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Abstract—This paper investigates Quality of Information (QoI)
aware adaptive sampling in a system where two sensor devices re-
port information to an end user. The system carries out a sequence
of tasks, where each task relates to a random event that must be
observed. The accumulated information obtained from the sensor
devices is reported once per task to a higher layer application at the
end user. The utility of each report depends on the timeliness of the
report and also on the quality of the observations. Quality can be
improved by accumulating more observations for the same task,
at the expense of delay. We assume new tasks arrive randomly,
and the qualities of each new observation are also random. The
goal is to maximize time average quality of information subject
to cost constraints. We solve the problem by leveraging dynamic
programming and Lyapunov optimization. Our algorithms involve
solving a 2-dimensional optimal stopping problem, and result in
a 2-dimensional threshold rule. When task arrivals are i.i.d., the
optimal solution to the stopping problem can be closely approxi-
mated with a small number of simplified value iterations. When
task arrivals are periodic, we derive a structured form approxi-
mately optimal stopping policy. We also introduce hybrid policies
applied over the proposed adaptive sampling algorithms to further
improve the performance. Numerical results demonstrate that our
policies perform near optimal. Overall, this work provides new in-
sights into network operation based on QoI attributes.

Index Terms—Approximate dynamic programming, network
utility maximization, quality of information.

I. INTRODUCTION

T HE increasing diversity of wireless applications has lead
to the introduction of new performance attributes. Tradi-

tional performance metrics associated with Quality of Service
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(QoS) such as throughput, delay, and fairness, may not be ac-
curate indicators of the suitability of information for a specific
application. In order to address this issue, there has been interest
in introducing new attributes which characterize the value of in-
formation relevant to a specific application[1], [2]. Attributes
such as provenance, accuracy and precision, reliability, corrob-
oration and credibility, age/freshness, and timeliness have been
used to define the quality of information [1]–[3]. Event detec-
tion applications for QoI are studied in [1], [4]. Recently, there
have also been studies which focus on transmission scheduling
aspects in QoI-based networks [5], [6]. In [7], we have consid-
ered the trade-off between the attributes of accuracy and fresh-
ness for a single link.
In this work, we consider a network of multiple sensor de-

vices that repeatedly process new tasks. The goal is to maxi-
mize a time average QoI-based utility minus (sensing and pro-
cessing) costs. The QoI utility is general and can depend on a
variety of QoI metrics such as credibility, accuracy, precision,
and age. Themain property of QoI is that it is a composite metric
which deteriorates with age and increases with time due to ad-
ditional information gathered. The amount of information that
sensors collect varies randomly throughout time, which leads to
uncertainty in the QoI utility evolution. Consequently, the es-
sential decision to be made by the network via a centralized
controller is whether to receive extra information, i.e., explo-
ration, or report the information present in order to prevent the
utility from degrading due to increased age, i.e., exploitation.
This decision depends on the amount and quality of the infor-
mation the sensors have already gathered at the decision in-
stant.While the exploration-exploitation tradeoff has previously
been studied for various wireless network scenarios, e.g., cog-
nitive spectrum access [8], [9], autonomous resource manage-
ment [10], and QoS routing [11], in this paper we specifically
address the problem of adaptive sampling [12], [13] which fo-
cuses on the determination of the time to report sampled data.
The proposed adaptive sampling algorithms attempt to maxi-
mize time average QoI-minus-cost. The optimal behavior for
sum utilities is characterized by value iteration, leading to a
multidimensional continuing region for the sensor utilities. We
then consider two specific task arrival patterns: i.i.d. arrivals
and periodic arrivals. For i.i.d. arrivals, we show that approx-
imate adaptive sampling algorithms based on the value itera-
tion algorithm [14] is sufficient to approach optimality. For pe-
riodic arrivals, we also utilize approximations on value func-
tions [15]–[17], and provide algorithms which vary depending
on both joint utility states and the amount of time left for the
arrival of the next task. The algorithms provided are shown to
avoid high computational complexity. For these two task arrival
patterns, we then demonstrate that it is optimal to stop if the sum
utility exceeds an upper threshold and continue if it is under a
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Fig. 1. QoI-based network with two sensor devices.

lower threshold. Finally, we address the alternative problem of
maximizing total QoI utility subject to constraints on average
cost expenditure. We apply methods from Lyapunov optimiza-
tion [18], and present a dynamic adaptive sampling algorithm
which satisfies the constraints. This work provides new insights
on QoI-based networking, which can accommodate for many
different QoI attributes and applications.While we have focused
on the model of the two-sensor network, the results and method-
ology provided in this work can be readily generalized to more
than two sensors.

