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A Primer on Stochastic Differential Geometry for
Signal Processing

Jonathan H. Manton, Senior Member, IEEE

Abstract—This primer explains how continuous-time stochastic
processes (precisely, Brownian motion and other Itô diffusions)
can be defined and studied on manifolds. No knowledge is
assumed of either differential geometry or continuous-time pro-
cesses. The arguably dry approach is avoided of first introducing
differential geometry and only then introducing stochastic pro-
cesses; both areas are motivated and developed jointly.

Index Terms—Differential geometry, stochastic differential
equations on manifolds, estimation theory on manifolds,
continuous-time stochastic processes, Itô diffusions, Brownian
motion, Lie groups.

I. INTRODUCTION

THE tools of calculus — differentiation, integration, Tay-
lor series, the chain rule and so forth — have extensions

to curved surfaces and more abstract manifolds, and a different
set of extensions to stochastic processes. Stochastic differential
geometry brings together these two extensions.

This primer was written from the perspective that, to be
useful, it should give more than a big-picture view by drilling
down to shed light on important concepts otherwise obfuscated
in highly technical language elsewhere. Gaining intuition, and
gaining the ability to calculate, while going hand in hand, are
distinct from each other. As there is ample material catering
for the latter [1]–[4], the focus is on the former.

Brownian motion plays an important role in both theoretical
and practical aspects of signal processing. Section II is devoted
to understanding how Brownian motion can be defined on a
Riemannian manifold. The standpoint is that it is infinitely
more useful to know how to simulate Brownian motion than
to learn that the generator of Brownian motion on a manifold
is the Laplace-Beltrami operator.

Stochastic development is introduced early on, in Sec-
tion II-B, because “rolling without slipping” is a simple yet
striking visual aid for understanding curvature, the key feature
making manifolds more complicated and more interesting
than Euclidean space. Section III explains how stochastic
development can be used to extend the concept of state-space
models from Euclidean space to manifolds. This motivates the
introduction of stochastic differential equations in Section IV.
Since textbooks abound on stochastic differential equations
in Euclidean space, only a handful of pertinent facts are pre-
sented. As explained in Section V, and despite appearances [2],
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[5], [6], going from stochastic differential equations in Eu-
clidean space to stochastic differential equations on manifolds
is relatively straightforward conceptually if not technically.

Section VI examines more closely the theory of stochastic
integration. It explains (perhaps in a novel way) how ran-
domness can make it easier for integrals to exist. It clarifies
seemingly contradictory statements in the literature about path-
wise integration. Finally, it emphasises that despite the internal
complexities, stochastic integrals are constructed in the same
basic way as other integrals and, from that perspective, are no
more complicated than any other linear operator.

The second half of the paper, starting with Section VII,
culminates in the generalisation of Gaussian random variables
to compact Lie groups and the re-derivation of the formulae
in [7] for estimating the parameters of these random variables.
Particular attention is given to the special orthogonal groups
consisting of orthogonal matrices having unit determinant,
otherwise known as the rotation groups. Symmetry makes Lie
groups particularly nice to work with.

Estimation theory on manifolds is touched on in Section XI,
the message being that an understanding of how an estimator
will be used is needed to avoid making ad hoc choices about
how to assess the performance of an estimator, including what
it means for an estimator to be unbiased.

The reason for introducing continuous-time processes rather
than ostensibly simpler discrete-time processes is that the
only linear structure on manifolds is at the infinitesimal scale
of tangent spaces, allowing the theory of continuous-time
processes to carry over naturally to manifolds. A strategy
for working with discrete-time processes is treating them as
sampled versions of continuous-time processes. In the same
vein, Section IX uses Brownian motion to generalise Gaussian
random variables to Lie groups.

There are numerous omissions from this primer. Even the
Itô formula is not written down! Perhaps the most regrettable
is not having the opportunity to explain why stochastic differ-
entials are genuine (second-order) differentials.

An endeavour to balance fluency and rigour has led to
the label Technicality being given to paragraphs that may
be skipped by readers favouring fluency. Similarly, regularity
conditions necessary to make statements true are routinely
omitted. Caveat lector.

II. SIMULATING BROWNIAN MOTION

A. Background
A continuous-time process in its most basic form is just

an infinite collection of real-valued random variables X(t)
indexed by time t ∈ [0,∞). Specifying directly a joint distri-
bution for an infinite number of random variables is generally
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not possible. Instead, the following two-stage approach is
usually adopted for describing the statistical properties of a
continuous-time process.

First and foremost, all the finite-dimensional joint distri-
butions of X(t) are given; they determine most, but not all,
statistical properties of X(t). In detail, the finite-dimensional
joint distributions are the distributions of X(τ) for each τ ,
the pairwise joint distributions of X(τ1) and X(τ2) for all
τ1 6= τ2, and in general the joint distributions of X(τ1) to
X(τn) for a finite but arbitrary n.

For fixed τ , it is emphasised that X(τ) is simply a random
variable and should be treated as such; that X(t) is a process
is only relevant when looking at integrals or other limits
involving an infinite number of points. However, the finite-
dimensional distributions on their own are inadequate for spec-
ifying the distributions of such limits. To exemplify, choose
each X(τ) to be an independent Gaussian random variable
with zero mean and unit variance, denoted X(τ) ∼ N(0, 1).
Although formally a process, there is no relationship between
any property of the index set [0,∞) and any statistical property
of the random variables X(t), t ∈ [0,∞). For this process,
limt→τ X(t) and

∫ 1

0
X(t) dt do not even exist [8, p.45].

Markov processes are examples of a relationship existing
between properties of the index set and statistical properties
of the random variables; a process is Markov if the distribution
of any future point X(τ + h), h > 0, given past history
{X(τ1), · · · , X(τn) | τ1 < · · · < τn = τ}, only depends
on X(τ). This memoryless property of Markov processes
relates the ordering of the index set [0,∞) to conditional
independence of the random variables.

Other examples are processes with continuous sample paths,
where the topology of the index set relates to convergence of
random variables. In detail, if X is a random variable then
it is customary to denote an outcome of X by x. Similarly,
let x(t) denote the realisation of a process X(t). When x(t)
is considered as the function t 7→ x(t), it is called a sample
path. If (almost) all realisations x(t) of a process X(t) have
continuous sample paths, meaning t 7→ x(t) is continuous,
then the process itself is called continuous.

The second step for defining a continuous-time process is
describing additional properties of the sample paths. A typical
example is declaring that all sample paths are continuous.
Although the finite-dimensional distributions do not define a
process uniquely — so-called modifications are possible — the
additional requirement that the sample paths are continuous
ensures uniqueness. (Existence is a different matter; not all
finite-dimensional distributions are compatible with requiring
continuity of sample paths.)
Technicality: For processes whose sample paths are continu-
ous, the underlying probability space [9] can be taken to be
(C([0,∞)),F,P) where C([0,∞)) is the vector space of all
real-valued continuous functions on the interval [0,∞) and F
is the σ-algebra generated by all cylinder sets. The probability
measure P is uniquely determined by the finite-dimensional
distributions of the process.

If all finite-dimensional distributions are Gaussian then the
process itself is called a Gaussian process. Linear systems
preserve Gaussianity; the output of a linear system driven by
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Fig. 1. Sample paths of Brownian motion on the closed interval [0, 1]
generated as described in the text using δt = 10−4.

a Gaussian process is itself a Gaussian process. This leads
to an elegant and powerful theory of Gaussian processes in
linear systems theory, and is the theory often found in signal
processing textbooks. Since manifolds are inherently nonlin-
ear, such a simplifying theory does not exist for processes
on manifolds. (Brownian motion can be defined on manifolds
without reference to Gaussian random variables. Gaussian
random fields can be defined on manifolds, but these are real-
valued processes indexed by a manifold-valued parameter, as
opposed to the manifold-valued processes indexed by time that
are the protagonists of this primer.)

The archetypal continuous Markov process is Brownian
motion, normally defined via its finite-dimensional distribu-
tions and continuity of its sample paths [10, Section 2.2]. In
the spirit of this primer though (and that of [11]), processes
are best understood in the first instance by knowing how to
simulate them. The sample paths of Brownian motion plotted
in Figure 1 were generated as follows. Set X(0) = 0 and fix
a step size δt > 0. Note δt is not the product of δ and t but
merely the name of a positive real-valued quantity indicating
a suitably small discretisation of time. Let W (0),W (1), · · ·
be independent N(0, 1) Gaussian random variables. Recur-
sively define X((k + 1) δt) = X(k δt) +

√
δtW (k) for

k = 0, 1, 2, · · · . At non-integral values, define X(t) by linear
interpolation of its neighbouring points: X((k + α) δt) =
(1−α)X(k δt)+αX((k+1) δt) for α ∈ (0, 1). The generated
process has the correct distribution at integral sample points
t = 0, δt, 2 δt, 3 δt, · · · and overall is an approximation of
Brownian motion converging (in distribution) to Brownian
motion as δt→ 0.
Technicalities: It can be shown that a process is Brownian
motion if and only if it is a continuous process with stationary
and independent increments [12, p. 2]; these properties force
the process to be Gaussian [13, Ch. 12], a consequence of
the central limit theorem. Brownian motion, suitably scaled
and with zero drift, is precisely the normalised, or standard,
Brownian motion, described earlier. Had the W (k) been
replaced by any other distribution with zero mean and unit
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variance, the resulting process X(t) still would have converged
to Brownian motion as δt→ 0. Alternative methods for gener-
ating Brownian motion on the interval [0, 1] include truncating
the Karhunen-Loève expansion, and successive refinements to
the grid: X(0) = 0, X(1) ∼ N(0, 1), and given neighbouring
points X(t) and X(t + δt), a mid-point is added by the
rule X(t + δt

2 ) ∼ X(t)+X(t+δt)
2 +

√
δt
2 N(0, 1), thus allowing

X( 1
2 ) to be computed with δt = 1, then X( 1

4 ) and X( 3
4 )

with δt = 1
2 and so forth. Books specifically on Brownian

motion include [14]–[16]. The origins of the mathematical
concept of Brownian motion trace back to three independent
sources; Thiele (1880), Bachelier (1900) and Einstein (1905).
According to [17], “Of these three models, those of Thiele
and Bachelier had little impact for a long time, while that of
Einstein was immediately influential”.

B. Brownian Motion and Stochastic Development

Nothing is lost for the moment by treating manifolds as
“curved surfaces such as the circle or sphere”.

Brownian motion models a particle bombarded randomly
by much smaller molecules. The recursion X((k + 1) δt) =
X(k δt) +

√
δtW (k) introduced in Section II-A is thus

(loosely) interpreted as a particle being bombarded at regular
time instants. Between bombardments, there is no force acting
on the particle, hence the particle’s trajectory must be a curve
of zero acceleration. In Euclidean space, this implies particles
move in straight lines between bombardments, and explains
why linear interpolation was used earlier to connect X(k δt)
to X((k+1) δt). On a manifold, a curve with zero acceleration
is called a geodesic. Between bombardments, a particle on a
manifold travels along a geodesic.

Conceptually then, a piecewise approximation to Brownian
motion on a manifold can be generated essentially as before,
just with straight-line motion replaced by geodesic motion.

Since the Earth is approximately a sphere, long-distance
travel gives an intuitive understanding of the concepts of
distance, velocity and acceleration of a particle moving on the
surface of a sphere. Travelling “in a straight line” on the Earth
actually means travelling along a great circle; great circles are
the geodesics of the sphere.

There are different ways of understanding geodesics, but the
most relevant for subsequent developments is the following:
rolling a sphere, without slipping, over a straight line drawn
in wet ink on a flat table will impart a curve on the sphere
that precisely traces out a geodesic.

