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Abstract—We present a novel framework for the analysis and 
optimization of encoding latency for multiview video. First, we 
characterize the elements that have an influence in the encoding 
latency performance: 1) the multiview prediction structure and 
2) the hardware encoder model. Then, we provide algorithms 
to find the encoding latency of any arbitrary multiview predic­
tion structure. The proposed framework relies on the directed 
acyclic graph encoder latency (DAGEL) model, which provides 
an abstraction of the processing capacity of the encoder by 
considering an unbounded number of processors. Using graph 
theoretic algorithms, the DAGEL model allows us to compute the 
encoding latency of a given prediction structure, and determine 
the contribution of the prediction dependencies to it. As an ex­
ample of DAGEL application, we propose an algorithm to reduce 
the encoding latency of a given multiview prediction structure 
up to a target value. In our approach, a minimum number of 
frame dependencies are pruned, until the latency target value is 
achieved, thus minimizing the degradation of the rate-distortion 
performance due to the removal of the prediction dependencies. 
Finally, we analyze the latency performance of the DAGEL de­
rived prediction structures in multiview encoders with limited 
processing capacity. 

Index Terms—Free viewpoint video, low latency, multiview 
coding, prediction structures, three-dimensional video (3DV), 
video-conference. 

I. INTRODUCTION 

3D Video (3DV) and Free Viewpoint Video (FVV) are new 
types of visual media that expand the user's experience beyond 
what is offered by 2D video [2]. 3DV offers a 3D depth im­
pression of the observed scene, while FVV allows an interac­
tive selection of the viewpoint and direction within a certain op­
erating viewing range. To achieve those functionalities a data 
format richer than a single 2D video signal is needed. The spec­
trum of data formats that can enable those functionalities goes 
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Fig. 1. Example of a multiview prediction structure for two cameras. Hori­
zontal arrows correspond to temporal prediction and vertical arrows to interview 
prediction. 

from purely image-based data formats such as multiview video 
(multiple views of the same scene) to data formats based on 
computer graphics such as 3D meshes and their corresponding 
textures [3]. A widely adopted approach is the one that includes 
multiview video and depth sequences as additional scene ge­
ometry information, allowing the possibility of generating addi­
tional views on virtual camera positions [4]-[6]. One common 
feature of these data formats is the presence of multiview video. 
Given that the size of this multiview video grows linearly with 
the number of views, while the available bandwidth is generally 
limited, an efficient compression scheme for multiview video is 
needed. 

Multiview video coding (MVC) [7] is an extension of the 
H.264/MPEG-4 Advanced Video Coding (AVC) [8] standard 
that provides efficient coding of such type of multiview video. 
Besides, as depth signals can be represented as monochromatic 
video signals, MVC has been also commonly used to compress 
depth [5]. As an extension of AVC, MVC makes use of the set 
of AVC coding tools. The key additional feature of the MVC 
design, which increases the coding efficiency specifically for 
multiview video, is a new prediction relationship among frames 
of different views that exploits the interview redundancy among 
cameras. This prediction relationship is known as interview pre­
diction. The concept of interview prediction is that motion esti­
mation does not use only temporal references, but also includes 
interview references. Fig. 1 shows a sample prediction structure 
in which temporal and interview references are used. 

MVC allows a wide range of applications and scenarios [9]. 
Here, we address real-time applications where strict con­
straints on the end-to-end delay are imposed, such as live 
broadcasting or immersive video-conferencing [10]. In video­
conferencing scenarios, the one-way delay between both ends 
of the conversation is known as communication latency. Typ­
ical recommendations on maximum communication latency 
generally state that there is none or little impact below 150 ms, 



while a serious impact may be observed above 400 ms [11]. 
Each element (encoder, transmitter, receiver, or decoder) adds 
some delay and contributes to the communication latency. The 
delay that the encoder adds to the system is known as encoding 
latency [12]. 

The encoding latency of a multiview encoder depends mainly 
on two different but interrelated factors: 

• The multiview prediction structure: temporal and inter­
view prediction relationships among frames establish 
coding order dependencies that play a major role in the 
encoding delay for a given frame. 

• The hardware architecture and implementation of the en­
coder: specific architectural features of multiview encoders 
(e.g., number of processors, use of threads,...) influence 
the time that is needed to encode a given frame, and there­
fore, they affect the performance of the system in terms of 
latency. 

For both single view and multiview encoders a main de­
sign variable to control the encoding latency is the prediction 
structure. In the single view case, encoding latency estimation 
is relatively simple and it can be reduced by removing long 
backward temporal dependencies. On the contrary, for mul­
tiview encoders, the computation of the encoding latency is 
much more complex: on the one hand, it requires to handle the 
richer nature of the multiview prediction structure that includes 
interview predictions; on the other hand, the fact that the en­
coder has to manage the encoding of several frames at the same 
time (frames from several views) makes the hardware platform 
characteristics play a significant role in the final latency value. 
Therefore, achieving low latency encoding configurations 
requires a deeper analysis that should address jointly both 
prediction structure and hardware architecture. Nevertheless, 
to the best of our knowledge most research in this area has 
been focused exclusively on the encoder implementation. Thus, 
for example, [13]—[15] address the optimization of multiview 
hardware encoder architectures by reducing frame processing 
times through the use of parallelization on multicore processors. 

Regarding the design of multiview prediction structures, 
several options have been investigated to obtain efficient pre­
diction structures in terms of rate-distortion (RD) performance. 
For example, Merkle et al. [16] propose different efficient 
prediction structures. Based on that work, the Joint Video Team 
(JVT) adopted the prediction structures presented in [17] as the 
non-normative structure for the Joint Multiview Video Model 
(JMVM). We argue that the design of multiview prediction 
structures has been mostly focused on improving RD perfor­
mance, ignoring important differences in the latency behavior 
of multiview encoders, which may be critical for delay con­
strained applications. 

In this paper, we propose a general framework for the char­
acterization of the encoding latency in multiview encoders that 
captures the influence of 1) the prediction structure and 2) the 
hardware encoder model. This framework allows a systematic 
analysis of the encoding latency. Firstly, we provide a charac­
terization of the elements that influence the encoding latency 
performance of the encoder. Second, we propose a method to 
compute the value of the encoding latency for any arbitrary pre­
diction structure, and to determine the contribution of each pre­

diction dependency to the encoding latency. From these results, 
we are able to design multiview prediction structures that are 
efficient in terms of RD and encoding latency. 

