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Predicting User Satisfaction in Spoken Dialog System
Evaluation With Collaborative Filtering
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Abstract—We propose a collaborative filtering (CF) model to
predict user satisfaction in SDS evaluation. Inspired by the use of
CF in recommendation systems, where a user’s preference for a
new item is assume to resemble that for similar items rated previ-
ously, we adapt the idea to predict user evaluations of unrated di-
alogs based on the ratings received by similar dialogs. Ratings of di-
alogs are gathered by crowdsourcing through AmazonMechanical
Turk. A reference baseline is provided by a linear regression model
(LRM) based on the PARADISE framework. We present two ver-
sions of the CF model. First, the item-based collaborative filtering
model (ICFM) clusters rated dialogs and builds an LRM for each
cluster. The rating of an unseen dialog is predicted by the LRM of
its most similar cluster. Second, the extended ICFM (EICFM) sep-
arates dialog features into user-related and system-related groups,
to build LRMs for these separately. Experimental results on di-
alogs from the Let’s Go! system show both ICFM and EICFM can
significantly improve the proportion of variability explained by the
LRM.We also demonstrate the generalizability of the CFmodel to
a new dialog corpus from the systems in the Spoken Dialog Chal-
lenge (SDC) 2010.

Index Terms—Spoken dialog system evaluation, collaborative fil-
tering, crowdsourcing user satisfaction.

I. INTRODUCTION

A SPOKEN DIALOG SYSTEM (SDS) is a computer
system which supports human-computer conversations

in a restricted domain. The interaction between the human
and computer is composed of many spoken dialog turns. A
typical turn between a system and user is shown in Fig. 1:
the first step for the system is to recognize the user’s speech
using automatic speech recognition, followed by the language
understanding component which aims to interpret the user’s
intended semantics and actions. The dialog model maintains
the history of the dialog, decides which action is appropriate
based on language understanding and the discourse context,
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Fig. 1. A typical spoken dialog turn between the system and the user.

and controls the dialog flow. After the dialog model issues a
proper action as the response, the natural language generator
is responsible for translating the representation of the response
semantics into text, which is then passed to the Text-to-Speech
(TTS) synthesizer to generate audio output.
Advances in speech and language technologies have made

SDSs an important research area and have brought about
systems in a wide variety of application domains, such as bus
schedule inquiries [1], flight information [2], stock market
information delivery [3], tourist guides [4] and student tutoring
[5]. As SDSs are becoming increasingly pervasive, their ulti-
mate goal is to satisfy the users’ needs with good performance
yielding a good user experience. This calls for a sound strategy
to evaluate, compare, and predict the performance of SDSs,
which remains an open research problem. Generally, SDS eval-
uation can be categorized into component-based and holistic
perspectives.
The component-based perspective covers the performance of

individual components such as the correctness of speech recog-
nition, the ability to understand natural language, the appropri-
ateness of response generation, as well as the naturalness of the
synthetic speech in conveying the responses. A thorough evalu-
ation of an SDS needs to consider all relevant evaluationmetrics
covering the functionalities for all the system components [6].
In contrast, holistic evaluation assesses not only individual

components but also the integrated performance of an SDS. It
involves the perceived level of system usability, system intelli-
gence and abilities in error recovery by considering the system
in its entirety [7]. Holistic evaluation also covers the wide va-
riety of users’ impressions (user judgments) relating to all di-
mensions of the quality of an SDS [8]. The ultimate objective
of an SDS is to satisfy the demands of real users. Therefore,
user satisfaction is considered the most important criterion for
system evaluation [9].
Many evaluation methods have been developed in recent

years. One popular method of measuring user judgments is

1932-4553/$31.00 © 2012 IEEE



972 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 8, DECEMBER 2012

through questionnaires completed after users interact with an
SDS. The questionnaire often involves a range of perceptions
of the system such as task completion and user satisfaction.
This traditional approach has some disadvantages. First, it is a
costly and time-consuming process. Moreover, this approach is
often limited to a small number of evaluators whose feedback
may not be statistically representative of the larger user pop-
ulation that can access the SDS. Furthermore, when a system
has already been deployed, real users are often unwilling to
patiently complete an evaluation survey.
Another popular evaluation method, the PARADISE frame-

