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Abstract—This work presents a distributed algorithm for
observer design for linear continuous-time systems. We assume
the dynamical system to be partitioned into disjoint areas, and
we let each area be equipped with a control center. Each
control center knows local dynamics, collects local observations,
performs local computation, and communicates with neighboring
control centers at discrete times. For our continuous-discrete
estimation algorithm we prove convergence, we characterize its
convergence rate, and we show robustness against discretization
and communication errors. Our technical approach is inspired by
waveform relaxation methods and combines tools from estimation
theory, decentralized control theory, and parallel computation.
We illustrate the effectiveness of our algorithm with illustrative
examples in sensor networks and electric power systems.

I. INTRODUCTION

In response to recent technological advances, distributed
estimation is receiving a tremendous scientific interest. In
distributed estimation, the goal is for a team of coordinated
units to estimate the state of a large-scale dynamical system
via local measurements, local knowledge of the system struc-
ture and parameters, and distributed computation. Distributed
estimation problems arise, for instance, in sensor networks,
electric power grids, and industrial control systems.

In this paper we address the problem of distributed estima-
tion by designing distributed observer for a set of coordinated
control centers. Ever since the pioneering work by Aoki and
Li [1] on observability with partial measurements, the problem
of distributed observer design has received a tremendous
amount of attention. A variety of solution strategies have
been proposed under different assumptions on observability,
information sets, and communication constraints. We refer
the reader to [2]–[9] for a set of seminal references, and
to [10]–[14] for a sample of more recent approaches. Early
approaches in discrete [1]–[3] and continuous-time [4]–[9]
settings primarily investigate the challenges of decentralized
stabilization of the observer error dynamics, reduction of com-
putational complexity, and information fusion in the presence
of noise, possibly with the initial observer synthesis relying
on global system knowledge and the ultimate data processing
being centralized. Instead, recent approaches [10]–[14] focus
on distributed observer design with a distributed observer
synthesis based on local information, local computation and
data processing, and communication constraints.
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Distributed observers are usually designed for discrete-time
systems, since communication and computation are performed
with digital data, and rely upon distributed mechanisms to
merge local computations, such as intermediate data fusion
or averaging steps. The application of these observer to
continuous-time systems, when possible [4]–[9], [14], requires
real-time communication of continuous-time signals, such as
measurements or state variables of local filters. An exception is
presented in [15, Section 5], where continuous-time observers
are coupled with discrete-time estimates. In this case, however,
the observers design is centralized, and it relies on global
system knowledge. To the best of our knowledge, there is no
practically applicable solution to continuous-time distributed
observer problem with discrete-time communication.

The motivation for continuous-time estimation over an a-
priori discretization of the plant is not only the theoretical
challenge to fill a gap in the estimation literature, but also
the absence of a-priori errors due to sampling and discretiza-
tion schemes, the applicability to plants with fast dynamics
equipped with low bandwidth communication systems (the dis-
cretized model requires high sampling rate and high bandwidth
communication to accurately capture fast dynamics), and the
flexibility of adapting the time resolution (sampling rate) in
an event-based fashion [16].

In this paper, we provide an asymptotically convergent and
practically-applicable solution to the distributed continuous-
time observer problem with discrete-time communication. We
consider a large-scale, linear, and continuous-time system in
a deterministic and noiseless setting. We assume the system
to be partitioned into disjoint areas, and we let each area
be equipped with a control center capable of estimating
the state of its own (isolated) area and of communicating
with neighboring control centers. In contrast to classic ap-
proaches in decentralized estimation [5]–[9] sharing a similar
problem setup, our method does not rely on a centralized
observer design and real-time communication of continuous-
time signals. Rather, we propose a fully distributed estimation
algorithm which combines local continuous-time estimation
and communication with neighboring units at discrete time
instants (the communicated data can either be a continuous-
time signal or an approximate representation), and allows each
control center to estimate the state of its own area with a pre-
specified time-delay. Hence, our continuous-discrete algorithm
is suited for applications that can tolerate a certain delay in
state estimation, such as smoothing, off-line state estimation,
attack and fault detection in a distributed setting, and output
control for systems with slow dynamics.

Our continuous-discrete algorithm is inspired by our earlier
investigation of waveform relaxation methods [17]–[19], and
it combines decentralized control techniques [6], [20] with



waveform relaxation methods developed for parallel numerical
integration [21]–[23]. Compared to our earlier work and the
waveform relaxation literature, our current approach is based
on state-space analysis. Thanks to this novel approach, we
can derive a necessary and sufficient convergence condition
reminiscent of the small-gain and spectral radius criteria found
in the literature on decentralized estimation [6], [20] and
waveform relaxation [21]–[23]. We further derive convergence
rate estimates as well as sufficient conditions for contractivity
of the estimation error for a finite number of communication
rounds and measurements collected in a finite-time horizon.
Finally, we discuss the design of our estimation algorithm via
local computation, and we quantify the effect of discretization
and communication errors. We validate the performance and
the applicability of our estimation algorithm with illustrative
examples from sensor networks and power systems.

