
780 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 7, NOVEMBER 2012

Active Contours on Graphs: Multiscale
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Abstract—In this paper we propose two novel methods for
formulating and implementing the methodology of geodesic active
contours on arbitrary graphs, as applied to multiscale morphology
and segmentation. Firstly, we propose approximations to the cal-
culation of the gradient and the divergence of vector functions
defined on graphs and use these approximations to apply the tech-
nique of geodesic active contours for object detection on graphs.
To this end, we extend existing work on graph morphology to
multiscale dilation and erosion and implement them recursively
usinglevel sets of functions defined on the graph. Second, we
propose a graphcut based solution to the geodesic active contour
problem on graphs. Appropriate weights are calculated for each
edge for which the Riemannian length of a contour can be approx-
imated by the weighted sum of intersections of the contour with
the edges of the graph. Finding the minimum Riemannian length
contour then becomes equivalent to solving a max flow problem
for which efficient solutions have been proposed in the literature.

Index Terms—Geodesic active contours, graphcuts, image anal-
ysis, image edge detection, image segmentation, morphological op-
erations, object detection.

I. INTRODUCTION

A CTIVE contours, both as a methodology based on vari-
ational calculus and partial differential equations (PDEs)

as well as a collection of numerical geometry algorithms, have
become useful for a variety of problems in image processing
and computer vision, [24]. An optimized version of them, i.e.,
the geodesic active contours (GACs) [10] contains as a special
case the PDE that can generate multiscale isotropic flat dila-
tions and erosions [1], [8]. Further, by a proper selection of their
edge-stopping function, their segmentation action becomes very
close to the PDE-based active contour implementation of wa-
tershed segmentation [26]. In this paper we focus on a novel
extension of GACs to morphological scale-space filtering and
segmentation on graphs. Graph-theoretic approaches have be-
come commonplace in image analysis and computer vision. Ex-
amples include the statistical modeling of digital images with
MRFs and the graphcut approaches to segmentation [6], [23].
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Fig. 1. Representation and segmentation of visual face information on graphs.

In most of these cases, the image graphs are regular grids that
result from uniform sampling of continuous space. However,
there also exist many types of visual data defined on arbitrary
graphs with irregular spacing among their vertices. Examples
from vision include the graph representing an active appearance
model of a face in Fig. 1 and its subgraphs representing local
models of eyes, mouth and nose. Non-visual examples include
network problems modeled with graphs, such as social nets and
geographical information systems.

The major contribution of this paper is to explore theoretically
and algorithmically GACs on arbitrary graphs and their appli-
cation to object segmentation. We use two different techniques
to implement these: one through approximations to the calcula-
tion of vector calculus operators on graphs and one involving an
explicit combinatorial optimization problem formulated using
the notions of graphcuts and geocuts from [6]. A second related
contribution is the development of morphological scale-space
filtering on graphs, theoretically by using the lattice algebra of
morphological operators on graphs and algorithmically as a spe-
cial case of the GACs approximated by difference equations.

The rest of the paper is organized as follows. In Section II
we begin with some definitions from lattice-based morphology.
Then, we review 1) multiscale morphological image operators
on a Euclidean domain, either defined algebraically or gener-
ated by nonlinear PDEs, and 2) lattice-theoretic morphological
operators on graphs which have been introduced in [19], [33]
with some recent work in [16]. Finally, we connect these two
areas and define multiscale morphological operators on graphs.

In Section III we focus on our major approach which is based
on discretizing the PDEs moving geodesic active contours [10]
on arbitrary graphs and, as a special case, the PDEs generating
continuous-scale morphological operators [1], [8]. In the latter
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direction, a first approach to approximate morphological opera-
tors on graphs through mimicking the corresponding PDEs has
been studied in Ta et al. [32]. Our approach is slightly different
in our translation of the continuous gradient operator on arbi-
trary graph structures and in our usage of multiscale neighbor-
hoods. In the general field of approximating PDE-type problems
on weighted graphs, a systematic analysis has been performed
in [3], [12] by introducing discrete gradients and Laplacian and
by studying Dirichlet and Neumann boundary value problems
on graphs. Moreover, extensive work has been done on discrete
calculus ([17], [20]), where instead of discretizing the conven-
tional calculus, an independent theory is developed that operates
purely in the discrete space.

Finally, in Section IV we formulate an explicit combinatorial
minimization problem corresponding to the minimization of the
geodesic length of a contour on a graph. The latter can be written
in terms of finding the minimum cut on a graph with modified
edge weights. Our contribution lies in the calculation of the ap-
propriate edge weights in such a way that makes the minimum
cut problem and the minimum length contour problem approxi-
mately equivalent through Cauchy-Crofton type equations. This
idea has first been analyzed for regular grids in [4], [6] and ef-
ficient methods for solving the associated combinatorial opti-
mization problem have been studied in [5], [23] and [11] for a
similar application. We extend these ideas to arbitrary graphs
which involves a delicate treatment of the Cauchy-Crofton for-
mulas and use gradient-descent type methods to solve the opti-
mization problem which allows us to observe the actual evolu-
tion of the curves.

