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Abstract—We consider the problem of efficient on-line anomaly
detection in computer network traffic. The problem is ap-
proached statistically, as that of sequential (quickest)ltangepoint
detection. A multi-cyclic setting of quickest change detection
is a natural fit for this problem. We propose a novel score-
based multi-cyclic detection algorithm. The algorithm is kased on
the so-called Shiryaev—Roberts procedure. This procedurées as
easy to employ in practice and as computationally inexpens
as the popular Cumulative Sum chart and the Exponentially
Weighted Moving Average scheme. The likelihood ratio based
Shiryaev—Roberts procedure has appealing optimality proprties,
particularly it is exactly optimal in a multi-cyclic setting geared
to detect a change occurring at a far time horizon. It is therdore
expected that an intrusion detection algorithm based on the
Shiryaev—Roberts procedure will perform better than other de-
tection schemes. This is confirmed experimentally for realraices.

in a certain multi-cyclic setting[[15], a natural fit in the
computer network anomaly detection context. The aim of
this work is to offer a novel multi-cyclic anomaly detector
using the SR procedure as the prototype. Due to the exact
multi-cyclic optimality of the SR procedure, the proposed
algorithm is expected to outperform other detection scleeme
in particular the multi-cyclic CUSUM procedure. We confirm
this experimentally using real data.

The remainder of the paper is organized as follows. Sec-
tion [ provides an introduction to the subject of changepoi
detection. In Sectio 1ll, we present our anomaly detection
algorithm. In Sectiof IV, we illustrate our algorithm at Wor
In Sectiorl Y, we comment on how to improve the performance
of the algorithm. Lastly, Sectidn VI draws the conclusions.

We also discuss the possibility of complementing our anomgl
detection algorithm with a spectral-signature intrusion detection
system with false alarm filtering and true attack confirmation
capability, so as to obtain a synergistic system.

II. QUICKEST CHANGEPOINTDETECTION

Quickest changepoint detection is a study of techniques to
detect a change (“disorder”) in the state of a time process,
usually from “normal” to “abnormal”; inference about the

The Internet has never been a safe place and designing aptecess’ current state is made from a series of quantitative
mated and efficient techniques for rapid detection of compurandom observations (e.g., measurements corrupted bg)nois
network anomalies (e.g., due to intrusions) never ceasée toThe sequential setting assumes the series is amassed one at a
a topical problem in cybersecurityl[1]. Many existing andyna time, and so long as the recorded data behavior suggests the
based Intrusion Detection Systems (IDS-s) operate by amply process is in its “normal” state it is let to continue. Howeve
the machinery of statistics to comb through the passindjdrafthe observations hint that the process’ state may havelssdtc
looking for a deviation from the traffic’s normal profile] [2]-to “abnormal”, one’s aim is to detect the true change as dyick
[6]. By way of example, the Sequential Probability Rati@s possible for a given risk associated with false alarmthato
Test (SPRT)[[7], the Cumulative Sum (CUSUM) chart [8]an appropriate response can be provided in a timely manner.
and the Exponentially Weighted Moving Average (EWMA)The time instance at which the state of the process changes
inspection scheme [9] are thde facto “workhorse” of the is referred to as thehangepoint, and the challenge is that
community. The CUSUM and EWMA methods come from thé is not known in advance. This is known as tksuential
area of sequential changepoint detection, a branch oftitati (quickest) changepoint detection problem. For lack of space,
concerned with the design and analysis ofagest way to from now on we will focus only on the basitd version of
detect a change (i.e., an anomaly) in the state of a phenametias problem; a general non-iid case is surveyed, e.gl.6h [1
(time process) of interest [10], [11]. [17].

