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Distributed Learning and Multiaccess
of On-Off Channels

Shiyao Chen and Lang Tong

Abstract—The problem of distributed access of a set ofN on-
off channels by K ≤ N users is considered. The channels are
slotted and modeled as independent but not necessarily identical
alternating renewal processes. Each user decides to eitherobserve
or transmit at the beginning of every slot. A transmission is
successful only if the channel is at the on state and there is
only one user transmitting. When a user observes, it identifies
whether a transmission would have been successful had it decided
to transmit. A distributed learning and access policy referred to
as alternating sensing and access (ASA) is proposed. It is shown
that ASA has finite expected regret when compared with the
optimal centralized scheme with fixed channel allocation.
Index terms—Multiaccess, Distributed learning, Cognitive radio
networks.

I. I NTRODUCTION

T HE problem considered in this paper, in its more general
form, is related to distributed allocation ofN independent

and randomly available resources amongK agents. By dis-
tributed allocation we mean that there is no central controller
assigning resources to agents, and each agent acts on its
own without communicating with others. We are interested in
whether there is a distributed access policy that, through taking
actions and learning from outcomes of the actions, achieves
the utilization of resources comparable to that of the optimal
centralized allocation.

We study the above in the context of multiaccess ofN
random on-off channels byK independent users. We are
interested in whether any distributed learning and access policy
is necessarily penalized by the lack of coordination. The
performance measure of interest is throughput—the fraction
of time that transmissions are successful. For aK user
multiaccess system, the throughput is defined by a vector
r = (r1, · · · , rK) whereri is the throughput of useri. If r can
be achieved by a central controller who assigns a channel to
each user, we would like to achieve the same by letting users
act independently on their own.

We should point out at the outset that when there are more
users than the number of channels,i.e.,K > N , the throughput
region achievable by the optimal distributed access is, in
general, strictly smaller than that by the optimal centralized
scheme. This can be seen from the case whenN = 1,
which corresponds to the classical random access problem.
The centralized scheme achieves the maximum sum-rate of1
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packet per slot. The celebrated slotted ALOHA protocol can
be used to achieve, asymptotically asK → ∞, the sum rate of
e−1. Although the optimal policy of distributed random access
for this case is unknown, it is well known [1] that distributed
random access cannot achieve the throughput of the optimal
centralized channel allocation scheme.

Thus we restrict ourselves to the case whenN ≥ K. Here
it is no longer obvious that distributed multiaccess performs
strictly worse than the centralized counterpart. Because auser
is not restricted to transmitting on one particular channel,
it can search for opportunities elsewhere to avoid colliding
with others. Intuitively, asN increases, conflicts among users
diminish, and users may be able to orthogonalize themselves
to avoid collision. Even whenK = N , a user can learn
where other users are transmitting and act accordingly to avoid
collision.

Beside collisions among competing users, we also consider
a specific nontrivial channel imperfection. In particular,we
assume that the channels are independent on/off random
processes. Such a random channel model arises naturally
from channel fading in wireless systems. In the context of
multiaccess of cognitive radios [2], this model includes the
situation when a channel is unavailable when it is occupied by
another user of higher priority. In both cases, it is difficult for
a user to identify whether the transmission failure is caused by
collision with another user or by channel fading. Learning in
such an uncertain environment cannot be perfect. It is therefore
not obvious that mistakes in learning only cause negligible
performance loss.

Like many online learning problems in uncertain envi-
ronments, to achieve the best performance requires careful
tradeoffs between exploration and exploitation. The results
presented in this paper is an instance of such tradeoff that
balances sensing and transmission.

A. Summary of Results

The detailed system model and assumptions are given in
Section II. Here we outline the context of the problem and
summarize our main results. We considerN independent but
not necessarily identical on-off slotted channels. Our results
apply to more general settings, but at the moment, it is
sufficient to think these channels as independent Bernoulli
channels with probabilityηi that theith channel is at the on
state. Letη = (η1, . . . , ηN ).

For aK user multiaccess system, it is obvious that any point
in

R = {(r1, . . . , rK) | r(i) ≤ η(i), 1 ≤ i ≤ K}, (1)
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can be achieved by a central controller with fixed channel
allocation, wherer(i) and η(i) are the ordered list ofri and
ηi, respectively. IndeedR is the largest achievable region by
a central controller underfixed channel allocationwithout
time sharing arrangement and without using channel state
realizations.

The main result of this paper is to show that, under the
model specified in Section II, every point inR is achievable
by a decentralizedaccess policy. This result is established by
constructing a distributed learning and access policy executed
independently by all users. The policy alternates between
sensing and access periods, hence referred to as the alternating
sensing and access (ASA) policy.

