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Distributed Learning and Multiaccess
of On-Off Channels

Shiyao Chen and Lang Tong

Abstract—The problem of distributed access of a set ofV on- packet per slot. The celebrated slotted ALOHA protocol can
off channels by K < N users is considered. The channels are pe used to achieve, asymptotically As— oo, the sum rate of
slotted and modeled as independent but not necessarily idécal 1 Ajthough the optimal policy of distributed random access
alternating renewal processes. Each user decides to eithebserve for thi . K it i Il K AI11] that distribdt
or transmit at the beginning of every slot. A transmission is or this case I1s unknown, | !S well knownl[1] that distri e.
successful only if the channel is at the on state and there is fandom access cannot achieve the throughput of the optimal
only one user transmitting. When a user observes, it identiis centralized channel allocation scheme.
whether a transmission would have been successful had it dded Thus we restrict ourselves to the case whén> K. Here
to transmit. A distributed learning and access policy refered to it is no longer obvious that distributed multiaccess perfer

as alternating sensing and access (ASA) is proposed. It is@hin trictl than th tralized t B
that ASA has finite expected regret when compared with the striclly worse than the centralized counterpart. becaussea

optimal centralized scheme with fixed channel allocation. is not restricted to transmitting on one particular channel
Index terms—Multiaccess, Distributed learning, Cognitive radio it can search for opportunities elsewhere to avoid coldin
networks. with others. Intuitively, asV increases, conflicts among users
diminish, and users may be able to orthogonalize themselves
|. INTRODUCTION to avoid collision. Even whenk = N, a user can learn

HE problem considered in this paper, in its more gener‘é(lhe_r_e other users are transmitting and act accordinglydaav
T form, is related to distributed allocation 8f independent collision. o _ _
and randomly available resources amakigagents. By dis- ~ Beside collisions among competing users, we also consider
tributed allocation we mean that there is no central coletrol & SPecific nontrivial channel imperfection. In particular
assigning resources to agents, and each agent acts orP§gUMe that the channels are independent on/off random
own without communicating with others. We are interested ffocesses. Such a random channel model arises naturally
whether there is a distributed access policy that, throaking "M channel fading in wireless systems. In the context of
actions and learning from outcomes of the actions, achieJ8&/tiaccess of cognitive radios[2], this model includes th
the utilization of resources comparable to that of the ogtimSituation when a channel is unavailable when it is occupied b
centralized allocation. another user of higher priority. In both cases, it is diffidor

We study the above in the context of multiaccessnof & USer to identify whether the transmission failure is ceduse

random on-off channels bys independent users. We arecollision with an_other user or by channel fading. Lgarning i
interested in whether any distributed learning and accetimyp SUCh @n uncertain environment cannot be perfect. Itis torse
is necessarily penalized by the lack of coordination. THwt obvious that mistakes in learning only cause negligible
performance measure of interest is throughput—the fracti§€rformance loss. _ _ _ _
of time that transmissions are successful. Forkauser  Lik& many online learing problems in uncertain envi-
multiaccess system, the throughput is defined by a vect@PMents, to achieve the best performance requires careful
r = (r1,---,rx) wherer; is the throughput of user If r can tradeoffs bgtwegn explor_atlon _and exploitation. The tssul
be achieved by a central controller who assigns a channelP{gSented in this paper is an instance of such tradeoff that
each user, we would like to achieve the same by letting us©@ances sensing and transmission.
act independently on their own. A. Summary of Results

We should point out at the outset that when there are mor
users than the number of channéks,, K > N, the throughput
region achievable by the optimal distributed access is,
general, strictly smaller than that by the optimal cerzedi

eThe detailed system model and assumptions are given in
%ection[l]. Here we outline the context of the problem and
summarize our main results. We considérindependent but
scheme. This can be seen from the case whén= 1, not necessarily identical on-off slotted channels. Ouultss

which corresponds to the classical random access problté*'j]'ﬁpIy to more general settings, but at the moment, it is

