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Multistage Adaptive Estimation of Sparse Signals

Dennis Wei and Alfred O. Hero, Il

Abstract—This paper considers sequential adaptive estimation allocation policy was developed iml[3] for a cost function
of sparse signals under a constraint on the total sensing eift. related to bounds on estimation and detection performance.

The advantage of adaptiyity in this context is thg ability tofocus Subsequent developments stemming from [3] include a modifi-
more resources on regions of space where signal Comloo-nemscation to handle non-uniform signal priofs [8], a simplifica
exist, thereby improving performance. A dynamic programming 9 priors (o], p

formulation is derived for the allocation of sensing effort to Pased on Lagrangian constraint relaxatidn [9], and a ncalés
minimize the expected estimation loss. Based on the method o approach that uses linear combinations in the first stage to
open-loop feedback control, allocation policies are theneleloped reduce the number of measurements [4]. Based on a similar
for a variety of loss functions. The policies are optimal in he model but in a different direction, a method known as dstill

two-stage case, generalizing an optimal two-stage policyqposed - . . e
by Bashan et al., and improve monotonically thereafter with sensing [[10] was proposed for signal support identification

the number of stages. Numerical simulations show gains up to @hd was shown to be asymptotically reliable (as the ambient
several dB as compared to recently proposed adaptive methed dimension increases) at SNR levels significantly lower than

and dramatic gains compared to non-adaptive estimation. An non-adaptive limits. The distilled sensing idea was regent

application to radar imaging is also presented. extended to a more general setting of sequential multiple
Index Terms—Adaptive sensing, adaptive sampling, resource hypothesis testing ir_[11]; in_[12] it is shown that a sequen-
allocation, sparse signals, dynamic programming. tial thresholding procedure comes within a small factor of
the optimal sequential procedure in terms of the number of

. INTRODUCTION observations needed for asymptotically exact supporivesgo

Adaptive sensing and inference have been gaining interestn the second class of models, the observations can consist
in recent years in signal processing and related fields.nPot€f arbitrary linear combinations, as in compressed sensing
tially substantial gains in performance can be achievednwhBut for the most part the resource budget is assumed to be
observations are made sequentially and adaptively, makf#igcrete, measured in units of normalized observatiang],([1
use of information derived from previous observations.sThl12] also assume a discrete budget).[In [13], the distilkeass
work focuses on sparse signals, i.e., signals that occupyndl approach was extended to the compressed measurement
small number of dimensions in an ambient space. It is no¥@tting. In [14], [15], a Bayesian signal model is adopted an
well-known that compressed sensing offers an efficient nofach new observation is chosen to approximately maximize
adaptive strategy for acquiring sparse signals, relyingaonthe information gain;[[15] is computationally simpler bust i
relatively small number of observations that are incoherefost suited to signals with a single non-zero component,
with the basis in which the signal is sparse (see é.j. [1- 1-sparse signals. Others have also taken the approach
[2]). However, when noise is present and sensing resourees @ decomposing the problem into subproblems involvirg
limited, incoherent observations may not be the most efficiesparse signals and then applying a form of bisection search
since a large fraction of the resources are allocated torimé18l, [17], [18]; [18] employs a more sophisticated search
sions where the signal is absent. Alternatively, by allocat in which the rate of division accelerates, reducing the de-
resources according to estimates of the signal supporineiota pendence of the number of observations on the dimension
from past observations, better signal-to-noise ratiosRpare t0 doubly logarithmic instead of merely logarithmic. The
possible. Applications in which adaptive sensing of spargélaptive methods iri [17].[18] were shown to require fewer
signals can be readily utilized include surveillance usioive Measurements than the best non-adaptive method. In [16] and

radars([3],[[4], spectrum sensing in cognitive radio [5], fhd [18] however, noise is either not considered or not fullyetak
gene association and expression studiés [7]. into account. Somewhat different from the aforementioned
Existing methods for adaptive sensing of sparse sign¥erks is [19], which describes a compressed sensing method
can be rough'y grouped around two classes of models. th‘ﬁ.t iS Sequential in the sense that |t terminates once the
the first class, which is the focus of this paper, observatiofeconstruction error is determined to have fallen below a
are restricted to single components in the basis that irdué@reshold, but the form of the measurements is not adapted
signal sparsity, while resources can be distributed aiigr during the process.
over Components and observation stages_ An Opt|ma| tv\gnsta Adaptive Sensing and resource allocation have also been
applied to other classes of signals with more structuree-Tre
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is investigated in[[23] for unstructured (i.e. dense) patEn cost, or computation. It is assumed that the precision (geve
estimation in a linear Gaussian model under an average\energriance) of an observation varies with effort accordingato
constraint. non-decreasing functioh such thath(0) = 0, h(A) > 0 for
This paper addresses the problem of estimation and adaptive- 0, and normalized so thdt(1) = 1. For \;(t — 1) > 0,
resource allocation under the first observation model irctvhithe observation of thé&h component at time takes the form
components are measured directly. We extend the two-stage a n4(t)
location policy in [3] to an arbitrary number of stages, feing  y;(t) = 0; + ————, T,
on estimation error explicitly as contrasted with perfonte h(Xi(t = 1))
I . : 1)
bounds in [[8]. Our method is computationally tractable forh - . . .
. L ) o -wheren,;(t) represents i.i.d. zero-mean Gaussian noise with
a wide range of estimation loss functions satisfying a mll\g ) 3 S
. o . .. variancec”, whereas for);(t — 1) = 0 the observation is
convexity condition, including such commonly used crieas . .
ot taken. Hence the number of observations per stage is
mean squared error (MSE) and mean absolute error (MAE). : .
: . N . most N but can be substantially lower if most of the
The observation model in[[3]/[10] is also generalized bX o : X
. . . . ~A;(t—1) are zero. The functioh is often linear, but nonlinear
allowing the observation precision to depend on an arlyitrar, : .
: . : dependences can also arise. For example, the sensing system
concave function of the sensing effort. It is shown that the

. may contain nonlinear components such as amplifiers, or the
problem can be formulated as a dynamic program, a fram

- . L Sbservations may result from integrating a continuousetim
work that facilitates the development of allocation pagiAn y g 9

. . : L random process over an interval of lengih(¢t — 1) and
approximate dynamic programming solution is proposeddaast e process exhibits short-term correlation. We restriat o

on open-loop feedback control (OLFC). The performance Q . o . .
S . . attention to static signals so that the signal compoiernn
these OLFC policies improves monotonically with the numb o .
. . ; . does not change with time. For convenience, we use the
of stages, and in particular improves upon optimal two-sta . T,
A . . ; : : ector notationy (¢t) = [y1(¢t) ...y~ ()] (similarly for other
policies including the one iri_[3]. Numerical simulationosh . e
. : . indexed quantities) and denote B§(¢t) = {y(1),...,y(t)}
error reductions up tel.5 dB relative to the optimal two- ) : ?
X : : : . the history of observations up to time
stage policy and dramatic reductions relative to non-adapt

sensing, approaching the oracle limit at high SNR. The OLFCThe task is to deterr_mne the_ distribution of sensing effo_rt
g - . over components and time subject to a total budget constrain
policies are also shown to outperform distilled sensing EitO

i=1,...,N, t=1,...,

all SNR and most significantly at higher SNR. The advantages T-1 N
carry over to a radar imaging example that challenges some Z Z Ai(t) = Ao. (2)
of the assumptions of our model. t=0 i=1

The remainder of the paper proceeds as follows. In Sectigmder the normalization, = N, each component receives an
M the signal and observation models are specified andagerage of one unit of effort over time. In the case of single-
problem of resource-constrained sequential estimatidoris stage non-adaptive estimatio < 1) and a uniform prior,
mulated and then recast as a dynamic program. In Secfion tHe most natural choice is to s&f(0) = 1 for all 5. Thuso?
optimal and OLFC approaches to the problem are discussgth be regarded as the noise variance realized under a non-
and a family of OLFC policies is proposed. Numerical simadaptive uniform allocation. In multistage adaptive segsi
ulations comparing our OLFC policies to other policies anghe allocation\(¢) at timet can depend on the observations
presented in Sectidn]V. In Sectiéd V, an application to rad& (¢) collected up to that point. This information allows more
imaging is described. Conclusions and future directiores afesources to be focused on the region of signal supporglilyer
given in Sectiori VI improving the SNR. The mapping frorY (¢) to A(¢) is
referred to as an effort allocation policy. We restrict atign
to deterministic policies in this work. For notational bitgy

[I. PROBLEM FORMULATION ; o
we will not make the dependence Aft) on Y (¢) explicit.