II. MULTISCALE AND GRAPH MORPHOLOGY

A. Background on Lattice Morphology

A complete lattice is a partially ordered set where,
for any subset of the lattice , its supremum and-
infimum existin . The algebraic formalization [18],
[31] of morphological operators views them as operators on
complete lattices and unifies their usage for both image and
shape analysis. Two main examples of complete lattices used
in morphological analysis are: (i) the power set

of all binary images or shapes represented by subsets
of some domain where the lattice operations are

the set union/intersection, and (ii) the space of all graylevel
image signals withvalues in a sublattice of

and the lattice operations are the
supremum/infimum of sets of real numbers. An operator on

is called increasing if it preserves the partial ordering .
Four important types of increasing operators are the dilations

, erosions , openings and closings . Dilations and
erosions distribute respectively over the supremum and infimum
of any collection of input signals. They are the fundamental
blocks for building composite morphological systems. Open-
ings (resp. closings) are increasing, anti-extensive (resp. exten-
sive) and idempotent; they play the role of nonlinear smoothing
filters. Dilations and erosions come in pairs called adjunc-
tions if

(1)

Such pairs are useful for constructing openings and clos-
ings . Operator products mean composition:

. The notation means -fold composition.

B. Euclidean Multiscale Morphology

In Euclidean morphology, the domain becomes the -di-
mensional space where or . The most well-
known morphological operators, which are simple special cases
of their lattice counterparts, are the translation-invariant (TI)
Minkowski dilation and Minkowski ero-
sion of two subsets and of , where

denotes the translation of by
. In the continuous case, by scaling the structuring set

via a homothety where , we can
define multiscale TI morphological set operators on :

(2)

Similarly, if and
are the unit-scale Minkowski flat function op-

erators, their multiscale counterparts are

(3)

If is convex, the above multiscale set and function operators
obey a semigroup property

(4)

because equals the -fold dilation of with itself [27]

(5)

The above ideas create the simplest case of a morphological
scale-space [26].

The above TI multiscale morphological operators can be ex-
tended to digital shapes and images by using two alternative
approaches. The first is an algebraic approach where if
a unit-scale discrete structuring set, we define its scaled version

for integer scales as its -fold self-dilation in (5) and use
(4) for producing multiscale morphological operators that agree
with their sampled continuous versions if is convex. The
second approach [1], [8] models the dilation and erosion scale-
space functions and
as generated by the nonlinear PDEs

(6)

where for a convex ,
. These PDEs can be implemented using the numerical al-

gorithm of [29], as explored in [30]. In case of a shape , the
above PDEs can still be used to generate its multiscale morpho-
logical evolutions by treating as the level function whose zero
level set contains the evolving shape. Such PDE-based shape
evolutions have been studied in [22]. Modern numerical algo-
rithms for morphological PDEs can be found in [7].

C. Background on Graph Morphology

We consider an undirected graph without self-
referring loops and multiple edges, where and
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are the sets of its vertices (also called nodes) and edges,
respectively. We denote edges by pairs of vertices; these
are symmetric, i.e., , since the graph is undi-
rected. If and with , the pair

is called a subgraph of . A graph vertex mapping
is called a graph homomorphism from to if

is one-to-one and preserves edges, i.e., implies
. If is a bijection, then it is called a graph

isomorphism; if in addition , then it is called a graph
automorphism or symmetry of . The set of all such symme-
tries forms under composition the symmetry group of
a graph. Symmetries play the role of ‘generalized translations’
on a graph.

Shapes and image functions defined on
a graph with values in a complete lattice will be denoted
by and , respectively, and may be referred to as bi-
nary graphs and multilevel graphs. In case of multilevel graphs,
the values of the functions may be discrete, e.g.,

, or continuous, e.g., . Similarly a graph
operator for shapes or functions will be denoted by . The
argument will be omitted if there is no risk of confusion. A
graph operator is called increasing if it is increasing in its first
argument, i.e., implies . A graph oper-
ator is called invariant under graph symmetries
if .

Henceforth and until mentioned otherwise, we shall focus
our discussion on binary graph operators. Given a graph

, the binary graph dilations and erosions on
can be defined via a graph neighborhood function

which assigns at each vertex a neighbor-
hood . Taking the union of all such neighborhoods for the
vertices of a shape creates a graph dilation of ; then,
by using (1) we also find its adjunct erosion:

(7)

At each vertex , the shape of may vary according to the
local graph structure and this inherently makes the above mor-
phological graph operators adaptive. At each , the reflected
neighborhood is defined by

(8)

Then, the dual operations (w.r.t. complementation) of graph di-
lation and erosion w.r.t. a neighborhood coincide with the ero-
sion and dilation, respectively, w.r.t. the reflected neighborhood.
If for each , we have a symmetric neighborhood
function. Such an example is Vincent’s unit-scale graph neigh-
borhood function [33]

(9)

which, when centered at a vertex , includes this vertex and
all others that form an edge with it. If we use it in (7), this
leads to the simplest unit-scale graph dilation and ero-
sion . Since is an adjunction, the composition

Fig. 2. Binary graph operators using a unit-scale symmetric neighborhood
function (a) The vertex set on which we apply morphological operators (b)
Dilation (c) Erosion (d) Closing (e) Opening.

and is a graph opening and closing, re-
spectively. See Fig. 2 and Fig. 5 for an example. All four of these
operators inherit the standard increasing property from their lat-
tice definition and are invariant under graph symmetries.