The centralized scheme achieves the maximum sum-rate 0§u1‘ficient to think these channels as independent Bernoulli
channels with probability); that theith channel is at the on
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can be achieved by a central controller with fixed channptoblem, aiming to maximize the accumulated reward using
allocation, wherer(;) andry; are the ordered list of; and knowledge learned from the outcome of past plays [8]. The
n;, respectively. Indeed? is the largest achievable region byproblem falls in the category of “learning through doing”.
a central controller undefixed channel allocatiorwithout The centralized multiuser version of the MAB problem was
time sharing arrangement and without using channel statensidered in[[9] as a single user MAB problem but with
realizations. the possibility of simultaneously playing multiple armsher

The main result of this paper is to show that, under thdecentralized MAB problem was addressed explicitly[ih [3]
model specified in Sectidnlll, every point i is achievable and in the context of cognitive radio systems 41} [5].
by adecentralizedaccess policy. This result is established byypically, learning in the MAB problem refers to learning
constructing a distributed learning and access policy weec which arms are more favorable to play. The regret of the order
independently by all users. The policy alternates betweeptimal distributed learning with respect to the oracleypta
sensing and access periods, hence referred to as the siftgrnaften increases with the number of plays@8ogn), unlike
sensing and access (ASA) policy. that in Eq. [2).

The throughput result above is a direct consequence of arhe problem considered in this paper does not belong to the
more refined analysis based on the notion of regret betwesmategory of MAB problem although it shares some common
the total number of successful transmissions up torslotthe characteristics with the MAB formulation. We highlight leer
optimal centralized schems;(n) and that of the distributed three main differences. First, unlike the MAB problems, the
schemeS;(n) proposed here. We show in TheorEin 1 that, ffarameters of the underlying random processes are known.
r € %, the expected regret of ASA approaches to a constafihus there is little ambiguity on which channels are favtgab
ie., for transmissions. Learning in this context deals with sleiaig

E(Si(n) — S;(n)) ~ O(1). (2) for appropriate channels to transmit, not knowing (for @ient

) the presence of other users.
~ We should point out that when channels are homogeneousgecond, while the objective of MAB involves maximizing
e, ;= n for all 7, # is the largest throughput regionyeyard, we are interested in whether a set of rewards can be
achievable by a centralized controller, and ASA matcheb wifchieved through learning and transmission; each user does
the_opu_mgl centralized allocation. For he.terogeneouanelal, not try to maximize its throughput.
while 7 is the largest throughput region by a centralized Thjrg, the uncertainty associated with the presence ofrothe
controller under fixed channel allocation, it is not neceBsa ,qers is a key distinction between the problem treated here
convex. ThereforeZ may be enlarged by a central controllefg the MAB formulation. For the multiuser MAB problem,
through time sharing. the presence of other players are certain whenever two rslaye

In comparing with centralized access policies, we excludgay the same arm. In our case, a failed transmission may be
the possibilities of time sharing arrangement, which is$810¢4sed either by collision or by the fact that the channel is
of generality. Such a loss, however, is inevitable since thg

optimal distributed access policy cannot in general a@hiev p rejated problem is learning parameters of multiple inde-
the convexified throughput regidin pendent processes when a user can choose where and when
B. Related Work to o_bserv_e a particular proce[l@}[;Z]. Without acj'mah-
o ) o ‘gaging with other users, such formulations are more akiheo t
The problem of orthogonalizing multiple coexisting Users icjassical parameter estimation problems, not one of “lagrm
a distributed manner through learning and individual adtio through action” studied in our and the MAB formulations.
has been studied as a decentralized learning of multi-armed
bandit (MAB) processes involving multiple players inl [3]. Il. SYSTEM MODEL AND ASSUMPTIONS
Essentially the same problem has also be studied for the ) _ )
multiaccess problem in multiuser cognitive radio systedjs [ _1he multiaccess system considered includieshannels

[5]. Further development of the prioritized and fair accesdstributed users, and a basestation. We specify theis riale
cases is provided in[6]]7]. their interactions and assumptions made in this paper.