0; — 0;

We consider signalé € R that are observed in the same | this paper, we adopt the viewpoint that the nonzero signal
basis in which they are sparse; the basis is taken to be ##nponents are of primary interest. Thus our objective is to
standard basis without loss of generality. The signal stppo minimize the expected estimation loss over the signal stppo
represented by a set of indicatdisi = 1,..., N, with 6, =0 N

if 7; = 0. We use a probabilistic model in which = 1 with E {ZI'L ( )} 3)
prior probability p;(0), independently of the other indicators. Lt ’

For I; = 1, the non-zero signal amplitudés are modelled =t

as independent Gaussian random variables with prior meavisere the estimatek are based on all observations up to time
w:(0) and variances?(0). As in [3], [4], a non-informative T, the loss functiorl is non-decreasing, and the expectation is
uniform prior is assumed with;(0) = po, 1;(0) = 1o, and taken oved, 8, andY (7"). Under [3), missed nonzero compo-
02(0) = o7 for all i, although the theory developed belownents are penalized directly through larger losses, whikgef

could also accommodate non-uniform priors. alarms, i.e., zero-valued components mistaken as nonaexo,
Observations are made ifi stages with non-negative ef-penalized indirectly because they divert resources away fr
fort levels \;(¢) that can vary with index and time¢ = the true signal support.

0,...,7 — 1. Depending on the application, the effori(¢) To relate the expected cobt (3) to the effort allocationqypli
might represent observation time, number of samples, gnerge nest the expectations in the orde(T), I, 6 (outer to



inner) and expand to yield A. Formulation as a dynamic program
N The determination of an optimal effort allocation policy
E{Zpi(T)E [L( ) | I; = 1,Y(T)}}, (4) according to [(6) and[i6) can be formulated as a dynamic
i=1 program. Although the dynamic programming viewpoint does
where we have defineg;(t) = Pr(l; = 1 | Y(¢)). We then Not offer significant simplifications, it does make avaitalal
make use of the following lemmas proved in Appendices Well-developed set of approaches to the problem, some of
and[B respectively: which are conS|der_ed in Sectld)EIII.‘Further background in
Lemma 1: The conditional amplitudes; | I, = 1,Y () dynamic programming can be found in [24]. .
remain independent Gaussian for alwith meansy; (1) and ~ To formulate a sequential decision problem as a dynamic
variancess2(t). Likewise, the conditional indicatorg | Y(t) Program, the cost function must be expressible as a sum of
remain independent Bernoulli for allwith parameterg,(¢). t€rms indexed by time, where each term depends only on the
Lemma 2: If a random variabléd has a probability density current system state(t_) and the current control action, in our
£(0) that is symmetric aboyt, i.e., f(u—0) = f(u+0) for case the eff_ort allocatioA(t) (faaf:h term may also depend on
all 9, and (weakly) unimodal, i.e£(6) is non-decreasing for & random disturbance but this is not required here). The cost

9 < 1 and non-increasing fof > p, thend = x minimizes functio_n_(B) can be recast in the required time-QSeparahrm fo
the expected losE [L (\é - 9\)] for any non-decreasing lossPY defining the statex(t) asx(t) = (p(t), u(t), 7 .(t)’ A(t)_)'
function L where A(t) represents the effort budget remaining at titne
: . .'{he state variables are initialized ag0) = po, 1:(0) = po,
From Lemmag]l and 2 and the symmetry and unimodali (0) = o2, and A(0) = Ao, and evolve according to the
of the Gaussian distribution, we conclude that the inngf, . — 0’ = o _
expectation in [(4) is minimized by choosin@ = u(T) %Ilowmg recursions derived in Appendix] A:

0; — 0,

for i = 1,...,N. Then the minimum value of the inner ) pi(t) 8
expectaon depercs oy (1) and ) can be epressed. %) = 575+ (1 e 2
ge orvar it 1) = Z1O RO Wit +1) gy
{ZN: > ' o? + h(Xi(t))o? (t) ’
2B4> (D) [ L@ os:o.ndoy,  (6) 22
i=1 0 oit+1)= o oi (1 (8c)

o? + h(Xi(t)o? (1)’
where ¢(0; 1, 0%) denotes the standard Gaussian probability N

density function with mean. and variances?. The final- At+1)=A1) - Z)‘i(t)’ (8d)
stage variance?(T') depends in turn on the effort allocation i=1

according to the relation
where
2 o

) = A ST D) ©) 0 = O(uilt + 1):0,0°/A(A(D),

= o(yi(t 4+ 1); pi(t), o2(t) + o /h(Ni(2))).
which follows from the proof of Lemm&]1 in Appendix] A. P1= P Jipalt), o () [h)
In summary, the problem is to minimize the expected costGijven the above state definition, we uEel (8c) to rewrite the
defined by [(b) and[{6) with respect to the effort allocatiogenominator in[{6) as
policy X(0),...,A(T'—1), subject to the total effort constraint
@)- O'2 — 0'2
In the case of the square logga) = a?, i.e., the mean ) + h(Ai(t)) = (T —1) +hN(T =1)). (9)
squared error (MSE) criterion, the integral inl (5) can be ’

evaluated to yieldr?(T), thus reducing[(5) to We then decompose the expectationih (5) into an expectation
N overy(T) conditioned orlY (T'—1) followed by an expectation
2F Z pi(T) @) overY (T —1). Note that onlyp;(T") depends oy (7T') in (G).
= 0%/od + ZtT:_Ol h(Ai(t)) Taking the expectation of (B4) with respectyt¢é) | Y (¢t —1)

L . . yields
The cost function in[{[7) is closely related to the cost fumeti y

in [3] although the motivations differ with the latter being  E(),.(1) | Y(t - 1)} = pi(t — 1), t=1
related to Chernoff and Cramér-Rao bounds on detection and

estimation performance respectively. The general formhef tUsing [8), [9), and[{10), the effort allocation problem may b
cost function in [[B] can be obtained frorl (7) by replacingtated as

pi(T) with the weighted averagep;(T) + (1 —v)(1 —p;(T)) ,

for v € [1/2,1], letting 03 — oo so thato?/o3 — 0, and A0), N T—1) E{G((T =1), AT - 1))}

choosingh to be the identity function. Given that the gen- N
eralization ofp;(T") to a weighted average is straightforward st Z/\i(t) =No, N(H)>0 Vi,

to accommodate, we kegp= 1 to simplify notation in the =0 o1

remainder of the paper. (11)

..., T. (10

S
L



where the cost function is of the desired form with a single(t 4+ 1) is specified byx(¢), A(t), andy (¢ + 1) through [8).
non-zero term at tim@ — 1, Thus the choice of\(¢) depends onY (¢) only through the
G(X(T — 1),\(T — 1)) = statex(t), which is a property of dynamic programs [24].