Yet another changepoint detector popular in statistics isSuppose one is able to sequentially collect a series
the Shiryaev—Roberts (SR) procedurel[12]+[14]. Thouglpreof independent random observationsX,, },>1, such that
tically unknown in the cybersecurity community, the SRX;,..., X, are each distributed according to a known prob-
procedure is as computationally simple as the CUSUM chatility density function (pdf)f, while X, 1, X, 42,... each
or the EWMA scheme. However, unlike the latter two, the SRdhere to a pdf; # f, also known. The time index (i.e.,
procedure is also the best one can do (i.e., exactly optim#ie changepoint) is assumed unknown non-random number;

I. INTRODUCTION


http://arxiv.org/abs/1212.1829v1

for cases that regard as a random variable, see, e.0.,1[12], A practically appealing way to measure the detection speed
[13]. One’s aim is to detect that the observations’ commas Pollak’s [21] “worst-case” (Supremum) Average Delay to
distribution has changed. The challenge is to do so withwas f®etection (ADD), conditional on a false alarm not havingtbee
observations as possible following the changepoint, stilbge previously sounded, i.e.,
a tolerable limit on the risk of making a false detection.
Statistically, the problem is to sequentially differetgia
between the hypothesés,: v = k, 0 < k < o (i.e., that the
data{X,},>1 change their statistical profile at time instanc
v==Fk 0< k<) andH: v = x (i.e., that no change

SADD(T) = o ax Ei[T — k|T > K].

The minimax quickest changepoint detection problem is to
?lnd Topt € A(7y) such that

ever occurs). To test{;, againstH., one first constructs the SADD(T,p) = inf SADD(T) for all y > 1.
corresponding likelihood ratio, which for the iid scenahias TeAM)
the form To date, this problem remains open, and only asymptotic (as
n 9(X;) ~ — 00) solutions have been obtained [21], [22].
A = H Aj, where A; = f(XJ»)’ The CUSUM chart[[B] has been popular in many areas
j=k+1 J of engineering and computer science, including cyberssgcur
and it is understood that,., = 1 for k > n. It iteratively maximizes the log-likelihood ratio (LLR) i

Next, as each new observation becomes available to tE&tPect to the changepoint and stops once the maximum
the hypotheses, the sequenffy.,}i<i<n is turned into exceeds a certain threshold. More specifically, the CUSUM
a detection statistic. To this end, one can either use th@rocedure is based on the statistic, = max{0,logVy.},
maximum likelihood principle or the (generalized) BayesiaVhereV., is defined in[(lL), which is computed recursively
atp[i_r(?[gch. In the former case the corresponding detection W, = max{0, Wy_1 + Lo}, n>1, Wp=0.
statistic is

V, = max Apn, n>1, (1) HereL, = logA, is the LLR. The corresponding stopping
1sksn rule is
i.e., the famous CUSUM statistic. The Bayesian statistic Cp =min{n > 1: W, > h},

depends on the changepoint’s prior distribution. As in agec _ ) )
the changepointy, is assumed unknown, the correspondinghereh > 0 is a detection threshold preset so as to achieve

quasi-Bayesian (or generalized Bayesian) detectionsstati 1 desired level of false alarms> 1, and thus guarantee that

can be defined as Cn € A(y). This can be achieved by settitg= h., > log~,
n since ARL(Cy) > e for any h > 0 [19]. For large values of
R, = ZAk'm n>1. ~ more “careful” selection of is possible[[17].
= Consider now a context in which it is of utmost importance

) ) to detect the change as quickly as possible, even at the sxpen
One can V'ew{}?n}n?l as being the_ average of the Sequencg raising many false alarms (using a repeated application
{_A’W}K’f@} with respect to an (improper) uniform prior s e same stopping rule) before the change occurs. Put
distribution 'mpose‘?' om, See, €.9., [12], [13]{ [?‘6]_[18]'_ otherwise, in exchange for the assurance that the change wil
Once the detection statistic is chosen, it is supplied I detected with maximal speed, we agree to go through
an appropriate sequential detection procedure. A defecti ugyqrm of false alarms along the way (the false alarms
procedure is a stopping timd;, which is a function of the 5.0 ensyed from repeatedly applying the same detection rule
observed data{X,},>:. The meaning ofl" is that after starting from scratch after each false alarm). This scenari

observing X;,..., Xp it is declared that the change is inshown in FigurdlL.

