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Abstract

Unlicensed secondary users (SUs) in cognitive radio nédsvare subject to an inherent tradeoff betwspactrum
sensingand spectrum acces®\lthough each SU has an incentive to sense the primary 8dr ¢hannels for locating
spectrum holes, this exploration of the spectrum can contleeaéxpense of a shorter transmission time, and, hence, a
possibly smaller capacity for data transmission. This papeestigates the impact of this tradeoff on the coopeeativ
strategies of a network of SUs that seek to cooperate in doderprove their view of the spectrum (sensing), reduce the
possibility of interference among each other, and impriwedr transmission capacity (access). The problem is mddele
as a coalitional game ipartition form and an algorithm for coalition formation is proposed. Usthg proposed
algorithm, the SUs can make individual distributed decisito join or leave a coalition while maximizing their ufdis
which capture the average time spent for sensing as welleasapacity achieved while accessing the spectrum. It is
shown that, by using the proposed algorithm, the SUs carosg#nize into a network partition composed of disjoint
coalitions, with the members of each coalition cooperatmgpintly optimize their sensing and access performance.
Simulation results show the performance improvement thatgroposed algorithm yields with respect to the non-
cooperative case. The results also show how the algorittowslthe SUs to self-adapt to changes in the environment

such as the change in the traffic of the PUs, or slow mobility.
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I. INTRODUCTION

With the ongoing growth in wireless services, the demandiferradio spectrum has significantly increased.
However, the radio spectrum is limited and much of it hasaalyebeen licensed to existing operators.
Numerous studies conducted by agencies such as the Fedsrahhications Commission (FCC) in the
United States have shown that the actual licensed specteumains unoccupied for large periods of time
[1]. Thus, cognitive radio(CR) systems have been proposed [2] in order to efficientjylaéxthis under-
utilized spectrum. Cognitive radios or secondary userssfSaie wireless devices that can intelligently
monitor and adapt to their environment and, hence, they bie ta share the spectrum with the licensed
primary users (PUs), operating whenever the PUs are idiglelmenting cognitive radio systems faces various
challengesl[3],[[4], notably, for spectrum sensing and speat access. Spectrum sensing mainly deals with
the stage during which the SUs attempt to learn their enwmemnt prior to the spectrum access stage when
the SUs actually transmit their data.

A. Existing Work on Spectrum Sensing and Access

Existing work has considered various aspects of spectrumirgg and spectrum access, individually. In
[5], the performance of spectrum sensing, in terms of thihpug, is investigated when the SUs share their
instantaneous knowledge of the channel. The work'in [6]isgithe performance of different detectors for
spectrum sensing, while inl[7], the sensing time that mazémithe achievable throughput of the SUs, given
a detection-false alarm rate is derived. The authorslinti@ysthe use of a novel approach for collaborative
spectrum sensing based on abnormality detection. Diffezeaperative techniques for improving spectrum
sensing performance are discussed[in [9]-[15]. Furthegctsppm access has also received considerable
attention [16]-{23]. In[[16], a dynamic programming apprbds proposed to allow the SUs to maximize
their channel access times while taking into account a perfattor from any collision with the PU. The
work in [16] (and the references therein) establish thapraxctice, the sensing time of CR networkdagye
and affects the access performance of the SUs. The auth{itgipropose a novel multiple access scheme
that takes into account the physical layer transmissiorognitive networks. In[[18], the authors study the
problem of interference alignment in a cognitive radio ra&vconsisting of SUs having multiple antennas.
Non-cooperative solutions for dynamic spectrum accespraqgosed in[[19] while taking into account changes
in the SUs’ environment such as the arrival of new PUs, amdhgrs. Additional challenges of spectrum
access are studied in [20]—[23].



Clearly, the spectrum sensing and spectrum access aspaxgrotive networks have been widely inves-
tigated, independently. However, a key challenge that mesneelatively unexplored is to study the tradeoff
betweenspectrum sensingnd spectrum acceswhen the SUs seek to improve both aspepsjtly. This
tradeoff arises from the fact that the sensing time for thes 8Jnon-negligible[[16], and can reduce their
transmission performance. Thus, although each SU has antine to sense as many PU channels as possible
for locating access opportunities, this spectrum expilonanay come at the expense of a smaller transmission
time, and, hence, a possibly smaller capacity for data itnégssson. Also, due to the limited capability of the
cognitive devices, each SU, on its own, may not be able tooegphore than a limited number of channels.
As a result, the SUs can rely on cooperation for sharing teetsppm knowledge with nearby cognitive radios.
Therefore, it is important to design cooperative strategiat allow the SUs to improve their performance

while taking into accounboth sensing and access metrics.

B. Our Contributions

The main contribution of this paper is to devise a coopegasitheme among the SUs in a multi-channel
cognitive network, which enables them to improve their parfance jointly during spectrum sensing and
access. From a sensing perspective, we propose a scheraghiwbich the SUs cooperate in order to share
their channel knowledge so as to improve their view of theespen and reduce their sensing times. From an
access perspective, the proposed cooperation protocwsathe SUs to improve their access capacities by:
()- learning from their cooperating partners the existent alternative channels with better conditions, (ii)-
reducing the mutual interference, and (iii)- exploiting Itiple channels simultaneously, when possible. We
model the problem as a coalitional gameartition form and we propose an algorithm for coalition formation.
Although coalitional games in partition form have been Wdstudied in game theory, to the best of our
knowledge, no existing work has utilized the partition fasfrcoalitional game theory in the design of cognitive
radio systems. The proposed coalition formation algoritdllows the SUs to make distributed decisions to
join or leave a coalition, while maximizing their utility vich accounts for the average time needed to locate
an unoccupied channel (spectrum sensing) and the averggeityaachieved when transmitting the data
(spectrum access). Thus, the SUs self-organize into dispmalitions that constitute a Nash-stable network
partition. Within every formed coalition, the SUs act comirely by sharing their views of the spectrum,
coordinating their sensing orders, and distributing tipewers over the seized channels whenever possible.
Also, the proposed coalition formation algorithm allows tBUs to adapt the topology to environmental

changes such as the changes in the availability of the PUnelt&or the slow mobility of the SUs. Simulation



results assess the performance of the proposed algoritlativeeto the non-cooperative case.

Note that, in our previous work [14], [15], we have studied tise of cooperative games for performing
collaborative spectrum sensing in order to improve theew#dobetween the probability of detection of the
PU and the probability of false alarm for a single-channgjritive network. However, our work in [14], [15]
is focused on detection techniques and does not take intuatspectrum access, interference coordination,
spectrum view sharing, capacity optimization, sensingtior other the key factors in spectrum sharing and
access. To this end, the solutions, methods, and modeledtund[14], [15] are inapplicable for the problem
we address here, both from an application/systme perspeasi well as from the game theoretic perspective
(due to the need for games in partition form which is a classooperative games that is significantly different
from the characteristic form adopted I[n [14], [15]).

The rest of this paper is organized as follows: Secfidon Isenés the non-cooperative spectrum sensing
and access model. In Sectibnl Ill, we present the proposegecation model for joint spectrum access and
sensing, while in Section 1V we model the problem using tmalal games in partition form and we devise
a distributed algorithm for coalition formation. Simulati results are presented and analyzed in Se€fion V.

Finally, conclusions are drawn in Sectibn] VI.

II. NON-COOPERATIVE SPECTRUM SENSING AND ACCESS

In this section, we present the non-cooperative procedursgectrum sensing and access in a cognitive
network, prior to proposing, in the next sections, coopenastrategies for improving the performance of
the SUs jointly for sensing and access. A summary of the iootatsed throughout this paper is shown in
Tablel.