The throughput result above is a direct consequence of a
more refined analysis based on the notion of regret between
the total number of successful transmissions up to slotn of the
optimal centralized schemeSi(n) and that of the distributed
schemeSi(n) proposed here. We show in Theorem 1 that, if
r ∈ R, the expected regret of ASA approaches to a constant,
i.e.,

E(Si(n)− Si(n)) ∼ O(1). (2)

We should point out that when channels are homogeneous,
i.e., ηi = η for all i, R is the largest throughput region
achievable by a centralized controller, and ASA matches with
the optimal centralized allocation. For heterogeneous channels,
while R is the largest throughput region by a centralized
controller under fixed channel allocation, it is not necessarily
convex. Therefore,R may be enlarged by a central controller
through time sharing.

In comparing with centralized access policies, we exclude
the possibilities of time sharing arrangement, which is a loss
of generality. Such a loss, however, is inevitable since the
optimal distributed access policy cannot in general achieve
the convexified throughput region1.

B. Related Work

The problem of orthogonalizing multiple coexisting users in
a distributed manner through learning and individual actions
has been studied as a decentralized learning of multi-armed
bandit (MAB) processes involving multiple players in [3].
Essentially the same problem has also be studied for the
multiaccess problem in multiuser cognitive radio systems [4],
[5]. Further development of the prioritized and fair access
cases is provided in [6], [7].

There are similarities and significant differences between
these “MAB approaches” and that considered in this paper.
The MAB formulation involves independent random pro-
cesses, often assumed independent and identically distributed
(iid) in time but may also be Markovian. Each process is
associated with anunknowndeterministic parameter. Lai and
Robbins considered the single user (non-Bayesian) MAB

1This can be seen by considering a two channel case whenη1 = 1 and
η2 = ǫ. As ǫ → 0, a centralized access can accommodate a rate vector of
(0.5, 0.5) by time sharing on a single channel, which cannot be achievedby
any decentralized access policy.

problem, aiming to maximize the accumulated reward using
knowledge learned from the outcome of past plays [8]. The
problem falls in the category of “learning through doing”.

The centralized multiuser version of the MAB problem was
considered in [9] as a single user MAB problem but with
the possibility of simultaneously playing multiple arms. The
decentralized MAB problem was addressed explicitly in [3]
and in the context of cognitive radio systems in [4], [5].
Typically, learning in the MAB problem refers to learning
which arms are more favorable to play. The regret of the order
optimal distributed learning with respect to the oracle player
often increases with the number of plays asO(log n), unlike
that in Eq. (2).

The problem considered in this paper does not belong to the
category of MAB problem although it shares some common
characteristics with the MAB formulation. We highlight here
three main differences. First, unlike the MAB problems, the
parameters of the underlying random processes are known.
Thus there is little ambiguity on which channels are favorable
for transmissions. Learning in this context deals with searching
for appropriate channels to transmit, not knowing (for certain)
the presence of other users.

Second, while the objective of MAB involves maximizing
reward, we are interested in whether a set of rewards can be
achieved through learning and transmission; each user does
not try to maximize its throughput.

Third, the uncertainty associated with the presence of other
users is a key distinction between the problem treated here
and the MAB formulation. For the multiuser MAB problem,
the presence of other players are certain whenever two players
play the same arm. In our case, a failed transmission may be
caused either by collision or by the fact that the channel is
off.

A related problem is learning parameters of multiple inde-
pendent processes when a user can choose where and when
to observe a particular process [10]–[12]. Without actively en-
gaging with other users, such formulations are more akin to the
classical parameter estimation problems, not one of “learning
through action” studied in our and the MAB formulations.

II. SYSTEM MODEL AND ASSUMPTIONS

The multiaccess system considered includesN channels,K
distributed users, and a basestation. We specify their roles in
their interactions and assumptions made in this paper.

A. Channel Model

TheN channels are slotted and statistically independent. We
consider a slot atomic, which means that it cannot be divided
further so that multiple actions can be taken within one slot.
The channel state of each channel in a slot is either “on” or
“off” with “on” indicating that the channel can be used for
transmission and “off” otherwise. The state of each channelis
therefore a discrete-time binary process for which we model
it as arenewal sequencealternating between consecutive “on”
and “off” periods.
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The distribution of the on(off) period of channeli is
F on
i (F off

i ). We assume thatEeθU is well defined for some
t > 0, whereU is distributed asF on

i (F off
i ). Denote the mean of

F on
i (F off

i ) by µon
i (µoff

i ), and the long term fraction of on periods
of channeli by ηi = µon

i /(µ
on
i + µoff

i ).

B. User Action and Feedback

Users act independently and persistently, each aimed at
achieving some fixed throughput target. They do not have
a synchronized starting slot; they may enter the system at
different times.