Heijmans et al. [19] have generalized the above (symmetric
neighborhood ) approach by introducing the concept of a
structuring graph (s-graph) . This is a graph A
of a relatively small size and has as additional structure
two nonempty and possibly overlapping subsets: the buds

and the roots . It may not be connected
and plays the role of a locally adaptive graph template, where
(compared to Euclidean morphology) the buds correspond to
the points of a structuring graph and the roots correspond to its
origin. See Fig. 3 for examples. An s-graph corresponds to
the following neighborhood function

(10)
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Fig. 3. Examples of structuring graphs. Arrows indicate roots, disks denote
buds and circles denote nodes that do not fall in any of the above categories (a)
The s-graph that corresponds to the simple neighborhood. Specifically, using
this s-graph as a structuring element, the neighborhood of a node is the set of
nodes that are adjacent to it (b) A structuring graph and its reflection. The re-
flected s-graph has the same vertices and edges as the original s-graph but their
bud and root sets are interchanged.

where we say that embeds into at if is a graph
homomorphism of A into and . Such an em-
bedding matches the s-graph with the local structure of the
graph . The simple neighborhood of (9) corresponds to
the s-graph of Fig. 3(a), with two vertices which both are buds
and one of them is a root. Replacing (10) in (7) creates an ad-
junction of graph dilation and erosion A by structuring
graphs. These are symmetry-invariant operators, i.e., they com-
mute with group symmetries , because the neighborhood func-
tion of their s-graph is invariant under group symmetries: i.e.,

, where .
Finally, the reflection of the neighborhood of an s-graph

equals the neighborhood of another s-graph ,called the
reflection of , which has the same vertices and edges as the
original s-graph but their bud and root sets are interchanged
(see Fig. 3).

All the previously defined binary graph operators are in-
creasing and can be extended to multilevel graphs. Specifically,
a multilevel graph can also be represented by its levelsets

:

(11)

By applying an increasing binary graph operator to alllevel
sets and using threshold superposition, we can extend to a flat
operator on multilevel graphs:

(12)

For example, if is a set dilation by the s-graph , the
corresponding function operator is

(13)

Two choices for the function values are either discrete with
, or continuous with .

Fig. 4. Left: a structuring graph. Right: The scaled by � � � version of the
s-graph. A scaling of a simple s-graph has increasingly complicated structure
and therefore, for larger scales it is difficult or impossible to find an embedding
to an arbitrary graph at each node. This fact necessitates an alternative definition
of scale on graphs.

Fig. 5. Dilation of the subgraph on the left with the unit-scale structuring graph
of Fig. 4.

D. Multiscale Morphology on Graphs

In order to obtain the graph counterparts of multiscale dila-
tion and erosion, we need to define a concept of scale in a graph.
Consider a graph and a nonempty subset of
its vertices. Let be an s-graph. One approach could be to de-
fine the dilation at scale of a vertex subset w.r.t.
the s-graph by where denotesthe -fold
graph dilation of the s-graph with itself on an underlying graph
that consists of copies of A. This approach would encounter the
problem presented in Fig. 4. Specifically the scaled versions of
the s-graph have complicated structure and in general, it would
be highly unlikely to find an appropriate embedding in the graph
at every node of to calculate the dilation of the set.

Thus, we propose the following alternative definition of mul-
tiscale dilation and erosion in order to overcome the issues men-
tioned. We define recursively the graph dilation of at integer
scale with respect to the s-graph by

A (14)

Thus, instead of first finding an -scaling of the structuring
graph and then performing the dilation with the original set, we
recursively dilate the set with the unit-scale structuring graph

times. Generalizing this notion of scale to multilevel dilation
of a function we get the following definition. The
dilation of at integer scales will be given at each by

(15)
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This provides a recursive computation of the scaled dilations
of a function and leads us to the following Propo-
sition which offers an alternative recursive computation that in-
volves a simple morphological gradient on a graph.

Proposition 1: Given a graph , the evolution of
the multiscale dilation of a function byan s-graph

is described by the following difference equation at each
vertex :

(16)

Proof: By combining (15) with (13).

III. GEODESIC ACTIVE CONTOURS ON GRAPHS

Active contours have long been used in the computer vision
community and were first introduced by Kass et al. in [21] in the
form of ‘snakes.’ They can be described as deformable curves
driven by image based forces towards features like edges and
lines. Typically they are used to find in an image areas that are
naturally distinguished from their background. Originally, they
were implemented in a brute-force way by minimizing between
successive time steps the energy functionals associated with the
current state of the contour; its’ shape and distance from the
salient image features.