A. Network Model

Consider a cognitive radio network witN secondary users (SUs) engaged in the sensing @rimary
users’ (PUs) channels in order to access the spectrum amghtitatheir data to a common base station (BS).
Let NV and K denote the set of SUs and the set of PUs (channels), resglgcfdue to the random nature of
the traffic of the PUs and to the dynamics of the PUs, each d@tdna K is available for use by the SUs
with a probability off,, (which depends on PU traffic only and not on the SUs). Althofaghvery small K
the SUs may be able to learn the statistics (probabilitigsof all K channels, we consider the generalized
case where each SlUe N can only have accurate statistics regarding a sulis€t K of K; < K channels

(e.g., via standard learning algorithms), during the geabtime the channels remain stationary. We consider



a frequency selective channel, whereby the channel gairof any SUi € N experienced at the BS when
SU i transmits over channél € K; is g;x = a;x - d; ", with d; the distance between SUand the BSy the
path loss exponent, and ; a Rayleigh distributed fading amplitude for Slbn channelk with a variance
of 1. We consider a channel witslow fading which varies independently over the frequencieaggstatic

over the frequency band). Note that other channel types lsanb@ accommodated.

B. Non-cooperative Sensing Process

For transmitting its data, each SUe A is required to sense the channelskin persistently, one at a
time, in order to locate a transmission opportunity. We abersthat each SU € N is opportunistic which
implies that SUi senses the channels 6, in a certain order, sequentially, and once it locates a gp@ct
hole it ends the sensing process and transmits over the fiestnel found unoccupied (by a PU). For the
purpose of finding a preferred order for sensing, eachi $idsigns a weightv; ,, to every channek € K,
which will be used in sorting the channels. When assignirgwieights and ordering of the channels, the
SUs face a tradeoff between improving their sensing timegjilijmg a higher weight to channels that are
often available, and improving their access performancaitsyng a higher weight to channels with better
conditions. The weights can be a function of a variety of peai@rs such as channel, interference, data, or
others. Hereinafter, without loss of generality and in oriecapture the joint sensing and access tradeoff,

the weightw; , assigned by an SWto a channek € K; will be taken as

Wi g = Oy - 9i k> (1)

where g; ;. is the channel gain experienced by $lver channelk and 6, is the probability that channel

k is available. Clearly, the weight given inl (1) provides adoale between the need for quickly finding an

available channel and the need for good channel conditi®iven the channel weights, each 3¢ N sorts

its channels in decreasing order of weights and beginsrsgnisese channels in an ordered manner. Hence,

each SUi senses the channels consecutively starting with the chaamang the highest weight until finding

an unoccupied channel on which to transmit, if any. The sethahnels used by an Si= A orderednon-

cooperatively by decreasing weights is denoted§{f' = {1, ..., kg, } wherew;, > w;z, > ... > W e -

Note that, other weights can also be adopted with little glearto the analysis in the remainder of this paper.
We consider a time-slotted spectrum sensing and accessssradereby, within each slot, each 84 N/

spends a certain fraction of the slot for sensing the chanraid, once an available channel is found,

the remaining time of the slot is used for spectrum accesghigregard, we consider that the channel



available/busy time is comparable or larger to the duratiba slot, which is a common assumption in the
literature [5], [13], [16], [24]. Given the ordered set ofarinelsk®, the average fraction of time spent
by any SU:i € N for locating a free channel, i.e., the average sensing timngiven by (the duration of a

slot is normalized tal)
K,

i1 K;
Icord Z(]@Qk]h 1—¢9km> Hl—@kl (2)

j=1 m=1 =1

.

wherea < 1 is the fraction of time needed for sensing a single chanmelfg is the probability that channel
k; € K is unoccupied. The first term ifiJ(2) represents the average $ipent for locating an unoccupied
channel among the known channelskifid, and the second term represents the probability that ndaalei
channel is found (in this case, the SU remains idle in the).shte thatr;(K%) is function of £ and,
hence, depends on the assigned weights and the orderingnoEadronal convenience, the argumentrpis

dropped hereatfter since the dependence on the channeingrdeiclear from the context.

C. Non-cooperative Utility Function

When the SUs are acting in a non-cooperative manner, giveoritered set of channet$™, the average

capacity achieved by an Se N is glven by

7j—1

= Zek [T -6k Ew,, [Cis] ®)
m=1

wheredy, [T/, (1 — 6,,,) is the probability that SU accesses channg| € K" given the ordered seé€9",
andEji’kj [Ci,kj} is the expected value of the capacity achieved byiSiJer channek; with the expectation
taken over the distribution of the total interferenGe. experienced on channg} by SU from the SUs in
N\ {i}.

For evaluating the capacity inl(3), every Sl& A must have perfect knowledge of the channels that the
other SUs are using, as well as the order in which these claarebeing sensed and accessed (to compute
the expectation) which is quite difficult in a practical netw. To alleviate the information needed for finding
the average capacity, some works such[as [25] [26] cemsid(3), the capacities under the worst case
interference, instead of the expectation over the intenfee. However, applying this assumption in our case
requires considering the capacities under worst casefenégice oneverychannel for every SU which is
quite restrictive. Thus, in our setting, as an alternativéhe expectation iri{3), for any Sl= N we consider
the capacity@i,kj achieved over channél; € K% under the average interference resulting from the SUs in
N\ {i}, given by



Ci,kj = 1Og2 (1 + Fi,kj>- (4)

Here, I';;, is the SINR achieved by SW when using channet; given an average total interferencf%j

arising from the SUs inV'\ {i} and is given by
_ Gik; - Pig,

Tip = ks 5

whereP; ;; is the maximum transmit power of Slused on channél;, ando? is the variance of the Gaussian
noise. In the non-cooperative setting,., = P where P is the maximum transmit power of any SUHis
assumed to be the same for all SUs with no loss of generalityq practical cognitive network, through
measurements, any Sle A can obtain from its receiver an estimate of the average mmltferencefi,kj
experienced on any channk| € K2 [27], and, thus, SU is able to evaluate the capacity [d (4). By using

@), we define the average capacity in a manner analogous tbl (3) as follows:
K; 7j—1

Ci=> 0 [T(1—0k,) Cis, (6)

j=1 m=1
Clearly, given the measurement of the external interfexeeeery SU: can easily evaluate its capacity in
(6). Due to properties such as Jensen’s inequalily, (6)essmts a lower bound dfl(3) but it provides a good
indicator of the access performance of the SUs. Hereafeisolely deal with capacities given the measured
average interference.

Consequently, the non-cooperative utility achieved by 8hyi; € N per slot is given by
u({i}vN):Ci'(l_Ti)a (7)

where the dependence @ indicates the dependence of the utility on the externatietence when the SUs
are non-cooperative; is the fraction of time used for sensing given by (2), @&\dhe average capacity given
by (6). This utility captures the tradeoff between explgrihe spectrum, i.e., sensing time, and exploiting

the best spectrum opportunities, i.e., capacity achiewgohgl spectrum access.

IIl. JOINT SPECTRUM SENSING AND ACCESSTHROUGH COOPERATION

In this section, we propose a cooperative scheme that enti#eSUs to share their knowledge of the radio

spectrum and improve their spectrum sensing and accessipearice, jointly.



A. Cooperative Sharing of Channel Knowledge

To improve their joint sensing and access performance, e i the cognitive network can cooperate.
Hence, any group of SUs can cooperate by formimmpalition S C N in order to: (i)- improve their sensing
times and learn the presence of channels with better condithty exchanging information on the statistics of
their known channels, (ii)- jointly coordinate the ordemihich the channels are accessed to reduce the mutual
interference, and (iii)- share their instantaneous sgn&aults to improve their capacities by distributing their
total power over multiple channels, when possible.

First and foremost, whenever a coalitigh of SUs forms, its members exchange their knowledge on
the channels and their statistics. Hence, the set of chaurthat the coalition is aware of can be given by
Ks = UiesK; with cardinality |[Ks| = K. By sharing this information, each member ®fcan explore a
larger number of channels, and, thus, can improve its sgrisine by learning channels with better availability
and by reducing the second term i (2). Moreover, as a refsharing the known channels, some members
of S may be able to access the spectrum with better channel smmglithereby, possibly improving their

capacities as well.