A user makes the decision either to access a channel or to
sense a particular channel at the beginning of slots based on
the outcomes of its own past actions. If the user decides to
take the action of accessing channeli in a slot, it transmits
a packet to the basestation over channeli. If the action of
observing channeli is taken, it monitors channeli in the slot.

When a user transmits over a particular channel to the
basestation, it receives abinary feedback at the end of the
slot from the basestation indicating whether the transmission
is successful. When the transmission is successful, we call
the channel over which the transmission occurredavailable,
which means that the channel is at the on state and no other
user transmits. The user receives a feedback symbol “a”. The
transmission fails if the channel is at the off state or when
multiple transmissions occur at the same time. In this case,we
call the channelunavailable,and the user receives a feedback
symbol “̄a”. We note that the binary feedback does not specify
which type of failure occurred to the transmission.

If a user decides to sense a particular channel in a slot,
it observes the channel and decides whether the channel
is available, i.e., whether a transmission would have been
successful had the user decided to transmit. The outcome of
the sensing action is again binary with “a” indicating that the
channel is available and “ā” the opposite.

Note that the information obtained by a user in a slot
through observation is identical to that through the feedback
of a transmission. The difference is that there is a potential
reward or damage caused by transmission.

III. A D ISTRIBUTED LEARNING AND ACCESSPOLICY

In this section, we present a learning and access policy
referred to as alternating sensing and access (ASA) policy.
We show later in Section IV that ASA achieves the same
throughput region as the optimal centralized scheme with fixed
channel allocation.

The process of distributed orthogonalization is dynamic.
Two users collide, which may cause one or both switch to
a separate channel. The switch may cause further collisions
with others. Because a user cannot be certain that a failed
transmission is caused by collision, it may decide to switch
to a different channel when in fact the failed transmission
is caused by channel. The key of the learning and access
policy presented here is to mix the actions of transmission and
observation to reduce collisions and recover when collisions
occur. Here we have a case of dynamic learning where a
balance between exploitation and exploration must be made.
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Fig. 1. State diagram of alternating sensing and access (ASA) policy

A. ASA Policy State and State Transition

Every user executes the same ASA policy independently.
The structure of ASA is illustrated in Fig. 1 where the policy
traverses among three policy states: channel selection, sensing,
and access. We describe the function of ASA at each state as
we follow one user traversing through various states.

We focus on useri who just enters the system, wishing
to communicate at the rate ofri. User i starts at the chan-
nel selection state knowing that there is a set of channels
Ci = {k : ηk ≥ ri} that can accommodate her rate of
communications. She selects randomly with equal probability
one of the channels as her initial candidate for access. With
that choice, she proceeds to thesensing state.

At the sensing state, the user senses the channel for a period
of consecutiveLs slots. At the end of thesensing period,
a detection is performed to test the hypothesis whether the
channel is unoccupied. If the user believes that the channel
is unoccupied (she may be wrong of course), she enters the
access state. If, on the other hand, the test result is that the
channel is occupied by another user, she flips a fair coin to
further decide whether she should search for opportunitiesin
other channels, or still enter theaccess stateto show her
presence to other users. If a tail shows up, then the user returns
to the channel selection state (as described by “occupied and
tail” in Fig. 1). There, again, she chooses randomly another
channel fromCi (with replacement). Otherwise, if a head
shows up, the user still enters theaccess stateto transmit
and let other users be aware of her presence (as described by
“vacant or head” in Fig. 1).

At the access state, useri transmits in channelk with
probability qi = ri/ηk for a period of consecutiveLt slots
where qi is chosen to achieve the desired throughput target
ri. At the end of each slot, useri receives a feedback. At the
end of thetransmission period, a hypothesis test is made to
check if she has been colliding with another user. If the test
result is that another user is accessing the channel at the same
time (again she may be wrong of course), she returns to the
channel selection state. If, on the other hand, the user believes
that there is no competing user, she stays at the access state



4

for another transmission period that hasL′
t ≥ Lt slots.

The detailed specification of ASA now reduces to finding
appropriate durations of sensing or transmission periods and
constructing a detector for channel occupancy.

B. Time Structure of ASA and Detection Period

ASA alternates between sensing and access periods, punc-
tuated by detection actions. This structure is illustratedin
Fig. 2 where we refer to the time after a detection and before
completing the next detection as adetection periodduring
which the user collects either feedback samples (if in the
access state) or observation samples (if in the sensing states)
before a test is performed at the end of the detection period.
The length of thekth detection period is denoted byLk.

A key idea of ASA is to letLk be a monotonically
increasing function ofk. Indeed, one can show that ifLk

does not grow, ASA does not achieve the performance offered
by the optimal centralized scheme, due to the non diminishing
detection error probability. Here we choose the form ofLk to
be a linear progression given by

Lk+1 = Lk + C (3)

for some integerC > 0.
The significance of monotonically increasing the detection

period is twofold. First, with increasingLk, detection accuracy
improves. We show later in Section IV that the detector used
in ASA has error probabilities decaying exponentially with
respect toLk.