There are similarities and significant differences between ch | Model
these “MAB approaches” and that considered in this pap@r. annetl Mode
The MAB formulation involves independent random pro- The N channels are slotted and statistically independent. We
cesses, often assumed independent and identically digtdb consider a slot atomic, which means that it cannot be divided
(iid) in time but may also be Markovian. Each process i&rther so that multiple actions can be taken within one. slot
associated with annknowndeterministic parameter. Lai andThe channel state of each channel in a slot is either “on” or
Robbins considered the single user (non-Bayesian) MABff” with “on” indicating that the channel can be used for

_ o transmission and “off” otherwise. The state of each chaimel

'This can be seen by considering a two channel case whes 1 and therefore a discrete-time binary process for which we model
n2 = e. As ¢ — 0, a centralized access can accommodate a rate vector.{)f | cal . b s
(0.5,0.5) by time sharing on a single channel, which cannot be achieyed iras arenewe} sequencalternating between consecutive “on
any decentralized access policy. and “off” periods.



The distribution of the on(off) period of channél is
F(Fe"). We assume thaEeV is well defined for some cha
t > 0, whereU is distributed ag"y"(Fy"). Denote the mean of
F(FPM) by p(15"), and the long term fraction of on periods
of channeli by n; = us"/ (" + ™).
B. User Action and Feedback

Users act independently and persistently, each aimed at
achieving some fixed throughput target. They do not have n?bﬁsers

occupied and tg)

other user(s)

a synchronized starting slot; they may enter the system at
different times.

A user makes the decision either to access a channel or to
sense a particular channel at the beginning of slots based on
the outcomes of its own past actions. If the user decides to
take the action of accessing chanmeh a slot, it transmits
a packet to the basestation over channelf the action of
observing channelis taken, it monitors channelin the slot.

When a user transmits over a particular channel to the Asa Policy State and State Transition

basestation, it receives linary feedback at the end of the Every user executes the same ASA policy independently.

SIOt from the basestation |nd|cat|_ng_whe_ther the transiotiss Tr]e structure of ASA is illustrated in Fig] 1 where the policy
is successful. When the transmission is successful, we c‘tal

. o ) raverses among three policy states: channel selectingirgg
the channel over which the transmission occuragdilable, 9 palicy

which means that the channel is at the on state and no otﬁgg access. We describe the function of ASA at each state as

) : «.n -We follow one user traversing through various states.
user transmits. The user receives a feedback symbol “a”. ) . I
L I . e focus on usel who just enters the system, wishing
transmission fails if the channel is at the off state or when . .
X L : ; 0 communicate at the rate of. Useri starts at the chan-
multiple transmissions occur at the same time. In this case,

. ; el selection state knowing that there is a set of channels
call the channelinavailable,and the user receives a feedbac
= {k : n > r;} that can accommodate her rate of

symbol ‘a”. We note that the binary feedback does not SPeC Y mmunications. She selects randomly with equal protigbili
e of the channels as her initial candidate for access. With

which type of failure occurred to the transmission.
t choice, she proceeds to thensing state

. . . 0
If a user decides to sense a particular channel in a slﬁ1
it observes the channel and decides whether the channe . .
: ) . o t the sensing state, the user senses the channel for a period
is available,i.e., whether a transmission would have been . ) .

of .consecutiveL, slots. At the end of thesensing period,

successful had the user decided to transmit. The outcome_of T :

. T o e a detection is performed to test the hypothesis whether the
the sensing action is again binary with"“indicating that the . : ;
channel is available andi” the opposite channel is unoccupied. If the user believes that the channel

Note that the information obtained by a user in a slgf unoccupied (she may be wrong of course), she enters the

through observation is identical to that through the feelba®cCeSS statelf, on the other hand, the test result is that the

of a transmission. The difference is that there is a potent u:r?gre(ljéscigzcyvﬁ'eeﬁ]gysﬁzostﬂgjIléssé’a‘:‘:ﬁ fg'rp(s) a(];?tllrjric'ncnzlens to
reward or damage caused by transmission. PP