B. Proposed Algorithm for Cooperative Interference Mamagat and Channel Sorting

Once the coalition members share their knowledge abouthtaenels, the SUs will jointly coordinate their
order of access over the channelskig in order to minimize the probability of interfering with daother.

In this context, analogously to the non-cooperative cdse StUs inS proceed by assigning different weights
on the channels iCs using [1). Then, the SUs in coalitioi cooperativelysort their channels, in a manner
to reduce interference as much as possible. Thus, the Shityjoank their channels on a rank scale from
(the first channel to sense) 165 (the last channel to sense). For every 88 S, let Q,, denote the set of
channels that SUW has selectedntil and including rank:. Further, we denote bR, the set of SUs that have
selected a channel for rankand by, ¢ the set of channels that have been selected for ramk members
of S. Given this notation (summarized in Taljlé 1), we propose sbrting procedure in Algorithid 1 for any
coalition S.

Essentially, in order to apply Algorithinl 1, the members ofommerative coalitionS proceed as follows.
First, every SU in coalitionS starts by applying the non-cooperative weighting procedwer the set of
channelsks. Initially, the SU already performs this weighting procegluwhen acting non-cooperatively.
Subsequently, the SUs share their current ordering of tharels over a signalling channel, e.g., a temporary

ad hoc channel which is commonly used in ad hoc cognitiveor§#ll]. The SUs cooperatively inspect the



received rankings of channels while proceeding sequéntiglrank (i.e., they check the top ranked channel
of all SUs first, then move to the next rank, and so on). At amgrankr, all SUs that have chosen a certain
channel that does not conflict with the choices of the othes $ill actually be offered this channel by the
coalition. In contrast, if, at a given rank the cooperating SUs find out that the same channel has been
selected by a set of SUS C S, then, SUj € GG with the highest weight is assigned this channel at rank
Subsequently this Sy will no longer participate in bidding for channels at rankAs long as there exist SUs
that have not made their channel selection at ranke., R, # S, then these SUs repeat the same procedure
as above (i.e., re-rank their channels and manage condlictiannel selections by offering the channel to
the SU that values it the most, i.e., with the highest weiglat)can use only the channels that their partners
have not already selected at rankHowever, whenever an Ste S \ R, can no longer choose a channel
not used by the others at ramkit is inevitable that this SU interferes with some of its partners at rank
then SU: simply selects, at rank, the channel inCs \ Q;, with the highest weight. Hence, in summary, the
SUs inside a certain coalitiofi can use Algorithni]1 to share their valuation or ranking of ¢thannels and,
subsequently, coordinate their order of access over themenels so as to avoid interference. As a result of
the sorting process, each Sl S will have anordered set of channels? of cardinality K's which reflects

the result of Algorithni1L.

Note that, in order to implement Algorithid 1, each SU in cibati S needs to share its own ranking of
the channels irlCs. Essentially, this ranking is the only information that de¢o be exchanged so that the
SUs can execute Algorithid 1. Following this exchange, thepeoating SUs would combine these channel
rankings to modify and update the overall ranking so as tagednterference based on Algorithth 1. We
do note that, throughout this process, the SUs would neeéduolarly exchange this ranking information.
In practice, this information exchange can be done over mafligg channel such as the temporary ad hoc
channel and it will not require a large overhead since the 184¢sl to only share the “ranking” of the channels
and not the way in which they actually rank the channels, tbhey do not need to reveal their ranking method
nor exchange their channel gains or locations). This owthe also reduced by the fact that, at a given rank
r, the SUs that have already obtained their channel assigndeenot need to further share the information
exchange with the remaining SUs.

Given this new ordering resulting from the sorting procedof Algorithm[1, for every SUi € S, the
total average sensing timg® will still be expressed by[{2). However, the sensing timeis a function
of the channel ordering based on the &&t which is ordered cooperatively, rather th&i§™ which is the

non-cooperative ordering.



Using Algorithm[1, the SUs that are members of the same @waldre able to reduce the interference
on each other, by minimizing the possibility of selecting fame channel at the same rank (although they
can still select the same channel but at different ranksjvdver, as a result of this joint sorting, some SUs
might need to give a high rank to some channels with lower ktsigvhich can increase the sensing time
of these SUs. Hence, this cooperative sorting of the charimighlights the fact that some SUs may trade
off some gains in sensing performance (obtained by shahagreel statistics) for obtaining access gains (by
avoiding interference through joint sorting). As we wilkeskater in this section, in addition to the interference

reduction, some SUs in a coalitighcan also obtain access gains by using multiple channeldtsineously.

C. Cooperative Power Allocation and Coalitional Utility

For every coalitionS, we defineBs = {b1,...,b5} as the tuple with every element representing a
channel inK; selected by SU € S. Denote bygs the family of all such tuples for coalitiols which
corresponds to the family of all permutations, with repetit for the SUs inS over the channels ifls. Each

tuple Bs € §s is chosen by SUs i with a certain probabilitys, given by
: S S
eruﬁ‘lbi, bieBs Ok Hjeu,‘i‘llcf;bi (1—6;), if UL:II bi N ULZIIICfbi =0

0, otherwise;

(8)

PBs

where, for any SU € S, the setk?, = {j € K| rank(j) < rankb;)} represents the set of channels that
need to be busy before SUselects channdl;, € Bg, i.e., the set of channels ranked higher tharfrecall
that the setk{ is ordered as a result of Algorithfd 1). 5,° b, N U 5, +# 0, it implies that, for the
selectionBg, a channel needs to be available and busy at the same timé ghimpossible, and, hence, the
probability of selecting any tupl8s € §s having this property i$). Due to this property, the SUs of any
coalition S C N, can only achieve a transmission capacity for the tuflese §5 wheregg is the family

of all feasibletuples for coalitionS such thalul.i‘lbi N Ul.i‘llcfbi = (), which corresponds to the tuples which
have a non-zero probability of occurrence as pér (8). Naig the tuple corresponding to the case in which
no SU: € S finds an unoccupied channel also has a non-zero probabilitys omitted as its corresponding
capacity is0 and, thus, it has no effect on the utility.

For every channel selectiddy € s, one can partition coalitiol into a number oflisjointsets{S,, ..., S.}
with UF | S; = S such that, for a giverd € {1,..., L}, the channels iBs selected by any € S; are of
the same rank. Thus, the SUs belonging to &ngccess their selected channgisiultaneoushand, for this
reason, they can coordinate their channel access. In the eVeere|S;| = 1, the SU inS; simply transmits

using its maximum poweP over its selected channel 1. In contrast, for any € {1,..., L} with | S| > 1,
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the SUs inS; can share their sensing results (since they find their dlailehannels simultaneously) and
improve their access performance by distributing their @®acooperatively over the channels in the /sgt
that corresponds to the channels selectedSbgiven Bs. With every SUi € S;, we associate & x |ICg,|
vectorPfS where each elemer}fi’fg,f represents the power that SW4 S; will use on channek € g, given
the selection3s. Let Pﬁzl =[PP ... P]". Hence, for evenys;, 1 € {1,..., L} such thatS)| > 1, the
SUs can distribute their Eowers SO as to maximize the totalsate that they achieve as a coalition, i.e., the

social welfare, by solvin

m&xz Z Ci ke, 9)

P, i€S keks,
StLP >0, VieS keKs, Y PE=P Vies,
keks,
with P the maximum transmit power ard ;, the capacity achieved by SUec S; over channek € Kg, and

is given by

PZ-BS “Gik
CZ'JC = log 1 + S k S\’S — (10)
o2 + Iz,lle + ]z',k Ly I&k

where [0} = S° .o .9,k P is the interference between SUs fh on channelk € Ks, and I;,* =
D jes\s, gjkaf,f is the interference from SUs ifi \ S, on channel € Kg, (if any). Further,/s; represents
the average interference experienced by the members dfieoa$, including SUi from the SUsexternal
to S, which, given a partitiodI of A" with S € II, corresponds to the SUs ik \ S (which can also be
organized into coalitions as pé&l). Similarly to the non-cooperative case, this averagereatanterference
can be estimated through measurements from the receiverdtteiver can inform every SU if of the
interference it perceives, and then the SUs'inan easily deduce the interference from the external ssurce