Our previous work [18] has shown that, for a given encoder 
hardware platform, an accurate characterization of its encoding 
latency requires the modeling of the behavior of its specific 
hardware characteristics. Thus, both analysis and optimization 
results of encoding latency cannot be general but are particular 
to that hardware choice. To avoid this limitation, the main focus 
of our framework is to propose a model that decouples as far as 
possible the influence of the prediction structure and the hard­
ware architecture on the encoding latency. Stemming from it, 
the analysis and optimization can be focused on the multiview 
prediction structure, and later on extended to specific hardware 
encoder implementations. 

The primary element of the proposed framework is an en­
coding latency model that assumes that the processing capacity 
of the encoder is essentially unbounded. We will refer to it as 
the directed acyclic graph encoding latency (DAGEL) model. It 
can be seen as a task scheduling model [19] (the encoding of a 
frame is the task unit) that we use not to compute the schedule 
length, but the encoding latency. We show that the encoding la­
tency values obtained with the DAGEL model are accurate for 
multiview encoders with a finite number of processors greater 
than a required minimum, which we are able to identify. Other­
wise, results provided by the DAGEL model represent a lower 
bound to the actual encoding latency of the encoder. 

As an example of DAGEL application, we show how the 
DAGEL model can be used to reduce the encoding latency of 
a given multiview prediction structure to meet a target value, 
while preserving as much as possible its RD performance. In 
this approach, the objective is to prune the minimum number 
of frame dependencies (those that introduce a higher encoding 
delay in the original structure) until the latency target value is 
achieved. Therefore, the degradation of RD performance due 
to removal of prediction dependencies is limited. RD analyses 
show that the resulting structures achieve bitrate savings of up to 
44%, or PSNR gains of up to 2.49 dB, compared to other com­
monly used prediction structures of the same encoding latency 
value. 

Finally, we demonstrate that those selected prediction struc­
tures, which have a minimum encoding latency (computed with 
the DAGEL model) as compared to other pruning options, still 
produce a minimum encoding latency in other models of hard­
ware platforms that do not meet the minimum requirements on 
the number of processors. In our experiments, for some spe­
cific prediction structures, we are able to reduce the number 
of processors down to a 61% (average value) of the minimum 
number of processors mentioned before, while the prediction 
structures designed with the DAGEL model still have a min­
imum encoding latency value. For cases with an even lower 
number of processors, we analyze the deviation of the designed 
prediction structures with respect to the optimal ones in terms 
of encoding latency. 

This paper is organized as follows. In Section II, we present 
the framework for encoding latency analysis. In Section III, 
the features of the hardware encoder model are shown. In 
Section IV, we present the DAGEL model. In Section V, we 
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Fig. 2. Prediction structures for single view and multiview video, (a) Single 
view prediction structure based on a hierarchical temporal prediction scheme. 
GOP size of four frames, (b) Multiview prediction structure. Additional inter­
view prediction is added to the temporal only prediction structure in (a). 

show how the DAGEL model allows us to design multiview 
prediction structures with low latency and a limited penalty on 
the RD performance. In Section VI, we present the conclusions. 

II. FRAMEWORK FOR ENCODING LATENCY ANALYSIS 

The analysis of encoding latency for a multiview encoder is 
more complex than for a single view encoder due to the use of 
interview prediction and the possibility that multiple processors 
will be used for multiview encoding. This complexity highlights 
the need for a systematic model for the latency analysis. In order 
to develop this systematic analysis we make two major assump­
tions; 1) a frame is the basic encoding unit (i.e., the encoding 
of a frame cannot be split into several processes) and 2) the en­
coding of a new frame cannot start until all its reference frames 
have been completely encoded. 

A. Encoding Latency for Single View Video 

Let us consider a single-view video encoder. The encoding 
latency can be defined as the maximum delay (over all frames 
in the sequence) between the capture of a frame and the instant 
when that frame is completely coded. That is, 

Lat = max (icod 
j=o,...,M-r J 

capt • ) 
(1) 

where M is the number of frames, tco<:\j is the time instant when 
frame x3 is completely coded and i c a p t . is the capture time of 
Xj. For every frame in the sequence, icod- can be computed as 

icod,- — t s ta r t . + At proc • (2) 

where ¿start., is the instant when the encoding process of Xj 
starts and Atp r o c . is the corresponding processing time for 
this frame. The same concepts can be defined considering only 
frames within a single group of pictures (GOP) of the video 
sequence. We name GOP latency the maximum encoding delay 
among frames in a single GOP, i.e., the maximum value of (1) 
only considering frames of that GOP. GOP latency can be 
different for different GOPs. 

Let us consider as an example the prediction structure for 
a single view encoder in Fig. 2(a). Fig. 3 shows the encoding 

Fig. 3. Encoding chronogram for the prediction structure in Fig. 2(a). Blue bars 
show the processing time for each of the frames. The label numbers represent 
the order in which the corresponding frame was captured. The red bar at the 
bottom shows the encoding latency of the whole sequence. 

chronogram for two consecutive GOPs of that prediction struc­
ture. The vertical dotted lines mark the capture times of the 
frames, icapt... The beginning of each blue bar corresponds to 
¿starts whereas its end corresponds to tcod.. It can be seen that 
the encoding latency is the time elapsed between icap t l and 
icodi, and therefore Lat = tcodl - i c a p t l in (1). 

B. Encoding Latency for Multiview Prediction Structures 

The previous ideas can be easily extended to a multiview 
scheme considering all the frames of the whole set of views. We 
assume that all the frames of all views have to be transmitted to 
a receiver and that all will be displayed (or alternatively the re­
ceiver can choose any arbitrary view for display among those 
received). This means that we need to consider the worst-case 
latency among all frames, i.e., the maximum time elapsed be­
tween a frame (from any view) being available at the encoder 
and its encoded version being ready for transmission. The en­
coding latency for a multiview encoder can be defined formally 
as 

Lat = max 
% = 0,...,N-
j = 0,...,M-

cod' ~t cap t ' (3) 

where N is the number of views, M the number of frames per 
view, tco¿* is the instant when x) (frame j of view i) is com-

3 J 

pletely coded and tcapt¿. is the capture time of x%-. In the multi-
view case, tcodi is computed as 

t cod ¿ = *« + At proc . (4) 

s t a r t , is the instant when the encoding process of x%-where t. 
starts and Atproc; is the corresponding processing time for this 
frame. We can also define the GOP latency with the same crite­
rion of the single-view case. 

