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Sequentiality and Adaptivity Gains in
Active Hypothesis Testing

Mohammad Naghshvar and Tara Javidi

Abstract—Consider a decision maker who is responsible to
collect observations so as to enhance his information in a speedy
manner about an underlying phenomena of interest. The policies
under which the decision maker selects sensing actions can be
categorized based on the following two factors: i) sequential
vs. non-sequential; ii) adaptive vs. non-adaptive. Non-sequential
policies collect a fixed number of observation samples and make
the final decision afterwards; while under sequential policies,
the sample size is not known initially and is determined by the
observation outcomes. Under adaptive policies, the decision maker
relies on the previous collected samples to select the next sensing
action; while under non-adaptive policies, the actions areselected
independent of the past observation outcomes.

In this paper, performance bounds are provided for the policies
in each category. Using these bounds,sequentiality gain and
adaptivity gain, i.e., the gains of sequential and adaptive selection
of actions are characterized.

Index Terms—Active hypothesis testing, performance bounds,
feedback gain, error exponent.

I. I NTRODUCTION

This paper considers a generalization of the classical hy-
pothesis testing problem. Suppose there areM hypotheses
among which only one is true. A Bayesian decision maker
is responsible to enhance his information about the correct
hypothesis in a speedy manner with a small number of samples
while accounting for the penalty of wrong declaration. In
contrast to the classicalM -ary hypothesis testing problem,
at any given time, our decision maker can choose one of
K available actions and hence, exert some control over the
collected sample’s “information content.” We refer to this
generalization, originally tackled by Chernoff [1], as theactive
hypothesis testing problem. The special cases of active hypoth-
esis testing naturally arise in a broad spectrum of applications
in cognition [2], communications [3], anomaly detection [4],
image inspection [5], generalized search [6], group testing [7],
and sensor management [8].

The sample size and the sensing actions can be selected
either based on the past observation outcomes (on-line) or
independent from them (off-line or open loop). According to
this fact, the solutions are divided into four categories based
on the following two factors: i) sequential vs. non-sequential;
ii) adaptive vs. non-adaptive. Non-sequential schemes collect
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a fixed number of observation samples and make the final
decision afterwards; while under sequential ones, the sample
size is not set in advance and instead is determined by the spe-
cific observations made. Under adaptive policies, the decision
maker relies on the previous collected samples to select thenext
sensing action; while under non-adaptive policies, the actions
are selected independent of the past observation outcomes.
A question of both theoretical and practical significance is
the characterization of the benefits of making sequential and
adaptive decisions relative to the non-sequential and non-
adaptive solutions.

Due to the importance of the question, such gains have been
characterized for many special cases of the active hypothesis
testing [5], [9], [10]. For instance, in [9] and [10], simple
sequential and adaptive high dimensional reconstruction and
sparse recovery are shown to significantly outperform the
performance of the best non-sequential non-adaptive solutions.
In contrast, [5] identifies scenarios where the gain in practice is
insignificant. In this paper, we consider the problem of active
hypothesis testing in its full generality and provide upperand
lower bounds on the expected cost of the optimal sensing
selection strategies in sequential and non-sequential as well
as adaptive and non-adaptive classes of policies. Furthermore,
the bounds are shown to be asymptotically tight (in terms of
number of samples or equivalently in terms of reliability) and
logarithmically increasing in the penalty of wrong declaration
(or equivalently the error probability).

As simple corollaries, we provide a full characterization of
the sequentiality and adaptivity gains in the general active
hypothesis testing framework. These findings generalize and
extend those of [9] and [10] by showing a logarithmic sequen-
tiality gain in all cases and an additional logarithmic adaptivity
gain in a large class of practically relevant cases. Furthermore,
the results prove, as a corollary, the conjecture given in [5]
on the insignificance of adaptivity gain when there exists a
“most informative” sensing action which is independent of the
Bayesian prior. Finally, we specialize our results in the active
binary hypothesis testing case and state a simple necessaryand
sufficient condition for a logarithmic adaptivity gain.

This work and analysis is closely related and complimentary
to a growing body of literature on hypothesis testing [1], [11]–
[19]. We discuss the specific contributions and connectionsin
Subsection II-D.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem and define various types
of policies for selecting actions. Sections III and IV provide
the main results of the paper and discusses the advantage of
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sequential and adaptive selection of actions. In Section V,
active binary hypothesis testing is investigated as a special
case and a necessary and sufficient condition for a logarithmic
adaptivity gain is provided. Finally, we conclude the paperand
discuss future work in Section VI.

Notations: A random variable is denoted by an upper case
letter (e.g.X) and its realization is denoted by a lower case
letter (e.g.x). For any setS, |S| denotes the cardinality
of S. For a setA, let Λ(A) denote the collection of all
probability distributions on elements ofA, i.e., Λ(A) =
{λ ∈ [0, 1]|A| :

∑

a∈A λa = 1}. The Kullback-Leibler (KL)
divergencebetween two probability density functionsq(·) and
q′(·) on spaceZ is defined asD(q||q′) =

∫

Z q(z) log q(z)
q′(z)dz,

with the convention0 log a
0 = 0 and b log b

0 = ∞ for
a, b ∈ [0, 1] with b 6= 0. The Rényi divergence of order
α, α ∈ [0, 1], between two probability density functions
q(·) and q′(·) on spaceZ is denoted byDα(q||q

′) where
Dα(q||q

′) = −1
1−α log

∫

Z qα(z)q′
1−α

(z)dz for α ∈ [0, 1) and
Dα(q||q

′) = D(q||q′) for α = 1. Finally, letN(m,σ2) denote
a normal distribution with meanm and varianceσ2.

II. PROBLEM SETUP

In Subsection II-A, we formulate the problem of active
hypothesis testing. Subsection II-B discusses different types
of policies for selecting actions. Subsection II-C explains why
active hypothesis testing is a partially observable Markov
decision problem (POMDP) and provides the sufficient statistic
for this problem. Finally, in Subsection II-D, we state the main
contributions of the paper and provide a summary of related
works.

A. Problem Formulation

Here, we provide a precise formulation for the activeM -ary
hypothesis testing problem.

Let Ω = {1, 2, . . . ,M}. Let Hi, i ∈ Ω, denoteM hypothe-
ses of interest among which only one holds true. Letθ be the
random variable that takes the valueθ = i on the event thatHi

is true fori ∈ Ω. We consider a Bayesian scenario with a given
prior (belief) aboutθ, i.e., initially P ({θ = i}) = ρi(0) > 0
for all i ∈ Ω. A is the set of all sensing actions and is assumed
to be finite with |A| = K < ∞. Z is the observation space.
For all a ∈ A, the observation kernelqai (·) (on Z) is the
probability density function for observationZ when actiona
has been taken andHi is true. We assume that observation
kernels{qai (·)}i,a are known. LetL denote the penalty for a
wrong declaration, i.e., the penalty of selectingHj , j 6= i, when
Hi is true. Letτ be the (stopping) time at which the decision
maker retires. The objective is to find a stopping timeτ , a
sequence of sensing actionsA(0), A(1), . . . , A(τ − 1), and a
declaration ruled : Aτ ×Zτ → Ω that collectively minimize
the expected total cost

E
[

τ + L1{d(Aτ ,Zτ ) 6=θ}

]

, (1)

where the expectation is taken with respect to the initial belief
as well as the distribution of observation sequence.