Subsequently, given that, for a8y € §s, S is partitioned into{S;, ..., S.} as previously described, the
average capacity achieved, when acting cooperatively,yySU i € S, with i € S;, 1 € {1,...,L} (for
everyBs € §s), is

Ci= Y ws O, (11)

Bs€ls

1This choice allows us to capture both the selfish nature ofSte (improving their individual utility using a competiéivcoalition formation
process) and the cooperative nature of a coalition (in wiiehSUs act together for the overall benefit of the coalitisimg a fully cooperative
social optimum at coalitional level). Other advanced optation or game theoretic methods such as non-cooperatsh Mquilibrium or Nash
bargaining can also be used. However, these solutions @aeaise complexity and are out of the scope of this paper alidbaviaddressed

separately in future work.
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wherepg, is given by [8), andjfs is the total capacity achieved by SU= S; when the SUs it select the

channels inBg and is given by

cls =Y, (12)

kels,
where s, C Kg is the set of channels available & C S. Further, (Jf,f is the capacity achieved by SU
i € S; on channek € Kg, given the channel selectidfls and is a direct result (upon computing the powers)
of (@) which is a standard constrained optimization problbat can be solved using well known methods
[29].

Hence, the utility of any SU in coalition S is given by

u(S, 1) = C5(1 — 75) (13)

wherell is the network partition currently in place which deternsrtbe external interference on coalition
S, and 7 is given by [2) using the set? which is ordered by SU, cooperatively with the SUs iit,
using Algorithm[1. Note that the utility if.(13) reduces k9 (¥hen the network is non-cooperative. Finally,
we remark that, although cooperation can benefit the SUsihdte spectrum sensing and spectrum access
levels, in many scenarios forming a coalition may also érdasts From a spectrum sensing perspective,
due to the need for re-ordering the channels to reduce teefenénce, the sensing time of some members
of a coalition may be longer than their non-cooperative tengarts. From a spectrum access perspective, by
sharing information, some SUs may become subject to newfénémce on some channels (although reduced
by the sorting algorithm) which may degrade their capagitiehus, there exists a number of tradeoffs for
cooperation, in different aspects for both sensing andsscde this regard, clearly, the utility i (IL3) adequately
captures these tradeoffs through the gains (or costs) isirggime (spectrum sensing), and the gains (or
costs) in capacity (spectrum access).

In a nutshell, with these tradeoffs, for maximizing theiilities in (13), the SUs can cooperate to form
coalitions, as illustrated in Figl 1 for a network wiffi = 8 and K = 10. Subsequently, the next section

provides an analytical framework to form coalitions suchrafig. [1.

V. JOINT SPECTRUM SENSING AND ACCESS AS ACOALITIONAL GAME IN PARTITION FORM

In this section, we cast the proposed joint spectrum seraiaigaccess cooperative model as a coalitional

game in partition form and we devise an algorithm for caatitformation.



12

A. Coalitional Games in Partition Form: Basics

For the purpose of deriving an algorithm that allows the StJ$orm coalitions such as in Fig] 1 in a
distributed manner, we use notions from cooperative gameryh[30]. In this regard, denoting By the set
of all partitions of A/, we formulate the joint spectrum sensing and access modilegprevious section as
a coalitional game irpartition formwith non-transferable utility which is defined as follow[3[31]:

Definition 1: A coalitional game irpartition formwith non-transferablautility (NTU) is defined by a pair
(N, V) where N is the set of players antl is a mapping such that for every partitibhe 3 , and every
coalition S C NV, S € II, V(S,11) is a closed convex subset & that contains the payoff vectors that
players inS can achieve.

Hence, a coalitional game is in partition form if, for any ktban S C N, the payoff of every player in
the coalition depends on the partitidh i.e., on the players i as well as on the players iK'\ S. Further,
the game has NTU if the utility received I8y cannot be expressed by a single value which can be arbjtraril
divided among the coalition members, but is rather expreasea set of vectors representing the payoffs that

each member of can achieve when acting withif\.

B. Joint Sensing and Access as a Coalitional Game in Pantiform

For the proposed joint spectrum sensing and access probjieem a partitionII of A/ and a coalition
S € 11, and denoting byz; (S, IT) the payoff of SUi € S received when acting in coalitio whenII is in
place, we define the coalitional value set, i.e., the mappiras follows:

V(S,11) = {z(S, 1) € RIFIVi € S, 2;(S,1I) = v;(S, 1)}, (14)

wherew;(S, 1) is given by [IB). Using[(14), we note:

Remark 1: The proposed joint spectrum sensing and access game candatechas g\, ') coalitional
game in partition form with non-transferable utility whete mappingl” is a singleton set as given by (14),
and, hence, is a closed and convex subseék/of

Coalitional games in partition form have recently attrdctgtention in game theory [30]=[36]. Partition
form games are characterized by the dependence of the payo#ixternalities, i.e., on the way the network is
partitioned. Unlike coalitional games in characteristeni for which the focus is on studying the stability of
the grand coalition of all players [30], games in partitionnh provide a richer and more complex framework
since any coalitional structure can be optimall [31],![385][ [36]. In this regard, coalitional games in

partition form are often classified agalition formationgames([311]. Hence, traditional solution concepts for
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coalitional games, such as core-stable partitions or tlapI8i1 valuel[30], are inapplicable to coalitional games
in partition form [30]-{32], [35], [36]. For instance, foalition formation games in partition form, there is
a need for devising algorithms to form the coalitional stuwe that can potentially emerge in the network. In
particular, for the proposed joint spectrum sensing aneéseccoalitional game, due to the tradeoffs between

the benefits and costs of cooperation as capture@ By (13)>qtaired in Sectiofi 1ll, we note the following:

Remark 2: In the proposed joint spectrum sensing and ac¢A5s)’) coalitional game in partition form,
due to the dependence on externalities and the benefitteaisaffs from cooperation as expressed[in (13)
and [14), any coalitional structure may form in the netwankl ghe grand coalition is seldom beneficial due
to increased costs. Hence, the proposed joint sensing amedsagame is classified as a coalition formation

game in partition form.

C. Proposed Preference Relations

Most coalition formation algorithms in the game theory rktieire [31], [32] are built for games in char-
acteristic form. Although some approaches for the partifarm are presented in _[32], [B5], [36], most of
these are targeted at solving problems in economics withiegi quite different from the one dealt with in
this paper. Moreover, the approaches using the recursike ino[35], [36] (which are an extension to the
classical characteristic form solutions such as coreestadrtitions) rely heavily on combinatorial techniques
which are unsuitable for wireless problems such as in civgnitidio. In order to build a coalition formation
algorithm suitable for joint spectrum sensing and accesshbarrow concepts from_[37], in which the players
build coalitions based on preferences, and extend themcdmnanodate the partition form.

Definition 2: For any SU:; € N/, apreference relatioror order =; is defined as a complete, reflexive, and
transitive binary relation over the set of all coalitiomigtgon pairs that SUi can be a member of, i.e., the
set{(S,I)|Sy CN, i € Sk, S, €1, II € P}.