II. SYSTEM MODEL

We consider a network where two sensor devices ( and
) are issued tasks from an end user. Sensors observe separate

phenomena, and gather information related with the task, which
are to be reported to the end user (Fig. 1).
We consider a slotted system where a random amount of in-

formation is gathered by the sensors at each slot. Information
gathered by the sensors are associated with a QoI-based utility
value for the end user. In particular, the QoI utility is a com-
posite attribute which deteriorates with age and increases with
additional information gathered in time.
Tasks arrive sequentially as either a periodic or random

process, and once a new task arrives, the sensors are obliged
to send the information accumulated about the previous task.
On the other hand, we assume that the end user possesses
knowledge about utility states of the sensors and may request
the sensors to respond to the task before a new task arrives1.
In particular, this decision to continue for exploration, or to
stop for exploitation, which is carried out in a centralized
manner at the end user, will be the main focus of this paper.
The transmission from to and to are performed
simultaneously.
Let , denote the stage number, i.e., the

number of time slots that have elapsed since the current task
was issued. The QoI utility at sensor , , 2, evolves
as follows:

(1)

where , , 2 are the discounting factors of the
two sensors. The value corresponds to the raw utility
added due to information collected at stage by sensor , for

.We assume that both , , and ,
are non-negative i.i.d. random variables, that is, ad-

ditional information gathered at any slot cannot have an adverse
effect and utility degrades only due to age. This leads to the fol-

1Inter-node communication and coordination [19], [20] which are necessary
to ensure these assumptions are satisfied are out of the scope of this paper.

lowing expression in terms of information arrivals at previous
slots:

(2)

Sensors are heterogeneous in the sense that the values and
processes can differ for each sensor.
In this setting, the end user will make a decision in order

to maximize the total utility. The total utility function at the
end user will be the summation of the individual utilities of the
sensors ( ).

(3)

In addition, each slot where the sensors continue to gather in-
formation results in an operational cost , which may occur due
to sensing and processing.

III. CONTROL OBJECTIVE

Let , , 2 denote the QoI that are delivered to the
end user from sensor for task under any policy (where

). Similarly, let denote the total processing
cost incurred on task . This is equal to times the number of
slots in which the control action of continuewas chosen for task
. Then, we consider the control objective of maximizing the

time average QoI minus the average (processing and sensing)
cost. Since the actions taken in a task do not effect the durations
of other tasks, this is equivalent to maximizing the average QoI
minus the total (processing and sensing) cost per task, which
can be stated as:

(4)

Since the arrival times of tasks are independent of decisions,
this maximization can be achieved by separately maximizing
the expected QoI minus the total processing cost within each
task arrival period. This problem falls into the class of stochastic
shortest path (SSP) problems [21]. In particular, the problem al-
ways starts in the QoI state and terminates when-
ever the next task arrives. This SSP problem always terminates
under any control policy due to the fact that the expected inter-
arrival time of the tasks is finite. In the next section, we present
the dynamic programming formulation for this problem.

IV. GENERAL SOLUTION

At each stage , the end user makes a decision to continue, or
to stop. Stopping yields the current accumulated utility

. If a new task arrives on the current stage, the system is
forced to stop. Else, the system can choose to continue, with
the hopes of accumulating a larger utility before stopping. For
clarity of exposition, we represent the state of the system as

, which implies that utilities and correspond
to the values at stage , i.e., and , with also
corresponding to . Bellman’s equation [21] for the

system is:

(5)
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where is the optimal cost-to-go value function,
is the processing cost, is the probability that a new task
arrives at the next time slot, and is the expected value of .
The term multiplying corresponds to the expected sum
utility when the end user decides to continue but a task arrival
occurs at the next stage, and the system is forced to stop. Note
that the expectation in (5) is with respect to and , which
are random variables. The Bellman equation shows that it is
optimal to stop whenever the following inequality holds (and
to continue otherwise):

(6)

We note that the left-hand-side (LHS) corresponds to the instan-
taneous sum utility.
In [7], for the case with a single source, we were able to

demonstrate that the optimal stopping rule is threshold-type for
a class of task arrival patterns. Here, we also aim to charac-
terize the decision by focusing on only the sum utility value,
i.e., .
To that end, we first introduce the following lemma:
Lemma 1: For any fixed stage , is increasing

in both and .
Proof: Fix . Consider any such that
and , where strict inequality holds for at least one.

We want to show that . Suppose
we are in stage , and let be a random variable representing
the number of slots we continue after stage before stopping,
assuming we use the optimal rule for achieving . So

. Then we have:

(7)

Now assume we are in stage , but start with quantities
. However, we use the same stopping rule , associated

with the lesser quantities . Then this is a particular algo-
rithm, not necessarily optimal, and so:

(8)

where the last line follows from (7). We know that
and , and so the sum of the first two terms on the
right-hand-side above must be strictly positive.
Consider the one-dimensional version of the problem with

only one sensor, and a single discount factor . Suppose
and are defined as the optimal value

functions for sensor state at stage , which solve the

one-dimensional problems associated with discount factors
and , i.e., result from the

following Bellman equations:

(9)

(10)

Lemma 2: For all , , and integers
, we have:

(11)

Proof: We prove that .
The proof of the other inequality is similar. Let represent the
optimal stopping time for the one-dimensional problem corre-
sponding to , stage , and utility . That is, given
utility at stage , is the random variable repre-
senting the optimal time to stop. That is:

(12)

Define as the optimal stopping time for the two-dimensional
problem starting at stage with utilities , so that:

(13)

Then, because is optimal and maximizes the right-hand-side
above, we have:

(14)

(15)

(16)