effect. That_may or may not be the case. If it is not, then Formally, letTy,T5, ... be sequential independent repeti-
T'< v, and it is said that a false alarm has been sounded. ;< of the stopping tim@, and let7; = Ty + Ty + - -+ T,

Henceforth, letP,(-) and P (-) denote the probability . > 1, be the time of thej-th alarm. Definel, = min{j >
measures, respectively, when the change occurs at timaninst, . T

! : : T; > v}. In other words,7;, is the time of detection of
0 < v < oo, and when no change ever occurs. Likewise, Igf e change that occurs atafter I, — 1 false alarms have
E,[] andE[] be the corresponding expectations.

) .. been raised. Write
Lorden [19] suggested to measure the risk of raising a

false alarm via the Average Run Length (ARL) to false alarm STADD(T) = lim E,[T;, — V]
ARL(T) = E.[T] and showed that the CUSUM procedure e

has certain minimax properties in the class of detection pr®" the limiting value of the average delay to detection megfe
cedures to as theltationary Average Delay to Detection (STADD). The

multi-cyclic changepoint detection problem is to fiff),;
A(y) = {Tﬁ ARL(T) > 7} A(y) such that

for which the ARL to false alarm is no “worse” than the STADD(T,..) = inf STADD(T) for everyy > 1.
desireda priori chosen level > 1. See also Moustakidés [20] reat)

who proved that CUSUM is in fact strictly minimax with This formulation is instrumental in detecting a change that
respect to Lorden’s criterion for every> 1. takes place in a distant future (i.e.js large), and is preceded
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Fig. 1. Multi-cyclic changepoint detection in a stationaegime.

by a stationary flow of false detections. Such scenarios aed entail changes in the traffic’s statistical propertiess

a commonplace in the area of computer network anomaftuitively appealing to formulate the problem of computer

detection. network anomaly detection as that of a quickest changepoint
As has been shown by Pollak and Tartakovsky [15], the sdetection: to detect changes in the statistical profile 6fiaek

called Shiryaev—Roberts (SR) procedurel [18]] [14btactly traffic as rapidly as possible, while maintaining a toleeabl

optimal for everyy > 1 with respect to the stationary averagdevel of the risk of making a false detection.

detection delays TADD(T'). Thus, in the multi-cyclic setting It is common that in practice neither pre- nor post-anomaly

the SR procedure is a better alternative to the popular CUSUhNktributions are known. As a result, traffic’s pre- and post

and EWMA schemes. anomaly profile is poorly understood, and one can no longer
The SR rule stops at time instance rely on the likelihood ratios. Hence, an alternative apphoa

is required. Let us first consider a typical behavior of the

Sa=min{n >1: R, > A}, CUSUM and SR statistics. As long as the observed sequence

where the SR statistic is given by the recursion {Xn}n>1 is in the normal mode, the detection statistics
{Wy}n>1 and {R,},>1 behave as if they were “afraid” of
Ry=(0+Ry-1)An, n=1 Ro=0. approaching the detection thresholtisand A respectively

(although it is still possible that the thresholds will bessed,
in which case a false alarm will be raised). However, as soon
as X,41 — the first data point affected by an anomaly — is
recorded, the behavior 6¥,, and R,, changes completely, so
that they now eagerly try to hit the thresholds. Formallys th
means tha..[£,] < 0 andE,[L,] > 0, v < n. That is, the
detection statistic has a negative drift under the norngihre,
and a positive drift in an anomaly situation. A typical beiloav
of the detection statistic in pre- and post-change regiraes i
shown in Figuré .

The above somewhat abstract introduction to sequentialConsider now the following score-based modification of the
changepoint detection is straightforward to put in the eght SR procedure
of anomaly detection in computer network traffic. As network
anomalies typically take place amknown points in time R, = (1+R, 1), n>1, Ry=0

Here A > 0 is a detection threshold set priori so as to
ensureS, € A(y) for a desiredy > 1. It can be easily
shown [23] thatARL(S4) > A for all A > 0, so choosing
the detection threshold as, =~ will guaranteeSs € A(%).
A very accurate asymptotic approximatidRL(S4) ~ A/v,
A — oo is also possible, wher@ < v < 1 is a constant which
is a subject of renewal theory. See, e.g./[23].