The remainder of this article is organized as follows: Section
II presents our distributed estimation setup, and an intuitive
approach based on decentralized control theory and parallel
numerical integration. Section III presents our continuous-
discrete estimation algorithm, an analysis of its convergence
properties, and a comprehensive discussion of its implemen-
tation issues. Section IV validates our algorithm with two
illustrative examples. Finally, Section V concludes the paper.

II. PROBLEM SETUP AND PRELIMINARY CONCEPTS

Consider the linear continuous-time dynamical system

ẋ(t) = Ax(t),

y(t) = Cx(t),
(1)

where x ∈ Rn is the state, y ∈ Rp is the measurement,
and A ∈ Rn×n, C ∈ Rp×n. Generally, a continuous-time
estimation filter for system (1) takes the form

ẇ(t) = (A+ LC)w(t)− Ly(t), (2)

where L ∈ Rn×p is an output injection matrix. If the pair
(C,A) is observable, then L can be chosen so that the matrix
A+LC is Hurwitz and the error w(t)− x(t) converges with
time. The filter (2) is inherently centralized, and it typically
cannot be implemented for large-scale systems because (i) the
state w(t) is of high dimension causing high computational
effort, (ii) the sensors collecting the measurements y(t) are
spatially distributed, and (iii) real-time continuous communi-
cation of all measurements to a central processor is required.
In this work we propose a distributed estimation strategy for
large-scale continuous-time systems.

A. Problem setup

We assume the system (1) to be sparse. In particular, let
G = (V, E) be the directed graph associated with the matrix
A = [aij ], that is, the nodal set is V = {1, . . . , n} and there
exists a directed edge (i, j) ∈ E ⊆ V×V if and only if aij 6= 0.
Let V be partitioned into N disjoint sets V = {V1, . . . ,VN},
and let Gi = (Vi, Ei) be the ith subgraph of G with vertices

Vi and edges Ei = E ∩ (Vi × Vi). According to this partition,
and possibly after permuting the states, the matrix A reads as

A =

 A1 · · · A1N

...
...

...
AN1 · · · AN

 = AD +AC , (3)

where Ai ∈ Rni×ni , Aij ∈ Rni×nj , AD is block-diagonal,
and AC =A−AD. Notice that, if AD = blkdiag(A1, . . . , AN ),
then AD represents the decoupled diagonal subsystems and
AC describes their interconnections. Additionally, if A is
sparse, then several blocks in AC are zero.

We make the following assumptions:
(A1) local measurements: C is block-diagonal, that is, C =

blkdiag(C1, . . . , CN ), Ci ∈ Rpi×ni ;
(A2) observability: each pair (Ai, Ci) is observable.

Given the above structure, system (1) results from the
interconnection of N subsystems as

ẋ(t) = ADx(t) +ACx(t), y(t) = Cx(t). (4)

The dynamics of the ith subsystem then read as

ẋi(t) = Aixi(t) +
∑

j∈N in
i

Aijxj(t),

yi(t) = Cixi(t), i = 1, . . . , N,
(5)

where N in
i = {j ∈ {1, . . . , N} \ {i} : Aij 6= 0} denotes

the in-neighbors of subsystem i. We also define the set of
out-neighbors as N out

i = {j ∈ {1, . . . , N} \ {i} : Aji 6= 0}.
We assume the presence of a control center in each subsys-

tem with the following capabilities:
(A3) local knowledge: the ith control center knows the local

system and measurement matrices Ai and Ci as well as
its neighboring matrices Aij for j ∈ N in

i ; and
(A4) local communication: the ith control center receives

information from its in-neighboring control centers j ∈
N in
i , and it sends information to its out-neighboring

control centers j ∈ N out
i at discrete times.

B. Decentralized estimation and waveform relaxation

In this section we recall some preliminary results and
definitions to motivate our approach in Section III. Consider
the filter (2) with a block-diagonal output injection, that is,

ẇ(t) = (AD + LC)w(t) +ACw(t)− Ly(t), (6)

with L = blkdiag(L1, . . . , LN ), and Li ∈ Rni×pi . The error
e(t) = x(t)− w(t) obeys the dynamics

ė(t) = (AD +AC + LC)e(t) . (7)

Due to the observability assumption (A2), there exists Li
such that Ai + LiCi is Hurwitz, or equivalently, AD + LC
is Hurwitz. Let λmax ∈ R be the largest real part of the
eigenvalues of AD + LC. We employ a small-gain approach
to large-scale interconnected systems [6], [20] and rewrite the
error dynamics (7) as the closed-loop interconnection of the
two subsystems ΓD : ė(t) = (AD + LC)e(t) + v(t) and
ΓC : v(t) = ACe(t). Since both ΓC and ΓD are causal and



internally stable, the error dynamics (7) are stable if the loop
transfer matrix

G(s) = (sI −AD − LC)−1AC (8)

satisfies the spectral radius condition [24, Theorem 4.11]

ρ
(
(jωI −AD − LC)−1AC

)
< 1 for all ω ∈ R. (9)

If condition (9) holds, then G(jω) is Schur stable for all ω ∈ R.
Lemma 2.1: (Decentrally-stabilized state estimation) Con-

sider system (4) and the filter (6). Let AD + LC be Hurwitz,
and assume that G(jω) is Schur stable for all ω ∈ R. Then,
for all x(0) and w(0), it holds limt→∞

(
w(t)− x(t)

)
= 0.