Note that in the above problem, the cost of a test is stated
in terms of minimizing the expected sample size plus the
expected penalty of wrong declaration. We are interested inthe
characterization of this cost as a function of penaltyL. It is easy
to show that under the optimal selection rule, the probability of
error approaches zero asL approaches infinity. Furthermore, as
shown in [20], the above problem is (asymptotically) equivalent
to the problem of minimizing the (expected) number of samples
subject to a constraintǫ = (L logL)−1 on the expected
probability of error.

B. Types of Policies

A policy is a rule based on which stopping timeτ and
sensing actionsA(t), t = 0, 1, . . . , τ − 1 are selected. We as-
sume that sensing actions are selected according to randomized
decisionλ ∈ Λ(A) whose elementλa indicates the probability
of selecting sensing actiona and in general might change with
time or not. The sensing actions and the stopping time can
be selected either based on the past observation outcomes or
independent from them. According to this fact, policies are
divided into four categories based on the following two factors:
i) sequential vs. non-sequential; ii) adaptive vs. non-adaptive.
Non-sequential policies collect a fixed number of observation
samples and make the final decision afterwards; while under
sequential policies, the sample size is not known initiallyand
is determined by the observation outcomes. More precisely,
under non-sequential policies,τ = N for someN ∈ N; while
for sequential policies,τ is a random stopping time. Under
adaptive policies, the decision maker relies on the previous
collected samples to select the next sensing action; while under
non-adaptive policies, the actions are selected independent of
the past observation outcomes.

C. Information State as Sufficient Statistic

The problem of activeM -ary hypothesis testing is a partially
observable Markov decision problem (POMDP) where the state
is static and observations are noisy. It is known that any
POMDP is equivalent to an MDP with a compact yet uncount-
able state space, for which the belief of the decision maker
about the underlying state becomes an information state [21].
In our setup, thus, the information state at timet is nothing
but a belief vector specified by the conditional probability
of hypothesesH1, H2, . . . , HM to be true given the initial
belief and all the previous observations and actions. Letρ(t)
denote the posterior belief aftert observations. Accordingly,
the information state space is defined asP(Θ) =

{

ρ ∈ [0, 1]M :
∑M

i=1 ρi = 1
}

whereΘ is theσ-algebra generated by random
variable θ. In one sensing step, the evolution of the belief
vector follows Bayes’ rule and the expected total cost (1) can
be rewritten as

E [τ ] + LP̄e, (2)

whereP̄e= E[1−maxj∈Ω ρj(τ)] is the probability of wrong
declaration and the expectations are taken with respect to
the distribution of observation sequence as well as the prior
distribution onθ.
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Let VNN (ρ), VSN (ρ), VSA(ρ), and VNA(ρ), denote the
minimum expected total cost (2) for prior beliefρ under non-
sequential non-adaptive, sequential non-adaptive, sequential
adaptive, and non-sequential adaptive policies, respectively.

D. Overview of the Results and Literature Survey

Active hypothesis testing generalizes the passive (classical)
hypothesis testing problem where the number of sensing ac-
tions is limited to one, both in the fixed sample size (non-
sequential) case [14], [15], [22] as well as the sequential
one [11]–[13]. While the fixed sample size studies have primar-
ily focused on the asymptotic analysis in form of identifying
error exponents for various error types [14], [15], [22], the
study of sequential hypothesis testing has come in form of
identifying the expected optimal sample size to achieve a given
error probability.

The generalization to the active testing case was consid-
ered by Chernoff in [1] in which a decision maker controls
sensing actions to optimize the expected total cost (1) in a
sequential (variable sample size) setting. In particular,in [1]
and its extensions [18], [20], [23], heuristic sequential adaptive
randomized policies were proposed and were shown to be
asymptotically optimal asL → ∞ where the notion of
asymptotic optimality [1] denotes the relative tightness of the
performance upper bound associated with the proposed policy
and the lower bound associated with the optimal policy.1

The general active binary hypothesis testing problem was
recently studied in [16], [17] where full characterizationof
the error exponent corresponding to the class of adaptive
and non-adaptive policies was provided. In particular, the
error exponent corresponding to these two classes was shown
to be equal, hence establishing zero adaptivity gain among
non-sequential policies. The generalization toM > 2 was
considered in [18]. Note that while [18] fully characterizes the
error exponent corresponding to non-sequential non-adaptive
policies; it provides only a partial characterization of (i.e., loose
upper and lower bounds on) the error exponent corresponding
to non-sequential adaptive policies.

Table I provides a visual summary of the literature on hy-
pothesis testing, excluding the authors’ prior work, as discussed
above.

We close our literature survey with an overview of the main
contributions of this paper, which expands our previous works
[20], [23]–[25] and unifies various aspects of the prior work:

• We provide asymptotically tight lower and upper bounds
on VNN (ρ), VSN (ρ), andVSA(ρ) which hold uniformly
for all prior ρ ∈ P(Θ).

– The asymptotic tight bounds onVNN (ρ) relies on
the analysis of [14], [15] and the realization that in
order to minimize the total cost, we have to decrease

1In [1], the objective was to minimizecE[τ ] + P̄e and the proposed policy
was shown to be asymptotically optimal asc → 0. It is straightforward to
show that forL = 1

c
, this problem coincides with the active hypothesis testing

problem defined in this paper. However, we have chosenE[τ ] + LP̄e as an
objective function here because of its Lagrangian relaxation interpretation of
an information acquisition problem in which the objective is to minimizeE[τ ]
subject toP̄e≤ ǫ whereǫ > 0 denotes the desired probability of error.

TABLE I
HYPOTHESISTESTINGL ITERATURE

Type M = 2 M > 2

Sequential Passive (K = 1) [11] [12], [13]

Sequential Non-adaptive [17]

Sequential Adaptive [1], [17] [1], [18]

Non-sequential Passive (K = 1) [14] [15]

Non-sequential Non-adaptive [16], [17] [18]

Non-sequential Adaptive [16], [17] [18]

the error probabilities of various types with the same
exponent among the worst pair of hypotheses. Since
unlike the passive case studied in [14], [15], the non-
adaptive policies produce non-iid observation sam-
ples, the final step is to characterize the relationship
between the error exponent of a fixed block length
and one-step error exponent.

– The asymptotic tight bounds onVSN (ρ) extend the
results obtained by [13] to the Bayesian context
while allowing for randomized non-adaptive policies.
More specifically, the result of [13] is obtained via
the law of large numbers and only holds if the
observations are i.i.d. Since observations are not
identical (although they are independent), different
proof technique is required (note that unlike the non-
sequential case of extending the work of [14], [15],
the random nature of sample size in the sequential
case does not allow for a predetermined relationship
between the error exponent of a fixed block and one-
step error exponent).