work, has been proposed for automatic inference of overall user
satisfaction of unrated dialogs [10]. It assumes that the overall
performance (user satisfaction) of an SDS can be described in
terms of a linear regression model of a set of dialog metrics
[11]. The trained model can explicitly identify which factors
contribute most to user satisfaction. Its predictive power is mea-
sured in terms of the proportion of variability explained by the
regression, denoted by R-squared . Low may be caused
by the lack of inter-rater agreement on user satisfaction ratings
[12], or the linear model may not sufficiently capture the rela-
tions between user satisfaction and dialog features.
The primary emphasis of this paper is on the development

of an efficient and effective paradigm for SDS evaluation.
Recently, crowdsourcing technologies have been widely ap-
plied to collect, transcribe and annotate speech and language
data [13]–[15]. Crowdsourcing refers to outsourcing a task
to a crowd of people. Unlike the traditional method in which
data is manually labeled by experts or trained people, tasks
can be completed with crowdsourcing in a cost-effective,
efficient and flexible manner. Novotney et al. collected high
quality transcriptions of conversational speech with only one
thirtieth the cost of professional transcription [15]. Snow et al.
conducted varieties of NLP tasks in the crowd [14]. We believe
that user judgments for SDS evaluation can also be collected
by using crowdsourcing instead of user experiments. Our pre-
vious work [16] has developed a crowdsourcing methodology
for this purpose through Amazon Mechanical Turk (MTurk)
(http://www.mturk.com). In addition, collaborative filtering
(CF) has been successfully applied to the development of
recommendation systems [17]. It assumes that the preference
of a user for a new item may resemble that for the similar items
rated previously by users. Collaborative filtering appoaches
can be categorized as user-based [18], [19] and item-based
[17], [20]. Given an unrated item of a target user, user-based
collaborative filtering searches for the most similar users to the
target user [19]. In contrast, item-based collaborative filtering
searches for items most similar to the target one in a data set
which has been rated. Prediction of the target item is then
computed based on other similar items [21]. Item-based CF is
computationally efficient and can guarantee recommendation
quality [22]. We adapt this approach to predict user evaluations
of unrated dialogs assuming that the rating of a (previously
unrated) target dialog should be similar to the ratings received
by similar dialogs. Therefore, this work aims to extend the
PARADISE framework by incorporating CF to improve its
prediction performance, based on user judgments collected
through MTurk. We believe that the information from the

most similar neighbors of an unrated dialog can better predict
its performance than the information from the whole corpus.
In addition to the work in [23] showing that the CF model
can significantly improve the performance of predicting user
satisfaction, this paper will also demonstrate the generalization
ability of the CF model across multiple systems.
The rest of this paper is organized as follows: in Section 2,

we present a review of previous work in SDS evaluation.
Section 3 describes our experimental corpus and user annota-
tions obtained through crowdsourcing. Section 4 details our
collaborative filtering (CF) model in prediction of user satis-
faction. Section 5 gives the experimental results and analysis
and shows that the CF approach can distinctly improve predic-
tion accuracy over a baseline obtained from the PARADISE
framework. Finally, Section 6 concludes the paper and points
out some directions for future research.

II. PRIOR WORK ON SDS EVALUATION

The performance of an SDS can bemeasured withmany types
of metrics, such as task success, number of utterances in the di-
alog, speech recognition accuracy, system response delay, nat-
uralness of output speech, users’ expectations and cooperative-
ness of the system [6]. These metrics are used for both compo-
nent-based and holistic evaluation and are usually categorized
into subjective and objectivemetrics. Subjective metrics, which
reflect users’ perceptions of the quality of an SDS, are often ob-
tained from real or test users. Objective metrics, which quantify
the system’s behavior during interactions and the performance
of various components of an SDS, can be extracted automati-
cally or labeled manually by experts based on user-system in-
teractions. Objective metrics are also called interaction metrics
in [6].

A. Subjective User Judgments

Since subjective metrics mostly rely on user judgments of
system quality, distributing questionnaires to users before or
after interaction with an SDS is an effective way to collect
quantifiable user judgments. Developing a reliable and valid
questionnaire for subjective judgment collection has attracted
much attention in the research community. The SASSI ques-
tionnaire (Subjective Assessment of Speech System Interfaces)
is designed for subjective assessment of speech-based systems
[24]. SASSI consists of 50 items (statements), and each item
is rated by users on a 7-point scale of agreement: strongly
agree, agree, slightly agree, neutral, slightly disagree, disagree
and strongly disagree. A factor analysis of the collected data
from 226 completed questionnaires suggests that there are six
main factors that contribute to a user’s subjective perception
of speech-based systems, i.e., perceived system response accu-
racy, likeability, cognitive demand, annoyance, habitability and
speed.
The ITU recommendation proposed another list of questions

for the evaluation of SDSs in telephone services [25]. Three
types of questionnaires are distinguished in the recommenda-
tion. Type 1 questionnaires are intended to collect the user’s
background information and are distributed at the beginning of
an evaluation experiment. Type 2 questionnaires are related to
user-system interactions. Type 3 questionnaires are about the
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users’ overall impressions of the system quality. A list of topics
are proposed for each type of questionnaire and exemplar state-
ments are rated on a 5-point scale.