Rolling a manifold over a piecewise smooth curve in
Euclidean space to obtain a curve on the manifold is called
development. The development of a piecewise linear curve is
a piecewise geodesic curve. If x(t) = (x1(t), x2(t)) is the
piecewise linear approximation in Figure 2 of a realisation of
two-dimensional Brownian motion then the developed piece-
wise geodesic curve obtained by rolling the sphere over the
curve in Figure 2 is a piecewise geodesic approximation of a
realisation of Brownian motion on the sphere.

Development is defined mathematically as the solution of
a certain differential equation. If a curve is not differentiable
then it cannot be developed in the classical sense. A sample
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Fig. 2. Path traced out by a very short segment of a single realisation of a
two-dimensional Brownian motion starting from the diamond at the origin and
stopping at the circle; X(t) = (X1(t), X2(t)) is two-dimensional Brownian
motion if and only ifX1(t) andX2(t) are one-dimensional Brownian motions
independent of each other. Time has been omitted.

path of Brownian motion is nowhere differentiable! Therefore,
in the first instance, development can only be used to take
a piecewise smooth approximation of Brownian motion in
Euclidean space and obtain a piecewise smooth approximation
of Brownian motion on a manifold. Nevertheless, it is possible
to “take limits” and develop a theory of stochastic devel-
opment. The stochastic development of Brownian motion in
Euclidean space is the limiting process obtained by developing
successively more accurate piecewise smooth approximations
of the Brownian motion in Euclidean space.
Technicality: This “smooth approximation” approach to
stochastic development is more tedious to make rigorous
than the stochastic differential equation approach taken in [6,
Chapter 2] but offers more intuition for the neophyte.

The inverse of development is anti-development and can
be visualised as drawing a curve on a manifold in wet
ink and rolling the manifold along this curve on a table
thereby leaving behind a curve on the table. Its stochastic
counterpart, stochastic anti-development, can be thought of as
the limiting behaviour of the anti-development of piecewise
geodesic approximations of sample paths.

As a rule of thumb, techniques (such as filtering [18]) for
processes on Euclidean space can be extended to processes on
manifolds by using stochastic anti-development to convert the
processes from manifold-valued to Euclidean-space-valued.
Although this may not always be computationally attractive,
it nevertheless affords a relatively simple viewpoint.

A process on a manifold is Brownian motion if and only
if its stochastic anti-development is Brownian motion in Eu-
clidean space [2, (8.26)]. To put this in perspective, note
Brownian motion on a manifold cannot be defined using finite-
dimensional distributions because there is no direct defini-
tion of a Gaussian random variable on a manifold. (Even
disregarding the global topology of a manifold, a random
variable which is Gaussian with respect to one chart need
not be Gaussian with respect to another chart.) Much of
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the Euclidean-space theory relies on linearity, and the only
linearity on manifolds is at the infinitesimal scale of tangent
spaces. Stochastic development operates at the infinitesimal
scale, replicating as faithfully as possible on a manifold a
process in Euclidean space.

Although Gaussian random variables cannot be used to
define Brownian motion on a manifold, the reverse is possible;
Brownian motion can be used to generalise the definition of a
Gaussian random variable to a manifold; see Section IX.
Technicalities: There are a number of characterisations of
Brownian motion that can be used to generalise Brownian
motion to manifolds, including as the unique Itô diffusion gen-
erated by the Laplace operator. The end result is nevertheless
the same [2], [3], [5], [6], [19]–[21]. Whereas for determin-
istic signal processing, and in particular for optimisation on
manifolds, there is benefit in not endowing a manifold with
a Riemannian metric [22], [23], Brownian motion must be
defined with respect to a Riemannian metric. Although some
concepts, such as that of a semimartingale, can be defined
on a non-Riemannian manifold, it is simplest here to assume
throughout that all manifolds are Riemannian manifolds.

C. The Geometry of the Sphere

This section continues the parallel threads of stochastic
development and Brownian motion. Equations are derived
for simulating Brownian motion on a sphere by rolling a
sphere along a simulated path of Brownian motion in R2. It
is convenient to change reference frames and roll a sheet of
paper around a sphere than roll a sphere on a sheet of paper.
Exercise: Mentally or otherwise, take a sheet of graph paper
and a soccer ball. Mark a point roughly in the middle of the
graph paper as being the origin, and draw two unit-length
vectors at right-angles to each other based at the origin. Place
the origin of the graph paper on top of the ball. Roll the
paper down the ball until arriving at the equator. Then roll the
paper along the equator for some distance, then roll it back
up to the top of the ball. Compare the orientation of the two
vectors at the start and at the end of this exercise; in general,
the orientation will have changed due to the curvature of the
sphere. (Furthermore, in general, the origin of the graph paper
will no longer be touching the top of the sphere.)

Throughout, any norm ‖ · ‖ or inner product 〈·, ·〉 on Rn
is the Euclidean norm or inner product. Perpendicular vectors
are denoted v ⊥ p, meaning 〈v, p〉 = 0.

Take the sphere S2 = {(x1, x2, x3) ∈ R3 | x21 + x22 +
x23 = 1}. Start the Brownian motion at the North pole:
B(0) = (0, 0, 1). Place a sheet of graph paper on top of
the sphere, so the origin (0, 0) of the graph paper makes
contact with the North pole (0, 0, 1). Let w1(0) and w2(0)
be realisations of independent N(0, 1) random variables. On
the graph paper, draw a line segment from the origin (0, 0)
to the point (

√
δtw1(0),

√
δtw2(0)); recall from Section II-A

and Figure 2 that this is the first segment of an approximate
sample path of Brownian motion on R2. The paper is sitting
inside R3, and the point (

√
δtw1(0),

√
δtw2(0)) on the paper

is actually located at the point (
√
δtw1(0),

√
δtw2(0), 1) in

R3 because the paper is lying flat on top of the sphere.

Rolling the paper down the sphere at constant velocity along
the line segment so it reaches the end of the segment at time
δt results in the point of contact between the paper and the
sphere being given by

B(t) = cos

(
t

δt
‖v‖
)
p+ sin

(
t

δt
‖v‖
)

v

‖v‖
(1)

for t ∈ [0, δt], where p = (0, 0, 1) is the original point of
contact (the North pole) and v = (

√
δtw1(0),

√
δtw2(0), 0).

This can be derived from first principles by requiring B(t) to
remain in a plane and have constant angular velocity.

In general, given any p ∈ S2 and v ⊥ p, let Expp(v) denote
the final contact point of the sphere and piece of paper obtained
by starting with the paper touching the sphere at p, marking
on the paper a line segment from p to p + v, and rolling the
paper over the sphere along that line. (Since v ⊥ p, and the
paper is tangent to the sphere at p, the point p+ v will lie on
the paper.) The curve t 7→ Expp(tv) is a geodesic and follows
a great circle. Explicitly, Expp(0) = p and, for ‖v‖ 6= 0,

Expp(v) = cos (‖v‖) p+ sin (‖v‖) v

‖v‖
. (2)

At the risk of belabouring the point, if S2 represents the Earth
and a person sets out from a point p with initial velocity v
and continues “with constant velocity in a straight line” then
his position at time t will be Expp(tv). In detail, each step
actually involves first taking a perfectly straight step in the
tangent plane, meaning the leading foot will be slightly off
the Earth, then without swivelling on the other foot, letting
the force of gravity pull the leading foot down to the closest
point on Earth. This is a discrete version of “rolling without
slipping” and hence produces (or defines) a geodesic in the
limit as smaller and smaller steps are taken.

The Riemannian exponential map Expp(v) can be defined
analogously on any Riemannian manifold. The set of allowable
velocities v for which Expp(v) makes sense is called the
tangent space to the manifold at the point p; just like for the
sphere, the tangent space can be visualised as a sheet of paper
providing the best linear approximation to the shape of the
manifold in a neighbourhood of the point of contact and v
must be such that p + v lies on this (infinitely large) sheet
of paper. Alternatively, if a sufficiently small (or sufficiently
short-sighted) ant were standing on the manifold at point p, so
that the manifold looked flat, then the set of possible directions
(with arbitrary magnitudes) the ant could set out in from his
perspective forms the tangent space at p.
Technicalities: The Riemannian exponential function is de-
fined via a differential equation. If the manifold is not com-
plete, the differential equation may “blow up”; this technicality
is ignored throughout the primer. Since every Riemannian
manifold can be embedded in a sufficiently high-dimensional
Euclidean space, this primer assumes for simplicity that all
Riemannian manifolds are subsets of Euclidean space. The
Riemannian geometry of such a manifold is determined by
the Euclidean geometry of the ambient space; the Euclidean
inner product induces an inner product on each tangent space.
This is consistent with defining the length of a curve on a
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manifold as the Euclidean length of that curve when viewed
as a curve in the ambient Euclidean space.

Returning to simulating Brownian motion on the sphere,
recall the original strategy was to generate a Brownian motion
on the plane then develop it onto the sphere. Carrying this out
exactly would involve keeping track of the orientation of the
paper as it moved over the sphere. Although this is easily done,
it is not necessary for simulating Brownian motion because
Gaussian random vectors are symmetric and hence invariant
with respect to changes in orientation.

If a particle undergoing Brownian motion is currently at
the point p ∈ S2, its next position, after δt units of time,
can be simulated by generating a three-dimensional Gaussian
random vector v ∼ N(0, I) ∈ R3, projecting v onto TpS2 —
replace v by v−〈v, p〉p — and declaring the next position of
the particle to be Expp(

√
δt v). This generalises immediately

to arbitrary manifolds and is summarised in Section II-E.
(Alternatively, given an orthonormal basis for TpS2, a two-
dimensional Gaussian random vector could have been used to
generate an appropriate random element of TpS2.)

Although orientation was ultimately not needed for defining
Brownian motion, it is an important concept by which to
understand curvature, and enters the picture for more general
processes (such as Brownian motion with drift).
Technicality: For a non-embedded manifold M , the natural
setting for (stochastic) development is the frame bundle F(M)
of M equipped with a connection [3], [5], [6]. The connection
decomposes the tangent bundle of F(M) into horizontal and
vertical components, and leads to the concept of a horizontal
process. A horizontal process on F(M) is essentially a process
on M augmented by its current orientation. If M is Rieman-
nian then the orthonormal frame bundle O(M) can be used
instead of F(M). Horizontal Brownian motion can be defined
on O(M) via a Stratonovich stochastic differential equation
that stochastically develops Brownian motion in Euclidean
space onto the horizontal component (with respect to the Levi-
Civita connection) of O(M). The bundle projection of this
horizontal Brownian motion yields Brownian motion on M .

D. A Working Definition of a Riemannian Manifold

For the purposes of this primer, manifolds are defined as
subsets of Euclidean space that are sufficiently nice to permit
a useful theory of differentiation of functions from one such
subset to another. (Furthermore, only C∞-smooth manifolds
are discussed.) Conditions will be given for a subset M ⊂ Rn
to be an m-dimensional manifold for some positive integer
m ≤ n. (A zero-dimensional manifold is a countable col-
lection of isolated points and will not be considered further.)
This will confirm the circle S1 and sphere S2 as manifolds
of dimension one and two, respectively. Graphs of smooth
functions are prototypical manifolds: if f : Rm → Rn−m is
a smooth function, meaning derivatives of all orders exist, its
graph M = {(x, f(x)) ∈ Rm ×Rn−m ∼= Rn | x ∈ Rm} is an
m-dimensional manifold.

For each point p ∈M , define TpM as the set of all possible
velocity vectors γ′(0) taken on by smooth curves γ : R →
Rn whose images are wholly contained in M and that pass

through p at time 0. For example, if p ∈ M = S2 then the
(only) requirements on γ are that it is smooth, that γ(0) = p
and ‖γ(t)‖ = 1. In symbols,

TpM = {γ′(0) | γ : R→ Rn, γ(0) = p, γ(R) ⊂M} (3)

where it is implicitly understood that γ must be infinitely
differentiable. (No difference results if γ is only defined on
an open neighbourhood of the origin; usually such curves are
denoted γ : (−ε, ε)→M in the literature.)

