁ@(:zzgk),:z:gk)) at the point

(:cg ),:vék)) in the directionz. Hence, if the directional deriva- X (k) (k) (54)
tive is positive forz = (21, 20)” with z; andz; nonnegative
and satisfying|z| = \/z? + 25 = 1, then the utility function

q?k(xgk)jxék)).is s.trongly.incre_asing. Qqnsgquently, the direc- _ o n B G n o
tional derivative in ) is gtrlctly positive if the compents = () 7(1 IO —(1 IO
of the gradientvm(xg ),xé )) are strictly positive. The first k k k k k
(k) .(k)y i .
component oV (z7, x5 ) is R _\l (1 _x( Ngrdn \l x,(f)gkgk (55)
ol (:cl ,:zrgk)) )
3x,(€k)

R (5 )

+ Ao — CCE ' gon

(56)

(51)

TPF)-‘ partial derivative in[(31) is strictly larger than zerbem The second derivative of (z\*)) is strictly less than zero.
zy, < gi/ (g + gr)- Substitutingg, and g, from Lemmal Thus, f(2{*)) is strictly concave. Accordinglysy (\", (")

we get is strictly quasiconcave.

2
(k) 9k _ HHhkehkk”
Tk gk + gk | ||

= A (52) APPENDIXC

PROOF OFTHEOREM[3
Since:z:( ) e € [0, Ay, the pa;rtlal derivative in[(81) is strictly Since the funcUon;bk(:z:l ’xg )) is strictly quasiconcave,
Iargerthan zero exceptfm( A" The second componentthen this function has a unique maximum. Considering con-

of Vo (et 25") is sumer1 (analogously consume), the Lagrangian function
to the constrained optimization problem [n]25) is

2
O (551 ,:vék)) - <\/:c§f)gk + \/(1 — x;k))gk) E(wg )’xgl)’u) &1 (xg )’ (1))
affz s (02 + Aok — $§k)gék)2

3

57
a1 = o0~ o),

(53)
with ¢ # k, which is strictly larger than zero fo;tﬁ’“) e Wwherey is a Lagrange multiplier. The Karush—Kuhn—Tucker
[0, \'¥]. Hence, the directional derivative i (49) is strictl(KKT) conditions for optimality are necessary and suffitien
positive for (:vgk),xé )) € [0, \YR"] x [0, AY*"] except for the given as:

case:z:,(f) AT and z = (1,0). Since A} is the upper 8£( 1 (1) ) (%1( m

bound onz{", the slope of the functiom(:vgk),xg ') in the 1ot R 1ot ) =0  (58)
direction x,{% as is restricted by the condition = (1,0) is 81:%” axg”
not of interest. Bﬁ(xl ’xél)7u) O (551 ’xél))

Next, we will prove that the SINR function is jointly = + ups =0 (59)
guasiconcave with the goods. Consider the SINR expression i &vél ox él

2
. ' k k k) » (1)
(10), and deflnef(ffz(c )) = (\/xl(c )gk + \/(1 - xl(c ))gk> aﬁ(xl 2 7”) = ARy, (1) (1)

P —1711 P1 —:c21 po =0 (60)

and g( )) = o +/\MRngk—:c§k)g¢k. The function 7z

¢k(:c§ ,xé ) = flx (k))/g(:cf)) is strictly quasiconcave According to conditions(38) and (b9), we get

if f(:c,f)) is strictly concave andy(z (k)) is convex [32, ) )
(k) i a(b (CC y L ) 1 8¢1 (CC » L )

Proposition 2]. It is clear thay(z,”’) is convex since the 12 L2 )1

S /A A (Y|
function is linear inz{*). In order to show thatf (") is ozt p1 oV P2 (61)



(1) My VIt Vi1
(Velow e o ) (2 -

- (1)
o? + N¥ga1 — 3" g21
2
(Voo + v =aar) o
b1
- D\ ; (62)
(02 + AT g21 — @y 921) 2
IR/ TR/ T}
argl) \/1— argl)
< z{Vgr + \/(1 - 505”)91)921
P1
- D —. (63)
(02 + X5 g1 — x5 'ga1) P2
Substitutingz$" from (60) we get
\/(1 —a)gr - \/ Mo
(/= + (=) )
) o P Y
2wk wer 2L (D) ey
(921 2 Lopy 1 v:)
B
= \/(1 —a{")g1B ~ \/x§1>ng - xgwg_; 2V
= (1 —ai)/a"9 2 (65)
b2

A CRCE ) EREERYERNC,

Squaring both sides on the condition tiat> 0 we can write

2
7 (B i %1) =1 -a)gB.  (67)
We solve forazgl) to get
y 2\ !
2V =144 (1 + p—l) (68)
g1 p2B

SubstitutingB from (64) we get the expression iﬂz&)él)
is calculated according t¢ (60).
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