(17)

which holds regardless of the relation between and .
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While (6) provides a stopping rule, by the Lemma 2, we know
that the right-hand-side of (6) satisfies:
Lemma 3: Suppose it is optimal to stop for the one-dimen-

sional problem at stage , with and . Then it is also
optimal to stop for the two-dimensional problem. Similarly, if
it is optimal to continue for the one-dimensional problem with
and with , then it is also optimal to continue in the

two-dimensional problem.
Proof: We just show the first statement, concerning com-

parison to the one-dimensional problem with , for brevity
(the proof for is similar). If it is optimal to stop for the one-di-
mensional problem with , then we must have:

(18)

(19)

(20)

where the first inequality is the stopping condition for the one-
dimensional problem, the second follows from Lemma 2, and
the third follows because is non-decreasing in
and . Therefore, satisfies the condition (6).
In the following sections, we consider cases where the

one-dimensional problems satisfy a threshold rule. Then, from
Lemma 3, at each stage , we can define thresholds
as the threshold for the one-dimensional problem with , and

as the threshold for the one-dimensional problem with
, to claim that if it is definitely optimal

to stop, and if is it definitely optimal to
continue.
In general, the stopping rule depends on the vector

at each stage , not only on the sum.
We next characterize this region for two specific task arrival
processes: (i) i.i.d. memoryless task arrivals with geometric
interarrival times, and (ii) periodic task arrivals.
We first present simple monotonicity and convexity proper-

ties of :
Lemma 4: For any fixed stage , is convex in

.
Proof: Consider any non-negative vectors and
and any non-negative values such that .

We want to show that:

(21)
As in the proof of Lemma 1, we have:

(22)

(23)

where is the random variable associated with the optimal
stopping rule, assuming we start in stage with utilities

, and is the corresponding optimal stopping time
given we start with utilities . By definition of optimality,
the values of and are greater than or
equal to the corresponding values when a random variable
corresponding to any other stopping rule is used inside the ex-
pectations on the right-hand-side of (22) and (23), respectively:

(24)

(25)

Multiplying (24) and (25) by and , respectively, and adding
gives:

(26)

Now define as the random variable associated with
the optimal stopping rule in stage , given utilities

. Then the right-hand-side of (26) is
the optimal value , proving (21).
Convexity is a useful property, and implies (by Jensen’s in-

equality) that for any non-negative random variables and
we have:

(27)

V. GEOMETRIC ARRIVALS

We first consider the case where the task arrival is an i.i.d.
Bernoulli process with rate . This means that
for all and the interarrival times are geometrically dis-

tributed with mean . Due to the memoryless property of the
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Geometric distribution, we can drop the stage index while rep-
resenting the system state, and the Bellman equation becomes:

(28)

First, the optimal rule is to stop if the following is satisfied:

(29)

We first present the following structural result:
Theorem 1: For any instantaneous sum utility value

, there exists thresholds and ( ) which
depend on , distributions of , , 2, and , such that:
• If , it is always optimal to stop.
• If , it is always optimal to continue.
Proof: We refer to the full proof at [7] for the optimality

of a threshold-type stopping rule for the one-dimensional case
with geometric task arrivals. Accordingly, the two-threshold
rule readily follows from Lemma 3. Note that these thresholds
are independent from the stage number.
While this characterization throws light for cases when the

sum utility is too large or too small, next we pursue solutions
which accommodate for general pairs.

A. Value Iteration Approximation

To characterize , we utilize the well known value
iteration algorithm [21]. The general procedure is given as
follows:

(30)

(31)

The difficulty is that the functions grow increasingly
complex as functions of . We can use convexity and
Jensen’s inequality via (27) to obtain a simple lower bound on
the expectation of the value function in (31):

Therefore, by (31):

(32)

This inspires the following iterations for bounding functions
:

(33)

(34)

Fig. 2. Value functions for varying QoI utility state 2, , .

The iterations (33)-(34) converge, because we observe they are
the exact value iterations in a system where rewards
are deterministically equal to the constants on every
stage.
Lemma 5: For each and every non-negative

vector , we have:

Proof: It holds for . Suppose it holds for a general .
We prove it also for . We have by (32):

(35)

(36)

where the final inequality holds by the induction assumption
.

We demonstrate the closeness of the bounding functions to
the optimal value function in Fig. 2, for , ,

, with and independent Bernoulli with
, with . For illustrative purposes, we vary

utility of sensor 2, and display the value functions for the special
cases where , i.e., both sensor states are equal, and the
case when . “Opt” corresponds to the optimal value
function for each of these two cases, which was obtained by
value iteration performed using the full distribution of and
. On the other hand, “Bnd” corresponds to the value function

resulting from the bounding algorithm with a sufficient number
of iterations, while “Bnd, ” depicts the value function
for the simpler case where only 2 iterations are used for the
bounding function. Next, we utilize these bounding functions
in a reduced-complexity adaptive sampling algorithm.
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B. Adaptive Sampling via Bounding Functions

Perfect value iterations require extensive computation re-
quirements due to expectations over , values at each
iteration step. In order to reduce computational requirements
in adaptive sampling, we propose algorithms which are in-
spired by the approximate dynamic programming approach
called Certainty Equivalent Control (CEC) [21]. CEC methods
execute dynamic programming algorithms for cases where
the uncertain quantities are fixed at some typical values. A
natural choice for the typical values are mean values of random
variables. Doing so results in the following Bellman equation:

(37)