The first requirement placed on M is for it to look infinites-
imally like Rm. Precisely, it is required that TpM ⊂ Rn is an
m-dimensional vector subspace of Rn for every p ∈M . This
prevents M from having (non-tangential) self-intersections,
e.g., the letter X is not a manifold, and it prevents M from
having cusps, e.g., the letter V is not a manifold because no
smooth curve γ passes through the bottom tip of V except for
the constant curve with γ′(0) = 0.

Usually this first requirement is not stated because it is
subsumed by requiring the manifold be locally Euclidean,
defined presently. Nevertheless, it emphasises the importance
of tangent spaces. The visual image of a piece of paper placed
against a sphere at the point p ∈ S2 ⊂ R3 is the affine tangent
space. The tangent space TpS2 is obtained by taking the piece
of paper and translating it to pass through the origin of the
ambient space R3. This distinction is usually blurred.

The first requirement fails to disqualify the figure of eight
from being a manifold because it cannot detect tangential self-
intersections. This can only be detected by considering what
is happening in a neighbourhood of each and every point; it
is required that for all p ∈M ⊂ Rn there exists a sufficiently
small open ball Br(p) = {z ∈ Rn | ‖z − p‖ < r} of radius
r > 0 and a diffeomorphism h : Rn → Br(p), meaning h is
bijective and both h and its inverse are smooth, such that

h(Rm × {0}) = Br(p) ∩M (4)

where Rm×{0} = {(x, 0) ∈ Rn | x ∈ Rm} is the embedding
of Rm into Rn obtained by setting the last n−m coordinates
equal to zero. (The basic intuition is that the classical calculus
on a flat subspace Rm×{0} of Rn should be extendable to a
calculus on diffeomorphic images of this flat subspace.)

The restriction of h in (4) to Rm×{0} is a parametrisation
of a part of the manifold M , however, the condition is stronger
than this since it requires the parametrisation include all points
of M in Br(p) ∩M and no other points. This excludes the
figure “8” because at the point where the top and bottom
circles meet, every one-dimensional parametrisation can get
at best only part of the lower hemisphere of the top circle
and the upper hemisphere of the bottom circle. In fact, (4)
ensures that every manifold locally looks like a rotated graph
of a smooth function.

A manifold M ⊂ Rn inherits a Riemannian structure from
the Euclidean inner product on Rn. This leads to defining
the acceleration of a curve γ : R → M ⊂ Rn at time t as
πγ(t) (γ′′(t)) where πp : Rn → TpM is orthogonal projection
onto TpM . The curve γ is a geodesic if and only if γ′′(t)
contains only those vectorial components necessary to keep
the curve on the manifold, that is, πγ(t) (γ′′(t)) = 0 for all t.
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This same condition could have been deduced by developing
a straight line onto M , as in Section II-B.
Technicalities: On a non-Riemannian manifold, there is a
priori no way of defining the acceleration of a curve because
there is no distinguished way of aligning TpM and TqM for
two distinct points p and q. The above definition implicitly
uses the Riemannian structure coming from the ambient space
Rn and accords with comparing tangent vectors at two distinct
points of a curve by placing a piece of paper over the manifold
at point q, drawing the tangent vector at q on the piece of
paper, then rolling the paper to p along the curve, and drawing
the tangent vector at p on the paper. Because the piece of
paper represents Euclidean space, the base points of the vectors
drawn on the paper can be translated in the usual way so that
they align. This then allows the difference of the two vectors to
be taken, and ultimately, allows the acceleration to be defined
as the rate of change of the velocity vectors. A mechanism
for aligning neighbouring affine tangent spaces along a curve
is called an affine connection. The particular affine connec-
tion described here is the Levi-Civita connection, the unique
torsion-free connection that is compatible with the Riemannian
metric. In more advanced settings, there may be advantages
to using other affine connections. A limitation of insisting
manifolds are subsets of Euclidean space is that changing to a
different metric requires changing the embedding, for example,
changing the sphere into an ellipse.

E. Brownian Motion on Manifolds

Assembling the pieces leads to the following algorithm for
simulating Brownian motion on an m-dimensional Rieman-
nian manifold M ⊂ Rn.

Choose a starting point on M ; set B(0) to this point.
Fix a step size δt > 0. For k = 0, 1, · · · , recursively do
the following. Generate a Gaussian random vector W (k) ∈
TB(k δt)M ⊂ Rn, either with the help of an orthonormal basis
for TB(k δt)M , or by generating an n-dimensional N(0, I)
Gaussian random vector and projecting the vector orthogonally
onto TB(k δt)M to obtain W (k). Then define

B(k δt+ t) = ExpB(k δt)

(
t

δt

√
δtW (k)

)
. (5)

for t ∈ [0, δt]. If M = Rn then Expp(v) = p + v and (5)
agrees with the algorithm in Section II-A.
Technicality: An advantage of projecting orthogonally onto
the tangent space rather than constructing an orthonormal
basis is that while the orthogonal projection πp : Rn → TpM
varies smoothly in p, on non-parallelisable manifolds it is not
possible to find a continuous mapping from p ∈ M to an
orthonormal basis of TpM . The hairy ball theorem implies
that the sphere S2 is not parallelisable. (In fact, in terms of
spheres, only S0, S1, S3 and S7 are parallelisable.)

It is verified in [24] that, as δt → 0, the above approxi-
mation converges in distribution to Brownian motion, where
Brownian motion is defined by some other means. (For the
special case of Lie groups, see also [25]. For hypersurfaces,
see [26].) Nevertheless, engineers (and physicists) may find it
attractive to treat the limit of (5) as the definition of Brownian

motion. All (5) is saying is that at each step, movement in
any direction is equally likely and independent of the past.
By the central limit theorem, it suffices for the W (k) to
have zero mean and unit variance; see [27] for an analysis
of an algorithm commonly used in practice. The presence of
the square root in the term

√
δt is easily explained by the

compatibility requirement that the variance of B(T ) generated
using a step size of δt be equal to the variance of B(T )
generated using a step size of δt

2 ; if this were not so then
the processes need not converge as δt→ 0.

While (5) is suitable for numerical work, for calculations by
hand it is convenient to “take limits” and work with the actual
process. A direct analogy is preferring to work with dx

dt rather
than x(t+δt)−x(t)

δt . Section IV introduces a stochastic calculus.

III. STATE-SPACE MODELS ON MANIFOLDS

A. Motivation

Signal processing involves generating new processes from
old. In Euclidean space, a process can be passed through a
linear time-invariant system to obtain a new process. This
can be written in terms of an integral and motivates asking
if a continuous-time process evolving on a manifold, such as
Brownian motion, can be integrated to obtain a new process.

Another obvious question is how to generalise to manifolds
state-space models with additive noise. The classical linear
discrete-time state-space model is

Xk+1 = AkXk +BkVk, (6)
Yk = CkXk +DkWk (7)

where Ak, Bk, Ck, Dk are matrices and Vk,Wk are random
vectors (noise). The vector Xk is the state at time k, and the
state-space equation represents the dynamics governing how
the state changes over time. It comprises a deterministic part
AkXk and a stochastic part BkVk. The second equation is
the observation equation: the only measurement of the state
available at time k is the vector Yk comprising a linear function
of the state and additive noise.

There does not appear to be a natural generalisation of
discrete-time state-space models to arbitrary manifolds be-
cause it is not clear how to handle the addition of the two
terms in each equation. (In some cases, group actions could be
used.) It will be seen presently that continuous-time state-space
models generalise more easily. This suggests the expediency
of treating discrete-time processes as sampled versions of
continuous-time processes.

The continuous-time version of (6) would be

dX

dt
= A(t)X(t) +B(t)

dV (t)

dt
(8)

if the noise process V (t) was sufficiently nice that its sample
paths were absolutely continuous; that this generally is not the
case is ignored for the moment.

Although Y (t) = C(t)X(t) +D(t)W (t) is an analogue of
(7), usually the observation process takes instead the form

dY

dt
= C(t)X(t) +D(t)

dW (t)

dt
(9)

which integrates rather than instantaneously samples the state.
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Although the right-hand sides of (6) and (8) are sums of two
terms, crucially, it is two tangent vectors being summed in (8).
Two points on a manifold cannot be added but two tangent
vectors in the same tangent space can. Therefore, (8) and (9)
extend naturally to manifolds provided the terms A(t)X(t)
and C(t)X(t) are generalised to be of the form b(t,X(t));
see (10). The challenge is if V (t) and W (t) are Brownian
motion then (8) and (9) require an appropriate interpretation
because Brownian motion is nowhere differentiable (almost
surely). The following subsections hint at how this is done
via piecewise approximations, and Section IV gives a rigorous
interpretation by changing (8) and (9) to integral form.

B. Modelling the State Process
Building on the material in Sections II and III-A, an attempt

is made to model a particle moving on a sphere subject to
disturbance by Brownian motion. Let X(t) ∈ S2 ⊂ R3

denote the position of the particle at time t. Its deterministic
component can be specified by a differential equation

dX

dt
= b(t,X(t)). (10)

Provided b(t,X(t)) lies in the tangent space of the sphere at
X(t), the solution of (10) is forced to lie on the sphere if
the initial point X(0) does. A simple numerical solution of
(10) is obtained by combining the forward-Euler method with
the Riemannian exponential function, the latter ensuring the
approximate solution remains on the sphere:

X(t+ δt) = ExpX(t)

(
δt b(t,X(t))

)
. (11)

Referring to (5) with t = δt, the following idea presents itself:

X(t+ δt) = ExpX(t)

(
δt b(t,X(t)) +

√
δtW (t)

)
(12)

where W (t) is an N(0, I) Gaussian random vector in R3

projected orthogonally onto the tangent space TX(t)S
2. The

(approximately instantaneous) velocity of the particle at time
t is the sum of a deterministic component and a random
component. Continuous-time approximations can be obtained
by interpolating using geodesics, as in (5), in which case (12)
converges to a well-defined process on the sphere [28].

C. Modelling the Observation Process
Notwithstanding that the first two cases are subsumed by

the third, the three cases of interest are: the state process
evolves in Euclidean space yet the observation process is
manifold-valued; the state process evolves on a manifold but
the observation process is real-valued; and, the state and
observation processes are manifold-valued.

If the state process X(t) evolves in Euclidean space then
stochastic development can be used to feed it into the obser-
vation process [28]:

Y (t+ δt) = ExpY (t)

(
X(t+ δt)−X(t) +

√
δtW (t)

)
. (13)

If X(t) is not observed directly, but only g(X(t)) where
g is a smooth function between Euclidean spaces, then a
straightforward modification of (13) is

Y (t+ δt) = ExpY (t)

(
g(X(t+ δt))− g(X(t)) +

√
δtW (t)

)
.

(14)

In other words, first the new process X̃(t) = g(X(t)) is
formed, then noise is added to it, and finally it is stochastically
developed (via piecewise approximations) onto the manifold.

If the state process X(t) evolves on a manifold of dimen-
sion m but the observation process Y (t) is real-valued then
stochastic anti-development can be used [29]. In a sufficiently
small domain, Exp is invertible, and the instantaneous velocity
of X(t), which in general does not exist, can nevertheless be
approximated by Exp−1X(t)

(
X(t+ δt)−X(t)

)
. This produces

a vector in Rm which can be used to update an observation
process evolving in Euclidean space. (By interpreting differen-
tial equations as integral equations, as discussed in Section IV,
neither X(t) nor Y (t) need be differentiable for there to be
a well-defined limiting relationship between the instantaneous
velocities of piecewise approximations of the processes.)

Finally, the general case of both X(t) and Y (t) evolving
on manifolds falls under the framework of stochastic differ-
ential equations between manifolds [30, Section 3]. Basically,
Exp−1X(t) can be used to obtain a real-valued vector approx-
imating the instantaneous velocity of X(t), which after a
possible transformation, can be fed into ExpY (t) to update
the observation process Y (t). See [2] for details.