Observe that an implementation of the decentralized filter
(6) requires control centers to continuously exchange their
local estimation wi(t). This continuous communication ob-
stacle can be overcome by means of a parallel integration
of the filter (6). Among the available methods developed
for parallel computation, the classical waveform relaxation is
compatible with assumptions (A1)-(A4) [21]–[23]. The Gauss-
Jacobi waveform relaxation method applied to the filter (6)
yields the waveform relaxation iteration

ẇ(k)(t) = (AD +LC)w(k)(t) +ACw
(k−1)(t)−Ly(t) , (10)

where k ∈ N is a discrete iteration index, t ∈ [0, T ] is the
continuous-time variable in the interval [0, T ], w(k) : [0, T ]→
Rn is a trajectory with initial condition w(k)(0) = w0 for each
k ∈ N. The waveform relaxation iteration (10) is initialized
with a profile w(0) : [0, T ] → Rn. Notice that (10) is an
iteration in k on the variable w. On the other hand, for fixed
k, (10) is a continuous-time dynamical system in the variable
w(k) and ACw(k−1) is a known input, since the value of w at
iteration k−1 is used. The iteration (10) is said to be uniformly
convergent if limk→∞maxt∈[0,T ]

∥∥w(k)(t) − w(t)
∥∥
∞ = 0,

where w is the solution of the non-iterative filter (6).
An elegant analysis of the waveform relaxation iteration

(10) can be carried out in the Laplace domain [23], where the
map from w(k−1) to w(k) is (sI−AD−LC)−1AC . Similar to
the usual Gauss-Jacobi iteration, convergence of the iteration
(10) relies on the contractivity of the iteration operator in an
appropriate exponentially-scaled function space. The following
result and two different methods of proof can be found in [22,
Theorems 2.2 and 2.3] and [23, Theorem 5.2].

Lemma 2.2: (Waveform relaxation) Consider the waveform
relaxation iteration (10) with input y : [0, T ] → Rp. Assume
the existence of µ ∈ R such that the exponentially-scaled
measurement t → y(t)exp(−µt) and all its derivatives exist
and are bounded. Let σ = max{µ, λmax}. The iteration (10)
is uniformly convergent if G(σ + jω) is Schur stable for all
ω ∈ R.

In case of smooth and bounded measurements y(t), with
t ∈ [0, T ], and stable filter dynamics, we have that σ = 0,
and the convergence condition for the waveform relaxation
iteration (10) equals the Schur stability condition (9) for
decentralized stabilization of the filter error dynamics. Hence,
by means of the waveform relaxation iteration (10), the
decentrally stabilized estimation filter (6) can be implemented
in a distributed fashion. On the other hand, as a disadvantage of

Algorithm 1: Continuous-Discrete Estimation (ith center)
Input : Matrices Ai, Ci, Aij with j ∈ N in

i , Li (see Section II-A);
Param. : Horizon T ∈ R>0, Number of iterations kf, State w0;
Require : Error contractivity with kf and T (see Theorem 3.1);

1 for h = 0, 1, . . . do
2 Collect measurements yi,h(t) = yi(t+ hT ) with t ∈ [0, T ];
3 Select initial profile w(0)

j,h(t) with t ∈ [0, T ], j ∈ N in
i ;

4 for k = 1, . . . , kf do
5 Integrate the differential equation

ẇ
(k)
i,h = (Ai + LiCi)w

(k)
i,h +

∑
j∈N in

i
Aijw

(k−1)
j,h − Liyi,h,

with t ∈ [0, T ] and initial state w(k)
i,h (0) = wi,0;

6 Transmit w(k)
i,h to control centers N out

i ;

7 Receive w(k)
j,h from control centers N in

i ;

8 Update initial state as wi0 = w
(kf)
i,h (T );

this analysis, the measurements y(t) are required to be smooth
and bounded, and the continuous signal w(k−1)(t) needs to be
communicated at every iteration. Moreover, the proofs [22],
[23] leading to Lemma 2.2 are based on an infinite horizon
analysis for both time t and iteration k, the convergence rate
for finite t and k are not characterized, and the robustness
properties of the waveform relaxation iteration (10) are not
investigated. In the next section, we present a more refined,
less restrictive, and novel analysis to combine decentralized
estimation with waveform relaxation, leading to a continuous-
time estimation algorithm with discrete communication.

III. CONTINUOUS-DISTRIBUTED ESTIMATION

In this section we present our distributed estimation algo-
rithm. Our algorithm estimates the state of system (1) in a mov-
ing time-window fashion, where time is divided into intervals
[hT, (h+1)T ], for some uniform horizon T ∈ R>0 and h ∈ N.
Our estimation algorithm is formally presented in Algorithm
1 and it consists of the following three steps for every stage
h ∈ N. First, control centers collect local measurements in the
time interval [hT, (h+ 1)T ]. Second, control centers estimate
their local state in the interval [hT, (h + 1)T ] through the
distributed and iterative filter (in vector form)

ẇ
(k)
h (t)=

(
AD + LC

)
w

(k)
h (t)+ACw

(k−1)
h (t)−Ly(t+ hT ),

(11)

where t ∈ [0, T ], k ∈ {1, . . . , kf} for some kf ∈ N>0,
and L = blkdiag(L1, . . . , LN ). Third and finally, control
centers exchange their estimated local state and iterate over
h. The filter (11) is initialized with w

(k)
0 (0) = w0 =[

wT
1,0 . . . wT

N,0

]T
and w(k)

h (0) = w
(kf)
h−1(T ) for h ≥ 1 and

k = 1, . . . , kf. Additionally, w(0)
h (t) is the initial profile vector

with components w(0)
j,h(t), where w(0)

j,h(t) is a guess of control
center i for the state xj(t) in the interval t ∈ [hT, (h + 1)T ]
(we let different control centers use identical initial guesses
about common neighboring states).