This approach has many drawbacks: 1) It involves solving a
minimization problem at each time step and 2) the curve dy-
namics incurred do not allow changing the topology of the orig-
inal contour; for example if the original curve contains two dis-
tinct objects the initial contour will not be separated in two in-
dependent evolving contours. The latter is considered as one of
the main limitations of the original approach and many heuristic
solutions have been proposed [28] but a topology-free approach
has been given independently by Caselles et al. [9] and Malladi
et al. [25].

These solutions proposed describe the evolution of a curve
that is propagating by means of a velocity that contains two
terms, one related to the regularity of the curve and the other
shrinks or expands towards the desired image feature. The
curve dynamics can be described by a PDE for which the level
set methods proposed by Osher and Sethian [29] provide an
efficient implementation framework that can accommodate
changes in the curve’s topology.

In particular let be a parametrized planar
curve and let be the image in which one needs
to detect the objects’ boundaries. (We denote the curve by
when we interpret it as a vector and by when we interpret it
as a set of points in the Euclidean space.) The energy functional
associated with can be written as follows :

(17)

where is a strictly decreasing function that
tends to zero as .

As shown by Caselles et al. in [10], finding the curve that min-
imizes (17) is equivalent to finding the minimum length curve

in a Riemannian space induced from image , where length is
given by

(18)

(19)

where is the Euclidean length of the curve and is ar-
clength. Furthermore, they showed that a curve that is governed
from the dynamics

(20)

where is the Euclidean curvature and is the unit inward
normal, moves in the direction of the gradient of the length .
In practice, we often add a balloon force, i.e., a curve motion of
the type where is a constant velocity.

If we write the curve as the level set of a function
, that is write as the set of points for which

is equal to a constant (for example ) then if the
function satisfies

(21)

the corresponding level set satisfies (20) after we add to it a
constant velocity term.

The rest of this section and our main contribution in the level
set implementation of active contours on graphs is to approxi-
mate all terms in the right hand side of (21) on graphs and fi-
nally construct a difference equation which would approximate
the active contour dynamics for object boundary detection.

We start in the next subsection with the simplest case of curve
evolution on graphs: constant velocity motion. We use useful
ideas from graph morphology operators by exploiting the un-
derlying connection between constant rate expansion and dila-
tion of a shape. This case corresponds to approximating the first
term of the right hand side of (21). Subsequently, we approxi-
mate the rest of the terms participating in the curve dynamics to
end up with a geodesic active contour model on graphs.

A. Constant-Velocity Active Contours on Graphs

In this subsection we start by deriving the difference equation
that describes the evolution of a contour that expands with con-
stant velocity on a graph.

Experience from the continuous space analysis suggests that
if the contour of a set expands with constant velocity then it can
be described in terms of the boundary of its scaled dilation with
respect to a unit ball. If the graylevel function
embeds the expanding contour as a level set, then the evolution
of can be described by

(22)

We adopt the same idea on an arbitrary discrete structure, a
graph where denotes the set of vertices and
the set of edges. Let and be a structuring graph. As
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for the continuous case, the constant velocity expansion of
corresponds to its -scaled dilation, denoted by .

Let and be the graylevel functions
that embed and respectively as level sets. Then the differ-
ence equation that governs , by using proposition 1, is

(23)

The above expression is a discrete equivalent of the gradient
magnitude on graphs. Similar expressions are being used in the
literature, e.g., [3], [12], [32]. From a calculus perspective this
expression assumes homogeneity of the underlying graph since
it equals the maximum difference in values and not the max-
imum rate of increase as suggested by the standard gradient def-
inition.

In order to account for topological inhomogeneities of the
graph one could calculate the gradient as the maximum rate
of increase and its direction as the direction of the edge along
which the rate of increase is larger, implying the approximation
of at node by

(24)

where is the Euclidean distance between the nodes
and . In applications where the underlying graph is reasonably
homogeneous (for example the geometric random graph where
nodes are uniformly distributed around their neighbors) the two
approximations presented above behave similarly. On the other
hand, the latter need to be taken into consideration when proving
the convergence results of Section III-F since otherwise, in the
limit of large graphs the first approximation yields zero by con-
tinuity of the underlying function.

Summarizing, let be a set of nodes whose contour expands
with constant velocity parametrized by . Then in order to im-
plement its evolution on a graph one should proceed as follows:

(i) Let be the signed distance function from , defined by

if
if

where is the zero level set of .
(ii) Evolve according to (23) at scales

(iii) The set corresponds to the
-scaled dilation of .