Consequently, for any SW € N/, given two coalitions and their respective partitiofis C N, S; € II
and, S, C N, Sy € II' such that: € S; andi € S, (S1,11) =; (S, IT') indicates that playei prefers to be
part of coalitionS; whenlII is in place, over being part of coalitiofi, whenII’ is in place, or at least,
prefers both coalition/partition pairs equally. Furthesing the asymmetric counterpart f, denoted by,
then (S, IT) =; (Ss, 1), indicates that player strictly prefers being a member ¢f, within IT over being a
member ofS, with II'. We also note that the preference relation can be used toarentywo coalitions in

the same partition, or the same coalition in two differentipans.
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For every application, an adequate preference relatipsan be defined to allow the players to quantify
their preferences depending on their parameters of iritdrethis paper, we propose the following preference
relation for any SUi €

(S1,10) =; (So, 1) & ¢3(S1, IT) > ¢;( S, IT') (15)

where S, € I, Sy € IT', with II, IT" € 3, are any two coalitions that contain SUi.e.,i € S; andi € S,
and ¢, is a preference function defined for any 34 A as follows (G is a coalition containing)
61(S.1T) = x; (S, II), if (x;(S, 1) > x;(S\ {i},1I),Vj € S\ {i} & S ¢ h(i)) or (|[S| =1) (16)
0, otherwise
where x;(S,I1) is given by [A38) through[{14) and it represents the payoféired by SUi in coalition S
when partitionII is in place, andi(i) is the history set of SU which is a set that contains the coalitions of
size larger than that SU: was member of (visited) in the past, and has parted.

The main rationale behind the preference functigns that any SUi assigns a preference equal to its
achieved payoff for any coalition/partition p&i6, I1) such that either: (i)-5 is the singleton coalition, i.e.,
SU i is acting non-cooperatively, or (ii)- the presence of Sth coalition S is not detrimental to any of
the SUs inS' \ {i}, and coalitionS has not been previously visited by SUi.e., is not in the history:(7).
Otherwise, the SU assigns a preference value tf any coalition whose members’ payoffs decrease due to
the presence of, since such a coalition would refuse to havgin the coalition. Also, any SU assigns
a preference of) to any coalition that it has already visited in the past and |e& since an SUi has no
incentive to revisit a coalition it has previously left dued decrease in the utility.

Having defined the main ingredients of the proposed gamdya@mext subsection, we devise an algorithm

for coalition formation.

D. Proposed Algorithm: Coalition Formation Rule and Algbm Phases

In order to devise a coalition formation algorithm basedlmn $Us’ preferences, we propose the following

rule:
Definition 3: Switch Rule - Given a partitionll = {5, ..., Sy} of the set of SUsV, an SUi decides to
leave its current coalitiors,,,, for somem € {1,..., M} and join another coalitios, € ITU{0}, Sy # S,

hence formingll’ = {I1\ {S,,, Sk} } U{Sm \ {i}, Sx U {i}}, if and only if (Sx U {i}, 1) >=; (S, II). Hence,
{Sm, Sk} — {Sm \ {i}, S, U {i}} andIl — IT".
For any partitionlI, the switch rule provides a mechanism whereby any SU care lega\current coalition

S and join another coalitiory), € I, forming a new partitiorll’, given that the new paifS, U {i},II') is
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strictly preferred ove(S,,, IT) through the preference relation defined byl (15) (16)t Bhan SU would
switchto a new coalition if it can strictly improve its payoffyithout decreasing the payoff of any member
of the new coalition. Thus, the switch rule can be seen as @nidual decision made by an SU, to move
from its current coalition to a new coalition while improgiiits payoff, given theconsentof the members of
this new coalition as pef(15). Further, whenever an SU dscid switch from its current coalitiofi,,, € 11

to join a different coalition, coalitiord,, is stored in its history sef(i) (if |S,,| > 1).

Consequently, we propose a coalition formation algorithomposed of three main phases: Neighbor
discovery, coalition formation, and joint spectrum segsand access. In the first phase, the SUs explore
neighboring SUs (or coalitions) with whom they may cooperd&tor discovering their neighbors, neighbor
discovery algorithms suited for cognitive radio such asséhim [38] and[[28] may be used. Once neighbor
discovery is complete, the next phase of the algorithm isctiadition formation phase. First, the SUs start
by investigating the possibility of performing a switch opgon by engaging in pairwise negotiations with
discovered SUs/coalitions. Once an SU identifies a potestiéch operation (satisfyind_(15) anfd_(16)), it
can make alistributeddecision to switch and join a new coalition. In this phase,ocmasider that, the order
in which the SUs make their switch operations is random bgtisetial (dictated by who requests first to
cooperate). For any SU, a switch operation is easily peddrias the SU can leave its current coalition and

join the new coalition whose members already agree on tméngiof this SU as pef(15) and (16).

E. Convergence and Properties of the Proposed Algorithm

The convergence of the proposed coalition formation allgoriduring this phase is guaranteed as follows:

Theorem 1: Starting from any initial network partitiofl,;, the coalition formation phase of the proposed
algorithm always converges to a final network partitidn composed of a number of disjoint coalitions of
SUs.

Proof: Denote byHl,;j’i the partition formed at iteratioh during the time SU; € N needs to act after
the occurrence of,;; switch operations by one or more SUs up to the turn of:Sb iteration!. Consider
that the SUs act in ascending order, i.e., $lcts first, then S, and so on. Given any initial starting
partition Ty = H(l)’l, the coalition formation phase of the proposed algorithmsegis of a sequence of switch

operations as follows (as an example):

L i | NI § GRS 17)
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where the operators indicates a switch operation. Based bnl(15), for any twoitpams Hf;jﬂ_ andIT;* in
(I7), such thaty; # n, ;, i.e., ng;j;j is a result of the transformation diff; (or vice versa) after a number
of switch operations, we have two cases: (C]][)g"i + Hﬁn’{j, or (C2)- an SU revisited its non-cooperative
state, and thusl}; = II;"7 .

If (C1) is true for alli, k € N for any two iterationd andm, and, since the number of partitions of a
set isfinite (given by the Bell number [32]), then the number of transfations in [1Y) is finite. Hence,
in this case, the sequence [n(17) will always terminater aftéterations and converge to a final partition
II; = HﬁvL{VN (without oscillation). If case (C2) also occurs [n{17),ute switch operations (if any) for any
SU that reverted to act non-cooperatively will always regula new partition as pet(15). Thus, even when
(C2) occurs, the finite number of partitions guarantees therighm’s convergence to sonié,;. Hence, the
coalition formation phase of the proposed algorithm alwegsverges to a final partition ;. [ |

The stability of the partitioll; resulting from the convergence of the proposed algorithmlza studied
using the following stability concept (modified from [37] &mcommodate the partition form):

Definition 4: A partitionII = {S;,..., Sy} is Nash-stabléf Vi € A/ such that € S,,, S,, € II, we have
(S, IT) =5 (Sp U {i},IT') for all Sy, € TTU {0} with TT' = (TT\ {S,., Sk} U {Sm \ {i}, Sk U {i}}).

Hence, a partitiodI is Nash-stable if no SU has an incentive to move from its curo@alition to another
coalition inII or to deviate and act alone.

Proposition 1: Any partition II, resulting from the coalition formation phase of the progbaéorithm
is Nash-stable.

Proof: If the partitionII; resulting from the proposed algorithm et Nash-stable then, thee& € N
with i € S,,, S, € I, and a coalitionS;, € II; such that(S; U {i},1I') >; (S, II), and hence, SU can
perform aswitch operation which contradicts with the fact thid} is the result of the convergence of the
proposed algorithm (Theorelm 1). Thus, any partitibaresulting from the coalition formation phase of the
proposed algorithm is Nash-stable. [ |

Following the convergence of the coalition formation phi@sa Nash-stable partition, the third and last phase
of the algorithm entails the joint spectrum sensing andsxadere the SUs operate using the model described
in Section Il for locating unoccupied channels and trat8ng their data cooperatively. A summary of one
round of the proposed algorithm is given in Algoritliin 2. Theposed algorithm can adapt the coalitional
structure to environmental changes such as a change in theaRid or slow channel variations (e.g., due
to slow mobility). For this purpose, the first two phases @& #igorithm shown in Algorithrhl2 are repeated

periodically over time, allowing the SUs, in Phase 2, to tdk&ributed decisions to adapt the network’s
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topology through new switch operations (which would cogeeindependent of the starting partition as per
Theorentll). Thus, for time varying environments, everyqueof timen the SUs assess whether it is possible
to switch from their current coalition. Note that the hist@et2(:) for any SU: € N is also reset every

time units.