Algorithm 1 requires integration capabilities at each control
center, local measurements, and synchronous communication
between neighboring control centers at discrete time instants.
Additionally, the state wi,h and the continuous-time measure-
ments yi,h(t) = yi(t + hT ) need to be stored by the i-th



control center. Finally, our method generates a state estimate
with delay T , and control centers need to perform kf iterations
(integration and communication) within each time interval
of length T . Consequently, our method is not suited for
applications requiring real-time state estimates, such as control
of critical systems with fast dynamics, and it can be employed
whenever a delay in state estimation can be tolerated, for
instance for offline attack detection [19].

In order to state the convergence notions for Algorithm 1,
we define the estimation error

e
(k)
h (t) = x(t+ hT )− w(k)

h (t)

for k ∈ {1, . . . , kf}, t ∈ [0, T ], h ∈ N. Three notions of
convergence are considered: convergence of the error e(k)h (t) in
k and t within each stage h, contractivity of the terminal error
e
(kf)
h (t) over multiple stages h, and asymptotic convergence of

the error e(k)h (t) in k and over the stages h.
Definition 1 (Convergence notions): For Algorithm 1, the

estimation error e(k)h (t) is
(i) stage-wise convergent if for all h ∈ N

limT→∞,kf→∞
∥∥e(kf)
h (T )

∥∥
∞ = 0 ;

(ii) ε-contractive if for all h ∈ N and for some ε ∈ (0, 1)∥∥e(kf)
h+1(T )

∥∥
∞ ≤ ε

∥∥e(kf)
h+1(0)

∥∥
∞ = ε

∥∥e(kf)
h (T )

∥∥
∞ ;

(iii) asymptotically convergent if for some η ∈ [0, 1) and all
t ∈ [hT, (h+ 1)T ]

lim
h→∞

(
‖e(kf)
h (t)‖∞ / max

τ∈[0,t]
‖e(0)h (τ)‖∞

)
≤ ηkf .

In what follows we show that for sufficiently large values
of kf and T , similar conditions as in Subsection II-B guar-
antee stage-wise convergence, ε-contractivity, and asymptotic
convergence. We also derive explicit bounds on kf and T , and
performance and robustness characterizations.

A. Convergence and performance of Algorithm 1
Compared to the classic functional analysis approaches to

waveform relaxation methods, our analysis relies on a control-
theoretic state-space approach. Notice that for each stage h ∈
N, Algorithm 1 is fully characterized by the distributed filter
(11) with state w

(k)
h (t), and that, over multiple stages, the

filter (11) is updated according to w(k)
h (0) = w

(kf)
h−1(T ). Hence,

we start by analyzing the error dynamics resulting from the
distributed filter (11). Define the augmented filter error eh(t) =[
e
(1)T
h . . . e

(kf)T
h

]T
, and consider the error system

ėh(t) =


AD + LC 0 · · · 0

AC AD + LC
. . .

...
...

. . . . . .
...

0 · · · AC AD + LC


︸ ︷︷ ︸

Ae

eh(t)

+


AC
0
...
0

 e(0)h (t), eh(0) =

zh...
zh

 , (12)

where e(0)h (t)=x(t+ hT )−w(0)
h (t) is the initial profile error

and zh = x(hT )−wh(0) the initial condition error at stage h.
Theorem 3.1: (Convergence of distributed filter (11)) Con-

sider system (1) and the distributed filter (11) with t ∈ [0, T ],
k ∈ {1, . . . , kf}, and h ∈ N. Assume that each exponentially-
scaled initial profile error t→ exp(−µt)

(
x(t+hT )−w(0)

h (t)
)

is integrable for some µ ∈ R and for all h ∈ N. The following
statements are equivalent:

(i) For every zh ∈ Rn and e
(0)
h : [0,∞) → Rn, the

estimation error is stage-wise convergent;
(ii) The matrix AD + LC is Hurwitz with spectrum to the

left of λmax < 0, and the transfer matrix G(σ + jω) is
Schur stable for σ = max{µ, λmax} and for all ω ∈ R.

If the equivalent statements (i) and (ii) hold, then for any ε ∈
(0, 1) and h ∈ N, there exist sufficiently large kf ∈ N and
T ∈ R>0 such that the estimation error is ε-contractive.