We also need to define another relevant time instant in the 
encoding chronogram of a frame, tready¿., as the instant when xl-
is ready to be encoded, i.e., all its reference frames have been 
completely coded. It is computed as 

ready1. max t. 'capt*.; , ^ ^ . A ^ c o d ; ) F 3 l£L(z,3) 
(5) 

where L(i,j) is the set of reference frames for x1-. 
Fig. 2(b) shows a multiview prediction structure for two 

views. The temporal prediction relationships are the same as 
in Fig. 2(a) with an additional interview prediction for the 
second view V\. Fig. 4 shows the encoding chronogram for 
that multiview prediction structure where two independent 
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Fig. 4. Encoding chronogram for the prediction structure in Fig. 2(b). Dis­
played on the vertical axis, two different processors are used to encode each 
of the two views. The processing time of each frame is labeled with the view 
number and its capture order, i.e., Vi/Tj. 

processors are used on the multiview encoder. Each of them 
is assigned to encode frames corresponding to only one of the 
views. In this case, the encoding latency is the time elapsed 
between tcap ti and ic o d i , and therefore Lot = tcodi - tcap ti 
in (3). The encoding latency of the multiview case is higher 
than that of the single view case, as the encoding delay of the 
frames of V\ increases due to interview prediction. 

As an example of t readyi in an encoding chronogram, if we 
consider frame x\ in the prediction structure in Fig. 2(b), its ref­
erence frame set, L(l, 3), is composed by frames x\, x\ and x®. 
Therefore, t readyi is the time instant immediately after that all 
the frames in L(l, 3) have been already encoded. In the chrono­
gram in Fig. 4, t readyi = icodo, as x® is the latest of the frames 
of L(l, 3) to be encoded. 

C. Influence of the Multiview Encoder Hardware Architecture 

While (3), (4), and (5) only depend on the coding order rela­
tionships imposed by the prediction structure, and therefore they 
are valid for all hardware encoder architectures, the relationship 
between tstaiti and ¿ readv;, and the value of Ai ¿ depend 
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on the specific hardware encoder architecture being used (e.g., 
number of processors, sequential or parallel processing, etc.). 

In any case, for any hardware encoder architecture, if we as­
sume that a given frame cannot be encoded before its reference 
frames have been coded, then 

''start1. — ''ready1. (6) 

Thus, encoding of x%- cannot start until all frames in L(i, j) have 
been coded, but the start of the encoding of x%- may be delayed 
if there are not processing resources available at i ready; • 

Encoding latency results are individualized for each specific 
hardware encoder architecture, i.e., the encoding latency of a 
given prediction structure in one specific encoder architecture 
is not necessarily the same in a different one. To illustrate this, 
we show an example of the evolution of GOP latency for two 
multiview prediction structures (Fig. 5) which require the same 
computational load in the encoder (same number of prediction 
links). Fig. 6 shows the evolution of the GOP latency and the 
overall encoding latency (upper-bound of the graphics) with the 
number of coded GOPs. This evolution was computed using 
(3)-(6) for two different hardware encoder models with the 
same number of processors: the Fixed multiprocessor encoder 
(MPE) model and the Flexible MPE model [18]. The main 
difference between those models is that in the Fixed MPE 
model the encoding of the frames of one view is assigned to 

(a) 

Fig. 5. Examples of arbitrary multiview prediction structures, (a) Prediction 
structure 1. (b) Prediction structure 2. 
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Fig. 6. Comparative analysis of the GOP encoding latency for the multiview 
prediction structures in Fig. 5. The overall encoding latency is represented as 
the upped-bound of the graphics. 

only one processor and in the Flexible MPE frames of any 
views can be assigned to any of the processors. 

In Fig. 6, for the first prediction structure, we identify two 
different states for both hardware models: a transient state that 
corresponds to the region where the overall encoding latency is 
increasing and a steady state in which the overall encoding la­
tency reaches a final value while the GOP latency can oscillate 
with the number of coded GOPs. The existence of these two 
states evidences that, in a practical multiview encoder design, 
and for certain type of multiview prediction structures, an anal­
ysis of the GOP latency evolution is needed, since an analysis 
of only the first GOPs of the sequence could lead to erroneous 
results. 

Fig. 6 also provides an example of how a given prediction 
structure can lead to a completely different latency behavior de­
pending on the encoding hardware architecture. Finally, it can 
be seen that in the case of the second prediction structure and 
the Fixed MPE model, the encoding latency is not bounded and 
grows with each additional encoded GOP. On the contrary, the 
same prediction structure and the Flexible MPE model produce 
a bounded latency value. Intuitively, the Flexible model is more 
efficient in the assignment of frames to processors than the Fixed 
MPE model. While in the Fixed MPE case frames of one view 
are encoded only by one processor, in the Flexible MPE model 
idle processor time intervals are filled with frames of different 
views. This increases the encoding throughput, and reduces the 
delays in starting to encode as compared to the Fixed MPE case. 
In the Fixed MPE case, these delays, and the overall encoding 
latency, are increased with each encoded GOP, resulting in an 
unbounded encoding latency. The existence of this bound is es­
pecially important for videoconferencing encoders. In practice, 



it requires that the frame processing times do not exceed certain 
limits that are specific for each encoder architecture. More de­
tails on those limits for these two encoder architecture models 
can be found in [18]. 

III. HARDWARE ENCODER MODEL 

We have shown in the previous section that the characteris­
tics of the multiview encoder implementation have an influence 
on its encoding latency performance. Two different encoder im­
plementations can have considerably different encoding latency 
performances for the same multiview prediction structure. We 
next discuss different characteristics of the encoding hardware 
and the model for frame processing times. 

A. Hardware Encoder Features 

We define an encoder architecture by the following features. 
• Number of processors: Number of independent processors 

that form the core of the multiview encoder. 
• Reference exchange among processors: The capability of 

the processors to exchange the data corresponding to en­
coded frames is an indispensable feature in any multiview 
encoder, to enable interview prediction. 