Second, the increasingLk provides a level of stability to
the policy. A user who finds the correct channel tends to stay
there until completion; it is unlikely a new user can bump a
settled user off its track as time goes.

C. Channel Occupancy Test

We say that the channel is available in a slot if the channel
is on and no one transmits in that slot. We present here
a detector that takes channel availability samples and tests
channel occupancy, where the two hypotheses areH0 channel
unoccupied, andH1 channel occupied by some user.

Note that because the feedbacks from transmission and the
outcomes of sensing give the same information, the detector
used at both the sensing and access states is identical. In both
cases, for a sensing or access period ofL slots, the user obtains
a sequence of binary outcomes{a, ā}L with a indicating that
channel is available.

Let La be the number of slots that channeli is available.
The channel occupancy test is a threshold test on the sample

PSfrag replacements Detection period

sensingsensing access accessaccess

Fig. 2. Illustration of detection period and increasing detection period length

mean of the average availability,i.e.,

La

L

H0: unoccupied
≷

H1: occupied
ηi − ǫ (4)

whereǫ > 0 is a small constant, which lower bounds half of
the minimum throughput target ever used by any user in the
system (i.e., ǫ < rmin/2)2.

It is not difficult to see intuitively that, if there is a persistent
user occupying channeli, the above detector detects correctly
with high probability. On the other hand, if the channel
is unoccupied, the probability of mistakenly detecting the
channel as occupied should decay withL.

When the underlying channel state processes are alternat-
ing renewal processes assumed in Section II, we claim the
following:

Lemma 1:The error probabilities of the channel occupancy
detector given in (4) decay exponentially withL.

The proof of the above lemma is given in the Appendix.
Note that the lengthLk of the kth detection period increases
linearly with k, the above lemma also implies that detection
error probabilities also decay exponentially with the detection
period indexk.

IV. M AIN RESULTS

We present in this section the main results and show that
ASA achieves finite expected regret compared with the optimal
centralized scheme with fixed channel allocation.

Define regretRn as the difference in the total number of
successful transmissions (summed over all users) between the
centrally coordinated scenario with pre-determined channel
assignment and the distributed multiaccess scheme in the first
n detection periods. With this we state our main result on
expected regret.

Theorem 1:Let R be the maximum throughput region
achievable by a central controller for aK user multiaccess
system involvingN independent alternating renewal on-off
channels. Then the expected regret for ASA policy converges
to a finite value,i.e.,

E(Rn) → d asn → ∞

Consequently, the throughput region achievable by the dis-
tributed learning and access policy ASARASA = R.

The proof of Theorem 1 is given in full in the Appendix.
Here we present a sketch that outlines main ideas behind the
proof.

When all of theK users are in the access state in separate
channels, no expected regret is incurred. Therefore the ex-
pected regret is solely incurred in the undesirable configuration
in which there are still some users not in access state or not
in a separate channel. To investigate the undesirable event,
the first ingredient we need is the exponential decay ofPi,e,
the probability that there are still some users not in access

2rmin is assumed to be a system parameter, which indicates the minimum
targeted throughput of interest to the users



5

mode or not in a separate channel in theith detection period,
with respect to the detection period indexi. This quantifies
the probability of the undesirable event over the evolutionof
the policy, and is given in Lemma 4. Lemma 3 serves as a
stepping stone to Lemma 4.

To capture the expected regret in the firstn detection
periods, Lemma 2 provides an upper bound (14) for the
expected regretERn, which involvesPi,e (decreasing with
i) and Li (increasing with i). By Lemma 4 Pi,e decays
exponentially fast, while according to the policy design, the
detection period lengthLi only increases linearly.

The fast decay ofPi,e and relatively slow growth ofLi

guarantees that the upper bound (14) sums to a finite value.
This completes the proof of Theorem 1. In the Appendix, we
list the required lemmas (Lemma 2 to 4) and describe the
procedure to prove them.

Provided the finite expected regret result, it is relatively
straight forward to show that the ASA policy achieves identical
throughput region with the centralized scheme with fixed
channel allocation,i.e., RASA = R, by dividing the time
horizon and taking the limit.

V. NUMERICAL RESULTS

We conduct numerical simulations for various channel and
user scenarios.

A. Simulation setup

We adopt geometric distribution for the channel on and
off period lengths. For homogeneous channels situation, the
average on and off period lengths areµon = 3.23 andµoff =
1.43 (the long term channel available fraction isη = 0.693).
For heterogeneous channels situation, there are half of the
channels with channel parametersµon = 3.23 andµoff = 1.43
(η = 0.693), and the other half with channel parameters
µon = 3.23 andµoff = 4.3 (η = 0.429).