We immediately note that applying value iteration to get the
value functions is identical to the iterations for
bounding functions in (33)-(34).
Accordingly, we propose an approximately optimal adaptive

sampling algorithm which utilizes bounding functions instead
of the actual value function, that is, for a given bounding func-
tion ,
(i) Stop, if

(38)

(ii) Continue, if

(39)

Indeed, from Lemma 4 and Lemma 5, we have

This implies that if the continue condition (39) for approximate
algorithm is satisfied, it will definitely be satisfied in the actual
optimal algorithm(6).
Hence, we denote set of points which lead to con-

tinue decisions in the approximate algorithm as the Sufficient
Region for Continuing, in the sense that satisfying (39) is suffi-
cient to guarantee that the optimal decision is to continue.
It is possible to further simplify the adaptive sampling algo-

rithm by using a finite order-iteration for the bounding func-
tions. For such simplified algorithms, it is possible to approxi-
mate the SRC with the union of finite number of halfspaces.
Consider in (31), where satisfying the following

relation leads to the fact that continuing is optimal (Note that
).

CR 1: (For

equivalent to the condition

(40)

From in (34), if satisfies either of the

Fig. 3. Stopping regions for a) Optimal Algorithm b) Bounding Approximate
Algorithm, , .

following 2 relations, continuing is the optimal decision.
CR 2.1: (For

(41)

equivalent to the relation

(42)

CR 2.2: (For

(43)

equivalent to the condition

(44)

For clarity, we do not present the approximate forms or
the relations explicitly for . The main observation is that
after , some of conditions from the previous iterations are
preserved, along with additional continuing relations.
The pairs that satisfy either of the continuing condi-

tions above lead to a subset of the continuing region for a given
approximation order, i.e., the pairs for which the con-
tinuing decision will definitely be made.
We illustrate stopping regions for the optimal algorithm and

approximate algorithm with bounding functions in Figs. 3 and
4, specifically for , , and independent
Bernoulli random variables with , with

. Fig. 3 depicts the case with and Fig. 4
depicts the case with . Blue regions correspond to

where stopping is optimal and white regions correspond
to regions where continuing is chosen by the algorithms.
As stated in Theorem 1, sum utility does not solely define the

continuing condition for an intermediate region of vales. In
particular, the sensor with larger is encouraged to wait for a
larger QoI before making the stopping decision. In other words,
it can afford to wait more for exploration since its utility is not
degraded as fast as the other sensor. Moreover, as expected, the
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Fig. 4. Stopping Regions, a) Optimal Algorithm b) Bounding Approximate
Algorithm, , .

set of points that are guaranteed to be in the continuing region
shrinks as reduces. Consequently, the maximum value
which definitely leads to a continue decision reduces with lower
, , 2.

C. Hybrid Algorithms

We also propose a hybrid adaptive sampling algorithm
which has intermediate complexity. While the algorithm uses
the bounding functions to approximate the value functions, it
uses the full distribution in the decision stage, i.e., chooses the
following actions:
(i) Stop, if

(45)

(ii) Continue, if

(46)

We will demonstrate that the hybrid approach will further
approach the performance of the optimal adaptive sampling
algorithm.

VI. PERIODIC ARRIVALS

We next consider the case where tasks arrive periodically,
once every slots. Thus, each task has a fixed deadline of
slots. in (6) becomes and for all

, and we have:

(47)

(48)

(49)

Fig. 5. Upper and lower thresholds for given .

where in (49). Thus, it is optimal to stop in any
state if ,
i.e., . Similarly, it
is optimal to stop in any state , , if

(50)
Again, we first consider the option of making the stopping de-
cision depending on only the sum utility, where we have the
following result:
Theorem 2: For any instantaneous sum utility value , at

stage , there exists thresholds and (
) which depend on , distributions of , , 2, and

, such that (Fig. 5):
• If , it is always optimal to stop.
• If , it is always optimal to continue.
Proof: We again utilize Lemma 3 and the existence of

a threshold-type rule for the one-dimensional case. We refer
readers to [7] for the proof for the case with periodic task ar-
rivals for a single sensor device.
In order to pursue more general two-dimensional stopping

rules, let us re-visit (49). These conditions give a set of equa-
tions to be satisfied simultaneously. Since the expressions are
rather straightforward for and , we pursue
the solution via backward induction. As in the geometric arrival
case, we use a sequence of bounding functions which use mean
values of random variables. By adopting Lemma 4 and Lemma 5
for the expectation terms in the RHS of (49) we obtain lower
bound approximations to the
value functions. For instance,

If is less than the resulting term in the RHS, it
will definitely be less than the term that would have resulted
using the original value iterates, since

. Consequently, the Sufficient Region for Con-
tinuing relations at stage are given by the union of the half-
spaces defined by ,
and .
We next generalize this result for an arbitrary stage number.
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Theorem 3: At any stage , it can be shown that the sufficient
region for continuing is given by the union of following
two-dimensional regions:

(51)

(52)
...

(53)

Proof: Recall the recursive relation for the bounding
functions:

At each stage backwards, we argue that an additional relation
for continuing is added to the rest satisfying the form (51)–(53).
This relation is introduced due to an additional possible function
form for the second term of the max operator in (54). At stage
and this is readily shown by (51)-(52).
Next, assume that the latest bounding function form added at

stage stage backwards, i.e., is

(54)

The recursion will result being the maximum
of two terms, first being , or inserting the expression in
(54) to the RHS of the recursion resulting in:

(55)

(56)

(57)

i.e.,

(58)

This implies a continuing condition in accordance with the
structural form of (51)–(53) for , i.e., each stage backwards

Fig. 6. Stopping Regions at stage 5, period , , ,
and Bernoulli.