IIl. TRANSITION TO CYBERSECURITY
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with the corresponding stopping time being

Sa = min{n > 1: R, > A},

the pre-change parameters, and o2 are estimated from
the training data and periodically re-estimated due to the n
stationarity of network traffic at large time-scales. We gesf
the scoreS,, of the linear-quadratic form

where(C4, Cy and C5 are positive design numbers assuming
for concreteness that the change leads to an increase in both
mean and variance. In the case where the variance either does
not change or changes relatively insignificantly compared t
the change in mean, the coefficiefit may be set to zero.
In the opposite case where the mean changes only slightly
compared to the variance, we tak§ = 0. The first case
appears to be typical for many cybersecurity applications,
for example for ICMP and UDP Denial-of-Service (DoS)
attacks (see [4][]5] where the linear score-based CUSUM has
been proposed). However, in certain cases, such as the one
considered below in Sectidn 1V, both the mean and variance
change quite significantly.

Note that the score given b (2) with

Ci=6¢> Co=(1—-¢°)/2, C3=0¢"/2—logq, (3)

whereq = 0o /0, § = (1 — fico) /00, IS Optimal if pre- and
post-change distributions are Gaussian with known pwativ
valuesy ando?. This is true because in the latter caSe is
the log-likelihood ratio. If one believes in the Gaussiandelo
(which sometimes is the case), then selecting= ¢, and

0 = o with some design valueg andd, provides reasonable
operating characteristics far < qo and§ > Jo and optimal

where A > 0 is an a priori chosen detection threshold.characteristics fog = go andé = dy. However, it is important

Similarly for CUSUM,
W, = max{0,W,_1+ S,}, n>1, W,=0
with the corresponding stopping time being

éhzmin{n>1:Wn>h}, h > 0.

Here S, (Xu,...
Clearly, so long as
Foo[Sn(X1,...,X,)] <0 and E,[S,(X1,...,X,)] >0,

for all v > 0, the SR and CUSUM detection procedures

to emphasize that the proposed score-based SR procedusre doe
not assume that the observations have Gaussian pre- and post
change distributions.

Further improvement may be achieved by using either mix-
tures or adaptive versions with generalized likelihoodorat
type statistics[[19],[[23].

X,) are the selected score functions. Based on the previous reasoning (see Segfion 1) we expect

the multi-cyclic score-based SR procedure to perform bette
than the analogous CUSUM procedure.

IV. A CASE STuDY

designed using such score functions in place of the liketho We now present the results of testing the proposed de-
ratio will work, though they will not be optimal anymore.tection algorithms on a real Distributed DoS (DDoS) at-
Their behavior will be similar to that shown in Figurke 2. Seortack, namely, SYN flood attack. The aim of this attack
functions S,, can be chosen in a number of ways and eagé to congest the victim’s link with a series of SYN re-
particular choice depends crucially on the expected type @liests so as to have the victim's machine exhaust all of
change. In the applications of interest, the detection Iprab its resources and stop responding to legitimate traffics Thi
can be usually reduced to detecting changes in mean valugfl of an attack clearly creates a volume-type anomaly

along with variances (mean and variance shifts).
Let
froo = Eoo[Xy], 02 = Vare[X,,]

and
pw=Eo[X,], o*=Varg[X,]

in the victim's traffic flow. The data is courtesy of the
Los Angeles Network Data Exchange and Repository (LAN-
DER) project (seé http://www.isi.edu/ant/lander). Sfieally,

the trace is flow data captured by Merit Network Inc.
(see http://www.merit.edu). The attack is on a University o
Michigan IRC server. It starts at roughBb0 seconds into