D. Discussion

Section III demonstrated, at least on an intuitive level, that
stochastic development and anti-development, and the Exp
map in particular, provide a relatively straightforward way of
generalising state-space models to manifolds.

Nevertheless, it is important to understand what the limiting
processes are that Exp is being used to approximate. This is
the purpose of stochastic calculus, and once it is appreciated
that the “smooth approximation” approach discussed in this
primer leads to a stochastic calculus, it is generally easier to
use directly the stochastic calculus.

IV. STOCHASTIC CALCULUS AND ITÔ DIFFUSIONS

This section does not consider manifolds or processes with
jumps [31]. Standard references include [10], [32].

A. Background

A generalisation of (10) is the functional equation

X(t) = X(0) +

∫ t

0

b(s,X(s)) ds. (15)

A solution of (15) is any function X(t) for which both sides
of (15) exist and are equal. Every solution of (10) is a solution
of (15) but the converse need not hold; whereas X(t) must
be differentiable for the left-hand side of (10) to make sense,
there is no explicit differentiability requirement in (15), only
the requirement that b(s,X(s)) be integrable.

The same idea carries over to random processes; although
Brownian motion cannot be differentiated, it can be used as
an integrator, and the state-space equations (8) and (9) can be
written rigorously as functional equations by integrating both
sides. However, there is in general no unique way of defining
the integral of a process.
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Since it may come as a surprise that different definitions
of integrals can give different answers, this phenomena will
be illustrated in the deterministic setting by considering how
to integrate Hölder continuous functions of order 1

2 . Such
functions are continuous but may oscillate somewhat wildly.
Technicality: Although sample paths of Brownian motion are
almost surely not Hölder continuous of order 1

2 , they are
almost surely Hölder continuous of any order less than 1

2 .
This is irrelevant here because, as explained below, the relevant
fact about Brownian motion is that E [|B(t+ δt)−B(t)|] is
proportional to

√
δt rather than δt. The appearance of the

expectation operator characterises the stochastic approach to
integration. Interestingly, a complementary theory known as
rough paths has been developed recently [33]–[36], based
partially on observations made in [37], [38] and [39].

Recall the Riemann-Stieltjes integral
∫ 1

0
f(s) dg(s) which,

for smooth f and g, is a limit of Riemann sums:∫ 1

0

f(s) dg(s) = lim
N→∞

N−1∑
k=0

f( kN )
(
g(k+1

N )− g( kN )
)
. (16)

The right-hand side of (16) gives the same answer if the right,
not left, endpoint is used for each interval [ kN ,

k+1
N ]. Indeed,

the difference between using left or right endpoints is

eN =

N−1∑
k=0

(
f(k+1

N )− f( kN )
) (
g(k+1

N )− g( kN )
)
. (17)

If f is smooth then |f(k+1
N ) − f( kN )| ≤ αf

1
N for some

constant αf ∈ R, and analogously for g. Therefore, |eN | ≤
αfαg

∑N−1
k=0

1
N

1
N and converges to zero as N →∞.

If now f and g are not differentiable, but merely Hölder

continuous of order 1
2 , then |f(k+1

N )− f( kN )| ≤ αf | 1N |
1
2 for

some constant αf ∈ R, and analogously for g, leading to

|eN | ≤ αfαg
∑N−1
k=0 |

1
N |

1
2 | 1N |

1
2 which converges to αfαg ,

and not zero, as N → ∞. This means it is possible for two
different values of the integral

∫ 1

0
f(s) dg(s) to be obtained

depending on whether f( kN ) or f(k+1
N ) is used in (16).

If at least one of f or g is smooth and the other is Hölder
continuous of order 1

2 then once again |eN | → 0.
If g is replaced by real-valued Brownian motion B(t)

and the above calculations carried out, a relevant quantity
is the rate at which the expected value of |B(t + δt) −
B(t)| decays to zero. Since B(t + δt) − B(t) ∼ N(0, δt),
E [|B(t+ δt)−B(t)|] is proportional to

√
δt, analogous to

|f(t + δt) − f(t)| ∝
√
δt for Hölder continuous functions

of order 1
2 . Not surprisingly then, differences can appear for

integrals of the form
∫
X(t) dY (t) when X(t) and Y (t)

are stochastic processes; other integrals, such as
∫
X(t) dt

and
∫
h(t) dY (t), with h smooth, are unambiguous. (This

presupposes X(t) and Y (t) are semimartingales [40].)
Technicalities: Lebesgue-Stieltjes theory requires finite varia-
tion, excluding Brownian motion as an integrator. Hölder con-
tinuous functions of order greater than 1

2 can be integrated with
respect to Lipschitz functions using the Young integral with-
out needing finite variation [41]. Brownian motion falls just
outside this condition. Stochastic integration theory depends
crucially on integrators having nice statistical properties for

Riemann-sum approximations to converge; see Section VI-A.
The sums are sensitive to second-order information (cf. Itô’s
formula [10]), hence “second-order calculus” is fundamental
to stochastic geometry [2, Section VI].

B. Itô and Stratonovich Integrals: An Overview

Non-equivalent definitions of stochastic integrals [42], [43]
all involve taking limits of approximations but differ in the
approximations used and the processes that are allowed to be
integrators and integrands. The two most common stochastic
integrals are the Itô and Stratonovich integrals.

The Itô integral leads to a rich probabilistic theory based
on a class of processes known as semimartingales, and a
resulting stochastic analysis that, in some ways, parallels
functional analysis. A tenet of analysis is that properties
of a function f(t) can be inferred from its derivative; for
example, a bound on f(T ) can be derived from bounds on
f ′(t) because f(T ) =

∫ T
0
f ′(t) dt. (It is remarkable how often

it is easier to study an infinite number of linear problems,
namely, examining f ′(t) for each and every t in the range 0
to T .) Thinking of the random variable X(T ) as an infinite
sum of its infinitesimal differences — X(T ) =

∫ T
0
dX(t)

— suggests that by understanding the limiting behaviour of
X(t+ δt)−X(t) as δt→ 0, it is possible to infer properties
of X(T ) that may otherwise be difficult to infer directly.
Technicality: If the decomposition Y (T ) =

∫ T
0
dY (t) of

Y (t) = f(X(t)) is sought, the Itô formula allows the limiting
behaviour of Y (t+ δt)−Y (t) to be determined directly from
the limiting behaviour of X(t+ δt)−X(t).

The Itô integral does not respect geometry [2]; it does
not transform “correctly” to allow a coordinate-independent
definition. Nor does the Itô integral respect polygonal ap-
proximations: if Y k(t) is a sequence of piecewise linear
approximations converging to Y (t) then it is not necessarily
true that

∫
X(t) dY k(t)→

∫
X(t) dY (t).

The Stratonovich integral lacks features of the Itô integral
but respects geometry and polygonal approximations, making
it suitable for stochastic geometry and modelling physical
phenomena. Fortunately, it is usually possible to convert from
one to the other by adding a correction term, affording freedom
to choose the simpler for the calculation at hand.

By respecting geometry, the Stratonovich integral behaves
like its deterministic counterpart; this is the transfer prin-
ciple. The archetypal example is that the trajectory X(t)
of a Stratonovich stochastic differential equation dX(t) =
f(t,X(t)) ◦ dB(t) stays on a manifold M if f(t,X(t)) lies
in the tangent space TX(t)M ; cf. (10).

In terms of modelling, the Itô integral is suitable for approx-
imating inherently discrete-time systems by continuous-time
systems (e.g., share trading), while the Stratonovich integral
is suited to continuous-time physical processes because it
describes the limit of piecewise smooth approximations [44].
Technicality: On a non-Riemannian manifold, a Stratonovich
integral but not an Itô integral can be defined because only the
former respects geometry. Only once a manifold is endowed
with a connection can an Itô integral be defined.
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C. Semimartingales and Adapted Processes
The class of processes called semimartingales emerged over

time by attempts to push Itô’s theory of integration to its
natural limits. Originally defined as “adapted càdlàg processes
decomposable into the sum of a local martingale and a process
of finite variation”, the Bichteler-Dellacherie theorem [45],
[46] states that semimartingales can be defined alternatively
(in a simple and precise way [4]) as the largest class of
“reasonable integrators” around which can be based a powerful
and self-contained theory of Itô stochastic integration [40].
Note: Càdlàg and càglàd processes [40] generalise continuous
processes by permitting “well-behaved” jumps.
Technicality: By restricting the class of integrands, the class of
integrators can be expanded beyond semimartingales, leading
to an integration theory for fractional Brownian motion, for
example. Nevertheless, the Itô theory remains the richest.

From an engineering perspective, primary facts are: all Lévy
processes [47], including the Poisson process and Brownian
motion, are semimartingales, as are all (adapted) processes
with continuously differentiable sample paths, and if a semi-
martingale is passed into a system modelled by an Itô integral,
the output will also be a semimartingale. From an analysis
perspective, semimartingales are analogues of differentiable
functions in that a process X(t) can be written, and studied,
in terms of its differentials dX(t); see Section IV-B. (Whereas
the differential of a smooth function captures only first-order
information, the Schwartz principle [2, (6.21)] is that dX(t)
captures both first-order and second-order information. This
is stochastic information though; sample paths of semimartin-
gales need not be differentiable.)

Crucial to Itô’s development of his integral was the restric-
tion to adapted processes: in

∫
X dY , Itô required X(τ) not

to depend on Y (t) for t ≥ τ . (The borderline case t = τ
results in Itô’s requirement that X be càglàd and Y càdlàg.)
A filtration formalises what information has been revealed up
to any given point in time. Adaptedness to the filtration at
hand is a straightforward technical condition [10] taken for
granted, and hence largely ignored, in this primer.

D. The Itô and Stratonovich Integrals
Let X(t) be a continuous process and Y (t) a semimartin-

gale (both adapted to the same filtration). The Itô integral

Z(t) =

∫ t

0

X(s) dY (s) (18)

can be interpreted as a system with transfer function X(t) that
outputs the semimartingale Z(t) in response to the input Y (t).

By [40, Theorem II.21], (18) is the limit (in probability)

Z(t) = lim
N→∞

N−1∑
k=0

X(tk)
(
Y (tk+1)− Y (tk)

)
(19)

where tk = k
N t. (The Itô integral naturally extends to adapted

càglàd integrands. This suffices for stochastic differential equa-
tions. With effort, further extensions are possible [40].)

The Stratonovich integral [48] is denoted

Z(t) =

∫ t

0

X(s) ◦ dY (s). (20)

It can be thought of as the limit (in probability)

Z(t) = lim
N→∞

N−1∑
k=0

X(τk)
(
Y (tk+1)− Y (tk)

)
(21)

where tk = k
N t and τk = tk+tk+1

2 . Alternatively, it can be
evaluated as a limit of ordinary integrals. Define the piecewise
linear approximation

Y δ(k δ + t) = (1− t)Y (k δ) + t Y ((k + 1) δ) (22)

for t ∈ [0, 1] and non-negative integers k. (For notational
convenience, δ is being used here instead of δt.) Then

Zδ(t) =

∫ t

0

X(s) dY δ(s) (23)

is a well-defined ordinary integral, and Zδ(t)→ Z(t) as δ →
0. By differentiating Y δ(s), (23) becomes

Zδ(t) =

N−1∑
k=0

Y ((k+1)δ)−Y (kδ)
δ

∫ (k+1)δ

kδ

X(s) ds (24)

where δ = t
N . This agrees in the limit with (21) whenever

1
δ

∫ (k+1)δ

kδ
X(s) ds→ X(τk) where τk = (k + 1

2 )δ.
Note: In the one-dimensional case, other reasonable approx-
imations can be used. However, in general (i.e., when non-
commuting vector fields are involved), failure to use piecewise
linear approximations can lead to different answers [30].
Technicality: Unlike for the Itô integral, it is harder to pin
down conditions for the Stratonovich integral to exist. This
makes the definition of the Stratonovich integral a moving
target. It is generally preferable to use (21) with X(τk)
replaced by 1

2 (X(tk)+X(tk+1)); the modified sum apparently
converges under milder conditions [49]. Alternatively, [50]
declares the Stratonovich integral to exist if and only if the
polygonal approximations with respect to all (not necessarily
uniform) grids converge in probability to the same limit, the
limit then being taken to be the value of the integral. For
reasonable processes though, these definitions coincide.