The initial detection period length isL0 = 24 slots, each
time incremented byC = 12 slots. The entire horizon is taken
to be 5000 slots, and the number of Monte Carlo runs is 20.

B. Increasing the Number of UsersK

We simulate the effect of increasing number of users with
N = 6 andK = 2, 4, 6, and the simulated regret is depicted
in Fig. 3. All the users have targeted individual throughput
r = 0.5.

As predicted in Theorem 1, the simulated expected regret
indeed levels off eventually, verifying the result of finite
expected regret. The three curves forK = 2, 4, 6 in Fig. 3
clearly show an increasing trend of the expected regret and
the time it takes for the expected regret to converge whenK
increases. This trend is quite intuitive; when there are more
users, the entire process takes much longer.

C. Fixed vs Increasing Detection Period Length

To compare the impact of fixed and increasing detection
period length, we simulate the situation with initial detection
period length 24, and incremental of 12 slots and 0 slot each
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Fig. 3. Homogeneous channels.K = 2, 4, 6, N = 6
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time. The simulated expected regret curves are shown in Fig.
4 and 5 forN = K = 4 with fixed and increasing detection
period length.

The expected regret associated with increasing detection
period length outperforms the counterpart with fixed detection
period length. This comparison demonstrates the necessityof
the increasing detection period length structure for the desired
finite expected regret, and justifies the rationale of establishing
the exponential decay of the error probability in detection.

VI. CONCLUSION

We consider in this paper the problem of distributed learning
and multiaccess of orthogonal channels. We have shown that
perfect orthogonalization can be achieved by a distributedand
asynchronous learning and access policy in the sense that the
throughput region of a centralized scheme with fixed channel
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Fig. 5. Heterogeneous channels.N = K = 4.
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allocation can be achieved. In fact, we have established that
the expected regret of the proposed distributed scheme with
respect to a centralized scheme is finite. Interesting future
directions include analyzing upper bound of the expected
regret with system parameters as well as bounds of the
expected regret within a finite time horizon.

APPENDIX

A. Proof of Lemma 1

To show the exponential decay of the detection error
probabilities, namely the false alarm probabilityP(La

L
<

η − ǫ | H0: unoccupied) and the miss detection probability
P(La

L
> η − ǫ | H1: occupied), we first notice the mean of the

detection statisticLa

L
under bothH0 andH1,

E0
La

L
= η, (5)

and
E1

La

L
= η − r, (6)

wherer is the targeted throughput of the user occupying the
channel.

Since the channel process is alternating renewal between on
and off states, we define an on-off renewal period length to
be the total length of an on period and an off period,i.e., an
on-off renewal period lengthX = Xon +Xoff, whereXon and
Xoff are distributed asF on andF off. The partial sum process
Sn is defined as

Sn =

n∑

i=1

Xi, (7)

and the associated counting processNt,

Nt = max{i : Si ≤ t}. (8)

Specifically, we will upper and lower bound the detection
statisticLa/L, and then prove that both the upper and lower
bounds have exponentially decaying probability to deviate
from their identical mean, thus showing the detection statistic
La/L must have exponentially decaying tail probability on
both ends away from its mean (η for H0 andη(1−q) = η−r
for H1, whereq is the transmission probability of the user
occupying the channel, andr is the targeted throughput). With
our choice ofǫ, the detection thresholdη − ǫ lies in between
the two means underH0 andH1.

Proof: We first upper and lower bound the detection
statisticLa/L in Eq. (9).

∑Nt

i=1 Ai

t
≤ La(t)/t ≤

∑Nt+1
i=1 Ai

t
, (9)

whereAi is the number of available slots (“on” channel state
and no other user transmitting) experienced by the user in the
ith on period for the channel.

We have to show thatLa(t)/t converges to its mean with
exponentially decaying tail probability under both hypotheses.
This can be done if we can show the leftmost and rightmost
sides in Eq. (9) converge exponentially fast to their expected
value, respectively.

We will treat the rightmost side of Eq. (9), and the proce-
dure is similar for the leftmost side. Specifically, rewritethe
rightmost side of Eq. (9)

∑Nt+1
i=1 Ai

t
=

∑Nt+1
i=1 Ai

Nt + 1

Nt + 1

Nt

Nt

t
. (10)

We cite from Theorem 3.3.2 in [13] standard almost sure
convergence result (11) in renewal theory

lim
n→∞

Nt

t
=

1

µon + µoff
, (11)

and Eq. (12) follows directly from Eq. (11)

lim
n→∞

Nt = ∞. (12)

With Eq. (11) and (12) it is easy to show that ast approaches

infinity, the three terms in Eq. (9)
∑Nt+1

i=1
Ai

Nt+1 , Nt+1
Nt

and Nt

t

converge almost surely to their expected valuesµon underH0

andµon(1 − q) underH1, 1, 1
µon+µoff , respectively.