F. Implementation Issues

The proposed algorithm can be implemented in a distributag wince, as already explained, the switch
operation can be performed by the SUs independently of anlyatzed entity. First, for neighbor discovery,
the SUs can either utilize existing algorithms such as thio$88] and [28], or they can rely on information
from control channels such as the recently proposed cogmiiot channel (CPC) which provides frequency,
location, and other information for assisting the SUs inrtbperation[39],[40]. Following neighbor discovery,
the SUs engage in pairwise negotiations, over control odlanmvith their neighbors. In this phase, given a
present partitioril, for each SU, the computational complexity of finding its ineaalition, i.e., locating a
switch operation, is easily seen to ©¢|11|) in the worst case, and the largest valueldf occurs when all the
SUs are non-cooperative, in which calie = N. Clearly, as coalitions start to form, the complexity ofdting
a potential switch operation becomes smaller. Also, fofguering a switch, each SU and coalition have to
evaluate their potential utility through (13), to determivhether a switch operation is possible. For doing so,
the SUs need to know the external interference and to finceaflible permutations to compute their average
capacities. Each SU in the network is made aware of the aaxgigrnal interference it experiences through
measurements fed back from the receiver to the SU. As a ydeultorming a coalition, the SUs compute
the average external interference on the coalition by comgitheir individual measurements. Alternatively,
for performing coalition formation, the SUs can also relyioformation from the CPC which can provide a
suitable means for gathering information on neighbors &ed transmission schemes. Moreover, although, at
first glance, finding all feasible permutations may appeanmex, as per Sectidnlll, the number of feasible
permutations is generally small with respect to the totahber of permutations due to the condition [ih (8).
Further, as cooperation entails costs, the network eviytdeals with small coalitions (as will be seen in
Section[Y) where finding these feasible permutations wilkégsonable in complexity.

V. SIMULATION RESULTS AND ANALYSIS
A. Simulation Parameters and Sample Network Snapshot

In order to simulate our proposed approach, we setup a systehsimulator in MATLAB as follows:

The BS is placed at the origin of 3km x3km square area with the SUs randomly deployed in the area
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around it. We set the maximum SU transmit powerRte= 10 mW, the noise variance to®> = —90 dBm,
and the path loss exponent to= 3. Unless stated otherwise, we set the fraction of time fosisgna single
channel toa = 0.05 and we consider networks with® = 14 channe@ In addition, non-cooperatively, we
assume that each SU can accurately learn the statistié§ ef 3 channelsyi € N (for every SU: these
non-cooperativey; channels are randomly chosen among the availabl&)PUs

Fig.[2 shows a snapshot of the network structure resultiog fhe proposed coalition formation algorithm
for a randomly deployed network withh = 9 SUs andK = 14 channels. The probabilities that the channels
are unoccupied are?; = 0.98, 0, = 0.22, 63 = 0.64, 6, = 0.81, 65 = 0.058, 05 = 0.048, 6; = 0.067,
O = 0.94, 0y = 0.18, 61 = 0.25, 6;; = 0.17, 61, = 0.15, 613 = 0.23, 6,4 = 0.36. In Fig.[2, the SUs
self-organize intds coalitions forming partitionll; = {5y, S2, S5, 5S4, S5}. For each coalition ifly, Fig.[2
shows thesorted (by Algorithm[1) set of channels used by the SUs in the caaidi(note that channél
was not learned by any SU non-cooperatively). By inspectiteggchannel sets used 8, S,, and .S;, we
note that, by using Algorithm 1 the SUs sort their channels iway to avoid selecting the same channel
at the same rank, when possible. This is true for all rankshes$e coalitions with two exceptions: The last
rank for coalitionS; where SUs5 and 8 both rank channeb last since it is rarely available &g = 0.048,
and, similarly, the last rank for coalitiofi; where SUsl and2 both select channél (ranked lowest by both
SUs) since it is also seldom available @s= 0.058. The partitionII; in Fig.[2 is Nash-stable, as no SU has
an incentive to change its coalition. For example, the nooperative utility of SU9 is zq({9},11;) = 1.1,
by joining with SU 6, this utility drops t00.38, also, the utility of SU6 drops fromzs({6},11;) = 1.79 to
1.63. This result shows that cooperation can entail a cost, hotdbe to the fact that that both SW@sand9
know, non-cooperatively, almost the same channels (naelpd?2), and hence, by cooperating they suffer
a loss in sensing time which is not compensated by the ac@ss. Pue to the cooperation tradeoffs, the
utility of SU 9, drops t00.797, 0.707, and0.4624, if SU 9 joins coalitionsSs, Sy, or S5, respectively. Thus,
SU 9 has no incentive to switch its current coalition. This pndpean be verified for all SUs in Figl 2 by

inspecting the variation of their utilities if they switchdir coalition and, thus, partitiol; is Nash-stable.
2As an example, this can map to the total channels in 802.1ttmuagh the actual used number varies by regioh for US, 13 for parts of
Europe, etc.)[[41].
*This method of selection is considered as a general caser atiethods for non-cooperatively choosing the PU channais also be

accommodated.
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B. Performance Assessment

In Fig.[3, we show the average payoff achieved per SU per sloa fnetwork with KX = 14 channels as
the number of SUs)V, in the network increases. The results are averaged ovdomampositions of the SUs
and the random realizations of the probabilittesVk € K. The performance of the proposed algorithm is
compared with the classical non-cooperative scheme asaselith the optimal centralized solution found
using an exhaustive search. Note that beydhg 8 SUs finding the optimal solution becomes mathematically
and computationally intractable as the number of partitiorcreases exponentially witN as per the Bell
number [32]. Fig[B shows that, as the number of SUsncreases, the performance of all three schemes
decreases due to the increased interference. Howevel, ragtalork sizes, the proposed coalition formation
algorithm maintains a better performance compared to thecooperative case. In fact, the proposed joint
spectrum sensing and access presents a significant penfoenaalvantage over the non-cooperative case,
increasing withN as the SUs are more likely (and willing, due to increasedfietence) to find cooperating
partners whenV increases. This performance advantage reaches 8@.8% relative to the non-cooperative
case atV = 20 SUs. Further, Fid.13 shows that the optimal solution ha8.a% advantage over the proposed
scheme atN = 4 SUs, but this advantage decreases to aroihéfo at N = 8 SUs. This result indicates
that the performance of the Nash-stable partitions regultiom the proposed algorithm becomes closer to
the optimal solution as the number of SW¥sincreases. This implies that, as more partners becomeahbiail
for selection, the proposed algorithm can reach a more @iffidiash-stable partition.

In Fig.[4, we show the average payoff achieved per SU per sioafnetwork withN = 10 SUs and
K = 14 channels as the fraction of time needed for sensing a sirfigleanel« increases. The results are
averaged over random positions of the SUs and the randonzagahs of the probabilitie®,,Vk € K.
Fig.[4 demonstrates that, as the amount of timéedicated for sensing a single channel increases, the time
that can be allotted for spectrum access is reduced, ang, tihe average payoff per SU per slot for both
cooperative and non-cooperative spectrum sensing andsadeereases. In this figure, we can see that, at all
«, the proposed joint spectrum sensing and access throuditiarodormation exhibits a performance gain
over the non-cooperative case. This advantage decreatiesywbut it does not go below an improvement
of 54.7% relative to the non-cooperative schemenat 0.5, i.e., when half of the slot is used for sensing a
single channel.

Fig.[ shows the average payoff achieved per SU per slot fataark with N = 10 SUs as the number
of PU channels/k, increases. The results are averaged over random posdfotie SUs and the random

realizations of the probabilitieg,, Vk € K. In this figure, we can see that as the number of chanfiels
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increases, the performance of both cooperative and nopecative spectrum sensing and access increases.
For the non-cooperative case, this increase is mainly dtiettact that, as more channels become available, the
possibility of interference due to the non-cooperativencieh selection is reduced. For the proposed coalition
formation algorithm, the increase in the performance ie dise to the increased number of channels that the
SUs can share a& increases. Furthermore, Fig. 5 demonstrates that the gedgoint spectrum sensing and
access presents a significant performance advantage @v@thicooperative case which is at 1e63t5%

for K = 20 and increases for networks with smaller channels. The aseren the performance advantage
highlights the ability of the SUs to reduce effectively thetmal interference through the proposed coalition

formation algorithm.