Fig. 7. Stopping Regions at stage 12, period , , ,
and Bernoulli.

an additional expression with the structured form is introduced
to be compared with as a continuing condition.
Next, we establish a relationship between the maximum

values can take to be still in order to definitely make a
continue decision for different stages.
Lemma 6: The maximum value of to guarantee

continue decision at stage , , is non-increasing with stage
number, i.e., .

Proof: Recall that as the stage index increases, the number
of possible continuing relations that can be satisfied reduces.
Moreover, due to the structural form (51)–(53), at any stage
, the remaining continuing conditions are identical

to of the conditions at previous stages. As a result, the
sufficient region for continuing at a stage is a subset of the suf-
ficient region for continuing of previous stages (Figs. 6–7). Ac-
cordingly, by graphical arguments, it can be readily shown that
the maximum that continuing is guaranteed to be the
optimal decision is non-increasing with stage number. Specifi-
cally, the level curves for decreasing intersect
with the sufficient region for continuing either at a smaller
value, or at identical compared with regions of previous stages.

Remark 1: This result is in line with the intuition that as
the deadline approaches, the thresholds on sum utility to stop
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decrease as there are fewer opportunities to increase the QoI
utility.
Finally, for the periodic case, we propose the following

approximate adaptive sampling algorithm using the bounding
functions:
• Start from stage 1. Repeat until stop decision is taken or
a new task arrives ( ). For stage , observe

.
Start by checking (51). If it is satisfied, decide continue
and increment stage number as .

• If (51) is not satisfied, check conditions up to (53) until
any of the conditions are satisfied. If none of the
conditions from (51) to (53) are satisfied, decide stop.

• If stop decision is taken, stop the adaptive sampling algo-
rithm and report information to the end node.

• If stage number is , stop, report the information to the
end node and start addressing the new task.

Remark 2: While it may seem that there are a potentially
large number of continuing relations to check at initial stages
(e.g., for the first stage), we argue that the actual operation
is likely to result in a lower complexity. This is due to the fact
that whenever one of the conditions are satisfied, the checking
is aborted for that stage. Moreover, for initial stages it is likely
that the utilities are low due to insufficient information accu-
mulation and even the first continuing conditions are likely to
succeed (Figs. 6–7), reducing computational time considerably.
As for later stages, even though the utilities are expected to
increase, the maximum number of continuing relations to be
checked reduce as we approach the deadline. In this aspect, the
adaptive sampling algorithm, resembles receding horizon ap-
proaches [22].
Remark 3: While for clarity purposes we have selected the

most concise multiuser scenario with two sensors, the adap-
tive sampling algorithms proposed in this paper can be readily
extended to the case of sensors, with . Similar with
the two-sensor case, Bellman equations will provide stopping
rules comparing current sum utility of sensors with expres-
sions consisting of value functions as in (5). The upper and
lower thresholds which guarantee correct decisions by only ob-
serving sum QoI utility over all sensors can equivalently be de-
fined using the maximum and minimum parameters among all
sensors. The principles regarding convexity and relations via

Jensen’s inequality will provide bounding functions for -di-
mensional value functions, which can be used for approximate
algorithms. The main difference will be that the state dimen-
sionality will increase. Accordingly, for both the case with geo-
metric and periodic arrivals, the continuing regions will be de-
fined by L-dimensional spaces. In order to reduce complexity of
algorithms, one method we propose is to combine sensors with
similar into classes, and treat them as a single sensor. This
will reduce the dimensionality of the regions.

VII. AVERAGE COST CONSTRAINED QOI-BASED
ADAPTIVE SAMPLING

In this section, we consider the related problem to (4) where
we are interested in maximizing the time average of the QoI re-
ward given average cost constraints per each task. We approach

the problem by optimizing time averages in systems with inde-
pendent and identical behavior over renewal frames.
The state at the beginning of each task can

be considered as a renewal state.We are interested in developing
a control algorithm which maximizes a time average of a reward
process associated with the system.
We address the problem by Lyapunov optimization [18], [23].

However, unlike the classical setting where a one-shot greedy
decision is performed each time slot, we are involved with a
more complex problem, where renewal frames may have a dif-
ferent length and we are involved with a sequence of random
events within each frame [24]. Hence, in contrast to one-shot
decisions every slot, we must specify a policy, i.e., a contin-
gency plan for making decisions over the course of the frame in
reaction to the resulting system events.
More specifically, we choose a policy to minimize the drift

plus penalty (or equivalently drift minus reward) every frame.
We define the state as the recurrent state of the Markov
chain defining the QoI reward evolution. Accordingly, re-visi-
tations to the state lead to renewals, and the drift minus
reward technique can be applied.
At the beginning of each task, i.e., renewal frame , con-

troller selects policy from the abstract policy space .
We denote as the processing cost expended for frame .

is a random function of the policy , i.e.,
, and is conditionally independent of events in pre-

vious frames given policy , identically distributed
over all frames that use the same policy .
Consider the frame average expressions, for :