Proof: Consider the error system (12). By superposition
of the homogeneous and the particular solution, we obtain

e
(kf)
h (t) =L−1

(
(G(s))

kf
)
? e

(0)
h (t) + Ekf exp(Aet)eh(0) ,

(13)

where L−1 denotes the inverse Laplace transform, ? denotes
the convolution operator, G(s) is defined in equation (8),
and Ek =

[
0n×(k−1)n In 0n×(kf−k)n

]
with In being the

n-dimensional identity matrix and 0n×p being the (n × p)-
dimensional matrix of zero entries.

Since the initial profile error e(0)h (t) and the initial condition
error zh are arbitrary and independent, the final error e(kf)

h (T )
converges as T → ∞ and kf → ∞ if and only if the error
system (12) with system matrix Ae is stable and the input-
output map L−1

(
(G(s))

kf
)

from e
(0)
h (t) to e

(kf)
h (t) vanishes.

Equivalently, the error system (12) is asymptotically stable
if and only if Ai + LiCi is Hurwitz (since Ae is block-
triangular), and the input-output map L−1

(
(G(s))

kf
)

vanishes
if and only if ρ(G(s)) < 1 for all s in the domain of the
Laplace transform.

Since each subsystem G(s) and the overall error system
(12) are asymptotically stable with spectrum in the left-half
plane bounded by λmax < 0, and since the exponentially scaled
input exp(−µt)e(0)h (t) is integrable, the domain of the Laplace
transform is given by {s ∈ C : Real(s) ≥ σ}, see also [23,
Section 3 and Appendix] and [22, Section 2]. Hence, the input-
output map L−1

(
(G(s))

kf
)

vanishes if and only if

sup
{s∈C : Real(s)≥σ}

ρ(G(s)) = sup
{s∈C : Real(s)=σ}

ρ(G(s)) < 1 ,

where the equality follows since the spectral radius satisfies
the maximum principle [22], [23]. The latter condition is
equivalent to G(σ + jω) being Schur stable for all ω ∈ R.
This proves the equivalence of statements (i) and (ii).

Due to stage-wise convergence of the error ‖e(kf)
h (T )‖∞, it

follows that for every h ∈ N and for any ε ∈ (0, 1) there are kf
and T sufficiently large such that the error is ε-contractive.

According to Theorem 3.1 the estimation error is stage-wise
convergent, and for sufficiently large values of kf and T it is
also ε-contractive. In what follows, we provide sufficient and



explicit bounds quantifying how large kf ∈ N>0 and T ∈ R>0

have to be.
For a dynamical system with impulse response G(t) =

L−1(G(s)), the truncated L1-norm is defined as

‖G‖L1[0,t]
=

∫ t

0

‖G(τ)‖∞ dτ ,

where ‖A‖∞ is the induced ∞-norm of the matrix A. It can
be shown that ‖G‖L1[0,t]

is the induced L∞-gain [24] of the
linear dynamical system y(t) = G(t) ? u(t), that is,

max
τ∈[0,t]

‖y(τ)‖∞ ≤ ‖G‖L1[0,t]
· max
τ∈[0,t]

‖u(τ)‖∞ , (14)

and the inequality (14) is tight over all nontrivial u : [0, t]→
R, u ∈ L∞.

Theorem 3.2: (Performance of distributed filter) Consider
system (1), the distributed filter (11), and the filter error
dynamics (12). The estimation error satisfies∥∥e(k)h (t)

∥∥
∞ ≤

∑k−1

j=0
γ · exp(λmaxt)t

j ‖zh‖∞
+ ‖G‖kL1[0,t]

max
τ∈[0,t]

‖e(0)h (τ)‖∞ , (15)

where γ > 0 is a constant independent of k and t. Moreover,
if the estimation error is ε-contractive and ‖G‖L1[0,T ] < 1,
then the estimation error is asymptotically convergent.

Proof: Consider (12) and (13), and introduce the short-
hand fh(t) for the free response:

fh(t) = Ekexp(Aet)eh(0) =
∑k−1

j=0
exp((AD + LC)t)

tj

j!
AjCzh .

By the triangle inequality, the error (13) is bounded as∥∥e(k)h (t)
∥∥
∞ ≤ ‖fh(t)‖∞ +

∥∥L−1(G(s)k) ? e
(0)
h (t)

∥∥
∞ .

For each t ∈ [0, T ], the worst-case free response is bounded
as

‖fh(t)‖∞ ≤
∑k−1

j=0
‖exp((AD + LC)t)‖∞︸ ︷︷ ︸

≤c1eλmaxt

∥∥∥∥ tjj!AjC
∥∥∥∥
∞︸ ︷︷ ︸

≤c2tj

‖zh‖∞

≤
∑k−1

j=0
c1c2 · exp(λmaxt)t

j ‖zh‖∞ ,

where c2 = maxj∈N ‖AjC/j!‖∞ > 0 is a finite constant.1

Since the error system (1) is a cascade of k subsystems,
each with transfer function G(s), a stage-by-stage L∞-norm
bounding of the forced response yields

max
τ∈[0,t]

∥∥∥L−1 (G(s)k
)
? e

(0)
h (τ)

∥∥∥
∞

≤ ‖G‖kL1[0,t]
max
τ∈[0,t]

∥∥∥e(0)h (τ)
∥∥∥
∞
.