C. Coalition Size and Known Channels

In Fig.[8, we show the average and average maximum coaliizen(averaged over the random positions of
the SUs and the random realizations of the probabilttiesk € K) resulting from the proposed algorithm as
the number of SUSY, increases, for a network witR® = 14 channels. Fid.l6 shows that, Asincreases, both
the average and maximum coalition size increase with theageehaving a smaller slope. Further, we note
that the average and average maximum coalition size reacim@s.2 and8 at NV = 20, respectively. Hence,
Fig.[8 demonstrates that, although some large coalitiom®mrerging in the network, on the average, the size
of the coalitions is relatively small. This result is due ke tfact that, as mentioned in Sectiad 1ll, although
cooperation is beneficial, it is also accompanied by cosestdithe needed re-ordering of the channels, the
occurrence of new interference due to channel sharing, amhsThese costs limit the coalition size on the
average. Thus, Fidll 6 shows that, when using coalition faondor joint spectrum sensing and access, the
resulting network is, in general, composed of a large nurobemall coalitions with the occasional formation
of large coalitions. In brief, Fig.16 provides insight intieet network structure when the SUs cooperate for
joint spectrum sensing and access.

Fig.[@ shows the average and average maximum number of deakmewvn per coalition (averaged over
the random positions of the SUs and the random realizatibtiseoprobabilitiesd,,, Vk € K) as the number
of SUs, N, increases, for a network witk® = 14 channels. Figl]l7 demonstrates that both the average and
average maximum number of known channels per coalitioreas® with the network siz&. This increase
is due to the fact that, as more SUs are present in the netwWwlcooperation possibilities increase and the
number of channels that can be shared per coalition alseases. In this regard, the average number of

known channels ranges from arouad for N = 4 to around5.9 for N = 20, while the average maximum
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goes from6 at V = 4 to 12.4 at N = 20. This result shows that the increase in the average numberavin
channels is small while that of the maximum is more significdmis implies that, due to the cooperation
tradeoffs, in general, the SUs have an incentive to sharéativedy moderate number of channels with the

emergence of few coalitions sharing a large number of cHanne

D. Adaptation to Environmental Changes

In Fig. 8, we show, over a period of minutes (after the initial network formation), the evoturti of
a network of N = 10 SUs andK = 14 channels over time when the PUs’ traffic, i.e., the probtédi
0, Vk € K vary, independently, everyy minute. As the channel occupancy probability varies, thectire of
the network changes, with new coalitions forming and otleesking up due to switch operations occurring.
The network starts with a non-cooperative structure madefu non-cooperative SUs. First, the SUs self-
organize in3 coalitions upon the occurrence 8fswitch operations as per Figl 8 (at timg With time,
the SUs can adapt the network’s structure to the changesitrdffic of the PUs through adequate switch
operations. For example, aftérminute has elapsed, the number of coalitions increase ffdm4 as the
SUs perform5 switch operations. After a total a8 switch operations over thé minutes, the final partition
is made up oft coalitions that evolved from the initial coalitions.

In Fig.[d, we show the average total number of switch opemnatiper minute (averaged over the random
positions of the SUs and the random realizations of the fitibes 6., Vk € K) for various speeds of the
SUs for networks withK' = 14 channels and for the cases &f = 10 SUs andN = 15 SUs. The SUs
are moving using a random walk mobility model for a period2af minutes with the direction changing
everyn = 30 seconds. As the velocity increases, the average frequdmayitch operations increases for all
network sizes due to the dynamic changes in the networktateiincurred by more mobility. These switch
operations result from that fact that, periodically, every= 30 seconds, the SUs are able to reengage in
coalition formation through Algorithrh]2, adapting the dbahal structure to the changes due to mobility.
The average total number of switch operations per minute @sreases with the number of SUs as the
possibility of finding new cooperation partners becomeséidgor largerN. For example, while for the case
of N = 10 SUs the average frequency of switch operations varies fr@noperations per minute at a speed
of 18 km/h to 15.2 operations per minute at a speed7a@fkm/h, for the case ofV = 15 SUs, the increase is
much steeper and varies froérd operations per minute d8 km/h to 26 operations per minute a2 km/h.

The network’s adaptation to mobility is further assesseig [10 where we show, over a period 2b

minutes, the average coalition lifespan (in seconds) aelidor various speeds of the SUs in a cognitive
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network with K = 14 channels and different number of SUs. The mobility modelimsilar to the one
used in Fig[P withy = 30 seconds. We define the coalition lifespan as the time (inrsoduring which a
coalition operates in the network prior to accepting new Stsreaking into smaller coalitions (due to switch
operations). Fid._10 shows that, as the speed of the SUsasesethe average lifespan of a coalition decreases
due to the fact that, as mobility becomes higher, the likethof forming new coalitions or splitting existing
coalitions increases. For example, fdr = 15 SUs, the coalition lifespan drops from arou6@l5 seconds
for a velocity of 18 km/h to arounds3.5 seconds ag86 km/h, and down to about6.4 seconds atr2 km/h.
Furthermore, Figl_10 shows that as more SUs are present inetveork, the coalition lifespan decreases.
For instance, for any given velocity, the lifespan of a doati for a network withV = 10 SUs is larger than
that of a coalition in a network witlv = 15 SUs. The main reason behind the decrease in coalition &fesp
with NV is that, for a given speed, a$ increases, the SUs are more able to find new partners to joinasi
they move. In a nutshell, Fi§. 110 provides an interestingssment of the topology adaptation aspect of the
proposed coalition formation algorithm through switch i@ens.

Finally, we note that, in order to highlight solely the chaaglue to mobility, the fading amplitude was

considered constant in Fig. 9 and Higl 10. Similar resultskEseen when the fading amplitude also changes.

VI. CONCLUSIONS

In this paper, we have introduced a novel model for coopamati cognitive radio networks, which accounts
for both the spectrum sensing and spectrum access aspextsaW&’ modeled the problem as a coalitional
game in partition form and we have derived an algorithm tilatvg the SUs to make distributed decisions
for joining or leaving a coalition, depending on their ackeie utilities which account for the average time to
find a unoccupied channel (spectrum sensing) and the avadueved capacity (spectrum access). We have
shown that, by using the proposed coalition formation atgor, the SUs can self-organize into a Nash-stable
network partition, and adapt this topology to environmegptenges such as a change in the traffic of the
PUs or slow mobility. Simulation results have shown that pineposed algorithm yields gains, in terms of
average payoff per SU per slot, reaching u@6éx®% relative to the non-cooperative case for a network with
20 SUs.
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TABLE |

SUMMARY OF THE GENERAL NOTATION

Notation Explanation
N Set of N secondary users
K Set of K primary users or channels
S A coalition of SUs, i.e.,S C N
B Set of all partitions of\/
11 A partition of \/
Ki CK Subset of channels known by a certain 84 N
0 Probability that channet is available
9i.k Channel gain experienced by an $ldver a channek
Wi I Weight assigned by an SUfor a channelk
IC‘Z?“j The set of channels used by an $& A ordered (non-cooperatively)
kj A channel that is theth element of the ordered s
Ks = UieskK; The set of all channels known by a coalitich
le The orderedset of all channels used by an SUnside coalitionS. This set results from the cooperative sorting in Algoritiiin
Bs = {b1,...,bg} Tuple with every element; representing a channel VﬁLS
3s Family (or collection) of all channel tupleSs for a coalition S
PZ.BS 1 x |Ks, | vector where each elemeli[ffkS represents the power that SUe S; will use on channek € Kg, given the selectioBs