• Single/multi task encoding within each processor: Capa­
bility of the processors to encode one or several frames at 
a given time instant. 

• Sequential/parallel frame encoding: The encoding opera­
tions for a frame can be done sequentially or in a parallel 
way on multiple processors. 

• Policies to control the frame-to-processor assignment: 
These assignments can be static; i.e., frames of a camera 
are always encoded on the same processor, or flexible; i.e., 
the frames of a given camera are assigned to any of the 
idle processors at a given time. 

B. Frame Processing Time Model 

Frame processing times are clearly dependent on the hard­
ware architecture of the multiview encoder, i.e., the processing 
capacity of the encoder. In our encoding latency framework, 
these can be fix or variable depending on the single/multi task 
nature of the processors. 

• Single task encoding: During the encoding time period of 
a given frame the processor is exclusively assigned to the 
encoding of that frame. Thus, the encoding time of a given 
frame is equal for different encoder occupancy conditions. 

• Multi task encoding: For multiview encoders that allow en­
coding multiple frames on a given processor, by means of 
parallelization strategies such as threading, the encoding 
time of a given frame depends directly on the computa­
tional load conditions of the processor. 

To establish a realistic scenario, we model the processing time 
of a given frame as a function of the number of reference frames 
used to encode that frame. Thus, the processing time Atproc¿ for 
frame x'j is 

Atproci = Atbasic + 7l(i,j)AtIei (7) 
1 7 

where Aibasic is the time dedicated to all the operations not 
related to motion estimation or compensation, n(i,j) is the 
number of reference frames for frame xl- and Airef is the in­
cremental processing delay required for each reference frame. 

For single tasks encoding processors, Aibasic and Airef can 
be modeled as constant values for every frame and any time in­
stant. For multi task encoding processors, the values of Aibasic 
and Airef can be variable for different frames and time instants 
of the chronogram and have to be computed depending on the 
processor occupancy conditions. 

IV. DIRECTED ACYCLIC GRAPH ENCODING LATENCY MODEL 

In our framework, it is necessary to know the encoder archi­
tecture in order to determine the relationship between ístart¿ and 
¿ready* f°r every frame of the sequence. Given the many fac­
tors that affect the encoding latency performance as discussed 
in Section III, a systematic encoding latency analysis for any ar­
bitrary encoder architecture is challenging. This makes it neces­
sary to compute the encoding latency by simulation for specific 
encoder architectures [12], [18]. 

We propose here an encoding latency model that solves 
the ambiguity in (6) by assuming an unbounded processing 
capacity. Under this assumption, the encoding latency of the 
multiview prediction structure can be computed by finding the 
critical path on a directed acyclic graph extracted from the 
multiview prediction structure. This model is also valid for 
single view prediction structures, but in that case, the encoding 
latency can be intuitively estimated from the longest backward 
prediction. Nevertheless, the complexity added by multiview 
prediction structures, and the possibility of processing several 
views in parallel at the encoder, makes it necessary to use such 
a systematic model to compute the encoding latency in the 
multiview case. We name this model the directed acyclic graph 
encoding latency (DAGEL) model. Details of the model are 
given in the following subsections. 

A. Encoder Architecture With Unlimited Processing Capacity 

The relationship in (6) can be simplified if an abstraction of 
the encoder architecture is chosen, by assuming that the multi-
view encoder has a sufficiently high number of processors (ide­
ally an infinite number). Then, for any feasible prediction struc­
ture it can be guaranteed that there will always be at least one 
idle processor at any time in which a frame of the multiview 
sequence is ready for encoding. Then, no policies on the as­
signment of frames to processors are needed and the frame pro­
cessing times do not depend on the computational load condi­
tions of the encoder. Formally, 

¿start' = ¿ready*. y°) 

therefore, using (5) 

¿start'. = max ( í t¿, max (icod,) j (9) 

and (4) becomes 

¿,-od* = max ( t v , max (t c o d , )) + At ,. (10) 
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Fig. 7. DAG extracted from the prediction structure of Fig. 2(b). Nodes of the 
DAG represent frames while edges represent dependency relationships in the 
prediction structure. \\¡Tj represents frame j of view i as signaled in Fig. 2(b). 

If this condition holds, the start of the encoding of a given 
GOP always begins when the first frame (in coding order) is 
ready to be coded. That means that a new GOP does not have to 
wait for other GOPs to be encoded to start its encoding process, 
so previous GOPs do not add any delay to the latency of the 
current GOP. Therefore, it is trivial to conclude that GOP la­
tency does not grow with each encoded GOP, and therefore 
such a multiview encoder will always have a bounded encoding 
latency. 

Also assume that the frame processing time does not depend 
on the frame content, but only on the number of prediction links. 
Then, the processing time per GOP is the same for every GOP (if 
they all have the same prediction structure). Thus, the GOP la­
tency is the same for all the GOPs of the sequence and that value 
is also equal to the encoding latency of the whole sequence. This 
simplifies the encoding latency states in Section II-C, and there­
fore (3)-(5) only have to be computed for the first GOP to obtain 
the encoding latency value. 

B. Definition of the DAGEL Model 

Under the condition of (8) we can define the DAGEL model 
which allows us to systematically solve (3)-(5) for any arbi­
trary multiview prediction structure. The core of this model is a 
graph extracted from the multiview prediction structure, where 
the frames can be seen as nodes of the graph and the prediction 
dependencies as the edges. Due to the directed nature of the de­
pendencies (one frame is predicted from the reference frame but 
not vice versa), the graph is directed. Each directed edge links a 
reference frame to the frame that is predicted from it. A path is 
a sequence of nodes linked by directed edges. Fig. 7 shows the 
directed graph derived from the prediction structure in Fig. 2(b). 

Any dependency graph extracted from a feasible multiview 
prediction structure is necessarily a directed acyclic graph 
(DAG), i.e., a directed graph with no directed cycles [20]. If 
a directed cycle existed in the prediction structure, it would 
correspond to a situation in which a frame xa is predicted 
from Xb, and x¿ is predicted from xa indirectly in a series of 
prediction steps. As this structure is not feasible, the graph is 
necessarily a DAG. 

capt/ t k 

time 

At pruc / 

At k 

CO 
i.k 

j.l 

Fig. 8. Graphic significance of the cost value of the edges in the graph. The 
cost value u>'.'¡ is the delay introduced by the encoding process of frame x%, in 
the encoding process of frame xf. 