other channels, or still enter thaccess statdo show her
I1l. A'DISTRIBUTED LEARNING AND ACCESSPOLICY presence to other users. If a tail shows up, then the usengetu
In this section, we present a learning and access policythe channel selection state (as described by “occupidd an
referred to as alternating sensing and access (ASA) politgil” in Fig. ). There, again, she chooses randomly another
We show later in Sectioh IV that ASA achieves the samghannel from%; (with replacement). Otherwise, if a head
throughput region as the optimal centralized scheme wittdfixshows up, the user still enters tlaecess statdo transmit
channel allocation. and let other users be aware of her presence (as described by
The process of distributed orthogonalization is dynamitvacant or head” in FiglJ1).
Two users collide, which may cause one or both switch to At the access state, useértransmits in channek with
a separate channel. The switch may cause further collisiggrebability ¢; = r; /5, for a period of consecutivé; slots
with others. Because a user cannot be certain that a failetere ¢; is chosen to achieve the desired throughput target
transmission is caused by collision, it may decide to switeh. At the end of each slot, uséreceives a feedback. At the
to a different channel when in fact the failed transmissiosnd of thetransmission perioda hypothesis test is made to
is caused by channel. The key of the learning and acce$geck if she has been colliding with another user. If the test
policy presented here is to mix the actions of transmissiah aresult is that another user is accessing the channel at the sa
observation to reduce collisions and recover when colisiotime (again she may be wrong of course), she returns to the
occur. Here we have a case of dynamic learning wherechannel selection state. If, on the other hand, the usesvmdi
balance between exploitation and exploration must be madbat there is no competing user, she stays at the access state

vacant or head

Fig. 1. State diagram of alternating sensing and access JA8Hkcy



for another transmission period that h&s> L; slots. mean of the average availabilitiye.,

el speccalon of SR non reduces 1o o L, o mosee 4
constructing a detector for channel occupancy. L 2y oicupied e “)
B. Time Structure of ASA and Detection Period wheree > 0 is a small constant, which lower bounds half of

ASA alternates between sensing and access periods, pl}ﬂg-m'”'m“m throughput target ever used by any user in the

tuated by detection actions. This structure is illustraied system ge, ¢ < Tmi“/2ﬂ

. : : It is not difficult to see intuitively that, if there is a pestént
Fig.[d where we refer to the time after a detection and befo&%er occupying channel the above detector detects correctl
completing the next detection asdetection periodduring PyIng y

. . ..~ with high probability. On the other hand, if the channel
which the user collects either feedback samples (if in the unoccupied, the probability of mistakenly detecting the

access state) or observation samples (if in the sensi }atatS
P NeSPtatp annel as occupied should decay with

before a test is performed at the end of the detection perlodWhen the underlying channel state processes are alternat-

The Iength of thekth dete_ctlon period is denoted @-_ ing renewal processes assumed in Sedfibn I, we claim the
A key idea of ASA is to letL, be a monotonically following:

increasing function ofk. Indeed, one can show that &, emma 1: The error probabilities of the channel occupancy
does not grow, ASA does not achieve the performance offerg ector given in{4) decay exponentially wifh

by the optimal centralized scheme, due to the non dimingshin The proof of the above lemma is given in the Appendix.

g:tzcltilr?ga?r;?ggrf:s?ggltg{vgr?rsywe choose the formLgfto Note that .the length;, of the kth detect_ion period increasgs
linearly with &, the above lemma also implies that detection
Lipr = L +C (3) error pr_obabilities also decay exponentially with the deom

period indexk.

for some integeC' > 0.
The significance of monotonically increasing the detection ) ) ) )
period is twofold. First, with increasing, detection accuracy e present in this section the main results and show that
improves. We show later in SectiéillV that the detector uséPA achieves finite expected regret compared with the optima

in ASA has error probabilities decaying exponentially wittfentralized scheme with fixed channel allocation.
respect toL. Define regretR,, as the difference in the total number of

Second, the increasingj, provides a level of stability to successful tran_smissions (sur_nme_d over all users) betvheen t
the policy. A user who finds the correct channel tends to stg§ntrally coordinated scenario with pre-determined ckann
there until completion: it is unlikely a new user can bump &SSignment and the distributed multiaccess scheme in gie fir
settled user off its track as time goes. n detection periods. With this we state our main result on

expected regret.
C. Channel Occupancy Test Theorem 1:Let #Z be the maximum throughput region
achievable by a central controller for & user multiaccess