Now we turn to the claim that the three terms in Eq. (9)
converge exponentially fast to their expected values, respec-
tively.

Due to the nature of the alternating renewal channel process
and the probabilistic transmissions, the claim for the term
∑Nt+1

i=1
Ai

Nt+1 follows from the standard large deviation result of
i.i.d. sum, and Eq. (12).

The claim for the termsNt+1
Nt

and Nt

t
follows from the

assumption in Section II thatEeθU
on

(EeθU
off

) is well defined
for someθ > 0, whereU on(U off) is distributed asF on

i (F off
i ). The

assumption guarantees thatEeθX is well defined forθ, where
X = U on + U off is the on-off renewal period length.

Before we proceed, cite from Eq. (3.3.1) in [13] the standard
result (13) in renewal theory relating the partial sum process
with the counting process

P(Nt ≤ n) = P(Sn > t). (13)

Using Eq. (13), one has

P(
Nt + 1

Nt

> 1 + ǫ) = P(Nt <
1

ǫ
) ≤ P(Nt ≤ ⌈

1

ǫ
⌉)

= P(S⌈ 1
ǫ
⌉ > t) = P(e

θS
⌈1
ǫ
⌉ > eθt)

≤
Ee

θS
⌈ 1
ǫ
⌉

eθt
=

Eeθ
∑⌈ 1

ǫ
⌉

i=1
Xi

eθt
=

(EeθXi)⌈
1
ǫ
⌉

eθt

ThereforeP(Nt+1
Nt

> 1+ ǫ) decays exponentially with respect
to t.

The claim for the termNt

t
can be treated similarly. We

can show the other side of the probability inequalities for
P(Nt+1

Nt
< 1 − ǫ) andP(Nt

t
< 1

µon+µoff − ǫ) in the same way.
Therefore we have established the exponential decay of the
tail probability of the three terms in Eq. (10). This leads to
the exponential decay of the tail probability of the detection
statisticLa/L in the length of the detection period lengtht
(alsoL).

By the threshold structure of the detection, we conclude
that the miss detection and false alarm probabilities decay
exponentially with respect to the detection period lengthL.
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B. Lemmas for Theorem 1

We would like to show that the expected regretERn

between the ASA policy and that with central coordination
in the firstn detection periods converges to a finite value to
prove Theorem 1. As discussed earlier, the regretRn will be
small if the fraction of time the users spend in the access
mode with orthogonalized channel occupancy is high. Indeed,
this relationship is formalized in Lemma 2, showing that the
expected regretERn is always upper bounded by (14).

Lemma 2:

ERn ≤

n∑

i=1

NLiPi,e. (14)

Proof: We break down the regret according to the de-
tection periods. In theith detection period, if the users are
orthogonal and all in access mode, then there is no expected
regret incurred. Otherwise, the regret in theith detection
period can at most be as large as the total number of slots
contained in theN channels in this detection period, which
is exactly the numberNLi. Therefore the regret incurred in
the ith detection period is at mostNLiPi,e. Summing over all
detection periods from 1 ton yields the desired Eq. (14).

From Eq. (14) the expected regret will be finite ifPi,e, the
probability that there are still some users not in access mode
or not in a separate channel, decays fast enough compared
with the growth ofLi.

The factors that drive the decay rate ofPi,e include the
decay rate of the detection error (how accurate is the inference)
and the transition rule’s ability to adjust and separate when
collisions happen (whether the distributed transition rule is
indeed leading users to separate gradually). Lemma 3 shows
the quantitative relationship between these two drivers and
Pi,e.

Lemma 3:The following recursion in the detection period
index i holds forPi,e

Pi+3,e ≤ 3NPi,f,m + Pi,e(1−
1

2K

K∏

k=1

Nk − k + 1

Nk

), (15)

wherePi,f,m is the sum of the miss detection probability and
the false alarm probability with detection period lengthLi, Nk

is the number of qualified channels for userk (channel “on”
long term fraction no less than the targeted throughputrk),
andNk is ranked in increasing order withk.

Proof: The proof of Lemma 3 involves three parts. The
first part shows that it is alwayspossiblethat the configuration
of the N users will be corrected in at most three detection
periods, if the configuration of the current detection period is
not orthogonal accessing, and the detection results withinthe
three detection periods are all correct. This part verifies that
the transition rule adopted is indeed capable of adjusting and
separating the users when collisions happen.