The bounds on the free and the forced response give the
convergence rate estimate (15). Finally, notice that zh, and
hence fh(t), vanishes with h due to error contractivity. Then, if

1Since the matrix exponential exp(AC) =
∑∞

j=0 A
j
C/j! always exists,

we have that maxj∈N A
j
C/j! is necessarily bounded.

‖G‖L1[0,T ] < 1, asymptotic convergence follows then directly
from (15).

Theorem 3.2 shows that the filter error consists of two
terms. The first contribution is due to a mismatch in the
system and filter initial states, and it vanishes with time
within each stage. The second contribution arises because the
state of neighboring subsystems is a priori unknown, and it
vanishes with the number of iterations. Hence, Algorithm 1
is asymptotically convergent for sufficiently large T and kf if
‖G‖L1[0,T ] < 1, and (15) characterizes its convergence rate.

To state the following result in a compact way, we introduce
α = ‖z0‖∞ = ‖x(0) − w

(0)
0 (0)‖∞ for the initial error in

the first stage, and we assume the initial profile errors to
be uniformly β-bounded, that is, there is β > 0 such that
maxt∈[0,T ] ‖x(t+ hT )− w(0)

h (t)‖∞ ≤ β for all h ∈ N.
Theorem 3.3: (Constants for error contractivity) For the

system (1) and the distributed filter (11), assume that AD+LC
is Hurwitz, ‖G‖L1[0,∞) < 1, and the initial profile errors are
uniformly β-bounded. For every ε ∈ (0, 1), h ∈ N, and ν ∈
[0, 1], the estimation error is ε-contractive if

kf ≥
log(β)− log(ναε)∣∣∣log(‖G‖L1[0,∞))

∣∣∣ , and (16a)

|λmax|T − step(T − 1)(kf − 1) log(T )

log(γkf)− log((1− ν)ε)
≥ 1 , (16b)

where step : R→ {0, 1}, step(x) = 0 if x ≤ 0, and step(x) =
1 otherwise for x ∈ R.

Proof: Let h = 0. A sequential application of triangle
inequalities to equation (15) yields∥∥e(k)0 (t)

∥∥
∞ ≤ γαk · exp(λmaxt) max{1, tk−1}+β ‖G‖kL1[0,t]

,

where k ∈ N and t ∈ [0.T ]. Then the condition

γαkf · exp(λmaxT ) max{1, T kf−1}+ β ‖G‖kf
L1[0,T ] ≤ εα

(17)

implies ‖e(kf)
0 (T )‖∞ ≤ ε‖e(kf)

0 (0)‖∞. For (17) to hold, we
split the error between the free and forced responses as

γαkf · exp(λmaxT ) max{1, T kf−1} ≤ (1− ν)εα and

β ‖G‖kf
L1[0,T ] ≤ νεα ,

where ν ∈ [0, 1]. To render the forced response error indepen-
dent of the interval length T , we impose the stronger condition

β ‖G‖kf
L1[0,T ] ≤ β ‖G‖

kf
L1[0,∞) ≤ ναε .

Since ‖G‖L1[0,∞) < 1, the latter condition is equivalent
to condition (16a). Consequently, given kf as determined
in (16a), the contractivity condition (17) holds if γαkf ·
exp(λmaxT ) max{1, T kf−1} ≤ (1 − ν)εα, or equivalently, if
condition (16b) holds. To conclude the proof, notice that the
same reasoning can be sequentially applied to each stage
h ∈ N with ‖zh‖∞ ≤ αεh.

Due to the contractivity of the filtering error, if kf and T
are chosen to satisfy conditions (16a) and (16b) in Theorem
3.3, then Algorithm 1 is asymptotically convergent.



B. Implementation issues, robustness, and local computation

Local verification of convergence conditions: It is possible
to verify the convergence conditions in Theorem 3.1 with local
information only. In particular, notice that each control center
knows the pair (Ai, Ci) and selects Li such that Ai +LiCi is
Hurwitz. Additionally, to satisfy the Schur stability condition
ρ(G(σ + jω)) < 1, it is sufficient2 for each control center i
to verify the following small gain condition for eachω ∈ R:∥∥∥(σ + jωI|Vi| −Ai − LiCi)−1

∑N

j=1,j 6=i
Aij

∥∥∥
∞
< 1. (18)

If the process (1) is stable and each control center initializes
w(0)(t) = 0, then σ = 0, and (18) can be checked with local
information. For an unstable process, each control center needs
an estimate of the divergence rate of A to calculate σ (if A
is known to be unstable, then ‖A‖∞ is an estimate of its
divergence rate since ρ(A) ≤ ‖A‖∞).
Local verification of contractivity conditions: Notice that

‖G‖L1[0,t]
= max
i∈{1,...,N}

∑N

j=1

∫ t

0

∣∣L−1 (Gij(s))
∣∣ dτ, (19)

where Gij(s) = (sI|Vi| − Ai − LiCi)
−1Aij . Hence, each

control center can calculate a lower bound on ‖G‖L1[0,t]
.