(59)

We define the infinite horizon frame-average expectation by

(60)

Long-term averages of the QoI utility reward can also be defined
similarly, denoted as . The optimization problem we are
interested is formally defined as:

(61)

(62)

where is a bound on the long term average cost expenditure
per task. Note that since task arrivals are not effected by ac-
tions taken by the sources, the above objectives and constraints
are also equivalent to the time-average values. Specifically, the
time average cost expenditure is equal to and the time
average cost constraint is with time-average objective

, where is the mean task inter-arrival time, e.g.,
for the geometric task arrival case and for the

periodic task arrival case.
To treat constraint (62), we define virtual queues [23]

with and update equations:

(63)

for task . The intuition is that if we can stabilize
the queue , then the time average of the service process
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is greater than or equal to the time average of the arrival
process . It is well known that backpressure policies based
on Lyapunov stability is the most prominent approach for stabi-
lizing queues [18].
We define the Lyapunov function as

(64)

which is ameasure of the size of the virtual queue backlog. Since

(65)

for , the Lyapunov drift is written as
[18]

(66)

where is a bounded term, due to bounded second moments of
and .

If we add expected penalty terms (or equivalently subtract
expected QoI reward terms) to the above expression, we have

(67)

where is a non-negative parameter that weighs the extent to
which we emphasize utility maximization. The algorithm aims
to minimize Lyapunov drift thereby maximizing the following
expression at each task :

(68)

Maximization of (68) involves the dynamic program studied in
previous sections for each task . We refer to [24] for a detailed
treatment of the class of Lyapunov optimization algorithms tai-
lored for renewal systems.
In particular, the previous formulation which maximizes the

difference between QoI utility minus cost corresponds to the
case where the virtual queue size is unity for all tasks. The main
effect of the virtual queues is to transform the unit processing
cost to for task . As a result, a dynamic program is
formulated for each task and solved with instead of .
If the cost expended in previous tasks are high, the virtual

queue grows and results in a high multiplier, i.e., . This, in
turn increases the penalty for continuing, and results in a policy
which tends to stop earlier. This can be also visualized by con-
sidering the fact that increasing reduces expressions that are
being compared with in (6). On the other hand, if cost
consumptions at previous tasks are low, the virtual queue size is
small, resulting in a reduced effect on cost for the current task,
leading to an increased threshold for transmission.
Note that in addition to specifying the exact policy by solving

the dynamic program for each task, we also perform the queue
update by observing the resulting values, and update vir-
tual queues by (63).

Fig. 8. QoI utility-minus-cost for geometric task arrivals, , .

VIII. NUMERICAL RESULTS

In this section, we present numerical results which demon-
strate performance of the adaptive sampling algorithms
discussed. Throughout majority of the simulations, we compare
the derived algorithms with an algorithm which stops every
slot with a fixed probability, which is equal to the reciprocal of
the expected task period. In the special case when the new task
arrives before any reporting decision, the adaptive sampling
algorithm forces to send the information. We call this algorithm
naive.
First, in Fig. 8, performance of algorithms for the case with

Geometric task arrivals is investigated in terms of average QoI
utility(reward) minus cost per task by varying . While the spe-
cific sensor network application and deployment scenario would
affect parameters associated with utility, costs and amount of in-
formation gathered, the parameters used in this simulation are

, , and . Information arrivals every
slot are Bernoulli with mean values , and . It
is readily seen that the algorithm based on bounding functions
performs closely to the optimal algorithm and significantly out-
performs the naive algorithm, which does not use any explicit
information about the current QoI state of the network. More-
over, it is observed that a low number of value iterates performs
fairly well. Finally, we also observe that the hybrid algorithm
reduces the gap with optimality with a moderate complexity.
Specifically, to provide insight on the complexity of these dif-
ferent algorithms, the curves in Fig. 8 require computational
time of 3.12 sec for naive, 4.62 sec for bounding function ap-
proximation with sec for bounding function, and
22.39 sec for the hybrid algorithm.
Next, in Fig. 9, we present performance of the case with pe-

riodic task arrivals. Specifically, the task period is varied for
, , Bernoulli , with and
, and .We again observe that the approximate

adaptive sampling algorithm performs closely to the optimal
adaptive sampling algorithm and significantly outperforms the
naive algorithm. Moreover, as task period increases, it is also
observed that the maximum QoI utility per task also increases.
This is attributed to the fact that there are more opportunities
to increase the utility before the new task forces the sensors
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Fig. 9. QoI utility-minus-cost for periodic task arrivals, , .

Fig. 10. Performance for the average cost constrained case, .

to respond. Another outcome is that as discussed in Remark 2,
at the initial stages, the first condition in (51) is sufficient for
the algorithm to make the continue decision for strong majority
of the tasks. As stage number increases, additional continuing
conditions might be needed more frequently, but the maximum
number of conditions to be checked are also reduced.
Finally, we demonstrate results for the case with constrained

average costs in Fig. 10. We limit the average cost constraint per
cost as , with , and vary . It is observed that
the modified adaptive sampling algorithm based on Lyapunov
optimization indeed keeps the average cost per task below 0.5
for all cases. We also note that the constraint is not always tight,
particularly as increases. Increased task arrival probability re-
duces the number of stages for each task, and consequently the
cost expended per task.