Algorithm 1 Proposed sorting algorithm for any coalitishC A
Qi0 ]
for r =1 to Ks do {For rankr = 1 we find all the channels that SUs i sense first, forr = 2 the channels that they sense second, and

so on}
Qir+ Qir—1, Krs <+ 0, R+ 0
For rankr, each SUi € S proposes to select the chanrglin s \ Q;,» which has the highest weight, i.€], = argmax w; .
forall icSs til £15, Vies, i #jdo e
SU i fixes its selection for this rank, and, hence:
Qi+ Qir Ul}, Krs + KrsUlj, Ry + R, U{i}.
end for
forall G C S\ R, s.t.l; =1 =lg, Vi,j € G do
a) The SU;j € G which has the highest weight féf,, i.e., j = arg max wj xr,, selects channéf; for rankr.
b) Q) Qjr Ul Kos = Kns UL, Ry < Ry U {j}. <
if R. # S then {SUs with unselected channels forexist}
The SUs inS'\ R, repeat the previous procedure, but eachiSUS \ R, can only use the channels ks \ Kr,s U Q; . However,
if for any SU: € S\ R, we haveKs \ K,,s U Q;, = 0, then this SU will simply select the channel that will maxamiits weight
from the sets \ Q;,-, regardless of the other SUs selection.
end if
end for

end for
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TABLE I
SUMMARY OF THE NOTATION SPECIFIC FORALGORITHM[]

Notation

Explanation

Qi,'r‘

Set of channels that an Sthas selected in Algorithiial @intil and including a channel rank

R

Set of SUs that have selected a channel for rank Algorithm [

IC7‘,S

Set of channels that have been selected for rably members ofS

Sk

Channel selected by an Si{member of coalitionS) at rankr during Algorithm[1

Coalition 4

SU 8 knows
channels : 3and 5

Coalition 1

SU 3 knows
channels ; 2 and 8

SU 2 knows
channel : 1

SU 4 knows
channels : 5,7 .
and 10 Coaljtion 3
SU 6 knows SU 5 knows
Coalition 2 channels : 6 and 8 channels : 4,7 and 9
1- Spectrum sensing/exploration gains by
1- Spectrum sensing/exploration gains by sharing sharing the channel statistics for channels
the channel statistics for channels 1, 4,5, 6,7.8, 9, 1,3, 5, and 10) _
and 10) 2- Spectrum access (capacity) gains by:
2- Spectrum access (capacity) gains by: (i)- Redm_:ing interfergpce by appropriately
(i)- Reducing interference by appropriately sorting . _sorting the coalition’s channels.
the coalition’s channels. (ii)- Improving the capacn?)f by distributing
(ii)- Improving the capacity by distributing the the powers over the coalition’s channels,
powers over the coalition’s channels, when possible. when possible.

Fig. 1. An illustrative example of coalition formation fooit spectrum sensing and access #r= 8 SUs andK = 10 channels.

15+ . *\\ Coalition é4 o
R KS:=11,8,4,2,14,7,6}
1 L\
1 1
h \ KS:=1{8,14,1,4,2,6,7}
1 1
1 B ] 1 s 7
1 ] -
' ! K={4.1,8,6,7,2,14)
1 ] Phe Ss
\ 78% 1 L, N
\ 1 ’ iz\
05 |- \\ ,I II A 08 -
A ’ N
E Coalition S, o Y
< K§2={2, 14,10, 12, 6) Base Station :
c 1 i
= o s 1 £
5 KS:=1{14, 2,12, 10, 6} Y ,
= 1
(7]
c R /!
A} ’
PR ~ ’
05} N oo s A L7 8
1 oalition ~ ==~
. ition S, e l-% s
\e*,' Kq ={3.2,12} . @\‘
A @
R N e 4’
-1r - Coalition S )
y AN K$s={12,13, 4,1, 5}
Coalition S, '} )
K. =3 2 {1}~ -~ s._
s s, Kys=(1, 4,12, 13, 5} |
L L L L L L L
-15 -1 -0.5 0 05 1 15

Position in x (km)

Fig. 2. A snapshot of a network partition resulting from thegmsed algorithm withV = 9 SUs andK = 14 channels.
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Algorithm 2 One round of the proposed coalition formation algorithm
Initial State

The network is partitioned b¥Tiniia = {S1, ..., Sm}. At the beginning of all time, the network is non-cooperatinence Tinit = N.
Phase 1 - Neighbor Discovery:
Each SU in\ surveys its neighborhood for existing coalitions,
in order to learn the partitiofil in place using existing
neighbor discovery algorithms such as|[inl[28].1[38].
Phase 2 - Coalition Formation:
repeat
Each SUi € N investigates potential switch operations using the pesfeg in [I5) by engaging in pairwise negotiations with éxgst
coalitions in partitionII (initially IT = ITinit).
Once a switch operation is found:
a) SUi leaves its current coalition.
b) SU updates its history.(¢), if needed.
¢) SU i joins the new coalition with the consent of its members.
until convergence to a Nash-stable partition
Phase 3 - Joint Spectrum Sensing and Access:
The formed coalitions perform joint cooperative spectrum
sensing and access as per Sedfidn I11.
By periodic runs of these phases, the algorithm allows the StJto adapt the network structure to environmental changes (e

Section[TV-D).

35

—©— Coalition formation for joint spectrum sensing and access
—8— Non-cooperative sensing and access
—#— Optimal centralized solution

— 3 The optimal centralized solution
is-mathematically and 4
computationally
intractable beyond N=8 SUs

15

Average payoff per SU per slot
N

| | |
4 6 8 10 12 14 16 18 20
Number of SUs (N)

Fig. 3. Average payoff achieved per SU per slot (averaged medom positions of the SUs and the random realizationdh@fprobabilities
0x,Vk € K) for a network with K = 14 channels as the network si2é varies.
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2.4

221 —8— Non-cooperative spectrum sensing and access 4
—6— Coalition formation for joint spectrum sensing and access

1.8

16r

14r

1.2r

Average payoff per SU per slot

0.4

I I I I I
0 0.05 03 035 04 045 05

Fraction of time needed for sensing a single channel ()

011 0.5.5 012 O.‘25
Fig. 4. Average payoff achieved per SU per slot (averaged mvedom positions of the SUs and the random realizationd@fprobabilities

0x,Vk € K) for a network withV = 10 SUs andK = 14 channels as the fraction of time needed for sensing a sifglanel« varies.

2.2

Average payoff per SU per slot

—&— Non-cooperative spectrum sensing and access
—©— Coalition formation for joint spectrum sensing and access

0.2 | | | | | | |
4 6 8 10 12 14 16 18 20

Number of PU channels (K)

Fig. 5. Average payoff achieved per SU per slot (averaged mvedom positions of the SUs and the random realizationdh@fprobabilities

0r,Vk € K) for a network withN = 10 SUs as the number of channdis varies.
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8r —©— Average maximum coalition size
—B— Average coalition size

Coalition size

1 I I I I I I I
4 6 8 10 12 14 16 18 20

Number of SUs (N)

Fig. 6. Average and average maximum coalition size (averager random positions of the SUs and the random realiztbnthe probabilities

0, Vk € K) for a network withK = 14 channels as the network si2é varies.

13

12| —=e—Average number of channels
—8— Average maximum number of channels

11

10

Number of channels known per coalition

Number of SUs (N)

Fig. 7. Average and average maximum number of channelsagedrover random positions of the SUs and the random raatizabf the

probabilitieséy,, Vk € K) known per coalition for a network witlil = 14 channels as the network siZé varies.



Fig. 8. Network structure evolution with time fav = 10 SUs,
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Fig. 9. Average frequency of switch operations per minuteer@ged over random positions of the SUs and the randonzagalis of the
probabilitiesdy, Vi € K) for different speeds in a network withi® = 14 channels forN = 10 SUs andN = 15 SUs.
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Fig. 10. Average coalition lifespan in seconds (averageer sandom positions of the SUs and the random realizationthefprobabilities
0x,Vk € K) for different speeds in a network with" = 14 channels forNV = 10 SUs andN = 15 SUs.
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