E. Stochastic Differential Equations

The stochastic differential equation

dX(t) = b(t,X(t)) dt+ Σ(t,X(t)) dB(t) (25)

is shorthand notation for the functional equation

X(t) = X(0) +

∫ t

0

b(s,X(s)) ds+

∫ t

0

Σ(s,X(s)) dB(s)

(26)
which asks for a semimartingale X(t) such that both sides of
(26) are equal. In higher dimensions, the diffusion coefficient
Σ is a function returning a matrix and the drift b a function
returning a vector.

The Itô equation (26) can be solved numerically by a stan-
dard forward-Euler method (known in the stochastic setting
as the Euler-Maruyama method) [51]–[55]. This validates the
otherwise ad hoc models developed in Section III.

Replacing the Itô integral by the Stratonovich integral
results in a Stratonovich stochastic differential equation. Since
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the summation in (21) involves evaluating X(t) at a point
in the future — the midpoint of the interval rather than
the start of the interval — solving a Stratonovich equation
necessitates either using an implicit integration scheme (such
as a predictor-corrector method) or converting the Stratonovich
equation into an Itô equation by adding a correction to the drift
coefficient [52]–[56]. For example, in the one-dimensional
case, solutions of the Stratonovich equation

dX(t) = σ(t,X(t)) ◦ dB(t) (27)

correspond to solutions of the Itô equation

dX(t) = 1
2σ(t,X(t))

∂σ

∂X
(t,X(t)) dt+ σ(t,X(t)) dB(t).

(28)

F. Itô Diffusions

A process X(t) is an Itô diffusion if it can be written
in the form (26) where B(t) is Brownian motion. (In fact,
Itô developed his stochastic integral in order to write down
directly continuous Markov processes based on their infinites-
imal generators [57].) Stratonovich equations of the analogous
form are also Itô diffusions. Itô diffusions are particularly nice
to work with as they have a rich and well-established theory.
Technicality: The class of continuous Markov processes should
be amongst the simplest continuous-time processes to study
since local behaviour presumably determines global behaviour.
Surprisingly then, even restricting attention to strongly Markov
processes (thus ensuring the Markov property holds also at
random stopping times) does not exclude complications, es-
pecially in dimensions greater than one [21, Section IV.5]. The
generic term “diffusion” is used with the aim of restricting at-
tention to an amenable subclass of continuous strongly Markov
processes. Often this results in diffusions being synonymous
with Itô diffusions but sometimes diffusions are more general.

V. FROM EUCLIDEAN SPACE TO MANIFOLDS

Section III used piecewise geodesic approximations to de-
fine state-space models on manifolds. These approximations
converge to solutions of stochastic differential equations.
Conversely, one way to understand Stratonovich differential
equations on manifolds is as limits of ordinary differential
equations on manifolds applied to piecewise geodesic approx-
imations of sample paths [2, Theorem 7.24].

Stratonovich equations on a manifold M can be defined
using only stochastic calculus in Euclidean space. A class
of candidate solutions is needed: an M -valued process Xt is
a semimartingale if the “projected” process f(Xt) is a real-
valued semimartingale for every smooth f : M → R; a shift
in focus henceforth makes the notation Xt preferable to X(t).
A Stratonovich equation on M gives a rule for dXt in terms
of Xt and a driving process. Whether a semimartingale Xt

is a solution can be tested by comparing df(Xt) with what it
should equal according to the stochastic chain rule; cf. (35).
If this test passes for every smooth f : M → R then Xt is
deemed a solution [6, Definition 1.2.3].

The following subsections touch on other ways of working
with stochastic equations on manifolds.

A. Local Coordinates

Manifolds are formally defined via a collection of charts
composing an atlas [58]. (Charts were not mentioned in
Section II-D but exist by the implicit function theorem.) A
direct analogy is the representation of the Earth’s surface by
charts (i.e., maps) in a cartographer’s atlas. Working in local
coordinates means choosing a chart — effectively, a projection
of a portion of the manifold onto Euclidean space — and
working with the projected image in Euclidean space using
Cartesian coordinates. This is the most fundamental way of
working with functions or processes on manifolds.

A clear and concise example of working with stochastic
equations in local coordinates is [59]. When written in local
coordinates, stochastic differential equations on manifolds are
simply stochastic differential equations in Euclidean space.

Working in local coordinates requires ensuring consistency
across charts. When drawing a flight path in a cartographer’s
atlas and nearing the edge of one page, changing to another
page necessitates working with both pages at once, aligning
them on their overlap. For theoretical work, this is usually only
a minor inconvenience. The inconvenience may be greater for
numerical work.

B. Riemannian Exponential Map

On a general manifold there is no distinguished choice of
local coordinates; all compatible local coordinates are equally
valid. On a Riemannian manifold though, the Riemannian
exponential map gives rise to distinguished local parametri-
sations of the manifold, the inverses of which are local co-
ordinate systems called normal coordinates. The Riemannian
exponential map has a number of attractive properties. It
plays a central role in the smooth approximation approach
to stochastic development, and has been used throughout
this primer to generalise Brownian motion and stochastic
differential equations to manifolds.

The main disadvantage of the Riemannian exponential map
is that, in general, it cannot be evaluated in closed form,
and its numerical evaluation may be significantly slower than
working instead with extrinsic coordinates or even other local
coordinate systems.

C. Extrinsic Coordinates

Stochastic equations on manifolds embedded in Euclidean
space can be written as stochastic equations in Euclidean space
that just so happen to have solutions lying always on the
manifold; see Section VII.

Even though all manifolds are embeddable in Euclidean
space, there is no reason to expect an arbitrary manifold to
have an embedding in Euclidean space that is convenient to
work with (or even possible to describe). The dimension of
the embedding space may be considerably higher than the
dimension of the manifold, making for inefficient numerical
implementations. Numerical implementations may be prone
to “falling off the manifold”, or equivalently, incur increased
computational complexity by projecting the solution back to
the manifold at each step. (Falling off the manifold is only a



11

numerical concern because the transfer principle makes it easy
to constrain solutions of Stratonovich equations in Rn to lie
on a manifold M ⊂ Rn; see Section IV-B.)
Technicality: Given the use of Grassmann manifolds in signal
processing applications, it is remarked there is an embedding
of Grassmann manifolds into matrix space given by using
orthogonal projection matrices to represent subspaces.

D. Intrinsic Operations

Differential geometry is based on coordinate independence.
On a Riemannian manifold, the instantaneous velocity and
acceleration of a curve have intrinsic meanings understand-
able without reference to any particular coordinate system.
Similarly, stochastic operators can be defined intrinsically [2].

With experience, working at the level of intrinsic operations
is often the most convenient and genteel. It is generally the
least suitable for numerical work.

VI. A CLOSER LOOK AT INTEGRATION

In probability theory, the set of possible outcomes is denoted
Ω, and random variables are (measurable) functions from Ω
to R. Once Tyche, Goddess of Chance, decides the outcome
ω ∈ Ω, the values of all random variables lock into place [9].
Therefore, for clarity, stochastic processes will be written
sometimes as Xt(ω).

Several issues are faced when developing a theory for
stochastic integrals

Z(ω) =

∫ 1

0

Xt(ω) dYt(ω). (29)

(This generalises to Zt =
∫ t
0
Xt dYt giving a process Zt

instead of a random variable Z.) That Xt must be predictable
is already explained clearly in the literature; see the section
“Naı̈ve Stochastic Integration Is Impossible” in [40]. Perhaps
not so clearly explained in the literature is the repeated claim
that since sample paths of Brownian motion have infinite varia-
tion, a pathwise approach is not possible; a pathwise approach
fixes ω and treats (29) as a deterministic integral of sample
paths. Apparently contradicting this claim are publications on
pathwise approaches [60]! This is examined below in depth.

A. Non-absolutely Convergent Series

The definition of the Lebesgue-Stieltjes integral
∫
f(t) dg(t)

explicitly requires the integrator g(t) to have finite variation.
This immediately disqualifies (29) as a Lebesgue-Stieltjes in-
tegral whenever the sample paths of Yt have infinite variation.
This is not a superfluous technicality; for integration theory
to be useful, integrals and limits must interact nicely. At the
very least, the bounded convergence theorem should hold:

f (k)(t)→ f(t) =⇒
∫
f (k)(t) dg(t)→

∫
f(t) dg(t) (30)

whenever the f (k)(t) are uniformly bounded.
Let g(t) be a step function with g(0) = 0 and transitions

g(t+n ) − g(t−n ) = (−1)n+1 1
n at times 0 < t1 < t2 < · · · < 1.

Then g(1) = limN→∞
∑N
n=1(−1)n+1 1

n = ln 2. Although

declaring
∫ 1

0
dg to equal g(1) − g(0) = ln 2 may seem

the obvious choice, it or any other choice would lead to a
failure of the bounded convergence theorem: the f (k)(t) in
(30) can be chosen so that the

∫
f (k)(t) dg(t) are partial

sums of
∑
n(−1)n+1 1

n with summands rearranged, and since∑
n(−1)n+1 1

n is not absolutely convergent, it can be made
to equal any real number. To achieve the limit 5, start with
1+ 1

3 + 1
5 +· · · until 5 is exceeded, then add − 1

2−
1
4−· · · until

the partial sum drops below 5, and so forth. Other orderings
can cause the partial sums to oscillate, preventing convergence.

To summarise, if g(t) has infinite variation then the bounded
convergence theorem will fail because “order matters”.

Let Yt(ω) be a random step function with Y0(ω) = 0
and each increment Yt+n − Yt−n = ± 1

n having independent
and equal chance of being positive or negative. Every sample
path of Yt has infinite variation. Given ω, the signs of each
term in the sum

∑
n±

1
n become known, and based on this

knowledge, sequences can be constructed that invalidate the
bounded convergence theorem.

In applications, the order is reversed: a uniformly bounded
sequence X(k)

t is chosen with limit Xt, and of relevance is
whether the bounded convergence theorem limk

∫
X

(k)
t dYt =∫

Xt dYt holds for most if not all ω. Although a sequence can
be chosen to cause trouble for a single outcome ω, perhaps it is
not possible for a sequence to cause trouble simultaneously for
a significant portion of outcomes. If Xt can depend arbitrarily
on ω then trouble is easily caused for all ω, hence Itô’s
requirement for Xt to be predictable. To avoid this distraction,
assume the X(k)

t are deterministic.
For

∑
n(−1)n+1 1

n to converge to 5, or even to oscillate,
requires long runs of positive signs followed by long runs of
negative signs. Since the signs are chosen randomly, rearrang-
ing summands may not be as disruptive as in the deterministic
case. In fact, rearranging summands has no effect on the value
of the sum for almost all outcomes ω.
Technicality: Define the random variables An = ± 1

n , SN =∑N
n=1An and TN =

∑N
n=1Aρ(n) where ρ is a permutation

of the natural numbers. Put simply, the SN are the partial
sums of

∑
n±

1
n in the obvious order, and the TN are the

partial sums in some other order specified by ρ. The SN form
an L2-martingale sequence that converges almost surely and
in L2 to a finite random variable S∞; see [9, Chapter 12].
Similarly, TN converges to a finite random variable T∞. With
a bit more effort, and appealing to the Backwards Convergence
Theorem [40], it can be shown that S∞ = T∞ almost surely.