We say that the channel is available in a slot if the Chanr@stem involving N independent alternating renewal on-off

is on and no one transmits in that slot. We present hefRannels. Then the expected regret for ASA policy converges
a detector that takes channel availability samples and tegf ; finite valuei.e.

channel occupancy, where the two hypotheseg&rehannel
unoccupied, and{; channel occupied by some user. E(R,) —d asn — oo
Note that because the feedbacks from transmission and &'Ben
outcomes of sensing give the same information, the detec{%
used at both the sensing and access states is identicalthn bo

cases, for a sensing or access periodl gfots, the user obtains  The proof of Theorerfil1 is given in full in the Appendix.
H =1L i i i i . . .
a sequence of binary outcomgs, a}™ with « indicating that Here we present a sketch that outlines main ideas behind the
channel is available. proof.
Let L, be the number of slots that channeis available. ~ when all of thek users are in the access state in separate
The channel occupancy test is a threshold test on the samg@nnels, no expected regret is incurred. Therefore the ex-
pected regret is solely incurred in the undesirable corditom
in which there are still some users not in access state or not

IV. MAIN RESULTS

sequently, the throughput region achievable by the dis-
uted learning and access policy ASA.s, = Z.

Detection period in a separate channel. To investigate the undesirable ,event
77777 / \\ the first ingredient we need is the exponential decay’qf,
%U?iﬂdl,?f?‘ieisl,,,,%?9?,5,?,,,,],,,,,SE!‘,S,@UQ, 7777777777 ] 77777 access | | the probability that there are still some users not in access

] ) ) ) ) ) ) ) 2rmin is assumed to be a system parameter, which indicates thenomimi
Fig. 2. lllustration of detection period and increasingegéibn period length  targeted throughput of interest to the users



mode or not in a separate channel in ilie detection period, 1000
with respect to the detection period indéxThis quantifies

the probability of the undesirable event over the evolutbn p—

the policy, and is given in Lemmd 4. Lemrh& 3 serves as a 5 600 —K=4

stepping stone to Lemnia 4. > ——
@ 400

To capture the expected regret in the firstdetection
periods, Lemmdl2 provides an upper boufd] (14) for the
expected regreER,,, which involves P, . (decreasing with
i) and L; (increasing withi). By Lemmal#% P, . decays 0 1000 2000 3000 4000 5000
exponentially fast, while according to the policy desigme t Time
detection period lengtli; only increases linearly.

The fast decay off; . and relatively slow growth ofL;
guarantees that the upper bouid](14) sums to a finite value.
This completes the proof of Theordr 1. In the Appendix, we
list the required lemmas (Lemnid 2 fid 4) and describe the 500
procedure to prove them.

Provided the finite expected regret result, it is relatively
straight forward to show that the ASA policy achieves idexlti
throughput region with the centralized scheme with fixed .
channel allocationj.e., %.s» = %, by dividing the time 100 ——ncreasing Ly
horizon and taking the limit.

Fig. 3. Homogeneous channekk. = 2,4,6, N = 6

— Constant LI

0 1000 2000. 3000 4000 5000
V. NUMERICAL RESULTS Time

We conduct numerical simulations for various channel and Fig. 4. Homogeneous channels. = K = 4.
user scenarios.
A. Simulation setup time. The simulated expected regret curves are shown in Fig.
We adopt geometric distribution for the channel on aid and[® forN = K = 4 with fixed and increasing detection
off period lengths. For homogeneous channels situatia®, theriod length.
average on and off period lengths arg = 3.23 and p°" = The expected regret associated with increasing detection
1.43 (the long term channel available fractionsjs= 0.693). period length outperforms the counterpart with fixed détect
For heterogeneous channels situation, there are half of fhriod length. This comparison demonstrates the necesfity
channels with channel parameters = 3.23 and " = 1.43  the increasing detection period length structure for trsirde
(n = 0.693), and the other half with channel parametersinite expected regret, and justifies the rationale of eistaiolg

uo = 3.23 and p°" = 4.3 (n = 0.429). the exponential decay of the error probability in detection
The initial detection period length i, = 24 slots, each
time incremented by’ = 12 slots. The entire horizon is taken VI. CONCLUSION

to be 5000 slots, and the number of Monte Carlo runs is 20. We consider in this paper the problem of distributed leagnin