Likewise, since each control center specifies the eigenvalues
of Ai+LiCi, all control centers can agree on an upper bound
for λmax. Regarding γ, by using the notation in Theorem 3.2,
we have γ = c1c2. Notice that c1 is computed by using the
block-diagonal matrix AD + LC, and it can be computed
distributively. For c2 = maxj∈N ‖AjC/j!‖∞, we have that∥∥∥AjC/j!∥∥∥∞ ≤ ‖AC‖j∞ /j! .

An upper bound for c2, and hence on γ, can then be computed
via distributed computation by using the infinity norm of AC .
Finally, if bounds on the constants α and β are given, each
control center can calculate bounds on the convergence rate
(15) and also lower bounds for the values kf and T specified
in (16a)-(16b), which guarantee error contractivity (a standard
distributed leader election algorithm should be used by the
agents to agree on common values for kf and T [25]).
Discretization and communication errors: In Algorithm 1,
the continuous time signal w(k)

i (t) should be transmitted at
every iteration k. In practice, only an approximation ŵ

(k)
i (t)

of w(k)
i (t) can be communicated. For instance, ŵ(k)

i (t) could
be a finite basis representation or a sampled approximation of
w

(k)
i (t). Furthermore, the communication channel is typically

subject to noise affecting the signal w(k)
i (t). In either of these

situations, an additional input d(k)(t) = ŵ
(k)
i (t) − w

(k)
i (t)

enters the filter (11). Following the same reasoning as in Theo-
rem 3.2, the resulting discretization error e(k)dt (t) is bounded by∥∥∥e(k)dt (t)

∥∥∥
∞
≤
∑k

j=1
‖G‖jL1[0,t]

max
τ∈[0,t]

∥∥∥d(j)(τ)
∥∥∥
∞
. (20)

Under the convergence condition ‖G‖L1[0,∞) < 1 (see The-
orem 3.3), Algorithm 1 does not amplify errors induced by
noise or discretization. Moreover, in the noise-free case, the

2Condition (18) follows since ρ(G) ≤ ‖G‖∞ for every G ∈ Cn×n.
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v8v9

δ

δ

Fig. 1. A sensor network composed of two weakly-coupled subnetworks.
The parameter δ specifies the coupling strength among the two parts.

estimation error ‖e(k)dt (t)‖∞ can be made arbitrarily small by
reducing the discretization errors maxτ∈[0,t]

∥∥d(k)(τ)
∥∥
∞. The

latter can be achieved by increasing the number of sample
points or the number of basis functions; see Section IV-B
for an example. An analogous analysis holds for the case of
discretized measurements.
Optimal observer design via distributed computation: We
have considered a set of local observers (11) with output
injections Li. The output injections matrices Li play a central
role in our analysis, since they determine the local convergence
rate λmax, and they affect the input-output gain ‖G‖L1[0,t)

of
the system G(s) = (sI − AD − LC)−1AC . Moreover, the
convergence estimates (15) and (16), and the discretization
error bound (20) depend upon the choice of Li.

Consider now the inverse problem of designing the local
output injections Li in order to minimize the convergence rate
estimate (15) of the estimation error, the required time horizon
T and number of iterations kf in (16) (which follow directly
from the error decay rate (15)), and the discretization error
(20). In order to achieve these goals, each output injection
Li should be designed to minimize the local convergence rate
λmax and the induced L∞-norm ‖G‖L1[0,t] (or its upper bound
‖G‖L1[0,∞)). In the following, we show that each of these two
optimization problems can be solved by using only locally
available information.

Regarding the minimization of λmax, notice that λmax =
maxi∈{1,...,N} λmax, i, where λmax, i is the largest real part
of the eigenvalues of Ai + LiCi. Due to the observability
assumption (A2), each λmax, i can be assigned arbitrary by
choosing Li. Likewise, let Gi(s) denote the ith row of
G(s), then, ‖G‖L1[0,t] is the maximum of ‖Gi‖L1[0,t] =∑n
j=1

∫ t
0

∣∣L−1 (Gij(s))
∣∣ dτ for i ∈ {1, . . . , N}. Hence,

by using locally available information, Li can be chosen to
minimize the induced L∞-norm ‖Gi‖L1[0,t]; see [26], [27] for
two computationally efficient solutions to the L1 disturbance
attenuation problem. Finally, we remark that, even though
both λmax and ‖G‖L1[0,t] can be independently minimized by
locally choosing Li, the multi-objective optimization problem
of simultaneously minimizing λmax and ‖G‖L1[0,t] requires
the knowledge of the global system matrices and no convex
formulation is known [27]. Hence, for practical applications
Li should to be chosen to either minimize ‖G‖L1[0,∞) or
λmax (for a given ‖G‖L1[0,∞)). Whereas the former objective
minimizes the number of iterations kf in (16a), the latter
minimizes the time delay T in (16b).
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Fig. 2. Let G(s) be the transfer matrix of the network in Fig.1 as defined
in (8). Fig. 2 shows the worst-case spectral radius and the truncated L1-norm
of G(s) as a function of the coupling strength δ.
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Fig. 3. For the network in Fig. 1, Fig. 3 shows the smallest values of the
parameters kf and T derived from equations (16a) and (16b).

IV. ILLUSTRATIVE EXAMPLES

We now present two numerical examples. In Section IV-A
we illustrate Theorem 3.3 on a sensor network composed of
two weakly coupled subnetworks. In Section IV-B we use
Algorithm 1 to estimate the state of a power network.