Each edge of the DAG has an associated cost value that indi­
cates the delay added by a parent frame to the encoding process 
of its child frame. The cost value io-, of the edge that links node 
xlj with node xf is 

w- max ( . . ( , capt* + Ain -t. captj" ( i i) 

where ícapt¡ and icaptA are the capture times of frames xl- and 

xf, respectively, and Atproc; is the processing time of frame #*•. 

Fig. 8 illustrates the computation of o/' ; ' with a time chrono­
gram in which the encoding process of parent frame #*• delays 
the encoding start of child frame x¡. As only positive delay 
values have a realistic meaning, OJ'-',' is restricted to positive 
values. 

The cost of a path is the sum of the costs of the edges that 
link the nodes in the path. Among the set of paths ending on 
the same node, we name delay path the one that has the highest 
cost value. The cost of the delay path indicates the elapsed time 
between the capture of that frame and the instant when all its 
reference frames have been encoded. If (8) holds, then (3), (4) 
and (5) can be systematically computed using the cost of the 
delay paths. For any frame of the multiview sequence 

i . t. capt* + Pde (12) 

where pd ti is the cost of the delay path of frame x\. From (3), 
(4) and (12) it can be derived that the encoding latency value is 

Lat 
i = 0. 
3 = 0, 

nax Í Pdeli At 
proc (13) 

Lat in (13) corresponds to the delay of the critical path. 
The latency value obtained using the DAGEL model con­

siders the effects of both the multiview prediction structure and 
the individual processing time of each frame if an unlimited pro­
cessing capacity is available. Nevertheless, for each feasible pre­
diction structure with a finite number of views, frame rate and 
frame processing times, it can be proved (see Section IV-D) that 
there exists a minimum number of processors, Km-m, that guar­
antees the availability of an idle processor for any frame ready 
to be encoded. Therefore, for a hardware encoder model with 
at least Km-m processors, the latency value obtained with the 
DAGEL model corresponds to its real encoding latency. 

For a multiview encoder with number of processors K < 
Km™, the encoding latency value obtained with the DAGEL 
model is a lower bound to the encoding latency of the encoder. 
Intuitively, fewer processors results in delays to the encoding 
process for certain frames since it will be more likely that all 
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Fig. 10. Example of encoding latency analysis using the DAGEL model. 
(a) DAG extracted from the prediction structure in Fig. 9. (b) DAG with edge 
cost values, (c) DAG with edge cost values and critical path (red). 

the processors are busy at certain times. Furthermore, if in 
this situation the processing times exceed certain limits, the en­
coding latency will not be bounded and will increment GOP 
by GOP, making the system not suitable for real-time encoding 
applications. 

C. Example of Encoding Latency Computation Using the 
DAGEL Model 

To illustrate the aforementioned concepts, we present an ex­
ample of encoding latency analysis using the DAGEL model. 
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Fig. 11. Chronogram showing the number of processors needed for the en­
coding process of the prediction structure in Fig. 2(b). 

For clarity reasons, we present an example of a simple predic­
tion structure for two views (Fig. 9). From that prediction struc­
ture, the DAG that is shown in Fig. 10(a) is extracted. 

The example time parameter values are the following: 
Atbask = 30 ms, Airef = 20 ms and the elapsed time between 
the capture of two consecutive frames is Tcapt = 40 ms. The 
values of the edge costs can be computed using (11). These 
values are shown in Fig. 10(b). For those edge cost values, the 
critical path of the graph is the one marked in red in Fig. 10(c). 
For the given time values, the encoding latency of the example 
prediction structure is 

Lat = pdeli + Aiproci = 230 + 90 = 320 ms. (14) 

This procedure can be programmed to obtain a systematic way 
to analyze the encoding latency of arbitrary multiview predic­
tion structures. 

D. Minimum Number of Processors in the DAGEL Model 

In Section IV-A, we assumed an unlimited processing ca­
pacity in the multiview encoder that allows us to develop the 
DAGEL model. However, the minimum number of processors 
ifmin that ensures that the condition in (8) holds can be com­
puted by analyzing the number of frames that are encoded si­
multaneously. Given the DAGEL model and (4) and (12), the 
number of frames that are encoded simultaneously at any time 
interval can be easily computed. Let NmayL be the maximum 
number of simultaneously encoded frames for a given predic­
tion structure and frame processing time values. Thus, for any 
hardware platform with a number of processors K > Nmax, in 
which frames can be assigned to any processor, the condition 
in (8) holds. Therefore, the minimum number of processors that 
validates the DAGEL model, Kmin, is NmaK. 

Fig. 11 shows the chronogram of processor usage for the ex­
ample prediction structure in Fig. 2(b). The chronogram shows 
the results for the encoding of several GOPs. The maximum 
value of this chronogram (ATmax) is then Kn¿n in that encoder 
example. Fig. 12 shows the evolution of Km-m with the value 
of the parameters Atbasic and Airef, (frame processing time 
model presented in Section III-B), and the prediction structure 
in Fig. 2(b). As shown in the figure, higher frame processing 
times result in a higher value of Kmin. 
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Fig. 12. Number of processors of the ideal encoder model for the prediction 
structure in Fig. 2(b) and different values of the frame time processing model. 

This shows that for a given prediction structure and a set of 
frame processing times, we can obtain the minimum number 
of processors of the encoder so that the condition in (8) holds. 
Alternatively, for a given prediction structure and number of 
processors, we can obtain the maximum time that is available 
to be devoted to frame processing. 

V. APPLICATION OF THE DAGEL MODEL: ENCODING LATENCY 

REDUCTION FOR MULTIVIEW PREDICTION STRUCTURES 

To demonstrate the capabilities of our DAGEL model, we 
show how it can be used to reduce the encoding latency of a 
given prediction structure down to a target encoding latency 
value. Using the DAGEL model, we are able to identify the pre­
diction links that add a higher encoding delay in order to prune 
them. Assuming that the degradation of the RD performance is 
proportional to the number of pruned links, the objective is to 
prune the minimum number of frame dependencies until the la­
tency target value is achieved. As a result of limiting the degra­
dation of the RD performance for a target latency, we obtain 
new prediction structures that have a considerably better RD 
performance than commonly used multiview prediction struc­
tures with the same encoding latency. 