Since rearranging summands (almost surely) does not affect
the random sum

∑
n±

1
n — and the same holds for the

weighted sums
∑
n±

1
nX

(k)(tn) — the stochastic integral∫ 1

0
dYt(ω) can be defined to be the random variable Y1(ω)−

Y0(ω) without fear of the bounded convergence theorem
failing (except on a set of measure zero). Here, Y1(ω)−Y0(ω)
comes from the particular ordering limN→∞

∑N
n=1 Yt+n −Yt−n .

That Lebesgue-Stieltjes theory cannot define
∫ 1

0
dYt(ω) as

Y1(ω) − Y0(ω) does not make this pathwise definition incor-
rect. The Lebesgue-Stieltjes theory requires absolute conver-
gence of sums, meaning all arrangements have the same sum.
The theory of stochastic integration weakens this to requiring
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any two arrangements have the same sum almost surely (or
converge in some other probabilistic sense). The difference
arises because there are an infinite number of arrangements
of summands and an infinite number of outcomes ω. If ω is
chosen first then two arrangements can be found whose sums
disagree, yet if two arrangements are chosen first then their
sums will agree for almost all ω.

B. Brownian Motion as an Integrator

The discussion in Section VI-A remains insightful when
Yt is Brownian motion. The basic hope is that (29) can be
evaluated by choosing a sequence of partitions {0 = t

(k)
0 <

t
(k)
1 < · · · < t

(k)

N(k) = 1} with mesh size supi,j |t
(k)
i − t(k)j |

going to zero as k →∞, and evaluating

lim
k→∞

N(k)−1∑
n=0

X
t
(k)
n

(
Y
t
(k)
n+1
− Y

t
(k)
n

)
. (31)

This can be interpreted as approximating Xt by a sequence of
step functions, computing the integral with respect to each of
these step functions, and taking limits. In particular, if different
partitions lead to different limits, the dominated convergence
theorem cannot hold.

A standard manipulation [10, p. 30] shows (31) simplifies to
1
2B

2
1 − 1

2

∑N(k)−1
n=0 (B

t
(k)
n+1
−B

t
(k)
n

)2 for the particular example∫ 1

0
Bt dBt. If Bt is Brownian motion then the situation is

somewhat delicate because the sample paths are only Hölder
continuous of orders strictly less than 1

2 ; section IV-A. This
manifests itself in the existence of a partition such that [16]

lim sup
k→∞

N(k)−1∑
n=0

(
B
t
(k)
n+1
−B

t
(k)
n

)2
=∞ (32)

almost surely, whereas the limit in probability is

lim
k→∞

N(k)−1∑
n=0

(
B
t
(k)
n+1
−B

t
(k)
n

)2
= 1, (33)

with (33) holding for every partition. Therefore, it appears
stochastic integrals cannot be defined almost surely, but at
best in probability. This is why, in (19), the convergence is in
probability. Section VI-D discusses the difference.

It is claimed in [60] that almost sure convergence is achiev-
able; how is this possible without breaking the dominated
convergence theorem? Crucially, the claim is that stochastic
integrals can be evaluated using a particular sequence of parti-
tions yielding an almost sure limit. The dominated convergence
theorem still only holds in probability.

If (31) converges almost surely then it is called a pathwise
evaluation of the corresponding stochastic integral.
Technicality: There are two standard ways of ensuring (33)
converges almost surely [40, Theorem I.28]. The first is to
shrink the size of the partition sufficiently fast to satisfy the
hypothesis of the Borel-Cantelli lemma. The second is to use
a nested partition, meaning no points are moved or deleted
as k increases, only new points added. The same basic idea
holds for (31) except care is required if the integrand contains
jumps; see for example [60, Theorem 2].

C. Pathwise Solutions of Stochastic Differential Equations

There are several meanings of pathwise solutions of stochas-
tic differential equations. Some authors mean merely a strong
solution. (Strong and weak solutions are explained in [10].)
Or it could mean a limiting procedure converging almost
surely [61], in accordance with the definition of pathwise
evaluation of integrals in Section VI-B. In the strongest sense,
it means the solution depends continuously on the driving
semimartingale [39], also known as a robust solution.

Robust solutions are relevant for filtering. Roughly speak-
ing, integration by parts applied to the Kallianpur-Striebel
formula leads to a desirable version of the conditional ex-
pectation [62], [63].

In general, robust solutions will not exist for stochastic
differential equations with vector-valued outputs. The recent
theory of rough paths demonstrates that continuity can be
restored by only requiring the output be continuous with
respect to not just the input but also integrals of various higher-
order products of the input [33]–[36], [64].

As explained in Section VI-D, not being able to find a robust
or even a pathwise solution is often inconsequential in practice.
Technicality: This primer encourages understanding stochastic
equations by thinking in terms of limits of piecewise linear
approximations. Piecewise linear interpolation of sample paths
using nested dyadic partitions are also good sequences to use
in the theory of rough paths [65, Section 3.3].

D. Almost Sure Convergence and Convergence In Probability

Let Zk(ω) be a sequence of real-valued random variables.
Fixing ω means Zk(ω) is merely a sequence of real numbers.
If this sequence converges for almost all ω then Zk converges
almost surely. A weaker concept is convergence in probability.
If Z is a random variable and, for all ε > 0, limk→∞ Pr(|Zk−
Z| > ε) = 0 then Zk converges to Z in probability.

If Zk converges to Z in probability, but not almost surely,
and ω is fixed, then Z(ω) cannot necessarily be determined
just from the sequence Zk(ω). Computing a limit in probabil-
ity requires knowing the behaviour of the Zk(ω) as ω changes,
explaining why the term “pathwise” is used to distinguish
almost sure convergence from convergence in probability.

This may lead to the worry that a device cannot be built
whose output is a stochastic integral of its input, e.g., a filter.
Indeed, only a single sample path is available in the real world!
However, a device will never compute limZk(ω) (unless a
closed-form expression is known), but rather, ZK(ω) will be
used in place of Z(ω), where K is sufficiently large. And
ZK(ω) can be computed from a single sample path.

In practice, what often matters is the mean-square error
E
[
(ZK − Z)2

]
. Neither almost sure convergence or conver-

gence in probability implies convergence in mean-square.
Importantly then, convergence in mean-square can be used
when defining stochastic integrals [8]. (Convergence in mean-
square implies convergence in probability. Convergence in
probability only implies convergence in mean-square if the
family of random variables |Zk|2 is uniformly integrable.)
Note: A good understanding is easily gained by recalling first
the representative example of a random variable converging in



13

probability but not almost surely [66] and then studying how
a bad partition satisfying (32) is constructed in [16, p. 365].
Technicality: Although functional analysis plays an important
role in probability theory, some subtleties are involved because
convergence in probability is not a locally convex topology.
Also, there is no topology corresponding to almost sure
convergence [67].

E. Integrals as Linear Operators

Ordinary integrals are nothing more than (positive) linear
functionals on a function space [68]. The situation is no more
complicated in the stochastic setting.

A stochastic integral I : L → L is a linear operator
sending a process Xt to a random variable Z = I(Xt), more
commonly denoted Z =

∫ 1

0
Xt dBt for some fixed process

Bt. Here, L is a vector space of real-valued random processes
and L a vector space of real-valued random variables.

To be useful, I should satisfy some kind of a bounded
convergence theorem. This generally necessitates, among other
things, restricting the size of L. (In Itô’s theory, L is usually
the class of adapted processes with càglàd paths.)

Given suitable topologies on L and L, one way to define
I is to define it first on a dense subset of L then extend by
continuity: if X(k)

t → Xt then declare I(Xt) = limkX
(k)
t .

(Protter takes this approach, albeit when I maps processes
to processes [4].) This only works if the topology on L is
sufficiently strong that two different sequences converging to
Xt assign the same value to I(Xt). Alternatively, restrictions
can be placed on the allowable approximating sequences;
the value of I(Xt) is evaluated as the limit of I(X

(k)
t ) but

where there are specific guidelines on the construction of the
sequence X(k)

t → Xt. In both cases, the topology on L is also
important; too strong and I(X

(k)
t ) need not converge.

If convergence in probability is used on L then there is the
perennial caveat that the limit is only unique modulo sets of
measure zero. Although this means I is not defined uniquely,
any given version of I will still be a map taking, for fixed ω,
the sample path t 7→ Xt(ω) to the number Z(ω) = I(Xt)(ω).
In this respect, using the term pathwise to exclude convergence
in probability is misleading. While a version of I may not be
constructable one path at a time in isolation, once a version
of I is given, it can be applied to a single path in isolation.
(The same phenomenon occurs for conditional expectation.)

VII. STRATONOVICH EQUATIONS ON MANIFOLDS

Starting from this section, the level of mathematical detail
increases, leading to the study, in Section X, of an estimation
problem on compact Lie groups.

Let M ⊂ Rn be a d-dimensional manifold. Denote by
Bt Brownian motion in Rd with Bit its ith element. A class
of processes on M can be generated by injecting Brownian
motion scaled by a function h. Precisely, the Stratonovich
stochastic differential equation

Xt =

∫ t

0

d∑
i=1

hi(t,Xt) ◦ dBit (34)

defines a process Xt that, if started on M , will remain on M
if the hi(t,Xt) always lie in TXtM . In such cases, for any
smooth function f : M → R, the projected process f(Xt) on
R satisfies

f(Xt) =

∫ t

0

d∑
i=1

df〈hi(t,Xt)〉 ◦ dBit (35)

where df〈vp〉 is the directional derivative of f at p in the
direction vp ∈ TpM . (If f is locally the restriction of a
function F : U ⊂ Rn → R defined on an open subset of
Rn containing p then df〈vp〉 is the usual directional derivative
of F at p in the direction vp.)
Technicality: If M was not embedded in Rn, so that (34) was
not a stochastic equation in Euclidean space, then (35) could
be used to define (34): Xt is the semimartingale on M for
which (35) holds for every smooth function f .

VIII. COMPACT LIE GROUPS

Lie groups [69], [70] are simultaneously a manifold and a
group. The group operations of multiplication and inversion
are smooth functions, thereby linking the two structures.
Extending an algorithm from Euclidean space to manifolds
is often facilitated by first extending it to compact Lie groups
where the extra structure helps guide the extension.

The simplest example of a compact Lie group is the circle
S1 with group multiplication (cos θ, sin θ) · (cosφ, sinφ) =
(cos(θ+φ), sin(θ+φ)) and identity element (1, 0) ∈ S1 ⊂ R2.
Being a subset of Euclidean space, the circle is seen to be
compact by being closed and bounded (Heine-Borel theorem).
Technicality: Compactness is a topological property. In a
sense, compact sets are the next simplest sets to work with
beyond sets containing only a finite number of elements.
Compact sets are sequentially compact: any sequence in a
compact set has a convergent subsequence.

A more interesting example of a compact Lie group is
the special orthogonal group SO(n) defined as the set of all
n×n real-valued orthogonal matrices with determinant equal
to one, with matrix multiplication as group multiplication.
This implies the identity matrix is the identity element. By
treating the space of n× n real-valued matrices as Euclidean
space — the Euclidean inner product is1 〈A,B〉 = Tr{BTA}
where Tr denotes the trace of a matrix and superscript T
is matrix transpose — it can be asked if SO(n) meets
the requirements in Section II-D of being a manifold (of
dimension n

2 (n−1)), to which the answer is in the affirmative.
Furthermore, by considering elementwise operations, it can be
seen that group multiplication and inversion, which are just
matrix multiplication and inversion, are smooth operations.

The group SO(3) has been studied extensively in the
physics and engineering literature [71]. Studying SO(3) is the
same as studying rotations of three-dimensional space.

1The vec operator identifies the space Rn×n with the space Rn2
by

stacking the columns of a matrix on top of each other to form a vector.
Under this identification, the Euclidean inner product on Rn2

becomes the
inner product 〈A,B〉 = (vecB)T (vecA) = Tr{BTA}.
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A. The Matrix Exponential Map

Choose a matrix X ∈ Rn×n satisfying XTX = I and
detX = 1. In other words, choose an element X of SO(n).
Since SO(n) is a group, it is closed under multiplication,
hence the sequence X0, X1, X2, X3, · · · lies in SO(n), form-
ing a trajectory. The closer X is to the identity matrix, the
closer successive points in the trajectory become. Note that
X is a rotation of Rn, hence Xn is nothing more than the
rotation X applied n times.