B. Increasing the Number of Usefs§ and multiaccess of orthogonal channels. We have shown that
We simulate the effect of i . ber of _perfect orthogonalization can be achieved by a distribatedl
€ simufate the efiect of Increasing number ot users W'(?Eynchronous learning and access policy in the sense #hat th

N =6 andK = 2,4,6, and the simulated regret is depicte hroughput region of a centralized scheme with fixed channel
in Fig.[3. All the users have targeted individual throughput

r =0.5.
As predicted in Theorerl 1, the simulated expected regret 700 ‘ ‘
indeed levels off eventually, verifying the result of finite — Increasing L,

expected regret. The three curves f&r = 2,4,6 in Fig.[3 o0

clearly show an increasing trend of the expected regret and

— Constant Li

500

the time it takes for the expected regret to converge wkien g 400
increases. This trend is quite intuitive; when there areenor & 300
users, the entire process takes much longer. 200

100

C. Fixed vs Increasing Detection Period Length

To compare the impact of fixed and increasing detection 0 1000 2008 2000 4000 5000

period length, we simulate the situation with initial detec
period length 24, and incremental of 12 slots and O slot each Fig. 5. Heterogeneous channels.= K = 4.



allocation can be achieved. In fact, we have established thawe will treat the rightmost side of Eq.](9), and the proce-
the expected regret of the proposed distributed scheme wdiwe is similar for the leftmost side. Specifically, rewritee
respect to a centralized scheme is finite. Interesting éutuightmost side of Eq[{9)

dlrect|on§ include analyzing upper bound of the expected va:tlHAi ZNt+1A Nt+1Nt
regret with system parameters as well as bounds of the " =N 1 N (10)
expected regret within a finite time horizon. _ et t
We cite from Theorem 3.3.2 i [13] standard almost sure
APPENDIX convergence resuli(IL1) in renewal theory

A. Proof of Lemma 1 N 1

i i lim — = —— (11)

To show the exponential decay of the detection error n—oo 1 o A+ ot

probabilities, namely the false alarm probabilﬂﬁ(% < and Eq.[IR) follows directly from Eq{11)
n — e | Ho: unoccupied and the miss detection probability

P(£e > n— e | H1: occupied, we first notice the mean of the nh~>ngo Ny = oo. (12)
detection statistic% under both#, and 4, With Eq. (1) and[(1R) it is easy to show thattapproaches
L, infinity, the three terms in Eq|:K9)L St and S
EOT = ®) converge almost surely to thelr expected vaIu@sunderHo
and and u(1 — q) under#;, 1, #Tﬁ, respectively.
L, Now we turn to the claim that the three terms in Hd. (9)
Elf =n=r 6) converge exponentially fast to their expected values,eesp

wherer is the targeted throughput of the user occupying tH¥ely-
channel. Due to the nature of the alternating renewal channel process

Since the channel process is alternating renewal between3(5|§l the probabilistic transmissions, the claim for the term
and off states, we define an on-off renewal period length %W follows from the standard large deviation result of
be the total length of an on period and an off peribe, an i.i.d. sum, and Eq[{12).
on-off renewal period lengtt = X,, + X,q, whereX,, and ~ The claim for the terms®L and £+ follows from the
X are distributed ag™ and . The partial sum processassumption in Sectioflll tthe"U "(EefU"") is well defined
Sy is defined as B for somed > 0, whereU*(U°") is distributed ag*(F?"). The

S, = ZXi @) assumption guarantees tiad’X is well defined ford, where
’ X = U+ U°" is the on-off renewal period length.