– The asymptotic tight bounds onVSA(ρ) extend those
obtained by Chernoff [1] to the Bayesian context
while relaxing the assumption on uniform discrim-
ination of hypotheses or the need for the infinitely
often reliance on randomized action deployed in [18]
to ensure sufficient discrimination among hypotheses.

• In addition, we partially characterize a lower bound for
VNA(ρ). This is, in the Bayesian context, similar to the
partial characterization of error exponent of [18].

• As corollaries to the above performance bounds, we
characterize the sequentiality gain and adaptivity gain in
terms ofL. In particular, it is shown that the sequentiality
gain grows logarithmically as the penaltyL increases.
We also state a simple necessary and sufficient condition
ensuring a logarithmic adaptivity gain inL for the active
binary hypothesis testing case.

• Furthermore, primarily as a sanity check, Section IV-B
contains the maximum achievable error exponentsENN ,
ESN , and ESA in the Bayesian context. In particular,
our result regardingENN coincides with that of [16]–
[18]; while the result regardingESA coincides with that
of [1], [18] in the Bayesian context. To the best of our
knowledge, the result onESN is new and has not been
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established before; while our upper bound onENA is
subsumed by the analysis in [18].

III. A NALYTIC RESULTS

In this section, we provide the main results of the paper
regarding the asymptotic characterization (inL) of VNN (ρ),
VSN (ρ), VSA(ρ), andVNA(ρ).

A. Assumptions and Basic Definitions

Throughout the paper, we have the following technical
Assumptions.

Assumption 1. For any two hypothesesi and j, i 6= j, there
exists an actiona, a ∈ A, such thatD(qai ||q

a
j ) > 0.

Assumption 2. There existsξ < ∞ such that

max
i,j∈Ω

max
a∈A

sup
z∈Z

qai (z)

qaj (z)
≤ ξ.

Assumption 1 ensures the possibility of discrimination be-
tween any two hypotheses. Assumption 2 implies that no two
hypotheses are fully distinguishable using a single observation
sample.

To continue with our analysis, we need the following defi-
nitions and notations.

Definition. For all i ∈ Ω, λ ∈ Λ(A), the optimized discrimi-
nation of hypothesisi under randomized ruleλ is defined as

D∗(i,λ) := min
j 6=i

max
α∈[0,1]

(1 − α)
∑

a∈A

λaDα(q
a
i ||q

a
j ).

Definition. For all i ∈ Ω, λ ∈ Λ(A), the reliability function
of hypothesisi with regard to randomized ruleλ is defined as

R(i,λ) := min
j 6=i

∑

a∈A

λaD(qai ||q
a
j ),

and the maximal randomized rule for hypothesisi is denoted
by

λ∗
i := argmax

λ∈Λ(A)

R(i,λ).

For λ ∈ Λ(A), let R̄(λ) denote the harmonic mean of
{R(i,λ)}i∈Ω, i.e.,

R̄(λ) :=
M

∑M
i=1

1
R(i,λ)

,

and letR̄∗ denote the harmonic mean of{R(i,λ∗
i )}i∈Ω, i.e.,

R̄∗ :=
M

∑M
i=1

1
R(i,λ∗

i )

.

These notions of discrimination and reliability, as we will
see, are natural (and Bayesian) extensions of reliability in clas-
sical detection [22] where reliability function for hypothesisi
is related to typei error probability. The following fact enables
a concrete relationship between these notions.

Fact 1 (Theorem 1 in [26]). For two probability density
functions q(·) and q′(·) with the same support and for all
α ∈ [0, 1] we have

(1 − α)Dα(q||q
′) ≤ min {(1− α)D(q||q′), αD(q′||q)} .

B. Main Theorems

In this subsection, we provide upper and lower bounds on
the minimum expected total cost (1) under different types of
policies defined in Subsection II-B. These bounds will be used
then in Section IV to characterize the gains of sequential and
adaptive selection of actions.

Theorem 1 (Non-sequential non-adaptive policy). Under As-
sumptions 1 and 2,

VNN (ρ) ≤

logL− min
i,j∈Ω

log ρi

ρj

D̂
+ o(logL), (3)

VNN (ρ) ≥

logL− max
i,j∈Ω

log ρi

ρj

D̂
− o(logL), (4)

where

D̂ := max
λ∈Λ(A)

min
i∈Ω

D∗(i,λ). (5)

Proof: The detailed proof is provided in Appendix A. Here
we provide an overview.

The proof of the lower bound relies on a generalization of
Theorem 10 in [14], while the upper bound is achieved via
a randomized, non-sequential, and non-adaptive policy which
collectsn̂ =

(

logL+log(M−1)−min
i,j∈Ω

log ρi

ρj
+o(logL)

)

/D̂

samples (deterministically) and selects sensing actions accord-
ing to the randomization rulêλ ∈ Λ(A) that achieves the
maximum in (5).

Theorem 2 (Sequential non-adaptive policy). Under Assump-
tions 1 and 2,

VSN (ρ) ≤ min
λ∈Λ(A)

M
∑

i=1

ρi

logL−min
k 6=i

log ρi

ρk

R(i,λ)
+ o(logL), (6)

VSN (ρ) ≥ min
λ∈Λ(A)

M
∑

i=1

ρi

logL−max
k 6=i

log ρi

ρk

R(i,λ)
− o(logL). (7)

Proof: The detailed proof is provided in Appendix B. Here
we provide an overview.

Supposêλ ∈ Λ(A) achieves the minimum in (6). The upper
bound (6) is achieved by a policy that selects sensing actions
according toλ̂ and stops sampling at

τ := min{n : max
i∈Ω

ρi(n) ≥ 1− L−1}.

From upper bound (6) we know that the total cost under
the optimal policy isO(logL). This implies that the error
probabilityP̄e of the optimal policy isO( logL

L ). Hence, without
loss of generality in our proof of the lower bound, we can
restrict the set of sequential and non-adaptive policies tothose
whose average probability of making an error isO( logL

L ).
Conditioning on the true hypothesis and considering the dy-
namic of pairwise likelihoods, we then compute the minimum
expected number of samples necessary to achieve this target
error probability.
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Theorem 3(Sequential adaptive policy). Under Assumptions 1
and 2,

VSA(ρ) ≤

M
∑

i=1

ρi

logL−min
k 6=i

log ρi

ρk

R(i,λ∗
i )

+ o(logL), (8)

VSA(ρ) ≥
M
∑

i=1

ρi

logL−max
k 6=i

log ρi

ρk

R(i,λ∗
i )

− o(logL). (9)

Proof: The detailed proof is provided in Appendix C. Here
we provide an overview.

The proof of the lower bound relies on a generalization
of Theorem 2 in [1]. The upper bound is achieved viaπ̃1,
a heuristic two-phase policy introduced in [20] which in its
first phase, selects actions in a way that all pairs of hypotheses
can be distinguished from each other; while its second phase
coincides with Chernoff’s scheme [1] where only the pairs
including the most likely hypothesis are considered. In [20], the
second phase of̃π1 is shown to ensure its asymptotic optimality
in L; while its first phase in a very natural manner relaxes the
technical assumption in [1] where all actions are assumed to
discriminate between all hypotheses pairs or the need for the
infinitely often reliance on randomized action deployed in [18]
in order to ensure sufficient discrimination among hypotheses.