The second part shows that provided that the associated
inferences are all correct, the probability of the correc-
tion within three detection periods is always larger than
1
2K

∏K
k=1

Nk−k+1
Nk

, whereNk is the number of qualified chan-
nels for userk, andNk increases withk. This part verifies that

the random channel selection in the transition rule is making
strict progress gradually.

The third part verifies Eq. (15) by analyzing the events of
detection error and configuration error.

We start by showing the first part by enumerating the
possible undesirable configurations.

1) Several users are still observing separate vacant channels
in the ith detection period.
In this case, the user will correctly identify the oppor-
tunity and in the(i+ 1)th detection period transition to
the access mode.

2) Several users are observing the same vacant channel in
the ith detection period.
In this case, the user will correctly identify the vacancy
and in the(i + 1)th detection period transition to the
access mode. However, this will lead to multiple users
transmitting in one channel, which will be correctly
detected. Therefore in the(i + 2)th detection period
the users will randomly select channels. With positive
(lucky) probability, the selected channels will be vacant
and orthogonal, and in the(i+3)th detection period the
users will transition to the access mode.

3) Several users are accessing the same channel in theith
detection period.
In this case, the user will correctly identify the collision
among users and in the(i + 1)th detection period
transition to the sensing mode. Therefore in the(i+1)th
detection period the users will randomly select channels.
Still with positive (lucky) probability, the selected chan-
nels will be vacant and orthogonal, and in the(i+ 2)th
detection period the users will transition to the access
mode.

4) Some user is still observing an occupied channel in the
ith detection period.
In this case, there are two scenarios to analyze: 1) there
is another vacant channel qualified for the user, 2) there
is currently no vacant channel qualified for the user,i.e.,
all qualified channels for the user is currently occupied.
For scenario 1, the user will correctly identify the fact
that the channel is occupied and flip a coin with tail
outcome (1/2 probability), and in the(i+1)th detection
period randomly select another qualified channel. With
positive (lucky) probability, the selected channel will be
vacant, and in the(i + 2)th detection period the user
will transition to the access mode. For scenario 2, the
user will correctly identify the fact that the channel
is occupied and flip a coin with head outcome (1/2
probability), and in the(i + 1)th detection period start
accessing the channel. This will lead to collision in
this channel, and in the(i + 2)th detection period the
users will evacuate from the channel and randomly select
channels to sense. At this time, with positive (lucky)
probability, the selected channels will be vacant and
qualified for the users involved in the collision, and in
the (i+3)th detection period the users will transition to
the access mode in separate channels.
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Thus we have shown that if the channel configuration of the
current detection period is not orthogonal accessing, there is
always possibility that the configuration is corrected in atmost
three steps, provided the detection is correct in theith, (i+1)th
and (i+ 2)th detection periods.

The second part can be shown by inspecting the required
lucky probability. The distributed channel selection by the
users incorporates randomness, as well as randomness from
the fair coin flipping in the sensing state, and with probability
at least 1

2K

∏K
k=1

Nk−k+1
Nk

the channels can be orthogonalized
by the distributed random channel selection, where the factor
1
2K stands for the appropriate fair coin flip probability, and
the factor

∏K
k=1

Nk−k+1
Nk

accounts for the uniform channel
selection among qualified channels for each user.

The third part involves analyzing events and algebra. Specif-
ically,

Pi+3,e ≤ P(A1) + P(A2)

≤ 3NPi,f,m + P(A3)

≤ 3NPi,f,m + Pi,e(1−
1

2K

K∏

k=1

Nk − k + 1

Nk

),

whereA1 corresponds to the event that at least one user makes
a detection error (either miss detection or false alarm in either
mode) in theith, (i+ 1)th or (i+ 2)th detection periods,A2

corresponds to the event that all detections made by all users
are correct in theith, (i+1)th and(i+2)th detection periods,
and the configuration in the(i + 3)th detection period is still
undesirable,A3 corresponds to the event that the configuration
in the ith detection period is undesirable, and the random
channel selection is not able to separate the users (unlucky),
andPi,f,m is the probability that either miss detection or false
alarm occurs in one user with detection period lengthLi.

Specifically, the union bound and the fact thatPi+1,f,m ≤
Pi,f,m yields P(A1) ≤ 3NPi,f,m. Event A2 is a subset
of event A3, since provided that all detections made by
all users are correct in theith, (i + 1)th and (i + 2)th
detection periods, if either the configuration in theith detection
period is desirable, or the random channel selection is able
to separate the users (lucky), then the configuration in the
(i+ 3)th detection period has to be desirable. This will yield
P(A2) ≤ P(A3). Finally, the probability that the random
channel selection is able to separate the users (lucky) is lower
bounded by 1

2K

∏K
k=1

Nk−k+1
Nk

. Therefore the probability that
the random channel selection is not able to separate the users
(unlucky) is upper bounded by1 − 1

2K

∏K
k=1

Nk−k+1
Nk

, and

P(A3) ≤ Pi,e(1−
1
2K

∏K
k=1

Nk−k+1
Nk

).
With Eq. (15), we are in position to drive the exponential

decay ofPi,e, as established in Lemma 4.
Lemma 4:The probability the system is not in “good

configuration” in theith detection period,Pi,e, decays expo-
nentially in the detection period indexi.