The selection of those dependency links to be pruned is 
based on a comparison of encoding latency values of several 
prediction structures computed using the DAGEL model. Thus, 
this will be valid for multiview encoders that match the pro­
cessing capacity requirements of the DAGEL model. However, 
there is no guarantee that those comparative encoding latency 
results will be achieved when fewer processors are used. Thus, 
we analyze the deviation of the comparative encoding results 
obtained with the DAGEL model when applied to multiview 
encoders with limited processing capacity. To sum up, we show 
that efficient prediction structures in terms of rate-distortion-la­
tency can be designed using the DAGEL model, and that those 
are valid for real multiview encoders with limited processing 
capacity. 
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V'llJD I I D ..•__• ü D J l _ ^ B ^ : & ^ B ^ H : , B ^ í j 

(a) 
To T i T; T, T4 T S T6 T7 Ta T, T „ T „ T , 2 T1 3 T M T1 5 T M 

vc Hjph__BB H:M H 0 Ji iJI :Eh I I IS-.JJLP* D 1 D 
vi|ÍLi_Í p O . JIJ3JJLQ I Q I D i a|p 

(b) 
T0 T1 T2 T3 T4 TS \ T7 \ T9 T10 T,l T12 T13 T14 T15 T 1 6 

v. fl^& 0 E D ~0~ E9 "H Q "E" Q E O E- E "B- D 
v, É J h O -É: P -& P -P- P _̂;P; P -B;_JP 'P^ B -|?h E 
v.. D E B "P" O E" B E; B E B E O B" B "B~ D 

(c) 

Fig. 13. Latency reduction by edge pruning in the DAG. (a) Prediction struc­
ture JMVM GOP16. (b) Prediction structure GOPx4. (c) Prediction structure 
GOPxlO. 

TABLE I 
TIME PARAMETER VALUES FOR THE FRAME PROCESSING 

TIME MODEL AND CAPTURE PERIOD 

Time parameter 

Value (ms) 

dibasic 

20 

Atref 

10 

Capture Period 

40 (25 fps) 

TABLE II 
ENCODING LATENCY VALUES FOR JMVM PREDICTION STRUCTURES AND 

PREDICTION STRUCTURES OBTAINED USING THE DAGEL MODEL 

Encoding latency (ms) 

GOP16 

930 

GOP8 

550 

GOP4 

330 

GOPx4 

550 

GOPxlO 

330 

A. RD Analysis of Low Encoding Latency Multiview Prediction 
Structures 

In order to assess the RD performance of the DAGEL based 
pruning approach, we have considered an initial prediction 
structure with three views, a GOP size of 16 frames and IBP 
prediction for the interview prediction scheme [17] [GOP16, 
Fig. 13(a)]. Then, we have iteratively pruned its associated 
DAG to reduce its encoding latency to the value of analogous 
JMVM structures with GOP sizes of 8 (GOP8) and 4 frames 
(GOP4). This has been done by an increasing number of cuts in 
the DAG, using an exhaustive search of the possible cut combi­
nations. In this set of experiments the time parameter values of 
the frame processing time model (see Section III-B) have been 
estimated using the X264 software implementation of AVC 
in a general purpose PC: a QuadCore processor working at 
2.40 GHz with 3.25 GB of RAM memory. The time parameter 
values are shown in Table I. The encoding latencies of these 
prediction structures are shown in Table II. 

The structures obtained for four cuts (GOPx4) and ten cuts 
(GOPxlO) are shown in Fig. 13(b) and (c), respectively. As 
shown in Table II, these structures have the same encoding la­
tency value that JMVM structures GOP8 and GOP4, respec­
tively. We have evaluated the RD performance of the different 
prediction structures using the JMVM software version 2.1 [27] 
and the MVC common conditions [28] for several multiview se­
quences with different characteristics (see Table III). 



TABLE III 
CHARACTERISTICS OF THE MULTIVIEW SEQUENCES USED FOR THE RD TESTS. MORE DETAILS FOR BALLROOM CAN BE FOUND 

IN [21], RACEI AND FLAMENCO2 IN [22], NEWSPAPER IN [23], KENDO IN [24], BALLET IN [25] 

Sequence 

Ballroom 

Racel 

Flamenco2 

Newspaper 

Kendo 

Ballet 

Spatial resolution 

640x480 

640x480 

640x480 

1024x768 

1024x768 

1024x768 

Frame rate 

25 fps 

30 fps 

30 fps 

30 fps 

30 fps 

15 fps 

Moving cameras 

No 

Yes 

No 

No 

Yes 

No 

Camera configuration 

Parallel 

Parallel Convergent 

Parallel Cross 

Parallel 

Parallel 

Arc 

Array orientation 

Horizontal 

Horizontal 

Vertical 

Horizontal 

Horizontal 

Horizontal 

Camera distance 

20 cm 

20 cm 

20 cm 

5 cm 

5 cm 

20 cm 

The RD results are shown in Fig. 14, and Table IV shows the 
average RD differences [26] of GOPx4 and GOPxlO structures 
compared to GOP8 and GOP 4, respectively. GOPx4 shows an 
average PSNR gain of 0.25 dB and bitrate saving of 6.69% com­
pared to GOP8, and GOPxlO shows an average PSNR gain of 
0.90 dB and bitrate saving of 20% compared to GOP4. These 
results show that, for the tested sequences, the prediction struc­
tures obtained using the DAGEL model outperform the JMVM 
prediction structures with the same encoding latency value in 
terms of RD performance. This makes our structures more ef­
ficient to be used in applications with strict requirements in 
end-to-end delay than the commonly used JMVM structures. 

B. Comparison of DAGEL Results in Multiview Encoders With 
Limited Processing Capacity 

1) Comparison Methodology: Let us consider a set of dif­
ferent prediction structures {Si} with i = 0 , . . . , M — 1. Let 
their respective encoding latencies, computed with the DAGEL 
model, be {LatBAGEh(Si)}. Then, let us consider that 

3j\LatDAGEL(Sj) < LatDAGEL(Si), Vz. (15) 

If we assume, without loss of generality, that {Si} have a com­
parable RD performance, the structure Sj would be the most 
amenable to be used in a video conferencing system, as its en­
coding latency is the lowest among the set. 