We close this section by a note on the class of non-sequential
adaptive policies even though they seem rather unnatural tous
(It is more reasonable to control the sample size using the
observation outcomes if they are already being used to select
sensing actions). Next proposition provides a lower bound on
the minimum expected total cost under non-sequential adaptive
policies, denoted byVNA.

Proposition 1 (Non-sequential adaptive policy). Under As-
sumptions 1 and 2,

VNA(ρ) ≥

logL−max
k 6=i

log ρi

ρk

min
i∈Ω

max
λ∈Λ(A)

R(i,λ)
− o(logL). (10)

Next we state and discuss the consequences of the bounds
proposed above. In Subsection IV-A, we focus on the advan-
tages of causally selecting the retire/declaration time aswell as
the adaptive selecting of sensing actions. In Subsection IV-B,
we derive the error exponent corresponding to different types
of policies.

IV. CONSEQUENCES OF THEBOUNDS

In this section, we first specialize and simplify the results
provided in Section III for uniform prior. In particular, assume
that the hypotheses, initially, are equally likely, i.e.,ρi(0) =

1
M

for all i ∈ Ω. Let E[τ∗NN ], E[τ∗SN ], andE[τ∗SA], denote the
minimum expected number of samples under non-sequential
non-adaptive, sequential non-adaptive, and sequential adaptive
policies; while P̄eNN , P̄eSN , and P̄eSA represent average
probability of making a wrong declaration.

From Fact 1, we know that

D̂ ≤ 0.5 max
λ∈Λ(A)

min
i∈Ω

min
j 6=i

∑

a∈A

λaD(qai ||q
a
j ). (11)

Theorem 1 together with (11) implies that:

Corollary 1 (Non-sequential non-adaptive policy). Under As-
sumptions 1 and 2,

E[τ∗NN ] + LP̄eNN =
logL

D̂
± o(logL)

≥
2 logL

max
λ∈Λ(A)

min
i∈Ω

R(i,λ)
− o(logL). (12)

Corollary 2 (Sequential non-adaptive policy). Under Assump-
tions 1 and 2,

E[τ∗SN ] + LP̄eSN =
logL

max
λ∈Λ(A)

R̄(λ)
± o(logL). (13)

Corollary 3 (Sequential adaptive policy). Under Assump-
tions 1 and 2,

E[τ∗SA] + LP̄eSA =
logL

R̄∗
± o(logL). (14)

Remark 1. Note that the simple two phase structure of the
policy which achieves the upper bound in (8) implies that the
adaptivity gain can be obtained via coarse level adaptation.

From the results above, it is evident that the minimum
expected total cost under all classes of policies grows loga-
rithmically in L. However, the coefficient of thelogL term is
not the same in general and we have

R̄∗ ≥ max
λ∈Λ(A)

R̄(λ) ≥ max
λ∈Λ(A)

min
i∈Ω

R(i,λ) ≥ D̂. (15)

A. Sequentiality and Adaptivity Gains

In this subsection, we discuss the advantage of causally
selecting the retire/declaration time, i.e.,τ as well as the
sensing actions. LetVNN , VSN , and VSA, respectively, de-
note the minimum expected total cost under non-sequential
non-adaptive, sequential non-adaptive, and sequential adaptive
policies under uniform prior, i.e.,Vx := Vx([

1
M , 1

M , . . . , 1
M ])

wherex denotes the class of policiesNN , SN , andSA.
First, we show that the performance gap between the sequen-

tial and non-sequential policy,VNN −VSN , grows logarithmi-
cally as the penaltyL increases. We refer to this performance
gap as thesequentiality gain.

Corollary 4. Under Assumptions 1 and 2, the sequentiality
gain is characterized as

VNN − VSN

≥ logL





2

max
λ∈Λ(A)

min
i∈Ω

R(i,λ)
−

1

max
λ∈Λ(A)

R̄(λ)



 − o(logL).

Remark 2. The sequentiality gain grows logarithmically
with L and from (15),

VNN − VSN ≥
logL

max
λ∈Λ(A)

R̄(λ)
− o(logL).
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Next, the advantage of adaptively selecting the sensing
actions is discussed. In particular, it is shown that the per-
formance gap between the adaptive and non-adaptive policy,
VSN −VSA, grows logarithmically as the penaltyL increases.
We refer to this performance gap as theadaptivity gain.

Corollary 5. Under Assumptions 1 and 2, the adaptivity gain
is characterized as

VSN − VSA = logL





1

max
λ∈Λ(A)

R̄(λ)
−

1

R̄∗



± o(logL).

Remark 3. Unless there exists ãλ ∈ Λ(A) such that,

R(i, λ̃) = R(i,λ∗
i ) for all i ∈ Ω,

the adaptivity gain grows logarithmically withL.

A sufficient condition under which there is no adaptivity
gain is that of stochastic dominance/degradation [27], i.e., if
there exists astochastic transformationW from Z to Z and2 a
sensing actiona∗ such that for all other sensing actionsa ∈ A,

qai (z) =

∫

qa∗i (y)W (y; z)dy, ∀i ∈ Ω. (16)

As shown by Sakaguchi [28], (16) implies that

D(qai ||q
a
j ) ≤ D(qa

∗

i ||qa
∗

j ), ∀a ∈ A, ∀i, j ∈ Ω,

hence, ensuring zero adaptivity gain when observations ob-
tained by all actions are stochastically degraded version of the
observation under sensing actiona∗. This formalizes the notion
of informativeness and confirms the conjecture provided in [5].

B. Reliability and Error Exponent

Let Eπ[τ ] denote the expected stopping time (or equivalently
the expected number of collected samples) under policyπ.
Policy π is said to achieve error exponentE > 0 if

lim
t→∞

−1

t
logPeπ(t,M) = E, (17)

where Peπ(t,M) is the smallest probability of error that policy
π can guarantee when looking for the true hypothesis among
M hypotheses withEπ [τ ] ≤ t (Note that for non-sequential
policies,τ is deterministic).

Next we use the bounds obtained in Section III to char-
acterize the maximum achievable error exponent for different
type of policies. LetENN , ESN , ESA, andENA denote the
maximum achievable error exponent under non-sequential non-
adaptive, sequential non-adaptive, sequential adaptive,and non-
sequential adaptive policies.

Corollary 6. Under Assumptions 1 and 2, we have

ENN = D̂

ESN = max
λ∈Λ(A)

R̄(λ),

ESA = R̄∗.

2FunctionW : Z ×Z → R+ is called astochastic transformationfrom Z

to Z if it satisfies
∫
Z
W (y; z)dz = 1.

Remark 4. The above characterizations of maximum achiev-
able error exponent are nothing but the Bayesian andM -ary
version of the results in the literature (see Table I). In fact
as discussed in Subsection II-D, these results provide a sanity
check viz a viz the prior work:ENN coincides with that of
[16]–[18]; while ESA coincides with that of [1], [18]. To the
best of our knowledge, the result onESN is new and has not
been established before.