An optimal policy can be obtained by first solving (14a)
for (T — 1) and then using the result i (14b) to solve for
A(T — 2). The remaining allocations are determined in the

o p same recursive way. This exact procedure is computationall
g(af(t),ﬁi) — / L (U—) $(0;0,1) db, tractable only in a few cases. F@r = 1, it suffices to solve
0 02/o?(t) + hy (@4a), which is a convex optimization problem under some
(13) conditions to be discussed in Section TlI-B. For= 2 and
a uniform prior p;(0) = po, #s(0) = o, 02(0) = o2),
depending explicitly o (7' — 1), (T — 1), andX\(T — 1).  symmetry allows the initial allocatioi(0) to be restricted to
The dependence on the variabl€), t = 0,...,7 — 2 is  the formA(0) = 82 (0)1, wherel denotes a vector with unit
ImpIICIt thrOUgh the probablllty distribution of the obsations entries. Thusmb) becomes a one-dimensional 0pt|mrxat|0
Y (T — 1) and the recursions i ](8). The constraints[inl (14)ith respect to the multiplie® (0). For fixed 32 (0), the
actually represent a continuum of constraints since they axpectation in[{I4b) can be evaluated by sampling from the
required to be satisfied for all realizations ¥{(7" — 1). distribution of y(1) and then solving[{I2a) for the resulting

values of the state(1).

For T > 2 however, an exact solution via (14a) and (14b)
In this section, we develop policies directed at solving thg very difficult. The first issue is that the objective fucti

effort allocation problem(11). Optimal policies are dissed in (I4B) is defined recursively in terms df ., (x(t+1)) and

in Section[II-A while a less complex method known ashe high dimension and continuous nature of the state make

open-loop feedback control is discussed in Sedfionlli-& Wt difficult to summarizeJ;, ,(x(t + 1)) by storing its values

then discuss two approaches to improving the performanceggfa small number of representative statés+ 1). Second,

OLFC: generalized OLFC in Sectign TTIFC, and policy rolloukven if the objective function could be readily computed,

N
S i Dgle(@ — 1)@ — 1)), D
=1

IIl. EFFORT ALLOCATION POLICIES

in SectiorI-D. each evaluation of (14b) involves in generalsirdimensional
optimization with no known structure and potentially large.
A. Optimal policies For these reasons, we do not consider an exact solutionlfo (11

o o . . for T' > 2, opting instead for an approximate method as is
In principle, it is possible to employ exact dynamic PrO%ccussed next
gramming to determine an optimal policy fof_{11). The '
dynamic programming approach decompoges$ (11) into a se-
guence of optimizations proceeding backward in time, nakin
repeated use of iterated expectations and the fact that each
allocation(¢) is a function of past observation5(¢) but not

future ones. The last-stage optimization is given by B. Open-loop feedback control

Jr_1x(T—-1)= min GT-1),A(T-1))
AT-1) A well-known approach to approximate dynamic program-
N ming is that of open-loop feedback control (OLFC)1[24]. We
st Z/\i(T ) =AMT-1), consider the problem of determining the allocatiaft) at
=l time ¢ given the current set of observatiohgt), or equiva-
lently the statex(t). In OLFC, this computation is simplified
(14a) by assuming that future allocations(t + 1),...,A(T — 1)
and fort =T —2,7 —3,...,0, the optimizations are definedcan depend only oY (t) and not future observations. In
recursively as follows: other words, planning for future allocations is done open-
N . N loop. Once the allocationk(¢), ..., A(T'— 1) are determined,
T x(t) = 0] E {Ji(x(t+1)) [ x(t), A(0)} the first allocationA(t) is Ejsed to (()btain) new observations
N (14b) y(t+1) and the state is updated 44t + 1). The allocations
s.t. Z Ai(t) < A®), Xi(t) >0 Vi A(t+1),...,A(T—1) are then recomputed, this time based on
i=1 x(t + 1) and under the same assumption regarding the future

NT—1)>0 Vi,

The functions J;"(x(t)) represent the optimal costs—to-gcf+2""’T'

starting from staget and statex(¢), and thus the desired In light of the OLFC assumption, the only quantities that
optimal cost in[(Il) is/§ (x(0)). The notation in[(14b) reflects depend ory (¢t +1),...,y(T —1) in (I12) are the probabilities
the fact that the distribution of/(t + 1) given Y(t) is p;(7—1). The conditional expectations with respectytd@” —
completely determined by(¢) and A(¢); more specifically, 1) | Y(T-2),y(T—2) | Y(T-3),...,y(t+1) | Y(¢) in (IT)
f(yi(t+1) | Y(t)) is given by the denominator of the right-can then be applied to transfopn(7T'—1) into p;(¢) using [10)
hand side of[(8a) as can be seen frdm] (36). The next statpeatedly. The resulting cost function is to be optimizéith w



respect to\(¢),..., A(T — 1) jointly, leading to the problem function of h;. The convexity ofg can also be verified for
L(a) = 1 — e~% with b > 0, which can be regarded as a

N T-1 . X . i
. (¢ 2(p), B continuous approximation to the1 loss function.
A(t),.I.?iIET—l) ;p (Hg (UZ( ) Tz::t ( (T))> The assumption thaj is convex may be replaced by one
T-1 N of the following stricter but more easily checked conditon
st > ) NP =A®), N(r) =0 Vi, (@) L(1/v/h) is a convex function of:;
=t i=1 (b) L is convex.

(15)  condition (a) implies thay is convex because shifting and

where we have made use of a rearrangement simil to (9). T§&ling the argument of a function do not affect convexitgt an

budget constraint i (15) is assumed to be met with equalgcause the weighting functierit; 0, 1) in the integral in[(IB)

as otherwise the cost could be decreased. is always positive. Condition (b) implies condition (a) base
For ¢t = T — 1, the OLFC problem[{I5) coincides withof a composition property similar to the one used earlier

the last-stage optimization ifi_(14a). For< T — 1, OLFC and the convexity ofi/v/h with respect toh. If L is twice

represents a significant simplification relative to the exagifferentiable, condition (a) can be shown to be equivatent

optimization in [I4b) because the cost function [in](15) e inequality

expres_sed explicitly Without the_' _need to e_v_alugte expiectsit aL(a) + 3L (a) > 0, a>0, (16)

recursively. Under certain conditions specified in thedieihg

proposition, problem[{15) is also a convex optimization anghereas (b) is equivalent ’(a) > 0. Condition (b) includes

thus can be tractably solved. the square los€.(a) = a? corresponding to MSE, the linear
Proposition 1: The OLFC problem[{15) is a convex opti-loss L(a) = a corresponding to mean absolute error (MAE),

mization problem if the loss functiod is non-decreasing, the Huber loss which combines the square and linear losses in

g(gi?(t),ﬁi) in (I3) is a convex function of; for h; > 0 and @ continuous and convex manner, and the two-sided hinge loss

all o2(t), and the effort functiorh is concave. More generally,[(16) is satisfied for any power-law function

Proof: Since the constraints i {lL5) are all linear, the fed-(a) = a? with ¢ > 0 and for L(a) = log(1+ba) with b > 0.
sible set is convex (more precisely a simplex). The cost-funjote thata? for 0 < ¢ < 1 andlog(1l + ba) are concave
tion is a non-negative combination of functiopér?(t), ;) functions ofa. Taking the limit as; — 0 of the power-law

with h; = ZT—tl h(Xi(7)), so it suffices to prove that functions yields th@-1 loss function, which was shown earlier
= ’ .
g is convex as a function of\;(t),...,\;(T — 1). First toresultin a convey.