Then, let {Latuw(Si)} be the encoding latency of the set 
of structures {Si} in a given hardware encoder model. If we 
had assumed, from the DAGEL results, that Latnw(Sj) is the 
minimum encoding latency of the set {Latnw(Si)}, we have 
the following relative prediction error: 

,(%) = 100 Í 
i Latiiw/^Sj) — Lcitn 

Latn 

(16) 

where Latm[n is the minimum encoding latency of the set of 
prediction structures on the given hardware encoder 

= min (LatHw(Si)), Vi. (17) 

To analyze the mismatching between the DAGEL model and 
more realistic hardware encoder models, we have considered the 
following approach: we start from an initial prediction structure 
with a given encoding latency and a lower target encoding la­
tency value. Then, we use an algorithm, based on the DAGEL 

TABLE IV 
RD-BJONTEGAARD RESULTS [26] COMPARING PREDICTION STRUCTURES 

OBTAINED USING THE DAGEL MODEL AND JMVM PREDICTION STRUCTURES 

Ballroom 

Racel 

Flamenco2 

Newspaper 

Kendo 

Ballet 

Average 

GOPx4/GOP8 

APSNR(dB) 

0.20 

-0.04 

0.01 

0.70 

0.07 

0.54 

0.25 

Abitrate(%) 

-5.33 

1.05 

-0.22 

-15.46 

-1.83 

-18.36 

-6.69 

GOPxlO/GOP4 

APSNR(dB) 

0.71 

0.29 

0.27 

2.49 

0.47 

1.16 

0.90 

Abitrate(%) 

-17.11 

-6.77 

-5.44 

-44.48 

-11.75 

-34.46 

-20.00 

model, to remove the prediction links that introduce the highest 
encoding delays and to obtain a set of candidate prediction struc­
tures that have an encoding latency value lower than our target. 
Then, we evaluate the prediction error, in terms of encoding la­
tency, of using the prediction structure with lowest latency in the 
DAGEL model in a realistic hardware encoder architecture. For 
the latency reduction algorithm we have used the Tree-Search al­
gorithm (Section V-B2) and the Flexible MPE model [ 18] for the 
hardware encoder model. The Flexible MPE model considers a 
multiview encoder with N views and K processors, with the 
following characteristics. 

• Each processor is not assigned to a single view: any frame 
from any of the N views can be encoded in any of the K 
processors. 

• The processors encode their assigned frames sequentially. 
• If, at a given time, several frames are ready to be encoded 

and Kj out of K processors are free: 
— First, these frames are ordered by a frame priority value 

A J, that depends on the capture time of frame x%- and the 
capture times of the frames that are predicted from it. 

— Then, the first Kf frames in the frame order list are 
encoded by assigning each one of them to one of the 
Kf free processors. 

More details on how A* can be computed for any frame x%- can 
be found in [18]. 

2) Tree-Search Algorithm: Let us consider a target encoding 
latency LatT and an initial multiview prediction structure 
with riL prediction links. To obtain a new prediction structure 
with encoding latency LatT, a number of links nc have to be 
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Fig. 14. RD comparison of JMVM prediction structures with a GOP size of 16, 8, and 4 frames and the pruned multiview prediction structures GOPx4 and 
GOPxlO (see Fig. 13). The PSNR values of the luminance signal averaged for all decoded views are plotted against bitrate values of the MVC coded streams. 
Results for the following multiview sequences: Ballroom, Racel, Newspaper, Kendo, Flamenco2, and Ballet. 

pruned from the original structure. The exhaustive search of 
all cut combinations is a computationally intensive algorithm. 
The exhaustive search of all the possible cut combinations of 
no cuts over m, links implies the evaluation of C™£ prediction 
structures: 

fine '^L' 

'nL ~ nc\{nL -nc)V 
(18) 

Since in multiview prediction structures UL is usually high, if 
the number of cuts is high, it requires a high computational load 
for all the possible combinations. For example, for a JMVM 
structure of 3 views and a GOP size of 8 frames, n¿ = 36. 
For nc — 3, the number of prediction structures that have to be 
evaluated is 37820. 
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Fig. 15. Example of the Tree Search algorithm for nc 
The states of the tree correspond to prediction structures 
different prediction links in the parent prediction structure. 

= 2 and i is = 2. 
obtained by cutting 
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Fig. 16. Results of the comparison of the DAGEL model with the Hexible MPE model. For a given maximum relative prediction error on the encoding latency, the 
graphs show the minimum number of processors relative to Iiref for a multiview encoder within the Hexible MPE model, (a) 3 views GOP4; (b) 3 views GOP8; 
(c) 3 views GOP16; (d) 5 views GOP4; (e) 5 views GOP8; (f) 5 views GOP16; (g) 7 views GOP4; (h) 7 views GOP8; (i) 7 views GOP16. 

Here, we propose a sub-optimum algorithm as a less com­
putationally intensive alternative to the exhaustive search. We 
name this algorithm the Tree-Search. With the Tree-Search 
algorithm, for a target encoding latency Latr, we increase the 
number of link cuts in a decision-tree manner, where UB is 
the number of branches for each node of the tree, creating sets 
of candidate prediction structures in each lower level of the 
tree until a prediction structure with a latency equal or lower 
to Latr is obtained. The resulting number of cuts of that se­
lected prediction structure is nc- Fig. 15 shows an example of 
the decision-tree for nc = 2 and UB = 2. In the following, 
we explain the Tree-Search algorithm with the help of this 
example. 

Let SJMVM (level 0 in the example) be the initial prediction 
structure. The states on the lower levels of the tree are generated 
by the following operations: 

• For each parent prediction structure, its critical path is 
found using the DAGEL model. 

• The encoding latency of the prediction structures that are 
obtained by cutting each of the links of that critical path is 
evaluated. 

• As many as nn prediction structures with the lowest en­
coding latency among the evaluated ones are selected to 
generate the children of the parent state in the immediately 
lower level. In the example, as n# = 2, each parent struc­
ture generates two children structures. 

• If any of the structures of the lowest level have a encoding 
latency equal or lower to LatT, the algorithm finishes. If 
not, another level of the tree is created. 

Among the prediction structures on the lowest level, the one 
with the lowest encoding latency is selected. 