A. Distributed state estimation for weakly-coupled networks

Consider the sensor network in Fig. 1. Let x be the vector
of agent states with dynamics given by ẋ = −Lnetwork x, where

Lnetwork =



3 −1 0 −1 −1 | 0 0 0 0 0
−1 (3+δ) −1 0 −1 | −δ 0 0 0 0
0 −1 (3+δ) −1 −1 | 0 0 0 −δ 0
−1 0 −1 3 −1 | 0 0 0 0 0
−1 −1 −1 −1 4 | 0 0 0 0 0

0 −δ 0 0 0 | (3+δ) −1 0 −1 −1
0 0 0 0 0 | −1 3 −1 0 −1
0 0 0 0 0 | 0 −1 3 −1 −1
0 0 −δ 0 0 | −1 0 −1 (3+δ) −1
0 0 0 0 0 | −1 −1 −1 −1 4


is the network Laplacian matrix. Agents v5 and v10 aim
to estimate the state of agents {v1, v2, v3, v4, v5} and
{v6, v7, v8, v9, v10}, respectively. Assume that v5 (resp. v10)
knows the upper (resp. lower) blocks of Lnetwork (assumption
(A3)), and that agent v5 (resp. v10) measures the state of agents
v1, v4 (resp. v7, v8), that is, y5 = [x1 x4]T and y10 = [x7 x8]T.

For our simulation study, we let α = 1, β = 10, ε = 0.9,
and we select each injection matrix Li so that the eigenvalues
of (Ai + LiCi) equal {−2,−4,−6,−8,−10}. The perfor-
mance of our convergence and contractivity estimates are
reported in Fig. 2 and in Fig. 3 as a function of δ. For instance,
for δ = 1 we have ‖G‖L1[0,10] = 0.4686, ρ(G(jω)) = 0.3843,
c1 = 1.8993, c2 = 1, T ≥ 3.9207, and kf ≥ 4 (ν = 0.8). To

0 1 2 3 4 5
0

0.1

0.2

Time

1

n
kx(t) � w(kf)(t)k2

Fig. 4. This figure shows the normalized estimation error as a function
of time. The black solid line corresponds to the error in the absence of
communication error between control centers. The dashed blue (resp. dashed-
dot red) line is obtained when the signals exchanged between control centers
are corrupted by normally distributed noise with zero mean and standard
deviation equal to 5 (resp. 10). For the simulation we use T = 0.5s (this value
is smaller than its conservative estimate from equation (16b)) and kf = 5,
and we set the initial guess of the neighboring state to zero.
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Fig. 5. This figure shows a single-line diagram of the IEEE RTS96 power
network, which is composed of three weakly-coupled areas.

conclude this example, we implement our estimation algorithm
for the case δ = 1, α = 1, β = 10, and ε = 0.9. The output
injection matrices are chosen as

L1 =


−4.3717 0.1417
−2.9767 3.2002
−1.7779 −4.4024
0.4706 −7.6283
3.9937 −2.9448

 , L2 =


−0.3080 −2.5078
−7.9606 −1.8253
−2.0158 −4.0394
3.4468 1.4142
−7.5953 −0.1931

 .
Fig. 4 shows the result of our estimation algorithm for T =
0.5s and kf = 5.

B. Distributed state estimation for power networks

Consider the RTS96 power network illustrated in Fig. 5.
The network data is reported in [28]. By Jacobian linearization
and elimination of the algebraic equations the power network
dynamics are obtained as the linear time-invariant swing
dynamics

Mθ̈ +Dθ̇ + Y θ = 0 ,

where θ, θ̇ are the vectors of generator rotor angles and
frequencies, M and D are the diagonal matrices of generator
inertia and damping coefficients, and Y is the Kron-reduced
admittance matrix [29] weighted by the linearized power flows.
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Fig. 6. This figure shows the normalized estimation error as a function
of time. The black solid line corresponds to the error in the absence of
discretization error. The dashed blue (resp. dashed-dot red) line is obtained
when the signals exchanged between control centers are sampled with period
0.01s (resp. 0.02s). For the simulation we use T = 0.2s, kf = 20, and
h = 10.

Assume that each area is monitored by a control center, and
that control centers implement Algorithm 1 under assumptions
(A1)-(A4). For assumption (A2) to be guaranteed, we let each
control center measure the rotor angle of a subset of generators
in its area. The results of our simulation study are reported
in Fig. 6. This example demonstrates the applicability of our
continuous-discrete estimation Algorithm 1 to a large-scale
system and shows its effectiveness in the presence of severe
discretization errors.

V. CONCLUSIONS

We have presented a continuous-discrete estimation algo-
rithm, which allows a team of control centers, or agents, to es-
timate the state of a continuous system via decentralized com-
putation and discrete-time communication. Our continuous-
discrete estimation algorithm requires only local knowledge
of the system and parameters, and, under a reasonable set of
assumptions, it can be fully designed via decentralized com-
putation. We have characterize stability and convergence of
our continuous-discrete estimation algorithm, we have proved
its robustness against discretization and communication errors,
and we validated our results with two illustrative examples.
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