Remark 5. The above corollary provides alternative means
to underline and characterize the sequentiality and adaptivity
gains. In particular, sequentiality always results in an im-
provement in the maximum achievable error exponent since
ENN ≤ 0.5 max

λ∈Λ(A)
min
i∈Ω

R(i,λ) < ESN . In contrast, adaptive

selection of actions results in an improvement in the maximum
achievable error exponent only ifmax

λ∈Λ(A)
R̄(λ) 6= R̄∗.

We can also find an upper bound on the maximum achievable
error exponent of any non-sequential yet adaptive policy (tight
lower bounds are necessary for full characterization, however).

Corollary 7. Under Assumptions 1 and 2, we have

ENA ≤ min
i∈Ω

max
λ∈Λ(A)

R(i,λ).

Remark 6. Our upper bound onENA is subsumed by [18,
Theorem 3].

V. SPECIAL CASE: BINARY HYPOTHESISTESTING

In this section, we consider active binary hypothesis testing
(M = 2) as a special case.

A. Analytical Results

The performance bounds provided in Section III are simpli-
fied by substituting the following equations into the denomi-
nators of the bounds.

R(1,λ) =
∑

a∈A

λaD(qa1 ||q
a
2 ), R(2,λ) =

∑

a∈A

λaD(qa2 ||q
a
1 ),

R(1,λ∗
1) = max

a∈A
D(qa1 ||q

a
2 ), R(2,λ∗

2) = max
a∈A

D(qa2 ||q
a
1 ),

R̄(λ) =

(

0.5
∑

a∈A

λaD(qa1 ||q
a
2 )

+
0.5

∑

a∈A

λaD(qa2 ||q
a
1 )

)−1

,

R̄∗ =

(

0.5

max
a

D(qa1 ||q
a
2 )

+
0.5

max
a

D(qa2 ||q
a
1 )

)−1

.

Next we state a simple necessary and sufficient condition for
a logarithmic adaptivity gain in the active binary hypothesis
testing case.

Corollary 8. In the active binary hypothesis testing case, the
adaptivity gain grows logarithmically inL if and only if

argmax
a∈A

D(qa1 ||q
a
2 ) 6= argmax

a∈A
D(qa2 ||q

a
1 ).
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The problem of passive binary hypothesis testing (K = 1,
M = 2) with fixed-length (non-sequential) as well as variable-
length (sequential) sample size has been studied by [14],
[18], [22], [29]. Our sequentiality gain, in this case, is the
manifestation of the fact that “sequential tests are superior in
ensuring that both error probabilities decreasing at the best
possible exponential rates” [29].

Recently, the authors in [16] and [17] have studied the
problem of active binary hypothesis testing for fixed-length
and variable-length sample size respectively. Our work com-
plements the findings in [17] by providing an asymptotic
optimal solution in a total cost (and Bayesian) sense as wellas
establishing a non-zero sequentiality and potentially non-zero
adaptivity gain. In [16], the error exponent correspondingto the
class of NN and NA policies were fully characterized for the
problem of active binary hypothesis testing with fixed sample
size. In the Bayesian context, the result of [16] regarding the
error exponent of the class of NN policies coincides with
our Corollary 6, while the full characterization of the error
exponent corresponding to the class of NA policies in [16],
strengthens Corollary 7 in the binary case. In particular, it is
shown that in the binary hypothesis testing setupENN =
ENA, hence, establishing zero adaptivity gain among non-
sequential policies. For the special case of channel codingwith
feedback3 with two messages, the above result, i.e., the zero
adaptivity gain among non-sequential policies, was established
in [31], [32].

B. Numerical Example

Consider the active binary hypothesis testing problem with
additive Gaussian noisy observations under two actionsa and
b shown in Fig. 1. In this example, the observation noise
associated with actionsa andb are such that they add unequal
noise to the hypotheses. In the remainder of this subsection,
we compare the performance of all considered policies for this
example.

Sensing action a
N(0,1)

1

Z

+

2

+

i i b

N(1,3)

N(0 4)

1

Sensing action b

+

N(0,4)

2

Z

+

N(1,2)PSfrag replacements

θ

θ

Fig. 1. Active binary hypothesis testing problem with additive Gaussian noisy
observations.

3The problem of channel coding with feedback can be interpreted as a
special case of active hypothesis testing (See [30] for moredetails).

Table II compares the performance bounds of the considered
policies for the example of Fig.1.

TABLE II
COMPARISON OF PERFORMANCE BOUNDS FOR THE EXAMPLE OFFIG.1.

Sequential Non-sequential

Adaptive logL/2.98 . logL/1.89

Non-adaptive logL/2.27 2 logL/1.78

VI. D ISCUSSION ANDFUTURE WORK

In this paper, we considered the problem of active hypothesis
testing and we analyzed the gain of sequential and adaptive
selection of actions.

Our analysis assumes two technical conditions. However, it
seems to us that Assumption 2 is for ease of our proofs. As
part of our future work, we believe that standard techniques
as in [33], [34] can be applied to generalize the bounds when
Assumption 2 does not hold. We also note the results obtained
in [13] and [1], [23] have been shown in [35] and [36],
respectively, to extend to higher moment characterizationof
the optimal (sequential) sample size. Similar extension inthe
context of sequential and non-adaptive policies seem to follow
naturally and is important area of future investigation.

In our analysis in this paper, we only investigated asymptotic
performance inL and the complementary role of asymptotic
analysis inM was neglected. In particular, we have only
identified the zero-rate characterization of error exponent;
while for a full characterization in which error exponent is
traded off with information acquisition rate, we would need
an asymptotic characterization of the problem both inL and
M . Although we have partially addressed this problem in [20]
for the class of sequential policies, the full characterization of
the performance bounds inL andM for all types of policies
defined in this paper remains an important area of future work.

APPENDIX

A. Theorem 1, non-sequential non-adaptive policy

In this subsection, we show that

VNN (ρ) ≤

logL− min
i,j∈Ω

log ρi

ρj

D̂
+ o(logL), (18)

VNN (ρ) ≥

logL− max
i,j∈Ω

log ρi

ρj

D̂
− o(logL), (19)

where

D̂ = max
λ∈Λ(A)

min
i∈Ω

min
j 6=i

max
α∈[0,1]

∑

a∈A

λa(1− α)Dα(q
a
i ||q

a
j ). (20)

Supposeλ̂ ∈ Λ(A) achieves the maximum in (20). Let
πNN be a non-sequential non-adaptive policy that collectsn̂
observation samples and selects sensing actions accordingto
the randomized rulêλ. The expected total cost under this
policy is n̂ + LP̄e. Next we find an upper bound for̄Pe. Let
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Zi(n) = {Zn : ρi(n) ≥ ρj(n) for all j ∈ Ω} and eij(n) =
P ({Zn : ρi(n) < ρj(n)}|θ = i).