B. Interaction Metrics

In contrast to subjective judgments of system performance,
interaction metrics can easily quantify the ability of the system
or its components to perform the designed functions. Such in-
formation is obtained from the log files which record the inter-
actions between the system and users. Surface metrics that are
based on utterances from the user or the system, such as dialog
duration or recognition confidence, can often be automatically
extracted from the log files. Other metrics that are related to the
content of the interactions, such as language understanding ac-
curacies or task success rates, are usually manually labeled by
experts or trained annotators.
In recent decades, manymetrics have been identified for mea-

suring the functions of the system and its components. Early
metrics were for individual components, such as the speech rec-
ognizer and language understanding components. Commonly
used metrics areWord Accuracy (WA), Sentence Accuracy (SA),
Concept Accuracy (CA), Query Density (QD), Concept Effi-
ciency (CE) [26], etc. Later, metrics for whole systems were
developed, including Task Success (TS) to measure the extent
to which the system achieves the task, number of dialog turns
for measuring the dialog cost, or Contextual Appropriateness
for measuring the degree to which the system provides an ap-
propriate response [27].
Based on the literature about interaction metrics, Möller et al.

summarized a set of metrics for SDSs evaluation and classified
them into five categories [6]:
• The dialog- and communication-related category: Metrics
about the overall dialog, such as the overall dialog dura-
tion, number of dialog turns, average number of words per
system turn, etc.

• The meta-communication-related category: Metrics de-
scribing speech recognition and language understanding
capabilities, such as the number of help requests, number
of barge-in attempts from the user, etc.

• The cooperativity-related category: Metrics about the co-
operativity of system actions (responses). The contextual
appropriateness of system responses directly measures co-
operativity, which is often evaluated by several human ex-
perts based on Grice’s maxims.

• The task-related category: Task success is a key aspect of
successful task-oriented systems. Möller defined task suc-
cess in seven aspects, i.e., success in providing a com-
pletely right answer; success with relaxation of constraints
from the user, the system, or from both the user and the
system; success in spotting that no solution exists; failure
that results from the user’s non-cooperative behavior or the
system’s inappropriate response.

• The speech-input-related category: Metrics about the ca-
pability of the system to recognize the input speech and to
understand the meaning of the input. Commonly used met-
rics are WA, SA, or CA as introduced above.

This categorization and the metrics in each category have been
incorporated in the ITU recommendation [28].

Fig. 2. The PARADISE structure of objectives for dialog performance [10].

C. The PARADISE Framework

PARADISE (PARAdigm for DIalogue System Evaluation) is
a general framework for evaluating and comparing the perfor-
mance of spoken dialog systems [10]. It identifies which system
properties have a large impact on system usability and supports
the development of predictive models of system performance.
PARADISE uses decision theoretic methods to relate a series

of dialog metrics to the system’s overall performance and deter-
mine the significant contributors. The PARADISE performance
model is shown in Fig. 2. In this model, the overall performance
is correlated with user satisfaction. Hence, the primary objec-
tive of a system is to maximize user satisfaction. This objec-
tive can be further decoupled into two sub-objectives: maxi-
mizing task success and minimizing dialog cost, assumed to
be the two main contributors to user satisfaction. In the orig-
inal PARADISE framework, task success is measured with the
use of the Kappa coefficient derived from an attribute value ma-
trix (AVM). Dialog costs can be categorized into two types: di-
alog efficiency and quality. Dialog efficiency is represented by
the number of dialog turns or the dialog duration, while dialog
quality is measured in terms of the appropriateness of system
response, or system repair ratio, etc.
The PARADISE framework posits that the objective struc-

ture in Fig. 2 can be realized by building a performance model
through multivariate linear regression with user satisfaction
as the target and the dialog metrics of task success, dialog
efficiency and quality as predictors. Building the performance
model requires a dialog corpus to be collected through con-
trolled user experiments during which users subjectively rate
their satisfaction. Moreover, the predictors of the model, i.e.,
the dialog metrics, can either be automatically extracted from
dialog log files or manually labeled by experts. Based on these
illustrations, the performance model of an SDS is:

(1)
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where is system performance correlated with user satisfac-
tion here, is a measure for task success, is a measure for
dialog cost, is the number of dialog measures, is a weight
on is a weight on , and is a -score normalization
function [29]. Both and can be represented as dialog mea-
sures , so (1) can be simplified to be:

(2)

Since the dialog measures have been normalized into the same
scale by , the weight reflects the relative contribution
of the corresponding measure to user satisfaction. We will
use this linear regression model as our baseline model.
By applying the performance model, values of user satisfac-

tion of SDSs are directly predicted from a suite of dialog met-
rics which are simply extracted from dialogs, without the need to
conduct user experiments to assess user satisfaction. In addition,
system developers can directly figure out which system compo-
nents have greater impact on user satisfaction by inspecting the
coefficients of dialog metrics in the performance model, so that
they can focus on improving the performance of those “impor-
tant” components.
PARADISE has been widely applied in evaluating many

SDSs, such as the ITSPOKE tutoring system [30] and DARPA
Communicator [31]. It has been applied to test dialog models
with different initiative and information presentation policies
in the two systems ELVIS and TOOT, respectively [11]. Kamm
et al. discussed the generalization ability of PARADISE across
three different systems [32]. Walker et al. studied its gener-
alization across different user populations and found that the
it did not generalize well from novice users to expert users
[33]. Researchers have also extended PARADISE to evaluate
multimodal systems [34], [35].

III. EXPERIMENTAL CORPUS AND ANNOTATION

We first describe the dialog data that forms the basis of our
experiments. We then present the crowdsourced annotation of
spoken dialog system quality that forms the training data and
ground truth for automatic prediction of user satisfaction.

A. Spoken Dialog Corpus

All dialog data employed in the current study are drawn from
materials associated with the Spoken Dialog Challenge (SDC)
2010 [36] and the CMU Let’s Go! system [1]. SDC 2010 was
coordinated byMaxine Eskenazi and Alan Black from Carnegie
Mellon University (CMU) and was designed to focus effort on
tasks including spoken dialog systems (SDS) development, user
simulation, and SDS evaluation. The application domain was
information-seeking, specifically to access Pittsburgh bus infor-
mation. Dialog examples from the four SDC systems are shown
in Tables I–IV.
The SDC reference system implementation was drawn from

the Let’s Go! system, i.e., System 1 in Table I. Let’s Go! has
been deployed to regular users for several years to provide after-
hours access to Pittsburgh bus information, when phone lines
are not staffed. Data from over 50,000 dialogs is available. In
addition to the training dialogs, we also utilize data collected

TABLE I
AN EXAMPLE DIALOG FROM SYSTEM 1 (THE LET’S GO! SYSTEM)

TABLE II
AN EXAMPLE DIALOG FROM SYSTEM 2

from the test deployments of the systems developed for SDC
2010, from CMU and three other participating sites. In the final
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TABLE III
AN EXAMPLE DIALOG FROM SYSTEM 3

TABLE IV
AN EXAMPLE DIALOG FROM SYSTEM 4

stage of the shared task, these systems were made accessible to
real users for a limited period of time. All dialog interactions,
transcripts, data and features are drawn from automatically gen-
erated system log files. There are 310 SDC dialogs in total which
will be used as testing data when verifying the generalization
ability of our evaluation model.

B. Corpus Annotation for User Satisfaction

While the SDC dataset described above constitutes a large
and important dataset, it lacks a key requirement for use in
spoken dialog system evaluation: a measure of user satisfac-
tion. This measure is crucial both for developing and assessing
models to predict user satisfaction as a holistic measure of

system quality. In laboratory settings, user satisfaction has typ-
ically been assessed through user questionnaires. However, in
real-world deployment it is impossible to expect users to com-
plete surveys, and the corpus is far too large to allow complete
assessment by trained, and presumably expensive, experts. To
overcome these problems, we developed a methodology to
collect judgments of system quality through crowdsourcing.
Crowdsourcing refers to outsourcing a task to a large and typ-

ically non-expert group. In this work, we employ the Amazon
Mechanical Turk (MTurk) crowdsourcing platform. We cast
SDS evaluation as a “Human Intelligence Task” (HIT) pre-
sented by “Requesters” to be performed by online “Workers.”
Each HIT consisted of the automatic text transcript of one of the
corpus dialogs, along with a questionnaire, motivated by prior
work in SDS evaluation [24], [25]. The questions cover user’s
confidence, perceived task completion, expected behavior,
overall performance and categorization of task success. The
questionnaire, along with a brief description of the goal of each
question, appears in Table V; the aims in Table V did not appear
in the actual HIT, but are presented here for explication.
11,000 dialogs were uploaded to the MTurk platform and