IX. CONCLUSIONS

In this paper, we have considered QoI-aware adaptive sam-
pling for a network of multiple sensor devices. We have focused
on the problem of maximizing QoI utility-minus-cost for the
scenario when information arrives randomly to sensors.
We have provided various low complexity near-optimal

adaptive sampling algorithms which decide whether the sen-
sors should respond or continue accumulating information
for different task arrival patterns. These adaptive sampling

decisions depend on the joint QoI state at the network, and
decisions are made by checking whether the joint QoI states are
in the continuing regions provided. The approximate adaptive
sampling algorithms are demonstrated to approach optimal
QoI-utility-minus cost for both geometric and periodic task
arrival patterns. We have provided algorithms with different
levels of complexity along with their closeness in performance
to optimal algorithms. We have also proposed adaptive sam-
pling algorithms which maximize QoI utility when the average
operational cost per task is constrained. Leveraging tools from
stochastic network optimization, we have develop algorithms
which successfully balance exploration and exploitation for
adaptive sampling with long-term cost constraints.
While the methodology provided in this paper can be readily

extended to a multiple sensor network with more than two
users, future work includes maximizing the sum QoI utility
delivered in multi-sink environments, and other multi-user
topologies. Consideration of arbitrary functions of the source
utilities as the final QoI utility at the end user is also of future
interest.

REFERENCES
[1] S. Zahedi and C. Bisdikian, “A Framework for QoI-inspired analysis

for sensor network deployment planning,” in Proc. Int. Workshop Per-
formance Control in Wireless Sensor Netw. (PWSN), Austin, TX, USA,
Oct. 2007.

[2] A. Bar-Noy, G. Cirincione, R. Govindan, S. Krishnamurthy, T. F. La-
Porta, P. Mohapatra, M. Neely, and A. Yener, “Quality-of-informa-
tion aware networking for tactical military networks,” in Proc. 3rd Int.
Workshop Inf. Quality and Quality of Service for Pervasive Comput.,
in Conjunction with IEEE Percom ’11, Seattle, WA, USA, Mar. 2011,
pp. 2–7.

[3] B. Liu, P. Terlecky, A. Bar-Noy, R. Govindan, and M. J. Neely, “Op-
timizing information credibility in social swarming applications,” in
Proc. IEEE INFOCOM ’11 Mini-Conf., Shanghai, China, Apr. 2011,
pp. 1147–1158.

[4] Z. M. Charbiwala, S. Zahedi, Y. Kim, Y. H. Cho, and M. B. Srivas-
tava, “Toward quality of information aware rate control for sensor net-
works,” in Proc. 4th Int. Workshop Feedback Control Implement. De-
sign in Comput. Syst. Netw., San Francisco, CA, USA, Apr. 2009.

[5] E. N. Ciftcioglu, A. Yener, R. Govindan, and K. Psounis, “Operational
information content sum capacity: Formulation and examples,” in
Proc. 14th Conf. Inf. Fusion, Chicago, IL, USA, Jul. 2011.

[6] E. N. Ciftcioglu and A. Yener, “Quality-of-information aware trans-
mission policies with time-varying links,” in Proc. MILCOM ’11, Bal-
timore, MD, USA, Nov. 2011.

[7] R. Urgaonkar, E. N. Ciftcioglu, A. Yener, and M. J. Neely, “Quality
of information aware scheduling in task processing networks,” in
Proc. 7th Int. Workshop Resource Alloc. Cooperat.Wireless Netw.
(RAWNET), in Conjunction with IEEE WiOpt ’11, Princeton, NJ, USA,
May 2011, pp. 401–406.

[8] S. Gao, L. Qian, D. R. Vaman, and Z. Han, “Distributed cognitive
sensing for time varying channels: Exploration and exploitation,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC’10), Sydney, Aus-
tralia, Apr. 2010, pp. 1–6.

[9] L. Lai, H. El Gamal, H. Jiang, and V. V. Poor, “Cognitive medium ac-
cess: Exploration, exploitation, and competition,” IEEE Trans. Mobile
Comput., vol. 10, no. 2, pp. 239–253, Feb. 2011.

[10] K. Shah and M. Kumar, “Distributed independent reinforcement
learning (dirl) approach to resource management in wireless sensor
networks,” in Proc. IEEE Int. Conf. Mobile Adhoc and Sensor Syst.
(MASS ’07), Pisa, Italy, Oct. 2007, pp. 1–9.

[11] Z. Liu and I. Elhanany, “RL-MAC: A QOS-aware reinforcement
learning based MAC protocol for wireless sensor networks,” in Proc.
IEEE Int. Conf. Network., Sens., Control (ICNSC’06), pp. 768–773.

[12] J. Hardwick and Q. F. Stout, “Optimal few-stage designs,” J. Statist.
Planning Inference, vol. 104, pp. 121–145, 2002.

[13] H. S. Chang, M. C. Fu, and R. H. Smith, “An adaptive sampling
algorithm for solving Markov decision processes,” Operat. Res., pp.
126–139, Jan.-Feb. 2005.



894 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 5, OCTOBER 2013

[14] D. P. Bertsekas, “A new value iteration method for the average cost
dynamic programming problem,” SIAM J. Control Optimiz., vol. 36,
no. 2, pp. 742–759, 1998.