Proof: Write

e−3θe = 1−
1

2K

K∏

k=1

Nk − k + 1

Nk

.

We have the exponential decay of miss detection probability
Pi,m and false alarm probabilityPi,f with respect to the
detection period lengthLi (linear in the detection period
index i), which further indicates the exponential decay of the
quantityPi,f,m with respect to the detection period indexi.

Therefore there exists integerI, such that for alli > I, it
holds that

Pi,f,m ≤ cf,me−θf,mi ≤ cf,me−min{θf,m,
θe
2
}i.

Write
α =

3Ncf,m

e−3min{θf,m,
θe
2
} − e−3θe

,

whereα > 0. Manipulating the recursion equation (15) yields

(Pi+3,e − αe−(i+3)min{θf,m,
θe
2
})− e−3θe(Pi,e − αe−imin{θf,m,

θe
2
})

= Pi+3,e − (3Ncf,me−min{θf,m,
θe
2
}i + Pi,ee

−3θe)

≤ Pi+3,e − (3NPi,f,m + Pi,ee
−3θe) ≤ 0,

which leads to

Pi+3,e−αe−(i+3)min{θf,m,
θe
2
} ≤ e−3θe(Pi,e−αe−imin{θf,m,

θe
2
}).

Therefore one concludes that the exponential decay inPi,e in
the detection period indexi is guaranteed.

REFERENCES

[1] D. P. Bertsekas and R. Gallager,Data Networks, Prentice Hall, 1992.
[2] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,”

IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 79–89, May 2007.
[3] K. Liu and Q. Zhao, “Distributed learning in multi-armedbandit with

multiple players,”IEEE Trans. Signal Processing, vol. 58, no. 11, 2010.
[4] L. Lai, H. Jiang, and V. Poor, “Medium Access in CognitiveRadio

Networks: A Competitive Multi-armed Bandit Framework,” inProc. of
IEEE Asilomar Conference on Signals, Systems, and Computers, 2008.

[5] A. Anandkumar, N. Michael, and A. Tang, “Opportunistic spectrum
access with multiple users: Learning under competition,” in Proc. 2010
IEEE INFOCOM, 2010.

[6] Yi Gai and Bhaskar Krishnamachari, “Decentralized Online Learning
Algorithms for Opportunistic Spectrum Access,” inIEEE Global
Communications Conference (GLOBECOM 2011), Houston, TX USA,
December 2011.

[7] Wenhan Dai, Yi Gai, and Bhaskar Krishnamachari, “Efficient Online
Learning for Opportunistic Spectrum Access,” inIEEE INFOCOM 2012,
Mini Conference, Orlando, FL USA, March 2012.

[8] T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, 1985.

[9] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically efficient
allocation rules for the multiarmed bandit problem with multiple plays
part i: Iid rewards,” IEEE Tran. Autom. Control, vol. 32, no. 11, pp.
968–976, 1987.

[10] X. Long, X. Gan, Y. Xu, J. Liu, and M. Tao, “An Estimation Algorithm
of Channel State Transition Probabilities for Cognitive Radio Systems,”
in Proceedings of Cognitive Radio Oriented Wireless Networksand
Communications (CrownCom), May 2008.

[11] Q. Liang, M. Liu, and D. Yuan, “Channel estimation for opportunistic
spectrum sensing: Uniform and random sensing,” inProc. UCSD ITA
Workshop, 2010.

[12] P. Tehrani, L. Tong, and Q. Zhao, “Asymptotically efficient multichannel
estimation for opportunistic spectrum access,”IEEE Transactions on
Signal Processing, vol. 60, no. 10, pp. 5347–5360, Oct 2012.

[13] Sidney I. Resnick, Adventures in stochastic processes, Birkhauser
Verlag, 1992.


	I Introduction
	I-A Summary of Results
	I-B Related Work

	II System Model and Assumptions
	II-A Channel Model
	II-B User Action and Feedback

	III A Distributed Learning and Access Policy
	III-A ASA Policy State and State Transition
	III-B Time Structure of ASA and Detection Period
	III-C Channel Occupancy Test

	IV Main Results
	V Numerical Results
	V-A Simulation setup
	V-B Increasing the Number of Users K
	V-C Fixed vs Increasing Detection Period Length

	VI Conclusion
	VI-A Proof of Lemma 1
	VI-B Lemmas for Theorem ??

	References