were rated by around 700 online workers in 45 days at a cost
of a few hundred dollars. We designed tasks specifically to as-
sess interrater agreement, with 16 Workers rating each dialog.
Since the questions elicited responses that ranged in value from
1 to 5 (Q1–Q4) and from 1 to 7 (Q5), we employed Cohen’s
weighted Kappa [37]. We found a moderate level of agreement

for the more objective task success and task comple-
tion related measures captured by Q2 and Q5. This result pro-
vides validation for the crowdsourcing methodology and evi-
dence of the reliability and utility of MTurkWorkers. The levels
of interrater agreement on the more subjective measures relating
to user expectations and overall system quality (Q3, Q4) were
lower , which is not surprising.

IV. COLLABORATIVE FILTERING MODEL

Collaborative filtering (CF) uses a database of users’ pref-
erences for items to predict the utility of a certain item for a
particular user. Item-based techniques are one main class of CF
implementations. These methods search for items most similar
to the target one in a data set which has been rated by users. Sup-
pose that the most similar items to the target are selected for
the active user , and their ratings by are denoted as .
A typical way to predict the rating of the target item for
the user is to compute the weighted sum of ratings on the
similar items,

(3)

where the weights are similarities between and the
items. For some more elaborate algorithms for item-based CF

we refer readers to [17].
While our proposed algorithms are inspired by item-based

CF, we want to highlight some differences between the SDS
evaluation problem and CF. First, items in our problem are more
consistent than those in recommendation systems—they are all
dialogs. This unique characteristic allows us to represent the
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TABLE V
QUESTIONS CONSTITUTING THE TASK ON DIALOG EVALUATION (Q: QUESTION,
OPT: OPTIONS). THE QUESTIONNAIRE COVERS THE USER’S CONFIDENCE,
THE PERCEIVED TASK COMPLETION, THE EXPECTED BEHAVIOR, THE OVERALL

PERFORMANCE AND THE CATEGORIZATION OF TASK SUCCESS

items by common features (see Section IV.C), such as the total
number of system turns or average recognition score, and the
similarity between two dialogs is hence computed from their
feature vectors. Secondly, the dialogs similar to the target may
be rated by different users, so we do not intend to predict the
rating of the target for a particular user , but rather for a general
population of users.

A. ICFM for User Satisfaction Prediction

We detail our item-based CF model (ICFM) for user satis-
faction prediction in the following. Let be

a large dialog corpus where each dialog is rated as . As
pointed out in the previous section, we represent each dialog
with a feature vector , e.g., the total number of user help

requests and average recognition score (see Section IV.C). The
similarity between two dialogs and is measured as the co-
sine similarity of their feature vectors,

(4)

We could also choose other similarity measures, such as Eu-
clidean distance, which we have tried and obtained very similar
results.
To save computation time, we cluster the dialog corpus in ad-

vance. Any efficient clustering algorithm is acceptable and the
basic -means clustering is used in our work. Let
be the set of clusters created from such that

. Therefore, the process of retrieving similar dialogs for
the target dialog is reduced to its assignment to a cluster ,

(5)

where is the centroid of . All the dialogs in cluster are
similar dialogs to the target dialog .
Sarwar et al. pointed out that two items with high similarity

may be distant in Euclidean distance [20], where the weighted
combination of the raw ratings of such similar items may lead to
poor prediction. Therefore, in our problem, instead of using the
weighted sum in (3), we use linear regression built on dialogs in
the selected cluster to predict the rating for the target dialog
. Note that since we have partitioned the dialog corpus into
clusters, the linear regression can be trained on each cluster

beforehand. With such modifications, ICFM is formulated as
follows:
1) Extract feature vector for each dialog .
2) Use -means to create dialog clusters for the
dialog corpus based on the feature representations and
the similarity measure in (4).

3) Build the linear regression model
for each cluster , where comprises the regression

coefficients and is the constant term.
4) Given an unseen dialog (unevaluated dialog here), we
first extract a feature vector and then assign into its
nearest cluster with (5).

5) Use which is trained on to predict user satisfaction
for , i.e., .