P̄e=
M
∑

i=1

ρiP (∪j 6=i{Z
n̂ : ρi(n̂) < ρj(n̂)}|θ = i)

≤

M
∑

i=1

ρi
∑

j 6=i

eij(n̂)

≤ (M − 1) max
i,j∈Ω

eij(n̂). (21)

From (21) and Lemma 1 in Appendix E, we obtain

P̄e≤ (M − 1)×

exp

(

− n̂(1− α)
∑

a∈A

λ̂aDα(q
a
i ||q

a
j )− min

i,j∈Ω
log

ρi
ρj

+ o(n̂)

)

.

We can select̂n as

n̂ =

(

logL+ log(M − 1)− min
i,j∈Ω

log
ρi
ρj

+ o(logL)

)

/D̂

(22)

such thatP̄e= O( 1
L ), and hence,

VNN ≤ n̂+ LP̄e≤ n̂+ 1 =

logL− min
i,j∈Ω

log ρi

ρj

D̂
+ o(logL).

This completes the proof of upper bound. Next the proof of
lower bound is given.

Consider a policyπNN that collectsn observation samples
according toλ ∈ Λ(A). We have

P̄e=
M
∑

i=1

ρiP (∪j 6=i{Z
n : ρi(n) < ρj(n)}|θ = i)

≥ ρieij + ρjeji for any i, j ∈ Ω. (23)

From (23) and Lemma 1 in Appendix E, a lower bound is
obtained for the expected total cost under policyπNN . The
lower bound forVNN is obtained by minimizing over the
choices ofn andλ.

B. Theorem 2, sequential non-adaptive policy

In this subsection, we show that

VSN (ρ) ≤ min
λ∈Λ(A)

M
∑

i=1

ρi

logL−min
k 6=i

log ρi

ρk

R(i,λ)
+ o(logL),

(24)

VSN (ρ) ≥ min
λ∈Λ(A)

M
∑

i=1

ρi

logL−max
k 6=i

log ρi

ρk

R(i,λ)
− o(logL).

(25)

In contrast to the passive case, the observations in the
active case (either adaptive or non-adaptive) are not necessarily
identical over time. Therefore the analysis of [13] for sequential
passive hypothesis testing (which is based on the law of large
number and results for random walks) is not applicable to the
problem of sequential non-adaptive hypothesis testing.

Supposeλ̂ ∈ Λ(A) achieves the minimum in (24). The
upper bound (24) is achieved by a policy that selects sensing
actions according tôλ and stops sampling at

τ := min{n : max
i∈Ω

ρi(n) ≥ 1− L−1}.

Let τi, i ∈ Ω, be Markov stopping times defined as follows:

τi := min

{

n : min
j 6=i

ρi(n)

ρj(n)
≥

1− L−1

L−1/(M − 1)

}

. (26)

Note that by definition

(M − 1)ρi(τi) ≥
∑

j 6=i

ρj(τi)
1− L−1

L−1/(M − 1)

= (M − 1)(1− ρi(τi))
1− L−1

L−1
.

This implies thatρi(τi) ≥ 1 − L−1 and hence,τ ≤ τi for
all i ∈ Ω. From (2), total cost under the above policy can be
written as

V (ρ) = E[τ ] + L[1−max
j∈Ω

ρj(τ)]

≤ E[τ ] + 1

=

M
∑

i=1

ρiE[τ |θ = i] + 1

≤

M
∑

i=1

ρiE[τi|θ = i] + 1, (27)

whereρ = [ρ1, ρ2, . . . , ρM ] = [ρ1(0), ρ2(0), . . . ρM (0)] and
the last inequality follows from the fact thatτ ≤ τi, ∀i ∈ Ω.

Next we find an upper bound forE[τi|θ = i], i ∈ Ω. Before
we proceed, we introduce the following notation to facilitate
the proof:

Ti := log
1− L−1

L−1/(M − 1)
−min

k 6=i
log

ρi
ρk

.

Let ι := (logL)−
1
4 . We have

E[τi|θ = i] =

∞
∑

n=0

P ({τi > n}|θ = i)

≤ 1 +
Ti

R(i, λ̂)
(1 + ι) +

∑

n:n>
Ti

R(i,λ̂)
(1+ι)

P ({τi > n}|θ = i)

(a)

≤
Ti

R(i, λ̂)
+ o(logL)

≤

logL−min
k 6=i

log ρi

ρk

R(i, λ̂)
+ o(logL), (28)

where inequality(a) follows from the fact thatι = (logL)−
1
4

and by Lemma 2 in Appendix E. Now from (27) and (28), we
have the assertion of the theorem.

Next we provide the proof of lower bound (25) which
follows closely the proof of Theorem 2 in [1].

From upper bound (24) we know that the total cost under
the optimal policy isO(logL). This implies that theP̄e of the
optimal policy isO( logL

L ). Hence, without loss of generality
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in our computation of the lower bound, we can restrict the set
of policies to those whose average probability of making an
error isO( logL

L ).
Let πSN denote a sequential policy that selects sensing

actions according toλ ∈ Λ(A) and stops sampling whenever
P̄e≤ ǫ. For all i ∈ Ω, let

Ti := (1− δ)

log 1
ǫ −max

k 6=i
log ρi

ρk

R(i,λ) + δ
. (29)

Under policyπSN ,

P ({τ < Ti} |θ = i)

= P



{τ < Ti} ∩
⋂

j 6=i

{

ρi(τ)

ρj(τ)
≥ (

1

ǫ
)1−δ

}

|θ = i





+ P



{τ < Ti} ∩
⋃

j 6=i

{

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

|θ = i





(a)

≤
(log ξ)2

Tiδ2
+
∑

j 6=i

P

({

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

|θ = i

)

(b)

≤
(log ξ)2

Tiδ2
+ (M − 1)ǫδ

(

1

ρi
+

1

minj 6=i ρj

)

, (30)

where(a) follows from Lemma 4 in Appendix E and the union
bound; and(b) follows from Lemma 3 in Appendix E.

The expected total cost under policyπSN is lower bounded
as

E[τ ] + LP̄e≥
M
∑

i=1

ρiE[τ |θ = i]

=

M
∑

i=1

ρiE[τ1{τ≥Ti} + τ1{τ<Ti}|θ = i]

≥

M
∑

i=1

ρiTiP (τ ≥ Ti|θ = i)

≥

M
∑

i=1

ρiTi

(

1−
(log ξ)2

Tiδ2
−

2ǫδM

minj∈Ω ρj

)

.

For δ = (log 1
ǫ )

− 1
4 , the lower bound simplifies to

E[τ ] + LP̄e≥
M
∑

i=1

ρi

log 1
ǫ −max

k 6=i
log ρi

ρk

R(i,λ)
− o(log

1

ǫ
)

≥
M
∑

i=1

ρi

logL−max
k 6=i

log ρi

ρk

R(i,λ)
− o(logL),

where the last inequality follows from the fact that for an
optimal policy, ǫ = O( logL

L ). The lower bound forVSN is
obtained by minimizing over the choice ofλ.