Fig. 6 illustrates the results (as level sets) for the constant
velocity expansion of an orthogonal contour. Throughout this
paper for all our simulations we are using the simple struc-
turing graph of Fig. 3(a) that generates the simple neighborhood.
The underlying graph is a geometric random graph on the unit
square. The geometric random graph is characterized by two pa-
rameters; the number of nodes and a radius . nodes are
being placed uniformly and at random on the unit square inde-
pendently from one another. If the Euclidean distance between
those two nodes is less than then there is an edge between
them. Typical values for is 3000 to 10000 while ranges
from 0.015 to 0.04. Given the number of nodes, the parameter

Fig. 6. Constant velocity evolution of an orthogonal contour on a geometric
random graph on the unit square. The structuring graph is an edge (a) Original
object (b) Dilation after 4 iterations (c) Dilation after 12 iterations.

affects the expected degree of a node and is proportional to the
square root of its value.
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Fig. 7. Illustration of the disadvantages of choosing the maximum increase di-
rection as the gradient direction. Observe that all directions yield approximately
the same increase but only one edge is chosen. This happens exactly because of
the discrete nature of the graph structure. Alternatively, we propose a weighted
average of edge directions where the weights are the function differences along
each edge.

B. Direction of the Gradient on Graphs

The next term from (21) that we should approximate on a
graph is the direction of the gradient vector. Trusting our intu-
ition from calculus, it would make sense to choose as the direc-
tion of the gradient on graphs the direction of the edge that corre-
sponds to the maximum difference of the values of the function

. Namely, let a function be defined on the set of graph nodes
. Then

(25)

where is the unit vector in the direction of the edge .
The above approximation, assigns to the gradient the direc-

tion of the maximum change among all edges adjacent to a node.
In Section III-F we prove that for the case of geometric random
graphs this expression converges in probability to the true value
of the gradient on each node. Note that we assume homogeneity
on the graph. In any other case one can choose the direction of
the maximum rate of change namely,

(26)

This approximation encounters serious drawbacks in prac-
tice which are described in Fig. 7. Such a scenario is fairly
common in a graph structure due to its discrete nature. In words,
choosing an edge out of finitely many can create asymmetries
which vastly influence the result. Specifically, by using the edge
indicated in the figure for our calculations neglects the values
of the function for the rest of the nodes in one’s neighborhood.
Note that in the continuous case such an issue does not occur
under the continuity and differentiability assumptions that are
usually made.

A heuristic fix to the above issue is the approximation of the
gradient direction on graphs through a weighted average of the
direction of all edges in a node’s neighborhood. The weights are
chosen as the normalized edge differences, that is

(27)

In many applications one may need to further suppress the in-
herent inhomogeneity due to the sparsity of the underlying dis-
crete structure. In those instances where there is evident nonuni-
formity in the values of the function within the neighborhood
of a vertex one may need to further control the influence of the
edges with large increases. In those cases we may need to use
the expression (28) at the bottom of the page as the direction of
the gradient.

Under (28) the gradient is given as a weighted sum of the
direction of all adjacent edges to a node. The weights are ap-
propriately chosen so that edges along which the change in the
value of the function is closer to the maximum contribute more
to the gradient direction. The parameter we can tuned to deter-
mine how strongly such edges affect the final result. Finally,
is a small constant that guarantees that the denominators in (28)
are well defined. In the special case where only the di-
rection of maximum increase survives. For our simulations we
have used the empirical values and . We prove
in Section III-F that, when the constant vanishes in the limit
of large graphs the dominating term in (28) corresponds to the
edge with the maximum change in the value of the function es-
tablishing that the approximations (28) and (25) asymptotically
agree in probability.

The last term that remains to be determined from (21) is the
curvature of the contour of each level set of the function . To
this end we first propose an expression for the divergence of a
vector valued function on a graph and using this we compute the
desired curvature.

C. Curvature Calculation on Graphs

In the continuous case the curvature of a curve given as the
contour of a level set of a function can be computed using

(29)

In the preceding sections we derived expressions for the term
on a graph. Therefore, the remaining step is to pro-

pose an expression for the computation of the divergence of
a vector function on a graph. Indeed, let be a
vector function supported on the nodes of the graph. If we were

(28)
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Fig. 8. Computing divergence on a graph: �� denotes the unit vector parallel
to the edge ��� ��, � the length of the line segment between the perpendicular
to the edges lines and �� ��� the vector value of the function �� on the node �.

working on the continuous case the standard definition of the
divergence of at a point is defined as

where is a two dimensional region, its boundary, the
outward unit normal to that boundary, and its enclosed area.

An abstraction of the standard definition of divergence on a
graph using only local information at node can be considered
as in Fig. 8. In this context, is the polygon defined by the
lines perpendicular to the edges adjacent to the node and is the
area enclosed within. The line integral is approximated by the
Riemann sum of the inner products. The latter is taken between
the value of the vector field on each node and the outward unit
normal to the boundary, i.e., the unit vector in the direction of
each edge.

Concluding, the divergence of on a graph can be approxi-
mated by

(30)

where
• corresponds to the length of the perpendicular line seg-

ment to the edge . The segment is defined by the inter-
section between successive lines as illustrated in Fig. 8, and

• corresponds to the area of the polygon between the
perpendicular to the edges lines.