B. Extended ICFM for User Satisfaction Prediction

The features used to represent dialogs (see Section IV.C) can
be separated into user-related and system-related types. For ex-
ample, #BargeIn (i.e., the total number of the user’s barge-in
attempts) reflects the characteristics of user behavior and can
be classified as a user-related feature, while #SystemQuestion
(i.e., the total number of the system’s questions in the dialog) is
a system-related feature. The intuition for this separation is that
the judgement rating for a dialog can be influenced by two types
of features, i.e., user style and system quality. On one hand,
users with different user styles may have different preferences
for the dialog, which can result in different evaluations for the
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same dialog. On the other hand, a high-quality dialog coming
from the system is more likely to get a high rating statistically.
Ratings determined by user style can be obtained from user-re-
lated features and those due to system quality can be drawn from
system-related ones. Hence, we can predict judgment ratings
based on the two types of features separately, rather than on the
basis of the entire feature set. Thus, we extend ICFM to EICFM,
as follows:
1) Create system-related clusters for dialog
corpus based on system-related features , e.g., average
recognition score.

2) Create user-related clusters for based
on user-related features , e.g., the total number of user
help requests.

3) Build linear regression models
and for and respec-
tively.

4) Given an unseen dialog , choose and which are
themost similar to with respect to and , respectively.

5) Use the regression model of to predict system-
related judgement for , i.e.,

, and use of to predict user-related
judgement , i.e., .

6) The final rating is obtained by linearly combining the two
kinds of ratings, , where is a
weight varying from 0 to 1.

Compared with ICFM, EICFM can have a better balance be-
tween user judgments based on user style and system quality. As
will be seen, experiments demonstrate that this extension dis-
tinctly improves evaluation performance.

C. Extraction of Interaction Features

This subsection describes how we extract the feature vector.
The corpus consists of 5000 Let’s Go! dialogs for which
the user judgments have been collected with crowdsourcing
through MTurk (see Section III.B).
Based on the ITU Recommendation [28], we extract 10 inter-

action features, defined in Table VI, from the log files for each
dialog. These features are chosen since they can be automati-
cally extracted from the log files. The features #Help Requests
and #User Questions are obtained based on cue phrases such as
“help”,“ what”, “where”, etc. The features of #System Turns,
#User Turns,AveRecogScore, #Barge In and #Help Requests
were used in the original version of the PARADISE model [10].
The feature #DTMF is specific to the Let’s Go! system since it
provides touch tone functionality to users. Therefore, each di-
alog is represented by a vector concatenating all ten features.
Among these features, #System Turns, AveRecogScore and

#System Questions are considered system-related while the
others are user-related. All features use -norm scores in the
following experiments, i.e., , where and
are the mean and standard deviation of feature .

V. EXPERIMENTAL RESULTS AND ANALYSIS

We conduct two experiments to investigate how ICFM and
EICFM can improve user satisfaction prediction. The linear re-
gression model (LRM) in PARADISE is used as the baseline

TABLE VI
FEATURES AUTOMATICALLY EXTRACTED FROM LOG FILES

model (see Section II.C). Experiment I compares the accu-
racy in predicting user satisfaction for ICFM, EICFM and LRM.
Experiment II compares the mean values of true ratings and
predictions of the test data over the number of system turns
(#System Turns), because the LRM results show that it takes
on the largest weight.
For convenience, we set the number of user-related clusters
to be equal to that of system-related clusters in EICFM in

all the experiments. As in [11], [38], we also use to evaluate
the prediction accuracy of our models. is a popular measure
of the predictive power of an evaluation model, which measures
the proportion of variability explained by the regression model.
It is defined as:

(6)

where is the total number of ratings, is the ground truth
rating, is the predicted rating from a prediction model, and
is the mean of . varies from 0 to 1, and a higher

value indicates a higher prediction accuracy.

A. Prediction of User Satisfaction

In Experiment I, we use 10-fold cross validation on the
data corpus (5,000 rated Let’s Go! dialogs, see Section III.B)
to measure in predicting user satisfaction of test data for
ICFM, EICFM and LRM. Recall that Q3 and Q4 in the ques-
tionnaire (see Table V) covering the user’s expectation and
overall impression are both related to user satisfaction. Based
of the method of computing user satisfaction in [11], we obtain
a user satisfaction score by averaging the responses to Q3 and
Q4 for each dialog.
Recall that in EICFM, the final rating of a target dialog is a

linear combination of user-related and system-related ratings,
i.e., . Fig. 3 shows of EICFM
in relation to the weight for different numbers of clusters.
As can be seen, EICFM achieves the best performance when

for different numbers of clusters, and the prediction
performance goes down for values of w above 0.1. The result
suggests that system-related features are more helpful than user-
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Fig. 3. of EICFM for user satisfaction prediction in terms of .