C. Theorem 3, sequential adaptive policy

We have

VSA(ρ) ≤
M
∑

i=1

ρi

logL−min
k 6=i

log ρi

ρk

R(i,λ∗
i )

+ o(logL), (31)

VSA(ρ) ≥

M
∑

i=1

ρi

logL−max
k 6=i

log ρi

ρk

R(i,λ∗
i )

− o(logL). (32)

The upper bound was proved in [20, Prop. 3]. The proof of
the lower bound relies on a generalization of Theorem 2 in [1]
and is provided next.

From upper bound (31) we know that the total cost under
the optimal policy isO(logL). This implies that the error
probability P̄e of the optimal policy isO( logL

L ).
Let πSA denote a sequential policy that stops sampling

wheneverP̄e≤ ǫ. For all i ∈ Ω, let

T ∗
i := (1− δ)

log 1
ǫ −max

k 6=i
log ρi

ρk

R(i,λ∗
i ) + δ

. (33)

Under policyπSA,

P ({τ < T ∗
i } |θ = i)

= P



{τ < T ∗
i } ∩

⋂

j 6=i

{

ρi(τ)

ρj(τ)
≥ (

1

ǫ
)1−δ

}

|θ = i





+ P



{τ < T ∗
i } ∩

⋃

j 6=i

{

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

|θ = i





(a)

≤
(log ξ)2

T ∗
i δ

2
+
∑

j 6=i

P

({

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

|θ = i

)

(b)

≤
(log ξ)2

T ∗
i δ

2
+ (M − 1)ǫδ

(

1

ρi
+

1

minj 6=i ρj

)

, (34)

where(a) follows from Lemma 5 in Appendix E and the union
bound; and(b) follows from Lemma 3 in Appendix E.

The expected total cost under policyπSA is lower bounded
as

E[τ ] + LP̄e≥
M
∑

i=1

ρiE[τ |θ = i]

=
M
∑

i=1

ρiE[τ1{τ≥T∗

i } + τ1{τ<T∗

i }|θ = i]

≥
M
∑

i=1

ρiT
∗
i P (τ ≥ T ∗

i |θ = i)

≥
M
∑

i=1

ρiT
∗
i

(

1−
(log ξ)2

T ∗
i δ

2
−

2ǫδM

minj∈Ω ρj

)

.

For δ = (log 1
ǫ )

− 1
4 , the lower bound simplifies to

E[τ ] + LP̄e≥
M
∑

i=1

ρi

log 1
ǫ −max

k 6=i
log ρi

ρk

R(i,λ∗
i )

− o(log
1

ǫ
)

≥

M
∑

i=1

ρi

logL−max
k 6=i

log ρi

ρk

R(i,λ∗
i )

− o(logL),
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where the last inequality follows from the fact that for an
optimal policy,ǫ = O( logL

L ).

Remark 7. The result above is in agreement with Theorem 2
in [1] and Theorem 4 in [18].

D. Proposition 1, non-sequential adaptive policy

In this subsection, we show that

VNA(ρ) ≥

logL−max
k 6=i

log ρi

ρk

min
i∈Ω

max
λ∈Λ(A)

R(i,λ)
− o(logL).

Proof:
Let πNA be a non-sequential adaptive policy that collectsn

observation samples. Consider an arbitraryδ > 0 and let

ǫi =
1

exp

(

n(R(i,λ∗
i ) + δ) + max

k 6=i
log ρi

ρk

)

+ 1

.

We have

P̄e≥
M
∑

i=1

ρiE[1− ρi(n)|θ = i]P (Zi|θ = i), (35)

where

E[1− ρi(n)|θ = i] ≥ ǫiP (1− ρi(n) ≥ ǫi|θ = i). (36)

Let ĵ = argmin
j 6=i

∑n−1
t=0 E[log

q
A(t)
i (Z)

q
A(t)
j (Z)

|θ = i] where actions

{A(t)}n−1
t=0 are selected according toπNA.

P (1− ρi(n) < ǫi|θ = i)

= P

(

log
ρi(n)

1− ρi(n)
> log

1− ǫi
ǫi

|θ = i

)

≤ P

(

∩j 6=i

{

log
ρi(n)

ρj(n)
> log

1− ǫi
ǫi

}

|θ = i

)

(a)

≤ P

({

log
ρi(n)

ρĵ(n)
− E[log

ρi(n)

ρĵ(n)
]

> log
1− ǫi
ǫi

−max
k 6=i

log
ρi
ρk

− nR(i,λ∗
i )

}

|θ = i

)

≤ P

(

log
ρi(n)

ρĵ(n)
− E[log

ρi(n)

ρĵ(n)
] > nδ|θ = i

)

(b)

≤ exp(−nδ2/(log ξ)2), (37)

where(a) follows from the fact that given{θ = i},

E[log
ρi(n)

ρĵ(n)
] = log

ρi
ρĵ

+
n−1
∑

t=0

E[log
ρi(t+ 1)

ρĵ(t+ 1)
− log

ρi(t)

ρĵ(t)
]

= log
ρi
ρĵ

+

n−1
∑

t=0

E[log
q
A(t)
i (Z)

q
A(t)

ĵ
(Z)

]

≤ max
k 6=i

log
ρi
ρk

+ nmin
j 6=i

∑

a∈A

λ∗
iaD(qai ||q

a
j ), (38)

and (b) follows from Fact 3.

Similarly, it can be shown that

P (Zc
i |θ = i) ≤ exp(−n(R(i,λ∗

i ))
2/(log ξ)2). (39)

Combining (35)–(39) and minimizing the bound overn, we
have the assertion of the proposition.

E. Technical Background

In this appendix, we provide some preliminary facts and
lemmas which are technical and only helpful in proving the
main results of the paper.

Fact 2 (Kolmogorov’s Maximal Inequality [37]). Suppose
Xt for t = 1, 2, . . ., be independent random variables with
E[Xt] = 0 andV ar(Xt) < ∞. Let Sn =

∑n
t=1 Xt. Then

P

(

max
0≤n≤N

|Sn| > x

)

≤
V ar(SN )

x2
=

∑N
t=1 V ar(Xt)

x2
.

Fact 3 (McDiarmid’s Inequality [38]). LetX = (X1, . . . , Xn)
be a family of independent random variables withXk taking
values in a setXk for eachk. Suppose a real-valued function
f defined onΠn

k=1Xk satisfies|f(x)− f(x′)| ≤ ck, whenever
the vectorsx and x

′ only differ in thek-th coordinate. Then
for any ν > 0,

P (f(X)− E[f(X)] ≥ ν) ≤ e−2ν2/
∑n

k=1 c2k ,

P (f(X)− E[f(X)] ≤ −ν) ≤ e−2ν2/
∑n

k=1 c2k .

Lemma 1. Consider a policy that collects observation samples
according to a randomized ruleλ. Under this policy and for
all i, j ∈ Ω, andα ∈ [0, 1],

max {eij(n), eji(n)} ≤ exp

(

− n(1− α)
∑

a∈A

λaDα(q
a
i ||q

a
j )

−min
{

log
ρi
ρj

, log
ρj
ρi

}

+ o(n)

)

,

max {eij(n), eji(n)} ≥ exp

(

− n(1− α)
∑

a∈A

λaDα(q
a
i ||q

a
j )

−max
{

log
ρi
ρj

, log
ρj
ρi

}

− o(n)

)

.