note thath;, as a sum of concave functions, is concave in In the remainder of the paper, we assume that the assump-
Ai(t), ..., \(T—1). Given thatL is a non-decreasing functiontions of Propositiofl]l are satisfied and hence the OLFC prob-
of its argumenty is seen to be a non-increasing function oM (13) is a convex optimization. We now address the saiutio
h;. Furthermore, we may extend the definitionyatb negative Of (15). The cost function irL(15) depends afw), ..., AT -

h; by letting g(o2(t), hs) = oo for h; < 0, thereby preserving 1) only through the quantitiea; = 3"~ h(Ai(7)), and is

the monotonicity and assumed convexitygofit then follows more specifically a non-increasing function/afas argued in -
from a property of compositions of functions [25] thatis the proof of Propositiofll1. Therefore {15) may be solved via

convex inA;(t), ..., \(T —1). m @ two-step procedure: first we f&i_(t) = Zf;tl Ai(7) and
The assumptions in Propositibh 1 are not difficult to satisffeek to maximize:; as functions of;(t), i.e.,

It was already assumed in Sectioh Il tHais non-decreasing T—1

so that the optimal amplitude estimakeis equal to the condi- iy (N (1)) = max Z h(Xi(1))

tional meary; (7). The concavity assumption dnis satisfied Ai(t) Xe(T—1) - T

by the identity function as well as functions corresponding T-1 _ a7

to a sublinear dependence of the observation precision on s.t. Z Ai(T) = Ai(t),

sensing effort. The convexity assumption @ns satisfied by T=t

a variety of commonly used loss functions. As a first example Ai(T) >0 V7,4,

we consider thé)-1 loss function for a tolerance and then we substitute the maximum valﬁé@(t))_intg {3)

0, 0<a<e, and optimize with respect ta; (¢). The maximumh, (X;(t))
can be determined by noting that {17) is a concave maxi-
mization problem subject to a simplex constraint. For such
The integral in[(IB) may be evaluated in this case to yield problems, we have the following necessary and sufficient

o — € 155 — optimality condition:
o O.T) = Q (Sfo/o) +T0). | -
if Aj(r)>0 then >

where @ denotes the Q-function, i.e., the standard Gaussian ONi(r) — ON(7)
tail probability. Since the Q-function is convex decregsinwhere the partial derivatives are evaluated at the optimum.
for non-negative arguments and the square root functi@ihe solution\;(7) = X\;(t)/(T — t) for all 7 satisfies [(I8)
is concave inh;, the same property used in the proof oby symmetry since all of the partial derivatives are equal.
Propositior 1l may be invoked to conclude thais a convex The corresponding maximum value is therefare;(t)) =

L€(a): 1, a>e¢

v 471, (18)



(T—t)h(N\i(t)/(T—t)). Note however that the optimal solutionand the number of non-zero componehtss determined by
to (I2) may not be unique ifi is not strictly concave. In the interval(b(k—1), b(k)] to which the budget parametart)
particular, if h is the identity function, them; = X;(t) belongs. The monotonicity df(k) ensures that the mapping
regardless of the choice of;(¢),..., A\ (T — 1). We return from A(¢) to k is well-defined. We note that and C' could

to the issue of non-uniqueness in Secfion 1II-C. also be computed using the general procedure_in [26]. The
With the substitutions Zf;tl X(T) = N(t) and thresholding property is clearly seen [n](23). Furthermthre
Zf;tl h(Ni(T)) = (T — )h(X: (1) /(T — t)), @IB) simplifies non-zero allocations increase with the probabilifigg) raised
to to the powery and decrease with the precisiohgr?(t).
N _ In the case of general loss and effort functiofs] (19) may
min Zpi(t)g <0_?(t)’ (T - t)h </\z_(t)>) not have an explicit solution as if_(21)—{24). Nevertheless
X(t) ! T—1 an efficient iterative solution is possible under the asdionp
N (19)  of convexity. One possibility is to use a projected gradient
s.t. ZX»(t) =A(t), N(t)>0 Vi, algorithm, taking advantage of the ease of projecting onto a
=1 simplex.

The solution to [(IB) specifies the values of the sums
(1) = S2T=1 X\i(7). However, the solution td_{17) may not

T=t

niquely specify the division of; () into \;(¢), ..., \i(T—1)

a simplex-constrained convex minimization problem. Peabl —
(I9) thus satisfies an optimality condition similar {o](18
with the inequality between partial derivatives reversad 1

direction. This condition implies that optimal solutions t'f. the effort functionh is not strictly concave. In addition,

(I9) have certain properties akin to water-filling. Firdtet since the OLFC optimization[{19) is similar to the last-

solutions exhibit thresholding in the sense thatt) must be stage °pt'm'zf’]‘“oﬂma)’ Fhe resulting policy can be some-
what aggressive in allocating effort to components culyent

zero if the corresponding partial derivative is not among t}«believed to contain signal as opposed to waiting for further
lowest. Second, the partial derivatives correspondingaia-n . . 9 PP . g
Rnﬂrmatlon. In the next subsection, these issues are ssklte

zero components must all be equal. This in turn induces ﬁ’é o
ordering among the non-zero allocations as a function of t fough a generalization of the OLFC approach.
probabilitiesp; (t) and variances?(t).

To illustrate the properties of optimal solutions fo]l(19F wC. Generalized open-loop feedback control
fspem_allze o the case of power-law_loss[e{&) =afandthe o i subsection, we discuss two modifications to the
identity effort function’(A) = A. In this case,[(I19) reduces toq £ hojicy in Sectior TR, The first modification is di-

N rected at optimizing the distribution of effort over stagesl

min Z 5 pi(t)_ applies to all loss functions. The second modification reduc
X i (02 /oF () + Ai(t)e/? (20) Premature exploitation and is presented only for power-law
N o . loss functions; similar strategies could be devised foeptbss
st Y X)) =A(t), N(t) >0 Vi, functions. As seen in Propositié 2 below, the modifications
i=1 ensure that the resulting policies improve monotonicalithw
and the optimal solution can be stated explicitly. A dethilethe number of stages.
derivation is provided in AppendiX]C. First we define= To optimize the allocation of effort over stages, we restric
2/(q +2) and 7 to be an index permutation that sorts théhe allocation for the current stage(¢) to be proportional to
quantitiesp] (t)o(t) in non-increasing order: the optimal solution\” () of (I9), i.e., A(t) = BT (H)A (1),

wheres(T)(t) € [0, 1] represents the fraction of the remaining

PLy 0020y () 2 Pl ()02 ) (1) = -+ = pL 3y ()07 (3 (1) budgetA(¢) that is used at timeand the superscrifit denotes
(21) the total number of stages. The fractiofs” (¢) are chosen

Next define b(k) to be the monotonically non-decreasingased on a generalization of the optimal policies Tor= 1
function of k = 0,1,..., N with () = oo and andT = 2 in Section[III-A. Both of these optimal policies

belong to the OLFC class. Specifically, tHeé = 1 policy
b(k) o2 ) - Z o results from soIvir]g[(Ea), which_is a specigl casd of (19 wi
PZ(;CH)(t)Ui(kH) (t) &= Pr i) L Ui(i) )’ t = T—1, and setting3(!) (0) = 1 since there is only one stage.