Fig. 4. for user satisfaction prediction, in relation to the number of clusters
for the three prediction models.

related ones in determining user satisfaction. Results of EICFM
presented below are all with .
Fig. 4 shows of predicting user satisfaction varying with

the number of clusters for the three models. Since LRM is
unrelated to the number of clusters, we represent the LRM re-
sult with a single diamond at . We observe that ICFM
outperforms LRM for most values of , and EICFM has the
best performance throughout. In particular, when
values for EICFM, ICFM and LRM are 0.39, 0.31 and 0.27 re-
spectively. Based on -test, we find EICFM significantly out-
performs LRM throughout, and ICFM significantly improves
performance when . Fig. 5 presents the
performance of three models with varying training size, when

for the CF models. EICFM achieves the best perfor-
mance, indicating its robustness to data size. In contrast, ICFM
requires more data, outperforming the baseline with 2,000 or
more training examples.
The improved performance from our CF models may result

from the fact that local information is used to predict the rat-
ings, rather than information from the entire database, which
may introduce noise. EICFM outperforms ICFM, possibly due
to EICFM’s better balance between user and system-related in-
fluences on overall ratings. In addition, EICFM is more robust

Fig. 5. for user satisfaction prediction, in relation to the number of data
points in the training set for the three prediction models .

Fig. 6. Average ratings of user satisfaction for dialogs over #System Turns.

to the number of clusters than ICFM. The for ICFM drops
below that of LRM when , while the performance of
EICFM remains stable. This drop is reasonable - since we need
sufficient samples to train a good regression model, the error
increases as the number of clusters increases and the number
of samples in each cluster decreases. The number of feature di-
mensions in ICFM is larger than that in EICFM, implying that
ICFM needs more samples per cluster.
In Experiment II, the three prediction models ( for

both ICFM and EICFM) are trained on 4,000 dialogs, and are
tested on the remaining 1,000 ones. We compare the average
values of predicted and true ratings over #System Turns. In
other words, the ratings are averaged over dialogs sharing the
same #System Turns. This method compares ratings for groups
of dialogs rather than single ones [38].
Fig. 6 shows that both ICFM and EICFM can better re-

produce the relations between ratings of user satisfaction and
#System Turns than LRM. However, all the three models show
a larger divergence between true ratings and predicted ones
when #System Turns . This divergence may be caused by
the fact that there are fewer training dialogs (around 10) of this
length, yielding poor models.
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Fig. 7. The probability density plots of #System Questions, #System Turns,
AveRecogScore and #Barge In for dialogs rated high , medium and
low . The plots of other features are similar to that of #Barge In.

Moreover, the plots of true ratings and predicted ones from
ICFM and EICFM all show that the ratings of user satisfac-
tion are at a low level (less than 3) and decrease when #System
Turns . This is a reasonable result, if we consider the char-
acteristics of the Let’s Go! system. As Table I shows, the system
has to obtain enough information from the user (including the
bus number, origin, destination and departure time) before it can
retrieve information from the database and provide the appro-
priate response. After the user provides the requested informa-
tion, the system also has to confirm each piece of information
according to an explicit confirmation strategy. Hence, due to the
design of the dialogmodel, dialogs with fewer system turns (less
than 10) are prone to failure and consequently get low ratings
of user satisfaction.

B. Analysis of Prediction Results

To better understand the relations between user satisfaction
and the dialog metrics, we analyze the prediction results from
EICFM. Based on the predicted ratings of 1,000 dialogs from
EICFM in Experiment II in Section V.A, we divide the evalu-
ated dialogs into three categories: (ratings in [3.5,5]), (rat-
ings in [2.5,3.5)) and (ratings in [1,2.5)). Fig. 7 shows the
probability density plots of 4 different features for dialogs in
each category. We can see that the densities of and on
#System Questions #System Turns, and AveRecogScore are
different, which implies that the three features have relatively
larger impact on user satisfaction. Dialogs with appropriately
higher values for these features tend to get higher ratings.
In addition, we inspect the dialogs in each category and obtain

some interesting observations for category . We originally hy-
pothesized that a dialog would be more efficient (i.e., a shorter
dialog with a completed task) and get a higher rating of user
satisfaction if the user were “aggressive” in trying to provide
all related information at once, such as “I want to take bus
from the airport to murray at 10 p.m.”. However, there are only
a very few such dialogs in category . Most of the dialogs in

Fig. 8. The mean scores of of SDC systems from CF and MTurk.

category show that the users provide one piece of information
per dialog turn, guided by the system. Table I shows a typical
example. As can be seen, our original hypothesis seems invalid
because there tend to be more recognition errors in longer utter-
ances when the user includes more information in a single turn.
These recognition errors reduce the users’ overall impressions
of system quality.