Summarizing, in order to compute the curvature of the con-
tour of the level set of a graylevel function on a graph we first
calculate the normalized gradient vector of the embedding real
function on each node as described in Section III-B. Then, the
curvature can be calculated using (29). At this point we can per-
form all the necessary calculations to compute the curvature of
the contour of the level set of a graylevel function on a graph.
To illustrate the behavior of the expression proposed consider a
circular shaped contour as in Fig. 9. We would expect the cur-
vature for all points on the circle to be a positive number, if we

Fig. 9. The curvature on a circle calculated with the method proposed in
Section III-C. We omit the edges for illustration purposes (a) Circle on
geometric graph (b) The curvature on the circle.

were working in the continuous setting. On a graph, the cur-
vature cannot be expected to be constant but the average value
should be positive and the curvature at each point should oscil-
late around the average. This behavior is captured in Fig. 9.

D. Last Steps

The external image-dependent force is given by the edge-
stopping function . The main goal of is actually to
stop the evolving curve when it arrives to the objects bound-
aries. Among the many choices proposed in the literature, we
use the following taken from [9], [25] :

(31)

where is the image convolution with a 2D isotropic
Gaussian of variance .

The computation of the smoothed version of involves
the definition of a convolution operation on graphs. Let
denote the underlying graph. For each define the func-
tion by

(32)

where is the Euclidean distance between vertices. The
smoothed version can be computed by mimicking the con-
tinuous convolution operation as follows:

(33)

The above is a natural interpretation of standard convolution on
graphs.

E. Active Contours on Graphs—Algorithm 1

Here we combine all the previous approximations to the PDE
for geodesic active contours and summarize the algorithm for
automatic graph segmentation.

Consider a graph and let a function
assign a real value to each of the graph nodes.

Algorithm-Active Contour on Graphs:
1) Compute the smoothed version of as described in

Section III-D.
2) Compute the magnitude of as described in

Section III-A and then compute the function .
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Fig. 10. Illustration of the active contour algorithm on graphs for finding three distinct objects on a graph. Note the change in the contour’s topology. Time evolves
from top left to bottom right. For this example, � � ����, � � ����. The items in blue are the objects to be found. The image in this case takes the value 1 within
the objects and zero in the background.

3) Initiate the algorithm with a set of nodes that contains the
objects to be found and let denote the signed distance
function from the contour of the determined set.

4) For each compute , and the cur-
vature at each node as described in Sections III-A and
III-C. Iterate according to the following difference equa-
tion:

Fig. 10 illustrates the algorithm-1 for the case of finding the
boundaries of three distinct objects.

F. Convergence in Probability

In this section we prove the convergence of our approxima-
tions to the true value of the operators at each point in the limit
of large number of nodes for a specific type of graphs, the geo-
metric random graphs.

A geometric random graph is a random undirected graph
drawn on a bounded region, e.g., the unit square, and is denoted
by . The graph consists of vertices
placed at random uniformly and independently on the region
and a set of edges connecting two vertices if and only if
the distance between them is at most , i.e., .

First, we prove that the simplest approximation of the gra-
dient converges to the true value of the operator at every point
in probability as the number of nodes grows large.

Theorem 1: Let be a twice differentiable
function on the unit square and let be a geometric
random graph embedded in the same domain. Let be a node
of and let denote the set of nodes adjacent to .
Then, if where ,

in probability, where
.

Proof: The second implication directly implies the first,
therefore we will just prove the second. To this end, let

denote the angle of the random unit vector pointing to-
wards the direction of the largest increase within the node v’s
neighborhood and let . Note that while is deter-
ministic, is a random variable whose convergence we wish to
establish. Consider some . In order to prove convergence
in probability, we need to bound the probability of a deviation
of away from , namely .

For it has to be the case that there exists some
neighbor of for which and
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for all such that , where
, or the set is

empty.
In other words,

We proceed by showing that each of the terms on the right
hand side of the above equation converges to zero. To this end,
note that, the size of is a Bernoulli random variable and
therefore

which converges to zero if using the fact that

Moreover, by the Taylor expansion,

where is the directional derivative of in the direction
of . From the definition of gradient we get

where .
Summarizing the above, for any , ,

and any

When is large we get that

Therefore, for any , , and any

concluding the proof.

The next step is to prove convergence for the normalized
smoothened approximation proposed by (34) at the bottom of
the page.

The main idea of the proof is to show that this approxima-
tion in probability approaches the one of Theorem 1 thus estab-
lishing convergence in probability.

Theorem 2: Let be a twice differentiable
function on the unit square and let be a geometric
random graph embedded in the same domain. Let be a node
of and let denote the set of nodes adjacent to .
Then, if where and , the ap-
proximation of (34) for the direction of the gradient converges
in probability to its true value.

Proof: Let be the random variable denoting the angle
of the approximation and let and as defined in the proof
of Theorem 1. By the triangular inequality we get that, for all

,

Therefore, in order to establish the result we need to show
that for all

Let denote the unit vector in the direction of .
By the used approximation, is given as the weighted sum of
unit vectors in the direction of all the edges adjacent to node ,
i.e.,

Note that, since , and for all
such that , the first term only survives in the

limit of large , concluding the proof.
In the next section we present an alternative way to implement

geodesic active contours, through a direct minimization of the
energy functional associated with each contour. Novel methods
combining ideas from energy minimization via graph cuts and
classical segmentation techniques like watershed on the regular
grid have been lately developed, [14].