= i The T = 2 policy uses an initial allocationr(0) = 5 (0)1,

k=0,...,N -1 (22) which is of the same form as the solution [0](19) toe 0
under a uniform prior, followed by the solution tb_{19) for
t = 1 scaled byB® (1) = 1. Note that the second stage

{Cp:(i)(t) — #j(t)’ i=1,...,k, in the T = 2 policy is identical to thel' = 1 policy with

k k 9

Then the optimal squtioﬁ*(t) to (20) is given by

(23)  p®@(1) = pM(0). ForT > 2, we follow the same strategy of

0, i=k+1l....N, reusing thgT—1)-stage fractions in th&-stage policy, setting
where BT (t) = ﬂ(T*U‘ (t-1)fort=1,2,...,T~1. The first-stage
A+ 30 2 fraction 3(7)(0) is then optimized as described below.
Jj=1 o2 (%) e . .
C = () (24) The second modification is to allow the exponerin (21)-

Z?Zl Py (®) @3) to vary with time. The last-stage exponeft) (T — 1)



is set t02/(q + 2), the optimal exponent for the loss functiorPropositior 2 implies in particular that the generalizedFQOL
L(a) = a4. In earlier stages, smaller exponents are used policies forT" > 2 improve upon the optimal policy fdf = 2.
make the policy more conservative, specifically by weakgnihe corresponding performance gains are quantified through
the dependence on the probabilitipgt). We propose the numerical simulations in Sectidn V.

simple strategy of optimizing only the first-stage exponent

~(T)(0) and constraining the remaining exponents to linearly

interpolate between(”) (0) and~(™) (T —1). This reduces the D. Rollout OLFC policies

determination of the fraction§(™)(¢) and exponents(™)(¢)
to a two-dimensional optimization regardless of the nunadfer
stages.

The first-stage parametef®”) (0) and 4(7)(0) are deter-
mined recursively fofl’ = 1,2,... starting froma™) (0) = 1
andy™(0) = 2/(q+2). DefineJt(T) (x(t)) to be the cost-to-
go of aT-stage policy in this family starting from timeand
statex(t). Then forT > 1, 87 (0) and~(™)(0) are given by

We now discuss a different approach to improving the
performance of OLFC based on the dynamic programming
technique ofpolicy rollout [24]]. For simplicity, we assume that
the exponenty in (21)-[23) is fixed t®/(¢+2) in all stages,
unlike in Sectiod III=C. In this subsection only, we also reak
the same assumption for the generalized OLFC policies, i.e.
the only parameter optimized in_(25)#™ (0). Rollout could
also be applied in the case of time-varyindy changing the

optimization overj3(t) in below to a joint optimization

(ﬁ(T) (0), 7 (0)) O\F/)erﬂ(t) and 7(t).ﬁ( ) @D ] i

— argmin  E {Jl(T) (x(1)) | x(O),BX*(O)} . (25) Inthelaststage =7 —1 of a rollout policy, the allocation
0<p<1 is determined as before by solvirlg (14a), or equivalently by
v=2/(a+2) solving [I5) with budget usage fractigh”) (T — 1) = 1 (we
The parameters BT (1),....30(T — 2) and Use atilde to distinguish the rollout fractions from those i

~FD(),..., /DT — 2) required to evaluateJl(T) are the gengralized. OLFC pqlicies). For_: 0,1,...,T — 2, the
fraction 5(T)(t) is determined according to

specified by the(T' — 1)-stage policy and the choice of.

The expectation in[{25) can be computed by sampling from . - —

the distribution ofy(1), determining the state(1) using [8), 8 (t) = arg o E {st(+i(x(t +1)) [ x(t), B(t)A (’5)} ;
and then simulating the remainder of the policy. All of these I (27)
computations can be done offline since they depend only @pere Jfﬂ (x(t + 1)) is the cost-to-go of th&'-stage gen-

the _iljitial ;tatex(o) an_d _pre\_/iou_sly determined _policies. INeralized policy. Thus3(™) (t) is chosen assuming that future
addition, since the optimization il (25) can partially ageb giages follow the generalized policy. The correspondirgi-co
for the effect of future observations on future aIIocatl,on§o_go Jt(Ti(x(t + 1)) can be viewed as an approximation to
an effect that is ignored in the OLFC simplification, theq opti?nal cost-to-goly, , (x(t + 1)) in ([4B). Comparing
optimization overs is performed even in the case of strictly@) with (Z8) (and assuming that(t) = 2/(q + 2) for all
concaveh. Otherwise,[(1]7) would yield a uniform distributiont) it is seen thaB(™) (0) = 8T)(0). In other stages however
H T _ ' . I}

over stage§ correspondlr?g/&ﬁ )(t) N 1/(,T,_ t). ) the rollout fractions differ from those in the corresporglin

The family of generalized OLFC policies defined abovgenerajized policy because they are re-optimized basetieon t

satisfies the following monotonic improvement property.  yajye of the current state(t) instead of being taken directly
Proposition 2: The cost of the generalized OLFC policieg;om a policy with fewer stages.

is non-increasing in the number of stages, i.e., In general, rollout policies have the property of improved

JéT) (x(0)) < JéTﬁl)(X(O)), T=23,. ... performance over the policies on whic_:h the_y are ba_lsed. The
same holds for the present rollout policy, with the differen
Proof: The cost of thel'-stage policy is given by being that the optimization i (27) is restricted to a linarsé
) . ) . over 3(t). Denoting bth(T) (x(t)) the cost-to-go of &-stage
Jo 7 (x(0)) = Jnin  E {J1 (x(1)) | x(0), BA (0)} - rollout policy starting from time: and statex(t), we have the
v<2/(q+2) following result:
) o (26) Proposition 3: The T-stage rollout OLFC policy has a
Consider fixing8 = 0 and lower cost-to-go than the corresponding generalized OLFC
2 _ policy in all stages and states, i.e.,
L {m T=2,
T—-1,.(T—- 1 2 ~
=700 -t ds T>2 T (x(t) < I (x(t), t=0,....,T—1, ¥x(t).

on the right-hand side of (26). With = 0, the observations

y(1) are not taken, the state(1) is unchanged fronx(0), - ' HC

and the budget usage fractions are the same as ifilthel )- T—1, the two policies col?:ﬁz)lde so the cost?:;t)o-go are the same.
stage policy. It can also be seen from the choice dfiat the ASSUme inductively thatl,; (x(t +1)) < Jyi1 (x(t + 1)) for
exponents are the same as or- 1, and hence the right-handa" x(t+1). The cost-to-go of the rollout policy is defined by

side of [26) reduces td(Tfl)(x(O)). The claim then follows. - - ~ —
’ I e0) =B {TD e+ 0) [ x0). 30X (1)}

Proof: The proof is based ori [24, Sec. 6.4]. For=



and similarly for the nested policy. By the induction hypegts For the rollout OLFC policies, the fractiong(?) (t) in

and the definition of the rollout policy (27), (20) are also determined through finite-sample approxonati
N - . to expectations and are thus subject to the same type of
T (x(1) <E {Jt(ﬂ(x(“r 1) | x(t), BT (1) (L‘)} error. The difference as noted in Section 1lI-D is that] (27)