C. Verifying the Generalizability of the CF Model

In Section V.A, we trained the CF model based on one set of
Let’s Go! dialogs and tested its prediction accuracy on another
set of Let’s Go! dialogs, training and testing on the same system.
In this section, we assess the generalizability of CFmodel across
multiple systems (within the same domain) by applying the CF
model built on the Let’s Go! dialogs to the SDC 2010 corpus
[36] introduced in Section III.A.
We restrict our training set to the 5,000 Let’s Go! dialogs

mentioned in Section V.A, and test the trained ICFM and
EICFM on the dialog corpus of the four systems in
SDC 2010 separately. All 310 dialogs of the four SDC systems
are rated by MTurk Workers as described in Section III.B, and
these ratings will serve as ground truth.
The user satisfaction rating for each dialog (both

training and testing) is again obtained by averaging the
Workers’ answers to Q3 and Q4, and is on a 5-point scale.
Dialog features include TaskCompletion, #SystemTurns,
#UserTurns, #SystemQuestions, #UserQuestions, #Help and
WPUT (see Table VI). These features are shared by the Let’s
Go! system and the SDC systems, so they are not exactly the
same as those in Section IV.C. Except for TaskCompletion
which is taken from Workers’ annotations of Q2, the remaining
features are automatically extracted from log files.
Fig. 8 shows the mean of the four SDC systems predicted

by ICFM and EICFM and rated by MTurk Workers, respec-
tively. We observe that except for System 2, the ratings from our
CF model andMTurk are quite close for the other three systems.
The maximum difference between predicted and crowdsourced
ratings is 0.4, and the minimum difference is 0. Moreover, the
mean rating from EICFM is closer to the mean crowdsourced
rating than that generated by ICFM.
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TABLE VII
MSE BETWEEN PREDICTED AND MTURK RATINGS USING ICFM

AND EICFM FOR ALL SDC 2010 SYSTEMS

In addition, we also investigate mean square error (MSE) of
the CF model and LRM on predicting the ratings of the di-
alogs of the four SDC systems, where

is the total number of dialogs, is the predicted rating
and is the true rating from MTurk. As shown in Table VII, the
MSE values of the CF model for the four systems are lower than
those of LRM. EICFM achives the lowest MSE of 0.7989 for
System 3. EICFM generally has better performance than ICFM.
Though trained on a single system, our CF model generalizes
well to multiple systems within the bus information domain.

VI. CONCLUSION

This paper proposes a collaborative filtering (CF) model to
predict user satisfaction in SDS evaluation. This approach is
inspired by the use of CF in recommendation systems, where
the preference of a user for a new item is assumed to resemble
that for similar items rated previously. In this case, we adapt the
idea to predict user evaluations of unrated dialogs assuming that
they should be similar to the ratings received by similar dialogs.
A reference baseline is provided by a linear regression model
(LRM) based on the PARADISE framework. We present two
versions of the CF model for SDS evaluation. First, item-based
collaborative filtering model (ICFM) clusters rated dialogs and
builds a linear regression model for each cluster. A testing di-
alog then uses the LRM of its most similar cluster to predict
user satisfaction. Second, the extended item-based collabora-
tive filtering model (EICFM) separates dialog features into user-
related and system-related classes, to build linear regression
models for each feature class separately. These models are ap-
plied to the dialog corpus from the Let’s Go! system and SDC
2010, for which the judgments are collected through crowd-
sourcing. Experimental results show both ICFM and EICFM
can significantly improve the for prediction on test data
when the number of clusters is set appropriately. Moreover,
EICFM exhibits the best performance and is less sensitive to
than ICFM. We also verify the generalization ability of the

CF model across multiple systems by training it on the Let’s
Go! dialogs and testing on the SDC dialogs. Results show that
the ratings of the SDC systems predicted by the CF model are
closely related to those obtained from crowdsourcing, as mea-
sured by difference in mean ratings and mean squared error.
A possible future direction is to extend the current approach

and utilize a unified model (e.g., a Bayesian network or a
Markov decision process) to replace the linear models of the
clusters. This extension will be help to uncover the latent

factors that may enable us to gain insight into the influence of
different dialog features on overall user satisfaction. Further-
more, we consider applying the CF model to evaluate not just
speech-only dialogs, but also multimodal (e.g., speech with
gestures) dialogs.
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