The proof of Lemma 1 follows closely the proof of Theo-
rem 9 in [14].

Lemma 2. Given anyι > 0 and for n > Ti

R(i,λ̂)
(1 + ι), we

haveP ({τi > n}|θ = i) ≤ (M − 1)e−b(ι)n where

b(ι) =
2ι2

(1 + ι)2

(

R(i, λ̂)

2 log ξ

)2

.

Proof of Lemma 2:
Let Bij(n) be an event in the probability space defined as

follows:

Bij(n) :=

{

log
ρi(n)

ρj(n)
< log

1− L−1

L−1/(M − 1)

}

.
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By construction (26),

P ({τi > n}|θ = i) ≤ P (∪j 6=iBij(n)|θ = i)

≤
∑

j 6=i

P (Bij(n)|θ = i). (40)

Furthermore, we have

P (Bij(n)|θ = i)

= P
({

log
ρi(n)

ρj(n)
− E[log

ρi(n)

ρj(n)
] <

log
1− L−1

L−1/(M − 1)
− E

[

log
ρi(n)

ρj(n)

]

}

∣

∣θ = i
)

= P
({

log
ρi(n)

ρj(n)
− E[log

ρi(n)

ρj(n)
] <

log
1− L−1

L−1/(M − 1)
− E

[

log
ρi
ρj

+

n−1
∑

t=0

log
q
A(t)
i

q
A(t)
j

]

}

∣

∣θ = i
)

≤ P
({

log
ρi(n)

ρj(n)
− E[log

ρi(n)

ρj(n)
] <

log
1− L−1

L−1/(M − 1)
−min

k 6=i
log

ρi
ρk

− nR(i, λ̂)
}

∣

∣θ = i
)

= P
({

log
ρi(n)

ρj(n)
− E[log

ρi(n)

ρj(n)
] < Ti − nR(i, λ̂)

}

∣

∣θ = i
)

.

(41)

For anya, â ∈ A andi, j ∈ Ω, we have
∣

∣

∣log
qai
qaj

− log
qâi
qâj

∣

∣

∣ ≤

2 log ξ. For k = 1, 2, . . . , n, let Xk = log
q
A(k−1)
i

q
A(k−1)
j

and

X = [X1, X2, . . . , Xn]. Define functionf(X) = log ρi

ρj
+

∑n
k=1 Xk = log ρi(n)

ρj(n)
. From (40), (41), and Fact 3, and for

n > Ti

R(i,λ̂)
(1 + ι), we have

P ({τi > n}|θ = i)

≤ (M − 1) exp

(

−2n

(

R(i, λ̂)

2 log ξ

)2(

1−
1

n

Ti

R(i, λ̂)

)2
)

≤ (M − 1) exp

(

−n
2ι2

(1 + ι)2

(

R(i, λ̂)

2 log ξ

)2
)

.

Lemma 3. Consider a sequential policyπ that selects the
stopping timeτ such thatP̄e≤ ǫ. For any i, j ∈ Ω, we have

P

({

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

|θ = i

)

≤ ǫδ
(

1

ρi
+

1

ρj

)

.

Proof: The proof follows closely the proof of Lemma 4
in [1]. Let θ̂ = d(Aτ , Zτ ) denote the final declaration under

policy π. We have

P

({

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

|θ = i

)

= P

({

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

∩
{

θ̂ = i
}

|θ = i

)

+ P

({

ρi(τ)

ρj(τ)
< (

1

ǫ
)1−δ

}

∩
{

θ̂ 6= i
}

|θ = i

)

≤ (
1

ǫ
)1−δP

({

θ̂ = i
}

|θ = j
)

+ P
({

θ̂ 6= i
}

|θ = i
)

(a)

≤ (
1

ǫ
)1−δP

({

θ̂ 6= j
}

|θ = j
)

+ P
({

θ̂ 6= i
}

|θ = i
)

≤ (
1

ǫ
)1−δ ǫ

ρj
+

ǫ

ρi

=
ǫδ

ρj
+

ǫ

ρi

≤ ǫδ
(

1

ρi
+

1

ρj

)

,

where (a) follows from the fact that under policyπ and for
all i ∈ Ω,

P
({

θ̂ 6= i
}

|θ = i
)

≤
1

ρi

M
∑

k=1

ρkP
({

θ̂ 6= k
}

|θ = k
)

=
1

ρi
P̄e

≤
ǫ

ρi
.

Lemma 4. Consider a sequential policyπ that selects sensing
actions according toλ ∈ Λ(A) and selects the stopping time
τ such thatP̄e≤ ǫ. We have

P



{τ < Ti} ∩
⋂

j 6=i

{

ρi(τ)

ρj(τ)
≥ (

1

ǫ
)1−δ

}

|θ = i



 ≤
(log ξ)2

Tiδ2
,

whereTi is as defined in(29).

The proof of Lemma 4 follows closely the proof of Lemma 5
in [1].

Lemma 5. Consider a sequential policyπ that selects the
stopping timeτ such thatP̄e≤ ǫ. We have

P



{τ < T ∗
i } ∩

⋂

j 6=i

{

ρi(τ)

ρj(τ)
≥ (

1

ǫ
)1−δ

}

|θ = i



 ≤
(log ξ)2

T ∗
i δ

2
,

whereT ∗
i is as defined in(33).

Proof: The proof follows closely the proof of Lemma 5
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in [1]. We have

P

(

{

τ < T ∗
i

}

∩
⋂

j 6=i

{ ρi(τ)

ρj(τ)
≥ (

1

ǫ
)1−δ

}

|θ = i

)

≤ P
({

min
n

: log
ρi(n)

ρj(n)
> (1− δ) log

1

ǫ
, ∀j 6= i

}

<

T ∗
i |θ = i

)

= P
({

∃n, 0 ≤ n < T ∗
i s.t. log

ρi(n)

ρj(n)
>

(1− δ) log
1

ǫ
, ∀j 6= i

}

|θ = i
)

(a)

≤ P
(

⋃

j 6=i

{

∃n, 0 ≤ n < T ∗
i s.t. log

ρi(n)

ρj(n)
− E[log

ρi(n)

ρj(n)
] >

(1− δ) log
1

ǫ
−max

k 6=i
log

ρi
ρk

− nR(i, λ∗
i )
}

|θ = i
)

(b)

≤ P
(

⋃

j 6=i

{

∃n, 0 ≤ n < T ∗
i s.t. log

ρi(n)

ρj(n)
− E[log

ρi(n)

ρj(n)
] >

T ∗
i δ
}

|θ = i
)

≤
∑

j 6=i

P
(

max
0≤n<T∗

i

{

log
ρi(n)

ρj(n)
− E[log

ρi(n)

ρj(n)
]
}

>

T ∗
i δ|θ = i

)

(c)

≤
T ∗
i (log ξ)

2

(T ∗
i δ)

2

=
(log ξ)2

T ∗
i δ

2
,

where(a) follows from (38); (b) follows from the definition
of T ∗

i and the fact thatn < T ∗
i ; and (c) follows from Fact 2.
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