(T) ™ (" must be evaluated online, and hence the number of samples
< B {Jt+1(x(t+ 1) Ix(2), 57°(t) (t)} is limited by computational constraints. To circumventsthi
_ t(T)(X(t)) tradeoff, we again make use of an empirical smoothness

property, this time of the expectation ih {27) as a function
for all x(t) as required. Note that the second inequalityf 3(¢). Approximations to the expectations are first obtained
depends on the generalized policy being included in thesclassing a relatively small number of samples, and a fourth-
over which the rollout policy is optimized. m order polynomial ing(t) is fit to the approximation. The
The rollout OLFC policies can make greater use of knowpolynomial fit is then minimized to determing”)(¢). Note
edge of the state(t) but are consequently more demandinthat 5(t) = 1 corresponds to a single-stage policy whose
computationally than the generalized OLFC policies. ladte cost can be computed exactly from the current sidtg as
of a single optimization in(25)]" — 1 optimizations as in(27) described in AppendiXIC. Thu(¢) = 1 and its corresponding
are required. Furthermore and in contrast[ig (25)] (27) mushgle-stage cost represent a fixed point that constraias th
be evaluated online since it depends on the current si{@je polynomial fit.
The simulations involved in computing the expectatiodid)(2 For DS, while [10] prescribes a single value for as a
do become shorter however asncreases. The improvementfunction of the dimensionV, in our simulations we consider
due to rollout is characterized through numerical simalai all values ofT" between2 and 10 as with OLFC. Following
in Section1V. [10], we use a geometrically decreasing allocation of ¢ffor
over stages with decay ratly4 and equal first and last stages.
More precisely, defining(t) as the fraction of the total budget
used in stage, we haven(t) = a(0)(3/4) fort =1,...,T—
Numerical simulations are used to evaluate the OLFg a(T —1) = a(0), anda(0) chosen such thaZtT;ol a(t) =
policies developed in Sectignllll. The monotonic improverne 1,
property of Propositiohl2 is verified and gains up to several In Fig.[1, we plot the MSE [{3) witt.(a) = a?) and MAE
dB are observed relative to the optimal two-stage policye TH(@) with L(a) = a) for various policies as a function of
proposed policies are also seen to consistently outperfoBNR, where SNR is defined d$log;,(u2/c?) in dB. Each
distilled sensing (DS), most significantly at higher SNR. Wpgoint represents the average4df0 simulations. The baseline
have additionally made comparisons to the sequential thregorresponding t® dB on the vertical axis is the optimal non-
olding method in[[11], [[12], which in the case of Gaussiaadaptive policy, which under a uniform prior allocates oné u
observations is similar to DS except in its allocation ofseg of effort to all components. For context, we also include the
effort over stages. In terms of estimation Idss (3), we firat thoracle policy, which distributes effort uniformly over theie
DS performs uniformly better than sequential thresholdiog signal support. The oracle thus provides an upper bound on
we only show results for DS in the plots. the achievable performance, although the bound is unlitely
In the simulations, we se¥V = 10000 and generate signalsbe tight at lower SNR.
and observations according to the model in Sediibn Il. Ecep In general, adaptivity yields higher gains for sparser aign
where indicated, the signal meag is normalized tdl and the (py = 0.01) since resources can be concentrated on fewer
signal standard deviation, is set tol/4. The identity effort components once the support is identified. Thestage gener-
function h(\) = X is used throughout. alized OLFC policies improve upon tizestage OLFC policies
Two families of generalized OLFC policies are considereds expected. The largest gains occur at intermediate SNR and
one optimized for MSE (final exponent”™) (T — 1) = 1/2, reachl.5 dB for p, = 0.1 and4.5 dB for p, = 0.01. Recall
denoted OLFC-MSE) and the other for MAE({)(T'— 1) = that the 2-stage OLFC-MSE policy is optimal in terms of
2/3, denoted OLFC-MAE). The number of stagBds varied MSE for T = 2, and similarly for OLFC-MAE. Note also
from 2 to 10 and the final estimate is given by (7). that the performance is only slightly affected by a mismatch
In the offline determination of the parametes§’’) (1) and between the OLFC policy and the loss function. At high
7(T)(t), the optimization in[(25) may be inexact because @NR, the OLFC policies approach the oracle gain, which in
finite-sample approximations to the expectations. To midg turn approaches the sparsity factofp,. In contrast, the DS
such errors, we make use of the empirical observation thadlicies saturate at significantly lower levels since theg a
M (0) and 4T (0) appear to vary smoothly with SNR,not designed with estimation performance in mind. While the
and 3(7)(0) also appears to decrease monotonically With 10-stage DS policy outperforms the optimaistage policy
Accordingly, we first obtain raw estimates ¢f”)(0) and at lower SNR, thel0-stage OLFC policies have the best
7(T)(0) and then perform a polynomial fit as a function operformance at all SNR.
SNR, where the polynomials fo8(™)(0) are constrained to  Fig.[2 shows decreases in MSE with the number of stdges
satisfy () (0) > T+ (0) for all T. In our experience, a The incremental gains predicted by Proposifibn 2 diminish a
polynomial degree o6 is sufficient to capture the variation of 7" increases. Using more stages is more beneficial at lower
the parameters over the SNR range considered. SNR and higher sparsity, whereas at higher SNR most of

IV. NUMERICAL SIMULATIONS
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Fig. 1. Reduction in MSE (first row) and MAE (second row) rigiatto non-adaptive estimation as a function of SNR. Thestage generalized open-loop
feedback control (OLFC) policies improve upon thestage OLFC policies with maximum gains ©f5 dB for po = 0.1 and4.5 dB for pp = 0.01. The
2-stage OLFC policies are optimal f@f = 2. As the SNR increases, the proposed OLFC policies apprdecbracle gain ofl /pp and outperform distilled
sensing (DS) by several dB.

the signal components can be located in a single step andre than).6 dB. It appears therefore that for the problem at
a two-stage OLFC policy performs almost as well as a polidyand, the performance gained from rollout is minimal while
with many more stages. The gains for DS do not diminish #se computational cost of the required online simulatios i
quickly but are lower overall, never exceeding the gain ef thmuch greater.

corresponding-stage generalized OLFC policy.
Fig. @ depicts the fractiom(”)(t) of the total budget

In Fig.[3, we consider the performance improvement dwlocated to each stage inld-stage OLFC-MSE policy for
to policy rollout, as guaranteed by Propositioh 3. For thidifferent SNR levels ang = 0.01. The fractionsa!™)(t)
experiment only, the exponent in (21)-[23) is fixed at are related to the fractions(") () of the remaining budget
2/(g+2) = 1/2 (¢ = 2 for MSE). The dimensionV is through a straightforward transformation. Three regimey m
lowered t01000 and the results are averaged over oh§)0 be distinguished in Fid. 4(a). At very low SNR, it is difficult
simulations because of the higher computational complexib identify the signal support and the allocation is close to
of rollout. Forp, = 0.1 in Fig.[3(a), no decrease in MSE isuniform. BetweerD and25 dB SNR, the allocation is heavily
seen, whereas far, = 0.01 in Fig.[3(B), the decrease is nevemweighted toward earlier stages. As seen in Fig. |4(b), the
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Fig. 3. Comparison of generalized and rollout OLFC policssa function of SNR. The improvement due to rollout is midima

Py =01, SNR=0dB Py = 0.01, SNR=0dB pected. One possible remedy is to introduce hyper-paramete
) for po, 1o, and o2, but this approach is more complicated
50‘4 ! I and is beyond the scope of the current paper. Moreover, as
5): 0.2 05 will be seen shortly, the effect of mismatched priors on the
z o generalized OLFC policies is quite mild except when the SNR
2 4 68 10 2 4 6 8 10 g overestimated.
P, = 0.1, SNR=10dB P = 0.01, SNR=10dB
ﬁ 3 § To assess the effect of mismatched priors on the generalized
Ez Svampery=aryrees 4 OLFC policies, a series of experiments are conducted in
21 —+ DS 2 which one ofpy, o, or o is misspecified. In Fig. 5(p), the
= & & 10 T true sparsity levep, is 0.1 while the valuep;, assumed by
P, = 0.1, SNR =20 dB P, =0.01, SNR = 20 dB the policies is eithef).1 or 0.01. The performance loss of
T the OLFC-MSE policies is rather mild given the order-of-
3 6 15 i magnitude underestimate pf§. Similar results are seen when
=4 10 po is overestimated. DS on the other hand does not make use
2 g 2 of the parametep;, and is therefore unaffected.
2 4 6 8 10 2 4 6 8 10
number of stages T number of stages T