The idea of interpolating such a trajectory leads to the curve
γ(t) = exp(tA) where exp is the matrix exponential [72].
Indeed, if A ∈ Rn×n is such that exp(A) = X then X2 =
exp(2A), X3 = exp(3A), and so forth. The set of A for
which exp(A) is an element of SO(n) forms a vector space;
this nontrivial fact relates to SO(n) being a Lie group. Let
so(n) denote this set; it is the Lie algebra of SO(n).

Since exp(A) will lie in SO(n) if exp(tA) lies in SO(n)
for an arbitrarily small t > 0, it suffices to determine
so(n) by examining the linearisation of exp. The constraint
exp(tA)T exp(tA) = I implies (I+tA+· · · )T (I+tA+· · · ) =
I from which it follows that so(n) = {A ∈ Rn×n | A+AT =
0}. This shows also that so(n) is the tangent space of SO(n)
at the identity: so(n) = TISO(n).

B. Geodesics on SO(n)

Recall from earlier that the Euclidean inner product on
Rn×n is 〈A,B〉 = Tr{BTA}. A geodesic on SO(n) is a
curve with zero acceleration, where acceleration is measured
by calculating the usual acceleration in Rn×n then projecting
orthogonally onto the tangent space.

It may be guessed that X0, X1, X2, · · · in Section VIII-A
lies on a geodesic, consequentially, γ(t) = exp(tA) should be
a geodesic whenever A ∈ so(n). The acceleration in Euclidean
space is γ′′(t) = exp(tA)A2. If this is orthogonal to the
tangent space of SO(n) at γ(t) then γ is a geodesic.

Fix t and let Z = γ(t) = exp(tA). The tangent space at
Z ∈ SO(n) is the vector space Z so(n), that is, matrices
of the form ZC with C ∈ so(n). This shows one of the
many conveniences of working with manifolds that are also
groups; group multiplication moves the tangent space at the
identity element to any other point on the manifold. Then
〈γ′′(t), ZC〉 = 〈ZA2, ZC〉 = 〈A2, C〉 = 0 whenever A and C
are skew-symmetric matrices, proving γ is indeed a geodesic.

A geodesic is completely determined by its initial position
and velocity, hence every geodesic starting at the identity
element is of the form t 7→ exp(tA) for some A ∈ so(n).

All geodesics starting at X ∈ SO(n) are of the form t 7→
X exp(tA), that is, left multiplication by X sends a geodesic
to a geodesic. Right multiplication also sends geodesics to
geodesics. (This implies that for any B ∈ so(n) and X ∈
SO(n), there must exist an A ∈ so(n) such that X exp(tA) =
exp(tB)X; indeed, A = XTBX .)

If γ(t) = X exp(tA) then γ′(0) = XA. Therefore, the
Riemannian exponential map is given by

ExpX(XA) = X exp(A), X ∈ SO(n), A ∈ so(n). (36)

C. Why the Euclidean Norm?

The matrix exponential map relates only to the group struc-
ture; t 7→ exp(tA) generates a one-parameter subgroup. The
Riemannian exponential map relates only to the Riemannian
geometry. For there to be a relationship between exp and Exp
requires a careful choice of Riemannian metric.

The special relationship between SO(n) ⊂ Rn×n and the
Euclidean inner product on Rn×n is that the inner product
is bi-invariant, meaning 〈A,B〉 = 〈XA,XB〉 = 〈AX,BX〉
for any A,B ∈ so(n) and X ∈ SO(n). In words, the inner
product between two velocity vectors at the identity element
of the Lie group is equal to the inner product between the
same two velocity vectors should they be “shifted” to another
point on the Lie group, either by left multiplication or by right
multiplication. This is why both left and right multiplication
preserve geodesics. (Note: Since a tangent vector is the ve-
locity vector of a curve, the terms tangent vector and velocity
vector are used interchangeably.)
Technicalities: On a compact Lie group, a bi-invariant metric
can always be found. Different bi-invariant metrics lead to
the same geodesics. The most familiar setting to understand
this in is Euclidean space; changing the inner product alters
the distance between two points, but the shortest curve (and
hence a geodesic) is still the same straight line. Similarly, on
a product of circles, which is a compact Lie group, a different
scaling factor can be applied to each circle to obtain a different
bi-invariant metric, but the geodesics remain the same.

D. Coloured Brownian Motion on SO(n)

On an arbitrary Riemannian manifold, there is essentially
only one kind of Brownian motion. On Lie groups (and other
parallelisable manifolds), the extra structure permits defining
coloured Brownian motion having larger fluctuations in some
directions than others.

If Gt is a process on SO(n), it has both left and right in-
crements, namely, Gs+tG−1s and G−1s Gs+t respectively [73].
Non-commutativity implies these increments need not be
equal. This leads to distinguishing left-invariant Brownian
motion from right-invariant Brownian motion. As one is nev-
ertheless a mirror image of the other — if Gt is left-invariant
Brownian motion then G−1t is right-invariant Brownian motion
— it generally suffices to focus on just one.

A process Gt on SO(n) is a left-invariant Brownian motion
if it has continuous sample paths and right increments that
are independent of the past and stationary. (See [3, V.35.2]
for details. Using right increments leads to left-invariance
of the corresponding transition semigroup [73].) If it were
stochastically anti-developed then a coloured Brownian motion
plus possibly a drift term would result.
Technicality: In (37), the βk,i have zero mean, therefore,
the limiting process (39) has no drift. This is equivalent to
restricting attention to left-invariant Brownian motions that are
also inverse invariant [73, Section 4.3].

An algorithm for simulating left-invariant Brownian motion
on SO(n) is now derived heuristically. Unlike in Section II,
stochastic development is not used because left-invariant
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Brownian motion relates to the group structure, not the geo-
metric structure. Nevertheless, the basic principle is the same:
replace straight lines by one-parameter subgroups. The only
issue is how to specify a random velocity in a consistent way
to achieve stationarity. The velocity vector of X exp(tA) at X
is XA. Since a left-invariant process is sought, the velocity
vector XA at X should be thought of as equivalent to the
velocity vector A at the identity (that is, left multiplication
is used to map TISO(n) onto TXSO(n)). This leads to the
following algorithm.

Choose a basis A1, · · · , Ad for so(n) and let βk,i be a
doubly-indexed sequence of iid N(0, 1) Gaussian random
variables. Then a left-invariant Brownian motion starting at
W0 ∈ SO(n) is approximated by

W(k+1)δ = Wkδ exp

(
√
δ

d∑
i=1

βk,iAi

)
(37)

for k = 0, 1, 2, · · · , where δ > 0 is a small step size. If
necessary, these discrete points can be connected by geodesics
to form a continuous sample path. That is, for an arbitrary t
lying between kδ and (k + 1)δ,

Wt = Wkδ exp

(
t− kδ√

δ

d∑
i=1

βk,iAi

)
. (38)

The right increments W−1kδ W(k+1)δ are stationary and in-
dependent of the past values {Wt | t ≤ kδ}, as required of
left-invariant Brownian motion.

An outstanding issue is the effect of changing the ba-
sis Ai. Comparing (37) with the corresponding formula for
(white) Brownian motion in Section II, namely, W(k+1)δ =

ExpWkδ

(√
δ Zk

)
where each Zk is an “N(0, I)” Gaussian

random variable on the tangent space TWkδ
SO(n), shows

that (37) produces white Brownian motion if the Ai are an
orthonormal basis, as to be expected.

Changing basis vectors in (37) is equivalent to changing
the colour of the driving Gaussian noise βk,i. Therefore,
coloured Brownian motion with covariance C is defined as
(the limit as δ → 0 of) the process (37)–(38) where {Ai}
is a given orthonormal basis and the iid random vectors
βk = (βk,1, · · · , βk,d) have distribution N(0, C).

E. Formal Construction of Brownian Motion

Taking limits in (37)–(38) leads to a Stratonovich equation
for left-invariant Brownian motion on a Lie group G of
dimension d. Let A1, · · · , Ad be a basis for the Lie algebra.
Denote by hi the extension of Ai to a left-invariant vector
field on G; for G = SO(n), this is simply hi(X) = XAi. Let
Bt be Brownian motion on Rd. Then the solution Wt of

Wt =

∫ t

0

d∑
i=1

hi(Wt) ◦ dBit (39)

is a left-invariant Brownian motion on G.
As in Section VIII-D, if the Ai are an orthonormal basis

and the Bt is coloured Brownian motion with E
[
BtB

T
t

]
= tC

then Wt is coloured Brownian motion with covariance C.

Technicality: Whether Bt is white Brownian motion and the
Ai changed, or the Ai are orthornormal and the colour of Bt
changed, is a matter of choice.

IX. BROWNIAN DISTRIBUTIONS

There is a two-way relationship between Gaussian random
variables and Brownian motion in R. Brownian motion can
be defined in terms of Gaussian distributions. Conversely, a
Gaussian random variable can be generated by sampling from
Brownian motion Bt: the distribution of B1 is N(0, 1).

Lack of linearity prevents defining Gaussian random vari-
ables on manifolds. Nevertheless, sampling from Brownian
motion on a manifold produces a random variable that, if
anything is, is the counterpart of a Gaussian random variable.
Such a random variable is said to have a Brownian distribution.

Formally, given a Lie group G of dimension d, an element
g ∈ G and a positive semidefinite symmetric matrix C ∈
Rd×d, a random variable X with (left) Brownian distribution
N(g, C) has, by definition, the same distribution as W1, where
Wt is coloured Brownian motion with covariance C started
at W0 = g; see Section VIII-E. That is, coloured Brownian
motion started at g is run for one unit of time and where it
ends up is a realisation of N(g, C).

X. PARAMETER ESTIMATION

Given a compact Lie group G, let y1, y2, · · · be iid N(g, C)
distributed, as defined in Section IX. The aim is to estimate
g and C from the observations yi. In [7], it was realised that
by embedding G in a matrix space Rn×n, an estimate of g
and (sometimes) C is easily obtained from the average of the
images Yi ∈ Rn×n of the yi ∈ G under the embedding. This
section re-derives some of the results at a leisurely pace. For
full derivations and consistency proofs, see [7].

A. Estimation on SO(2)

Although SO(2) is nothing other than the unit circle S1 in
disguise, the theory below will be required later.

If X is a 2 × 2 orthogonal matrix then its first column
corresponds to a point on the unit circle because the sum
of the squares of the two elements is one, and its second
column, having unit norm and being orthogonal to the first
column, has only two possibilities, corresponding to whether
the determinant of X is 1 or −1. If X ∈ SO(2), its second
column is therefore fully determined given its first column
because the determinant of X must be 1. (The relationship is
deeper: SO(2) is Lie group isomorphic to S1.)

Let y ∈ SO(2) be randomly drawn from the distribution
N(g, σ2) where the covariance matrix C has been replaced
by the scalar σ2 because the dimension of SO(2) is 1. Since
SO(2) ⊂ R2×2, y can be treated equally well as a random
matrix, and treating it as such, it is of interest to determine its
expected value, which in general will not lie in SO(2).