IV. ACTIVE CONTOURS VIA GEOCUTS

A. Integral Geometry and Crofton Formulas

In this section we present a formula that relates the length of a
curve in to a measure of a set of lines intersecting it. The first
step will be to describe a reasonable way of assigning a measure
to a given subset of straight lines.

(34)
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Fig. 11. The parameters � and � are the polar coordinates of the foot of the
perpendicular from the origin onto the line.

Every straight line on the plane can be parametrized by the
distance from the origin and the angle between the line and
the y-axis as illustrated in Fig. 11. Let

be the set of all straight lines on the plane. The
Lebesgue measure on this set is defined by the density

and the Lebesgue measure of a subset of straight lines
is given by the integral .

Given the above measure on the space of straight lines, the
following Cauchy-Crofton formula connects the Euclidean
length of a curve in and the measure of the lines
intersecting it:

(35)

where corresponds to the number of times any given line
intersects .
Similarly, if we consider a 2D Riemannian metric space with

a metric , the Riemannian length of contour is equal to

(36)

where is the unit vector in the direction of the line . For
more details on the above the reader may consult [2].

B. Graph Cut Methods

Consider an undirected graph , defined as a set
of nodes and edges connecting these nodes. We assign to
each edge in the graph a nonnegative weight cost .

We define also two problem specific nodes called terminals.
A cut is then a subset of edges whose removal separates the
terminals. The cost associated with each cut is defined as the
sum of the costs of the edges that it contains.

Finding the globally minimum cut on a graph with two termi-
nals is a well known problem and it can be efficiently computed
through standard max-flow or combinatorial techniques (e.g.,
[5], [13], [15]).

Therefore it is natural for any cut on a graph to be
associated to the length . The connection be-
tween the cut metric defined and the length of a curve on a Rie-
mannian space is now offered by the Cauchy-Crofton equations
that we presented in Section IV-A. This idea has been analyzed

in [4] for the canonical grid and we extend it to graphs in the
following section.

C. Euclidean Cut Metric on Planar Graphs

We start by summarizing the basic results from [4] for com-
parison purposes. Neighborhood systems of a regular grid can
be described by a set of distinct vectors, enumerated in
increasing order of angular orientation. Each such vector gener-
ates a family of edge lines on the grid and the distance between
the nearest lines in the family is

where is the cell size of the grid.
Consider now a contour in the same plane as the regular

grid graph. being a closed curve corresponds to a cut on .
Then, if each edge belonging to the family of the vector is
assigned a weight the cut-metric of the cut defined by is
given by

where is the number of intersections of the contour
with lines from the family associated with vector . On the
other hand, we get from the Cauchy-Crofton formula that the
Euclidean length of the contour is

(37)

(38)

Therefore by choosing constant edge weights within each
family of edge lines as

(39)

we get

In our case, there does not exist a basis of vectors that uni-
formly represent the edges of an arbitrary graph. Therefore the
analysis will change. Our goal is to assign a weight on each
edge of our graph so that the cut metric of a contour is a
good approximation of the Euclidean metric. To this end if we
write the Cauchy-Crofton formula as

and the cut metric as

we can conclude that in order for the weight
should be an approximation of the Lebesgue measure of the

area in the plane that edge represents. This area is the
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Fig. 12. Calculation of the edge weights for the Euclidean cut metric (a) The
��� �� space of the edges of a geometric random graph (b) The Voronoi diagram
of the space of edges. The weight of each edge is equal to the area of the corre-
sponding cell.

Fig. 13. The Voronoi diagram of the space of edges of a regular grid.

Fig. 14. Weight modification (a) For the case of a regular grid the contour at
each point can be intersected by just one member of the family (b) For the case of
an arbitrary graph a contour that is intersected by an edge can also be intersected
by the extension of the lines defined from other edges in the graph.

corresponding Voronoi cell of the point as illustrated in
Fig. 12 and its area is denoted by .

As a sanity check we observe in Fig. 13 that in the case of a
regular 2D grid the area of the cell of each edge is proportional
to the weight assigned to it by (39) in [4].

Finally another important difference between the regular grid
and the arbitrary graph is the phenomenon depicted in Fig. 14.
Whenever a contour crosses an edge then it also crosses the lines
defined by other edges in the graph. This can be taken into ac-
count by modifying the edge weight and defining it as the sum of
the areas associated to all the lines that cross each edge. This is
a computationally expensive process but increases the precision
of the approximations since more intersections are taken into ac-
count. This calculation can be performed offline, just using the
graph information and therefore the computational burden does

not transfer to the execution of the max flow problem. Specifi-
cally, for each pair of edges we calculate their point of intersec-
tion and add the area of one to the weight of the other if
and only if this point lies within the adjacent nodes defining the
edge. This modification, is used in order to increase the accuracy
of the Cauchy-Crofton approximation and is not necessary for
the algorithm. Moreover it implicitly assumes that all the lines
that are crossing a specific edge, are also crossing a curve which
is cut by that edge. This is an approximation in the case of fi-
nite graphs but the error diminishes in the limit of large, dense
graphs.