In Figs.[5(b) and 5(¢)po is set t00.01 while the signal
Fig. 2. MSE reduction as a function of the number of stagiesGains meanu( assumed by the policies is either correct or off-by
diminish asT increases but less quickly at lower _SNR and higher sparsityg. The signal standard deviatien is also Changed 16.40,
In all cases shown, the proposed OLFC-MSE policy witktages performs ] .
better than al0-stage DS policy. making the mean mismatches on the order of one standard
deviation. As can be seen frorh {8b), a misspecification of
1o leads to a biased estimaje(7T'), although the bias can
be reduced by allocating more effort to the observations. It
decrea_\se with _tir_ne is reminiscent of the geometric decg@y clear from Figs[ 5(b)(c) that overestimating results in
prescribed by distilled sensing. Abogg dB SNR, the support more significant losses due to missed detections of weaker
can be determined with relatively little effort and an ir@s#&g tngn expected signal components, especially at high SNR. In
fraction of the budget is reserved for the last stage to éxpl@onrast, whery is underestimated, the reduction in MSE
this knowledge. relative to nonadaptive sampling can actually be greatam th
The proposed policies are based on a Bayesian framewarkthe matched case; this can be attributed to a reduction in
and are thus dependent on prior knowledge of the expectads. In both cases, the OLFC-MSE policy remains better than
sparsity level and SNR, specifically in the form of the paranBS. The consequences of misspecifyirfgare less severe than
eterspo, 1o, anda?. If these prior parameters are misspecifiedor ;o with underestimatingr? being worse. These findings
the correct values can be learned through the Bayesianeipdatggest that the policies are more sensitive to overestgnat
process[(8) but some degradation in performance is to be exthe SNR than underestimates.
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Fig. 4. Fraction of total budget allocated to each stage i-atage OLFC-MSE policy fopg = 0.01 and (a) all SNR values, (b) SNR 0, 10, 20, 30
dB. Three regimes can be seen in (a): a nearly uniform regiebl@w0 dB SNR, a decaying “distilling” regime betwedhand 25 dB, and a near-oracle
regime above25 dB with increasing emphasis on the last stage.

aroundz;. The total budget consists af P pulses and the
average number of pulses per locatiBris thus equivalent to
SNR.

The Swerling observation model presents a test of robust-
ness of the policies to non-Gaussianity. Results obtaimeeiu
Gaussian and speckle noise are similar. In addition, skvera
accommodations are made to better conform to the model
in Section[I). Most notably, while the targets in Fig. 6(a)

: are indeed sparse, they each extend over several pixels and
100 200 300 400 500 2 4 6 8 10 12 within this extent, their amplitudes are not uniformly difént

(@ (b) from the background. To address this non-uniformity, each
observed image(t) is preprocessed with a 2-D linear filter,

Fig. 6. (a) Original SAR image taken frorn_[27] for radar imagiexample. . ) A .
(b) Tank template used for 2-D linear filtering. following the approach in_[3] and using the same approximate

tank template as in_[3, Fig. 6] and reproduced in [fig. |6(b).
The filtered imageg (¢) display clusters of uniformly brighter
V. APPLICATION TO RADAR IMAGING intensities at the locations of the tanks and are used as the

In this section, the proposed allocation policies are appliiNPUt to the effort allocation policies. We uge = 0.001
to a radar imaging example also consideredin [3]. The caigir®S the |_n|t|aI sparsity estimate in the flltereq domain. The
synthetic aperture radar (SAR) image in Fig. B(a) shas Other prior parameterg, of, and o* are estimated from
tanks in a large field and is therefore sparse in terms of targdhe first-stage filtered observatigri1). More specifically, the
In the adaptive setting, it is assumed that the position avelld background mean (generally nonzero) and varianteare
time of the radar beam can be controlled, and our goal is #§timated from they;(1) below thel —po quantile, while
illustrate the benefits of such adaptivity in acquiring sear the initial signal meanu, and variancesj are estimated
targets. from they;(1) above thel — py quantile. Once the allocation
We assume a Swerling Il target model, commonly used M) has been determined in each stage, it is mapped to a

radar [28], in which the observation(t) of locationi in stage Pulse allocationk(t) in the original unfiltered domain by
t is given by the empirical mean convolving A(t) as an image with the support of the tank

template in Figl 6(B) (a binary image) and normalizing sd tha
1 > ki(t) = >, Ai(t). The allocationk(t) is then rounded to

z(t) = kit —1) Z Zis(t), (28) satisfy the integer restriction, again while preserving sum.

s=1 The reconstructed imag& is formed as a maximum-

where thez;,(¢) are i.i.d. exponential random variables withikelihood estimate ok based ong(1),...,z(T):

mean equal to the true target amplitudein Fig.[6(a), and r

ki(t — 1) is the number of radar pulses. Thus &gt — 1) §i = 2= Ki(t)zi(t)

increases, the distribution af(¢t) becomes more concentrated ’ Zthl Ki(t)

Ki(tfl)

, i=1,...,N.
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Fig. 5. Reduction in MSE relative to non-adaptive estintatés a function of SNR under mismatches in prior parametar§a)l po is underestimated by
an order of magnitude and the effects are minor. More sewsm®e$ are seen in (b) with4adB overestimate ofip. In (C), uo is underestimated by dB
and the losses are again modest. In all cases, the propose@-®ISE policy remains better than DS.

In the non-adaptive single-stage case, this reduces; te= Simulations and a radar imaging example also show gains
z;(1) with x;(0) = P in (28). Fig[T shows a20x 120 portion relative to distilled sensind [10] and dramatic improvemsen
of the original image (the fult50 x 570 image in Fig[6(g) is relative to non-adaptive sensing.

used in processing) together with reconstructions fi®rm 3 The dynamic programming approach taken in this paper
pulses per location. We focus attention on the targets of iig- quite general and can potentially be leveraged to develop
terest, namely the tanks. In the non-adaptive reconsbmudti - tractable policies for other inference tasks such as detect
Fig.[7(b), the tanks are obscured by noise. Better imagediresr a combination of detection and estimation. More general
from the two adaptive policies. The OLFC reconstructiogbservation models involving linear combinations may also
however shows greater noise suppression around each tgakincorporated; the matched filtering in the radar example
and recovers amplitude details more faithfully. in Section[Y is only a preliminary step in this direction. On
In Fig.[8, we show one-dimensional profiles passing throughe more theoretical side, the performance curves in [Big. 1
the line of tanks. The middle curves indicate the true imaggotivate the need for bounds on the achievable performance
intensities while the upper and lower curves correspona® oof adaptive sensing that are more refined than the oraclecboun
standard deviation above and below the mean reconstructRasults in this vein for the case of a discrete resource hudge
for each policy, where the mean and standard deviation a&igve appeared recently [29], [30].
computed froml00 realizations. The number of pulses per lo-
cation isP = 2. The variability in the reconstruction is clearly
reduced using OLFC, in particular in the higher-amplitude
regions corresponding to targets. Thestage OLFC policy
further reduces the standard deviation By3 dB relative to
the 2-stage OLFC policy.