denote the pre- and post-anomaly mean values and varianties,trace and has a duration & minutes. The attacked IP
respectively. WriteY,, = (X,, — oo ) /0o for the centered and is anonymized to 141.213.238.0. Figlile 3 shows the number
scaled observation at time. In the real-world applications of attempted connections or the connections birth rate as a
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function of time. While the attack can be seen to the naked 4210 7
o = . —Empirical
eye, it is not completely clear when it starts. In fact, there — Gaussian Fit
is a spike in the data (fluctuation) before the attack. Also, e
controlling the false alarm rate with an automatic detectio 3}
system is a challenge. ”s
z
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Fig. 3. SYN flood attack: number of attempted connections. %
[
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We used the number of connections during 20 msec batches 2
as the observationX,,. We estimated the connections birth S
rate average and variance for legitimate traffic and forchtta 05
traffic; in both cases, to estimate the average we used tte¢ usu
sample mean, and to estimate the variance we used the usual o

. . . . 1400 1600 1800 2000, 2200 2400 2600 2800
sample variance. For legitimate traffic, the average is tbou x

oo = 1669.09 connections per 20 msec, and the standard
deviation is in the neighborhood ef, = 113.884 connections
per 20 msec. For attack traffic, the numbers @re 1887.56 Fig. 4. SYN flood attack: connections birth rate pdf with a Gsian fit.
ando = 218.107, respectively. We can now see the effect of

the attack: it leads to a considerable increase in the meén an

(b) Attack traffic.

standard deviation of the connections birth rate. o, logsrTheshod
We now perform a basic statistical analysis of the con- bt \
nections birth rate distribution. Figuté 4 shows the encplri | [~ False Alarms

densities of the connections birth rate for legitimate attaick
traffic. It so happens that for given data, legitimate traffic
appears to resemble the Gaussian process. However, fok atta
traffic, the distribution is not as close to Gaussian. We have
implemented the score-based multi-cyclic SR and CUSUM
procedures with the linear-quadratic scdde (2). When dhgos

the design parameters we assume the Gaussian model for
pre-attack traffic, which agrees with the conclusions drawn
above following the basic statistical analysis of the data. P I T U Al DT T o
Thus, parameter€’;, C, and C3 are chosen according to 540 541 542 D8 cecendsy 0 046 54T 548
formulas [B) withgy = ¢ ~ 0.52 and to allow for detection

of fainter attacksd, ~ 1.5 (Ver_sus the estimated attack Valu?—'ig. 5. SYN flood attack: long run of the Shiryaev—Robertscpdure;
0~ 19) We set the detection thresholds ~ 1.9 x 103 logarithm of the SR statistic vs time.

and h =~ 6.68 so as to ensure the same level ARL at

approximately500 samples (i.e.10 sec) for both procedures.

The thresholds are estimated using Monte Carlo simulationsThe detection process is illustrated in Figule 5 and Figlire 6
assuming the empirical pre-change distribution learnedhfr Figure[3 shows a relatively long run (taking into account the
the data. Specifically, we todk)®> samples from the empirical sampling rate20 msec) of the SR statistic with several false
pre-change distribution and simulated the behavior of tladarms and then the true detection of the attack with a very
respective detection statistics and procedures whilestidjp small detection delay (at the expense of raising many false
the thresholds until observing the desir&®L. alarms along the way). Recall that the whole idea of this

Log Shyriaev-Roberts Statistic, log(R)




, , , , , , , approach and the stationary average detection delay isieahat
T N U VN B N I A I fit for cybersecurity applications. However, it is worthiehi
! “~Log SR Threshold ~ Change Point — . . .

7t : to remark on a possible way to enhance the potential of

: changepoint detection techniques as applied to cybelisgcur

SR Detecton Any changepoint detection method is subject to the follgwin
' drawback: instantaneous detection is not an option, unfess
false alarm risk is high. Hence, though changepoint detecti
schemes are computationally inexpensive, in practice|@mp
ing one such scheme alone may not be a good idea, since it
will be overflowed with false alarms. The simplest solutien i
to increase detection thresholds dramatically, but thislead
to an increase of the detection delay.

. ‘ . . L ‘ Here comes an interesting opportunity: What if one could
547.4 547.6 547.8 548 548.2 548.4 548.6 . . . . .