Summarizing, let be the edge connecting the nodes
and and let

Then if we assign to each edge a weight

(40)

the cut metric and the Euclidean metric are approximately the
same .

Similar to the previous section we can directly generalize the
above to Riemannian spaces using (36). In that case the corre-
sponding weights are given by

(41)

where is a node from which edge is originating.

D. Active Contours on Graphs-Algorithm 2

Summarizing, using the weight approximation from (40) we
can complete all the necessary steps to implement geodesic ac-
tive contours using GeoCuts. Specifically, consider a graph

and let a function assign a real value to each
of the graph nodes.

1) Let , where is defined in
Section III-D and is the 2 2 identity matrix.

2) Assign to each edge a weight using (41).
3) Define a terminal nodes at the boundary and inside each

object of interest.
4) Solve the minimum cut problem by using combinatorial

optimization tools (e.g., [5], [13], [15]).
An example of the execution of our algorithm-2 is given in

Fig. 15. We have solved the minimum cut problem using a gra-
dient descent type algorithm that allows us to observe the defor-
mation of an initial contour. For the Min-Cut problem though,
state of the art algorithms have been developed that computa-
tionally outperform the gradient descent method that we chose
and it is an interesting research direction to implement and opti-
mize the algorithm for the solution of the combinatorial problem
posed.

V. CONCLUSIONS AND DISCUSSION

In this paper our contribution is twofold. First, we propose
an approximation to level set implementation of morphological
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Fig. 15. Illustration of the active contour algorithm using graph cuts on graphs for finding three distinct objects on a graph. Time evolves from top left to bottom
right.

operators and geodesic active contours on arbitrary graphs. Our
motivation comes from the importance and the success of such
concepts and techniques in image analysis as well as the exis-
tence of a strong theoretical background on graph morphology.
Based on these concepts and using heuristic approximations to
operators from vector calculus we propose a difference equation
approximation for the evolution of geodesic active contours on
graphs.

Second, we extend existing work on implementation of ac-
tive contours using graphcuts on the regular grid to arbitrary
graphs. The two methods are very different in the sense that
the first approximates the solution to the continuous space mini-
mization problem while the second approximates the minimiza-
tion problem itself and transforms it to a min-cut problem. We
believe that both methods illuminate interesting research direc-
tions toward theoretical guarantees for the heuristic approaches.
Finally, we note that the execution time for our first method is
much smaller than our gradient-descent approach to the second
method. On the other hand combinatorial optimization is a fast
evolving field and results may be much different using the state
of the art Min-Cut algorithms.

A contribution of our paper towards future potential applica-
tions is the illustration of those techniques for automatic object
detection and segmentation on graphs. The methods illustrated
involve the use of heuristic approximations, which, on top of the
intrinsic noise of the geodesic active contour methods, involve
additional noise due to the graph approximations and may lead

Fig. 16. The graph nodes (circles and diamonds) represent rainfall data for each
city of USA. Segmentation via our graph GAC identifies essentially two regions
(indicated by diamonds) and connected through the narrow neck indicated by
the ellipsis): one corresponding to the Humid Continental Dfb climate zone and
one to the Humid continental Dfa and Subtropical climate zone.

to instability in specific settings. Therefore, exploring the ro-
bustness and the practical convergence of the aforementioned
techniques as well as improving the proposed approximations
towards faster and better convergence is an open problem and
topic of future research. A first promising step in the former
direction is our proof of the convergence in probability of the
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discretized gradient operators we used for GACs on geometric
random graphs with large number of nodes.

An example of the application of our techniques on geograph-
ical information systems is illustrated in Fig. 16. In this appli-
cation, we collected the average yearly rainfall values for 4000
cities in the USA. These values define the value of the grayscale
function defined on each node. Assuming correlation between
nodes that are geographically close to each other we produce
a graph according to the following process: if the distance be-
tween two cities is smaller than a threshold then we assume that
an edge that connects them exists. We produce the segmentation
result using the geodesic active contour on graphs algorithm and
it identifies two regions with similar rainfall yearly statistics.
Actually these regions correspond to different climate zones of
the USA. There is a thin neck connection between these two re-
gions. Overall, the curve evolves towards the region that differ-
entiates from its background and stabilizes close to areas with
very characteristic meteorological behavior.

In general, our methods, can be applied to various areas
including, image processing, social networks, geographical
systems, etc. We foresee strong applicability in graph-based
image processing and computer vision tasks where the image
information is sampled sparsely and irregularly. Moreover,
automatic community detection and automatic identification
of groups with similar behavior with respect to a specific
characteristic is a topic that has lately received great attention
in the scientific community, given the large amount of data that
is produced by the trending social networks.
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