APPENDIXA
PrROOF OFLEMMA [I]AND DERIVATION OF POSTERIOR
PROBABILITY DISTRIBUTIONS

In this appendix, we prove Lemnid 1 and indicate how the
V1. CONCLUSIONS AND FUTURE WORK state variable recursion§](8) are derived. Attention isd pai
We have presented multistage resource allocation polici@sthe adaptive nature of the observations, specifically the
for the sequential estimation of sparse signals under @tyaridependence of the sensing effox{t) on past observations
of loss and effort functions. Our formulation of the problenY (¢)
permits the application of techniques from dynamic program First we show that the conditional distributiofi(@ |
ming, in particular open-loop feedback control. The praebsI = 1,Y(¢)) is independent Gaussian. This can be done
policies improve monotonically with the number of staged arinductively starting witht = 0, in which case there are no
thus extend the optimal two-stage policy developed[in [3dbservations ang'( | I =1,Y(t)) is given by the assumed
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independent Gaussian prior:
recursions in[(8b) and_(Bc). Solving_{8c) for the final-stage

N . .
o o L 5 variance yields[{6).
fOI=1)= 1:[ FO:i [ i =1) = H¢(9“ #i(0), 77:(0)). We now show that the conditional probability mass function
=t =t (29) p(I|Y(t)) is independent Bernoulli, proceeding inductively
Next we assume that(@ | I=1,Y (¢t — 1)) is given and use as before. The base case= 0 corresponds to the prior

N

Bayes' rule to obtain the proportionality distribution, assumed to be i.i.d. Bernoulli:
N N
fO11=1,Y() p(@) =[] p@) =[] p:(0)" (1 = pi(0))* . (33)
fy®)16.1=1,Y(~1)f(0I=1Y(-1) (30) =1 =1

Next we relatep(I | Y(¢)) to p(I | Y(t — 1)) using Bayes’

as functions ofd. Since conditioning orY (¢t — 1) also fixes rule:

Ai(t — 1) in (@), the observationg;(t) are conditionally
independent and Gaussian and the likelihood ¢itn(t) | |y ) = f@ LY -1)pd|Y(E-1)
6,1=1,Y(t — 1)) simplifies to 2o fly@ T, Y (- 1)pM | Y(t- 1)834)

N ) As before, conditioning orY (t — 1) fixes A\;(¢ — 1) in (@)
fly()16,1=1,Y(i-1)) = H¢(?Ji(t);9i70 /h(Ai(t=1)))- and thusy(¢t) | LY(t — 1) is a linear combination of
=1 (31) the independent random vectofs| I,Y(t — 1) and n(t).
From [29)-[31) it can be seen that| I = 1,Y(t) retains Consequently we obtain
an independent Gaussian distribution for talvith marginals

given by fy@) LY (t-1)) =
0| I =1,Y(t) L1 i (®): Lipa(t = 1), LioZ(t —1) +o?/h(Ni(t — 1))).
(i (0); 0, 02ROt — D) F(0: | =1, Y (t —1)). (32) (35)

We parameterizef(6; | I; = 1,Y(t)) by its meanpu;(t) recalling thatf(6; | I, = 1,Y(¢t — 1)) is parameterized by
and variancec?(t) as in the statement of Lemnid 1. Au;(t—1) ando?(t—1). From [33)-{(3b) it can be concluded that
straightforward calculation starting froni {32) leads te ththe components df | Y (¢) remain independent with marginal
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distributions contradicting the optimality condition (B9). The indexewan
Flys@®) | LY (= 1)p(L; | Y(t — 1)) be stated in terms of the permutatierdefined in [21L), which

p(Li | Y (1)) = - in the notation of this appendix sorts the quantitiggr; in
Zz/ —o J(yi(®) | 1, Y (t = 1)p(I7 [ Y (¢ _éé)) non-increasing order. Specifically, we hayp ) > (??gr =
The recursion fomp;(t) = Pr(l; = 1| Y(t)) in (83) follows , ks for some integek, A7) =0 fori=k+1,.... N,
from (38) and [[3b). andpﬂ(k)/f“(“_ > pfr(kfl_)/r” (k+1) Strictly. _
The optimality condition[(39) also implies that the partial
derivatives corresponding to non-zero components of the op
APPENDIXB timal solution must be equal. Hence
PROOF OFLEMMA [Z]
We first prove the lemma for loss functions of the form  _ 2. 0] _ Pr (i) —c YV, i=1.... .k
Q0 (Tmiy + X)) ’ o
I _J0, 0<a<y, 37) (40)
s(a) = 1, a>§6 ( whereC is a constant to be determined. A slight rearrangement
R of (40) yields the expression i (23) for=1, ..., k. The value
for § > 0. The expected loss for an estimatés then of C'in 29) is obtamed by summing(R3) over=1,...,k
bts and noting tha@l 1 A%y = Zf.vzl Af=A.
E {L(; (‘9 _ em —1— / 1(6) dé. (38) It remains to determine the cutoff indéx This can be done
6—5 by enforcing the condition\” 5 >0 fori=1,...,k and the
By the symmetry and unimodality gf(9) abouty, it is intu- optimality condition [(3p) forj = x(k + 1),...,m(N) (corre-
itively clear and is formally proven ir [31] that the expette SPonding to the zero-valued components). The first conitio
loss [38) is minimized fof = 4. is equivalent to
A general non-decreasing loss functidncan be approxi- T
mated arbitrarily closely by a sum of functions of the form in C>—=—=, i=1,...,k
(32) in a manner reminiscent of Lebesgue integration. Given Pri)
a step sizeAL > 0, we construct the approximation while the second is equivalent to
L(a)= ALY Li-sgar)(a), c<Z0 k41, N (41)
k=1 pﬁ(l)

iven the definition ofr in (1), the most stringent conditions

where L~!(kAL) denotes the smallest value afsuch that
(g;orrespond toe =kandi=k+1, ie,

L(a) = KAL. By the linearity of expectations, the expecte
value of L (‘9 - HD is a sum of functions of the form ifi(B8).

Sincef = p minimizes each term in the sum individually, it T (k) < A+ Zle "x(@) o Tw(k+1) (42)
also minimizes the overall sum and hence the mean estimate p;(k) Zf 1p7(-) = p:(kﬂ)’
is optimal for L. As AL — 0, L converges toL and the
statement is proven fok. upon substituting(24). Solving (#2) far yields the condition
b(k — 1) < A < b(k) using the definition ofb(k) in (22).
APPENDIXC If £ = N, (41) is absent and we only have the condition
SOLUTION OF PROBLEM(20) A > b(N — 1), or equivalently we may defing(N) = oc.

For notational simplicity, we writey;, 7+, Ai, andA in this Thus the number of non-zero componehtis determined by

appendix for the quantities (1), o /a2(t), Xs(t), andA(¢) in the interval(b(k — 1), b(k)] to which A belongs. This mapping

@0). We also use/ to denote the cost function. As noted InfromAtok: is well-defined ifb(k) is a non-decreasing function

Section1II-B, [20) is a convex minimization problem sulijec
to a simplex constraint and therefore satisfies an optiynali
condition similar to [(IB):

of k so that the intervaléb(k — 1), b(k)] are non-overlapping
zi\nd span the positive real line. Indeed we have

rrr(kJrl
if A7 >0 then o (A") < o —(A") Vji#i (39) ﬁ(kﬂ) ; Z
k k
Condition [39) implies that the optimal solution fo20)isat > 7’:(1@) sz’(i) _ er(i)
fies an index rule in the sense that the non-zero components Prwy i3 =1
of the optimal solution correspond to the larggstr;, where iy F2L k—1
v = 2/(q + 2). To prove this fact, suppose thatand j are = :( ) Zp:(i) — Tr(i)
such that\; > 0 and\s = 0 butp]/r; < p]/r;. Then Pr(w) i=1 i=1
' =b(k—1),
oJ ¢ i api o _ap _ 9J ( )

I > — > =_,
OA; 2 (r; + )M 2,1 2017 0N where the inequality is due t&(21).
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