Before we proceed, cite from Eq. (3.3.1)in[13] the standard

result [IB) in renewal theory relating the partial sum pssce

=1
and the associated counting proc@gs

Ny = max{i: S; <t} (8) with the counting process
Specifically, we will upper and lower bound the detection P(Ny <n) =P(S, > ). (13)
statistic L,/ L, and then prove that both the upper and lower Using Eq. [IB), one has
bounds have exponentially decaying probability to deviate 5; , | 1 1
from their identical mean, thus showing the detection stiati P( >1+¢€ = PN, <2) <P(Ny < [7])
L.,/L must have exponentially decaying tail probability on ¢ 05 1
i o) = n— = P(S;1;, >t) =P 1 > %)
both ends away from its mean for o andn(l—q) =n—r [
for #H,, whereq is the transmission probability of the user E5T Ret sl x, (BeXi)[4]
occupying the channel, andis the targeted throughput). With < — = = = i
our choice ofe, the detection threshold — ¢ lies in between € € €
the two means unde, and 7. ThereforeP(cH > 1+ ¢) decays exponentially with respect
Proof: We first upper and lower bound the detectiofto ¢.
statistic L, /L in Eq. (). The claim for the term can be treated similarly. We
N, No41 can show the other side of the probability inequalities for
Dimy A < Lo(t))t < 2im P ©) P(8E <1 —¢) andP(5t < ar — ¢) in the same way.
t 3 Therefore we have established the exponential decay of the

where 4; is the number of available slots (“on” channel stat&il probability of the three terms in Ed._{10). This leads to

and no other user transmitting) experienced by the useren thhe exponential decay of the tail probability of the detauti

ith on period for the channel. statistic L, /L in the length of the detection period length
We have to show thak,(t)/t converges to its mean with (also L).

exponentially decaying tail probability under both hypesths. By the threshold structure of the detection, we conclude

This can be done if we can show the leftmost and rightmastat the miss detection and false alarm probabilities decay

sides in Eq.[{B) converge exponentially fast to their expactexponentially with respect to the detection period length

value, respectively. [ |



B. Lemmas for Theoref 1
We would like to show that the expected regfER,,

prove Theoreni]l. As discussed earlier, the re@gtwill be

expected regreER,, is always upper bounded bly_(14).
Lemma 2:

ER, <Y NL;P,.. (14)

i=1

the random channel selection in the transition rule is ngkin
strict progress gradually.
between the ASA policy and that with central coordination The third part verifies EqL(15) by analyzing the events of

in the firstn detection periods converges to a finite value t§etection error and configuration error. _
We start by showing the first part by enumerating the

small if the fraction of time the users spend in the acceB§SSible undesirable configurations.
mode with orthogonalized channel occupancy is high. Indeed 1) Several users are still observing separate vacant clsanne
this relationship is formalized in Lemnia 2, showing that the

2)

Proof: We break down the regret according to the de-
tection periods. In théth detection period, if the users are
orthogonal and all in access mode, then there is no expected

regret incurred. Otherwise, the regret in thd detection

period can at most be as large as the total number of slots
contained in theN channels in this detection period, which

is exactly the numbeWN L;. Therefore the regret incurred in

the ith detection period is at mos{ L; P; .. Summing over all
detection periods from 1 te yields the desired Eql_(1.4)m
From Eq. [(I#) the expected regret will be finiteRf ., the

3)

probability that there are still some users not in accessemod
or not in a separate channel, decays fast enough compared

with the growth of ;.
The factors that drive the decay rate Bf. include the
decay rate of the detection error (how accurate is the intere

and the transition rule’s ability to adjust and separate whe

collisions happen (whether the distributed transitiorerid

indeed leading users to separate gradually). Lefima 3 shows
the quantitative relationship between these two driverd an

Pi..

Lemma 3:The following recursion in the detection period

index i holds for P;

K
1 N, —k+1

P.3. <3NP tm Piel——”i, 15

+3,e = gom + Pie( 2Kk:1 Ny ), (15)

whereP; ¢ ,,, is the sum of the miss detection probability and

the false alarm probability with detection period lendth Ny
is the number of qualified channels for ugefchannel “on”
long term fraction no less than the targeted throughpiit
and Ny, is ranked in increasing order with

Proof: The proof of Lemmal3 involves three parts. The

first part shows that it is alwaysossiblethat the configuration

of the N users will be corrected in at most three detection

periods, if the configuration of the current detection petii®
not orthogonal accessing, and the detection results witien
three detection periods are all correct. This part verifieg t

the transition rule adopted is indeed capable of adjustimy a

separating the users when collisions happen.