Time (seconds) combine changepoint detection techniques with others that
offer very low false alarm rate, but are too heavy to use at
line speeds? Do such synergistic anomaly detection systems
exist, and how can they be integrated?

As an answer, consider complementing a changepoint
detection-based anomaly detector with a flow-based sigmatu
IDS that examines the traffic's spectral profile. For an examp
of such signature-flow-based method, see, €.gl, [24]-[2¥.
principal idea is to employ the Fourier transform to obtdie t
corresponding spectral characteristics of the passirffjctra
This idea can be used in conjunction with the changepoint
detection-based anomaly detector for both rejection cfefal
alarms and confirmation of true detections. Higher computa-
tional complexity of the spectral-signature based deteisto
compensated by the preliminary changepoint anomaly based
algorithm; the latter triggers the former only when there

= N w S o o

o

Log Shyriaev-Roberts Statistic, log(R)

|
i

(a) By the SR procedure
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Change Point \:
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Hlime (seconds) is a suspicion of an anomaly may be taking place in the
network link of interest. For practical purposes the meareti
(b) By the CUSUM procedure between false alarms of the changepoint based anomaly IDS

can be taken as small as a few seconds, as it was in the
experiments presented in the previous section. We belieate t
such an alliance of the changepoint anomaly- and the spectra
paper is to set the detection thresholds low enough in ordggnature-based detectors can significantly improve thelavh
to detect attacks very quickly with minimal delays, whiclsystem’s overall performance reducing the false alarmtmte
unavoidably leads to multiple false alarms prior to thedktathe minimum and at the same time guaranteeing very small
starts. These false alarms should be filtered by a specialgtection delays.
designed algorithm, as has been suggested in [15] and will be
further discussed in Sectign V.

Figure [6(a) shows the behavior of the logarithm of the
SR statistic shortly prior to the attack and right after the We addressed the problem of rapid anomaly detection in
attack starts till its detection, which happens when theéssim computer network traffic. Approaching the problem statisti
crosses the threshold. Figure 6(b) shows the same for traly, namely, as that of sequential changepoint detectien
CUSUM statistic. We see that both procedures successfuylisoposed a new anomaly detection method. The method is
detect the attack with very small delays, though at the esperbased on the multi-cyclic (repeated) Shiryaev—Robertsadet
of raising false alarms along the way, as shown in Figuret®n procedure where the likelihood ratio is replaced with
and discussed above. For both procedures we observed thp-linear-quadratic score. This is done because in reddwo
proximately 7 false alarms pei000 samples. The detectionnetwork security applications both pre-attack and padsicét
delay for the repeated SR procedure is roughlyl seconds distributions are different from hypothesized distribuis such
(or 7 samples), and for the CUSUM procedure the delay & Gaussian or Poisson. Like many changepoint detection
about0.21 seconds (o0 samples). Thus, the SR procedurechemes, our method is also of practically no computational

Fig. 6. Detection of the SYN flood attack by the SR and CUSUMepdures.

VI. CONCLUSION

is better, as expected. complexity and easy to implement. However, what distin-
guishes the SR procedure is its exact multi-cyclic optitpali
V. FURTHER DISCUSSION in a simple change detection problem where densities are

Since in real life legitimate traffic dominates, the idea dfnown, a property that such techniques as the SPRT, the
comparing various anomaly-based IDS-s using the multiicycCUSUM chart, or the EWMA scheme lack. Hence, one may



conjecture that the score-based SR detection algorithm[ig] M. A. Girschick and H. Rubin, “A Bayes approach to a gyationtrol
a better cyber “watchdog”. To support this conjecture, we

conducted a case study using a real SYN flood attack. T,

score-based multi-cyclic SR algorithm outperformed thdtimu
cyclic CUSUM procedure. Lastly, as a possible improvemel?f!
of any changepoint detection-based anomaly detector, we
proposed to complement the latter with a signature-based
spectral IDS. This approach will allow to filter false alarms

reducing the false alarm rate to a minimum and simultangougz]
guaranteeing prompt detection of real attacks.
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