[15] M. Riedmiller, “Neural fitted iteration – First experiences with a
data efficient neural reinforcement learning method,” in Proc. Mach.
Learn.: ECML, Porto, Portugal, Oct. 2005.

[16] J. Schneider, W.-K. Wong, A. Moore, and M. Riedmiller, “Distributed
value functions,” in Proc. Int. Conf. Mach. Learn., Bled, Slovenia, Jun.
1999.

[17] E. D. Ferreira and P. K. Khosla, “Multi agent collaboration using dis-
tributed value functions,” in Proc. IEEE Intel. Veh. Symp., IV ’00, Dear-
born, MI, USA, Oct. 2000, pp. 404–409.

[18] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation and
Cross-layer Control in Wireless Networks. Delft, The Netherlands:
Now, 2006, Foundations and Trends in Networking.

[19] J. A. Stankovic, T. E. Abdelzaher, C. Lu, L. Sha, and J. C. Hou, “Real-
time communication and coordination in embedded sensor networks,”
Proc. IEEE, vol. 91, no. 7, pp. 1002–1022, Jul. 2003.

[20] V. Lesser, C. C. L. Ortiz, and M. Tambe, Distributed Sensor Networks:
A Multiagent Perspective. New York, NY, USA: Springer, 2003, vol.
9.

[21] D. Bertsekas, Dynamic Programming and Optimal Control. Bell-
mont, MA, USA: Athena Scientific, 2001, vol. 1.

[22] J. B. Rawlings and K. R. Muske, “The stability of constrained receding
horizon control,” IEEE Trans. Autom. Control, vol. 38, no. 10, pp.
1512–1516, Oct. 1993.

[23] M. J. Neely, “Energy optimal control for time varying wireless net-
works,” IEEE Trans. Inf. Theory, vol. 52, no. 7, pp. 2915–2934, Jul.
2006.

[24] M. J. Neely, “Dynamic optimization and learning for renewal systems,”
in Proc. Asilomar Conf. Signals, Syst., Comput. (Invited Paper), Nov.
2010.

Ertugrul Necdet Ciftcioglu (S’06–M’13) received
his B.S. degree in Electrical and Electronics Engi-
neering from the Middle East Technical University
(METU), Ankara, Turkey in 2004, M.S. degree in
Electronics Engineering and Computer Science from
Sabanci University, Istanbul, Turkey in 2006, and
Ph.D. degree in Electrical Engineering from The
Pennsylvania State University, PA in 2012. He is
currently a Research Associate in the Department
of Computer Science and Engineering, The Penn-
sylvania State University. He has been a visiting

scholar at Northwestern University, IL, University of Southern California,
CA and BBN Technologies, MA. His research interests are cross-layer design
and resource allocation for wireless communication networks, particularly
stochastic network optimization for relaying, cooperative communications and
multiuser networks, and recent emphasis on network science.

Aylin Yener (S’91–M’00) received the B.Sc. degree
in electrical and electronics engineering, and the
B.Sc. degree in physics, from Boğaziçi University,
Istanbul, Turkey; and the M.S. and Ph.D. degrees in
electrical and computer engineering from Wireless
Information Network Laboratory (WINLAB), Rut-
gers University, New Brunswick, NJ. Commencing
fall 2000, for three semesters, she was a P. C. Rossin
Assistant Professor at the Electrical Engineering and
Computer Science Department, Lehigh University,
PA. In 2002, she joined the faculty of The Penn-

sylvania State University, University Park, PA, where she was an Assistant
Professor, then Associate Professor, and is currently Professor of Electrical
Engineering since 2010. During the academic year 2008–2009, she was a
Visiting Associate Professor with the Department of Electrical Engineering,
Stanford University, CA. Her research interests are in information theory,
communication theory and network science, with recent emphasis on green
communications and information security. She received the NSF CAREER
award in 2003.
Dr. Yener previously served as a technical program chair or co-chair for var-

ious conferences for the IEEE Communications Society, as an associate editor
for the IEEE TRANSACTIONS ON COMMUNICATIONS, as an associate editor and
an editorial advisory board member for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS. She served as the student committee chair for the IEEE In-
formation Theory Society 2007–2011, and was the co-founder of the Annual
School of Information Theory in North America co-organizing the school in
2008, 2009 and 2010. Dr. Yener currently serves on the board of governors of
the IEEE Information Theory Society as its treasurer.

Michael J. Neely (SM’09) received B.S. degrees in
both Electrical Engineering and Mathematics from
the University of Maryland, College Park, in 1997.
He was then awarded a 3 year Department of Defense
NDSEG Fellowship for graduate study at the Mass-
achusetts Institute of Technology, where he received
an M.S. degree in 1999 and a Ph.D. in 2003, both
in Electrical Engineering. He joined the faculty of
Electrical Engineering at the University of Southern
California in 2004, where he is currently an Asso-
ciate Professor. His research interests are in the areas

of stochastic network optimization and queueing theory, with applications to
wireless networks, mobile ad-hoc networks, and switching systems. Michael re-
ceived the NSF Career award in 2008, the Viterbi School of Engineering Junior
Research Award in 2009, and the Okawa Foundation research award in 2012.
He is a member of Tau Beta Pi and Phi Beta Kappa.