The second part shows that provided that the associated
inferences are all correct, the probability of the correc-
tion within three detection periods is always larger than

177K Ne—k+1
2K k=1 N ; . | o
nels for useik, and N, increases wittk. This part verifies that

, WhereN}, is the number of qualified chan-

in the ith detection period.

In this case, the user will correctly identify the oppor-
tunity and in the(i + 1)th detection period transition to
the access mode.

Several users are observing the same vacant channel in
the ith detection period.

In this case, the user will correctly identify the vacancy
and in the(i + 1)th detection period transition to the
access mode. However, this will lead to multiple users
transmitting in one channel, which will be correctly
detected. Therefore in th@ + 2)th detection period
the users will randomly select channels. With positive
(lucky) probability, the selected channels will be vacant
and orthogonal, and in thg + 3)th detection period the
users will transition to the access mode.

Several users are accessing the same channel iiththe
detection period.

In this case, the user will correctly identify the collision
among users and in thé& + 1)th detection period
transition to the sensing mode. Therefore in the 1)th
detection period the users will randomly select channels.
Still with positive (lucky) probability, the selected chan
nels will be vacant and orthogonal, and in tfie+ 2)th
detection period the users will transition to the access
mode.

Some user is still observing an occupied channel in the
ith detection period.

In this case, there are two scenarios to analyze: 1) there
is another vacant channel qualified for the user, 2) there
is currently no vacant channel qualified for the user,

all qualified channels for the user is currently occupied.
For scenario 1, the user will correctly identify the fact
that the channel is occupied and flip a coin with tail
outcome {/2 probability), and in thei+ 1)th detection
period randomly select another qualified channel. With
positive (lucky) probability, the selected channel will be
vacant, and in thdi + 2)th detection period the user
will transition to the access mode. For scenario 2, the
user will correctly identify the fact that the channel
is occupied and flip a coin with head outcomk/Z
probability), and in thei + 1)th detection period start
accessing the channel. This will lead to collision in
this channel, and in thé + 2)th detection period the
users will evacuate from the channel and randomly select
channels to sense. At this time, with positive (lucky)
probability, the selected channels will be vacant and
qualified for the users involved in the collision, and in
the (i + 3)th detection period the users will transition to
the access mode in separate channels.



Thus we have shown that if the channel configuration of thide have the exponential decay of miss detection probability
current detection period is not orthogonal accessinggetier P; ,, and false alarm probability?; s with respect to the
always possibility that the configuration is corrected imatst detection period lengthl; (linear in the detection period
three steps, provided the detection is correct inithg(i+1)th  indexs), which further indicates the exponential decay of the
and (i + 2)th detection periods. quantity P; s ,, with respect to the detection period indéx

The second part can be shown by inspecting the requiredrherefore there exists integér such that for alli > I, it
lucky probability. The distributed channel selection by thholds that
users incorporates randomness, as well as randomness from
the fair coin flipping in the sensing state, and with prokigpbil
at leastsk [T/, e itl the channels can be orthogonalized write
by the distributed random channel selection, where thefact o= 3Neym
2£< stands for the appropriate fair coin flip probability, and e—3min{0pm, 5} _ 36,

the factor [, Hehitl accounts for the uniform channelwherea > 0. Manipulating the recursion equatidi{15) yields
selection among quallfled channels for each user.

X . Oe s
P pm < cpme” 00mt < cp e mint0rme T

— (3 min m, e —30. —imin e
The third part involves analyzing events and algebra. $peci (Pits.e —ae (t+3) mind0.m, %3 }) —e (P —ae {orm 13
ically, = Pise— (3Ncpme™ min{ff m, % }i 4 P e~ 30%)
Piyze < P(21)+P(22) < Pise— (NP jm+ Pice ) <0,
< B3NP gm + P(ah) which leads to
K B ) ) o B - N
< 3NPym+F; e(1— i H AL 1)7 Pi+3,e_04€7(1+3)mm{ef’m’T} <e Bec(Pi,e_O‘e tmin{fy,m, })-
2 ) 2K Pt Nk
! Therefore one concludes that the exponential decay, inin
where., corresponds to the event that at least one user makgs detection period indexis guaranteed. -
a detection error (either miss detection or false alarmtimeei
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o3 _q_ Ly Ne—ktlL
2K Ny,
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