3) Comparison With the Flexible MPE Model: Starting 
from an initial JMVM prediction structure, a pair of values 
(Atbasic, Airef) and a target encoding latency Latr, we apply 
the Tree-Search algorithm with a given number of branches 
UB . As a result, we obtain a prediction structure 5ref and the 



TABLE V 
RESULTS OF THE COMPARISON OF THE DAGEL MODEL WITH THE FLEXIBLE MPE MODEL. MINIMUM REQUIREMENTS ON THE NUMBER OF PROCESSORS TO 

OBTAIN A ZERO RELATIVE PREDICTION ERROR ON ENCODING LATENCY FOR LOW-LATENCY MULTIVIEW PREDICTION STRUCTURES. RESULTS RELATIVE TO 

A'ref AND MULTIVIEW ENCODERS WITHIN THE FLEXIBLE MPE MODEL 

Number of processors (%) 

Prediction structures 
3 views 
GOP4 
72.80 

3 views 
GOP8 
63.03 

3 views 
GOP16 
53.27 

5 views 
GOP4 
70.52 

5 views 
GOP8 
63.88 

5 views 
GOP16 
55.69 

7 views 
GOP4 
72.68 

7 views 
GOP8 
54.00 

7 views 
GOP16 
42.29 

minimum number of processors ÜTref that the DAGEL model 
assumes for that prediction structure. 

Then, the prediction structures on the lowest level of the tree 
are compared in terms of encoding latency using the Flexible 
MPE model with a number of processors K < KTef. Among 
the prediction structures in the lowest level of the tree, Latm[n 

is the lowest encoding latency value, and Latref is the encoding 
latency of Sref computed with the Flexible MPE model of K 
processors. The relative prediction error of using STef as the 
prediction structure with the lowest encoding latency value on 
that multiview encoder is computed using (16). This process is 
repeated for all the possible values of K = 1 , . . . , KTef — 1. 

For simplicity, in our experiments, we have used a fixed value 
oírte = 2 in the Tree-Search algorithm. The experiment was 
repeated for different initial JMVM prediction structures with 
IBP prediction for the interview prediction scheme [17], and 
different values of (Atbasic, A^ref). The initial prediction struc­
tures vary from one to seven views and a GOP size of 4, 8, and 
16 frames. While the time period between frame capturing is 
Tcapt = 40 ms, both frame processing time parameters Atbasic 
and Airef vary between 1 and 20 ms. We have empirically as­
sessed that TIB — 4 guarantees that the results of the Tree-
Search are the same as those of the exhaustive search for the 
prediction structures and time parameter values of the tests. We 
have used this value for the Tree-Search algorithm. 

Fig. 16 presents the experimental results. Based on the anal­
ysis of the relative prediction error, we have computed the min­
imum number of processors of a multiview encoder within the 
Flexible MPE model, that guarantees a given maximum rela­
tive prediction error for the encoding latency. To allow a better 
comparison among graphs, results are presented relative to Kref. 
This way, for an initial Kvef = 4, a value of 50% corresponds 
to a multiview encoder with two processors. For example, in 
Fig. 16(d), for a relative encoding error of 5% the minimum 
number of processors is 66%. That means that for that initial pre­
diction structure, we can use the DAGEL model to design a new 
prediction structure with low encoding latency, and the number 
of processors can be reduced to a 66% of KTef with a maximum 
relative prediction error on encoding latency of 5%. The results 
are specified for each initial JMVM prediction structure and av­
eraged for all the evaluated values of (Atbasic, Atref). 

Table V shows, for each of the initial prediction structures, the 
number of processors relative to KTef that can be used in a mul­
tiview encoder while guaranteeing that there no prediction error 
on the comparative encoding latency results. That is, the limits 
on computational capacity for multiview encoders for which the 
conclusions derived from the DAGEL model are still valid. The 
results show the comparative results obtained by the DAGEL 
model are valid for encoder implementations with a number of 
processors between 42% and 72% of Kref. That shows that, 

given a prediction structure with the lowest latency against other 
pruning options in the DAGEL model, we can use encoder con­
figurations with a fewer number of processors than KTe{ while 
that prediction structure still has the minimum encoding latency. 

VI. CONCLUSION 

We have presented a framework that allows a systematic anal­
ysis of encoding latency on multiview encoders. With the aim 
of decoupling the two main factors involved in the characteri­
zation of the encoding latency, the multiview prediction struc­
ture and the hardware encoder model, we have proposed the 
DAGEL model. This encoding latency model assumes that the 
processing capacity of the encoder is essentially unbounded, so 
that the latency only depends on the multiview prediction struc­
ture and the frame processing times. We have shown that the 
DAGEL model allows us to formalize any prediction structure 
as a direct acyclic graph. Therefore, by means of graph theo­
retic algorithms, its encoding latency can be computed as well as 
the contribution of the prediction dependencies to it. Moreover, 
we have proved that the encoding latency values obtained with 
the DAGEL model are accurate for multiview encoders with a 
finite number of processors greater than a required minimum, 
which we are able to identify. Otherwise, results provided by 
the DAGEL model represent a lower bound to the actual en­
coding latency of the encoder. 

As an example of DAGEL application, we have used the 
DAGEL model to reduce the encoding latency of a given 
multiview prediction structure to meet a target value, while pre­
serving the RD performance as much as possible. The objective 
of this approach has been to prune the minimum number of 
frame dependencies (those that add a higher encoding delay in 
the original structure) until the latency target value is achieved. 
Therefore, the degradation of the RD performance due to 
removal of the prediction dependencies has been limited. RD 
analyses have shown that the resulting structures achieve bitrate 
savings of up to 44% or PSNR gains of up to 2.49 dB compared 
to other commonly used prediction structures with the same 
encoding latency value. 

Finally, we have demonstrated that those selected prediction 
structures which a have minimum encoding latency (computed 
with the DAGEL model) among other pruning options, still 
have a minimum encoding latency in other hardware architec­
ture platforms that do not meet the minimum requirements on 
the number of processors. In our experiments, for some specific 
prediction structures and the Flexible MPE model, we have 
proven that encoder configurations with a number of processors 
of down to 42% of the processors assumed by the DAGEL 
model, could be used while the prediction structures designed 
with the DAGEL model still have a minimum encoding latency 
value. 
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