Let D be the (infinitesimal) generator [10, Sec. 7.3] of Wt,
that is, for any smooth “test function” f : G→ R,

Df(g) = lim
t↓0

Eg [f(Wt)]− f(g)

t
(40)
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where Wt is Brownian motion starting at g with covariance
matrix C; the superscript g on the expectation symbol signifies
this dependence on g. It follows from (39) and (35) in a well-
known way that

Df =
1

2

d∑
i,j=1

CijA
L
i A

L
j f (41)

where AL is the left-invariant vector field generated by A.
Vector fields act on functions by directional differentiation;
(ALf)(g) = d

dt

∣∣
t=0

f(g exp(At)).
If G = SO(n) then G is a subset of Rn×n. For what

follows, it suffices to assume f is the restriction of a linear
function defined on Rn×n. In this case, (41) simplifies to

Df(g) =
1

2

d∑
i,j=1

Cijf(gAiAj). (42)

This will be derived from first principles for SO(2). Let

A =

[
0 −1
1 0

]
(43)

be the chosen orthonormal basis for so(2) with respect to the
scaled Euclidean inner product 〈X,Y 〉 = 1√

2
Tr{Y TX}. The

scaling term is just a matter of convenience (and convention).
Since A is skew-symmetric and hence normal, it is diagonal-
isable: Q−1AQ = D where D = diag{−, } and

Q =
√

2

[
1 1
 −

]
. (44)

As t ↓ 0, (37) can be used to approximate Wt, yielding

Eg [Wt] ≈
∫ ∞
−∞

g exp(
√
tβA) p(β) dβ (45)

where p(β) is the probability density function of N(0, σ2). By
writing exp(

√
tβA) = Q exp(

√
tβD)Q−1 and remembering

the characteristic function of the distribution N(0, σ2), it
follows that Eg [Wt] ≈ exp(−σ

2t
2 ) g. Therefore,

lim
t↓0

Eg [Wt]− g
t

= (−σ
2

2 ) g. (46)

If f is the restriction of a linear function on R2×2 then it
can be interchanged with all the operations in (40), hence
Df(g) = f(−σ

2

2 g) = −σ
2

2 f(g). Fortunately, this agrees with
(42) because A2 = −I , validating the approximation (45).

Time-homogeneity of (39) means Df(Wt) is the instanta-
neous rate of change of E [f(Wt)] for all t, not just t = 0.
Roughly speaking, Kolmogorov’s backward equation [10, Sec.
8.1] evaluates E [f(Wt)] by integrating these infinitesimal
changes. Since the changes are path dependent, a PDE rather
than an ODE is required: u(t, g) = Eg [f(Wt)] satisfies

∂u

∂t
= Du, u(0, g) = f(g) (47)

where D acts on the function g 7→ u(t, g). Although f should
map to R, letting it be the identity map on R2×2 does no harm,
in which case the solution to (47), now a PDE on R2×2, is

Eg [Wt] = u(t, g) = exp(−σ
2t
2 ) g. (48)

It just so happens that this true solution agrees with the earlier
approximation for Eg [Wt]. In general this will not be the case
and solving the PDE will be necessary.
Technicality: Kolmogorov’s backward equation is a PDE for
evaluating ũ(t, g) = E [f(WT ) |Wt = g] for a fixed T by
integrating backwards from time t = T . By time homogeneity,
ũ(t, g) = E [f(WT−t) |W0 = g] = u(T − t, g), explaining
why (47) integrates forwards from time T − T = 0.

In summary, it has been derived from first principles that

E [y] = Eg [W1] = exp(−σ
2

2 ) g. (49)

Given y1, · · · , ym ∈ SO(2), the method of moments dic-
tates equating the sample mean with the true mean, namely,
estimating g and σ2 by solving exp(−σ

2

2 ) g = y where
y = 1

m

∑m
i=1 yi is the (extrinsic) sample average obtained by

treating the yi as 2× 2 matrices. As y will not necessarily be
of the form exp(−σ

2

2 ) g, the equation should be solved in the
least-squares sense, facilitated by the polar decomposition of
y. If y = UP where U is orthogonal and P positive-definite
symmetric then g can be estimated by U and exp(−σ

2

2 ) can
be estimated by 1

2 Tr{P}. Equivalently, g can be estimated by
the “Q” matrix in the QR decomposition of y.

B. Estimation on SO(3)

The same steps are followed as in Section X-A. Choose the
basis A1, A2, A3 to be, respectively,0 −1 0

1 0 0
0 0 0

 ,
0 0 −1

0 0 0
1 0 0

 ,
0 0 0

0 0 −1
0 1 0

 . (50)

If f is linear on R3×3 then, from (42),

Df(g) = f(gZ), Z =
1

2

∑
i,j

CijAiAj . (51)

As before, a solution to ∂u
∂t = Du is u(t, g) = g exp(tZ); note

u is linear in g for all t, hence the validity of using (51) which
neglects nonlinear terms of f . In summary, if y ∼ N(g, C)
then E [y] = g exp(Z).

A polar decomposition of the sample average allows the
estimation of g and exp(Z) because exp(Z) is a positive-
definite symmetric matrix, a consequence of Z being sym-
metric (which in turn is due to C being symmetric and the Ai
anti-symmetric). The only remaining question is if C can be
recovered from Z. Direct expansion shows that for SO(3),

Z = −1

2

C11 + C22 C23 −C13

C32 C11 + C33 C12

−C31 C21 C22 + C33

 . (52)

Therefore, for SO(3), the parameters g and C can be estimated
from a polar decomposition of the sample average.

C. Estimation on SO(n) for n > 3

The above ideas will not allow all elements of C to be
estimated in higher dimensional cases for the simple reason
that the dimension of SO(n) is d = n

2 (n − 1), hence an
N(g, C) distribution on SO(n) requires d+ d

2 (d+1) = n
8 (n−
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1)(n2 − n + 6) real-valued parameters for its specification,
which would exceed n2, the dimension of the ambient space
Rn×n ⊃ SO(n), if n were larger than three.

Nevertheless, the calculations in the previous section remain
valid for n > 3. The expected value of y ∼ N(g, C) is
g exp(Z) where Z is given by (51). In particular, g can be
estimated as before, either via a polar decomposition or as the
“Q” matrix in the QR decomposition of the sample average.
Furthermore, if C is known to have a particular structure, the
simplest example being if C is diagonal, then it may still be
possible to recover C from Z.

D. Estimation on a Compact Lie Group

The above ideas extend directly to SU(n) and U(n), the
real (not complex!) Lie groups consisting of complex-valued
unitary matrices, the former with the additional requirement
that the determinant be one. See [7] for details.

Let G be an arbitrary compact Lie group. Group represen-
tation theory studies (among other things) smooth maps of the
form f : G→ U(n) which preserve group operations, meaning
f(g−1) = [f(g)]−1 and f(gh) = f(g) f(h). Such maps are
called (unitary) representations.

Let f be a representation of G and y ∼ N(g, C), the latter
with respect to the orthonormal basis A1, · · · , Ad for the Lie
algebra of G. The same steps as before will be used to calcu-
late Eg [f(y)]. Although f is not linear, it has another simplify-
ing feature instead; it preserves group operations. In particular,
ALi f(g) = d

dtf(getAi) = f(g) ddtf(etAi) = f(g)(Aif) where
the intermediate derivatives are to be evaluated at t = 0 and
Aif denotes the derivative of f at the identity element in the
direction Ai. Note that Aif will be an element of the Lie
algebra of U(n), that is, a skew-Hermitian matrix. Therefore,

Df(g) = f(g)Zf , Zf =
1

2

∑
i,j

Cij (Aif) (Ajf) (53)

where Zf is a symmetric matrix. It is readily verified that
u(t, g) = f(g) exp(tZf ) solves ∂u

∂t = Du. (The map
g 7→ u(t, g) preserves group multiplication which is the only
requirement for (53) to be valid.) Thus,

E [f(y)] = f(g) exp(Zf ) (54)

where Zf is the matrix given in (53). Regardless of the choice
of f , Zf will be symmetric and so exp(Zf ) will be a positive-
definite symmetric matrix.

Once again, a polar decomposition can be used to estimate
f(g) and exp(Zf ). How much of g and C can be recovered
depends on the mappings g 7→ f(g) and C 7→ Zf .

There is always (at least) one representation f : G→ U(n)
that can be written down immediately for a compact Lie group
equipped with a bi-invariant metric, and that is the adjoint
representation. Recall that the adjoint representation Ad: G→
Aut(g) maps a group element g ∈ G to an automorphism
of the corresponding Lie algebra g. Given an orthonormal
basis for g, any automorphism of g can be represented in
matrix form with respect to this basis. A consequence of the
basis being orthonormal and the metric being bi-invariant is
that these matrices will be unitary. That is, by choosing an

orthonormal basis, the adjoint representation can be written in
the form f : G→ U(n) where n is the dimension of G. This
allows the application of the above extrinsic averaging method
to arbitrary compact Lie groups.

Furthermore, the adjoint representation (or any other rep-
resentation) can be used to augment any information already
available about the parameters g and C. That is to say, given
iid samples y1, · · · , ym ∼ N(g, C), in addition to forming
y = 1

m

∑
i yi (assuming the yi belong to an appropriate Lie

group such as SO(n)), the average 1
m

∑
i f(yi) can also be

formed. Its polar decomposition would yield an estimate of
f(g) and of Zf , thereby supplementing existing information
about g and C. This can be repeated for any number of
representations f1, f2, · · · .

XI. A FEW WORDS ON MANIFOLD-VALUED ESTIMATORS

Estimation theory extends to manifolds [74]–[76]. Several
concepts normally taken for granted, such as unbiasedness of
an estimator, are not geometric concepts and hence raise the
question of their correct generalisations to manifolds.

The answer is that the difficulty lies not with manifolds,
but with the absence of meaning to ask for an estimate of
a parameter. The author believes firmly that asking for an
estimate of a parameter is, a priori, a meaningless question.
It has been given meaning by force of habit. An estimate only
becomes useful once it is used to make a decision, serving
as a proxy for the unknown true parameter value. Decisions
include: the action taken by a pilot in response to estimates
from the flight computer; an automated control action in re-
sponse to feedback; and, what someone decides they hear over
a mobile phone (with the pertinent question being whether the
estimate produced by the phone of the transmitted message is
intelligible). Without knowing the decision to be made, whether
an estimator is good or bad is unanswerable. One could hope
for an estimator that works well for a large class of decisions,
and the author sees this as the context of estimation theory.

The definition of unbiasedness in [74] with respect to a loss
function accords with this principle of application dependence.
Otherwise, two common but ad hoc definitions of the mean
are the extrinsic mean and the Karcher mean. The extrinsic
mean of a random variable x ∈ M ⊂ Rn simply forgets
the manifold and takes the mean of x treated as an Rn-
valued random variable. The extrinsic mean generally will
not lie on M . The Karcher mean [77], [78] looks to be an
ideal generalisation of the mean, but on close inspection,
problems arise if the manifold has positive curvature and
the samples are sufficiently far apart to prevent the Karcher
mean from existing or being unique. (Since manifolds are
locally Euclidean, asymptotic properties of estimators are more
readily generalised to manifolds.)

In summary, the author advocates working backwards, start-
ing from a (representative) decision problem and deriving a
suitable estimator for making good decisions. This viewpoint
should clarify otherwise arbitrary choices that must be made
along the way.
Technicality: The James-Stein estimator helps demonstrate the
definition of a good estimator is application dependent [79]:
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remarkably, in terms of minimising the mean-square error, the
best estimate of µ ∈ R3 given X ∼ N(µ, I) is not µ̂ = X .
Since usually (but not always) the “best” estimator to use in
practice really is µ̂ = X , this illustrates a shortcoming of the
default assumption that mean-square error is always a good
measure of performance.

XII. CONCLUSION

Pertinent background not easily accessible in the literature
on how to understand and work with stochastic processes
on manifolds was presented. Stochastic development was
introduced to ease the transition from Euclidean space to
manifolds: stochastic development maps each sample path in
Euclidean space to a sample path on a manifold that preserves
the infinitesimal properties of the process. Not surprisingly
then, Brownian motion on a manifold is the stochastic devel-
opment of Brownian motion in Euclidean space. It was also
explained that stochastic development, Stratonovich integrals
and Stratonovich differential equations could all be understood
as limits of piecewise linear approximations in Euclidean
space and, more generally, as limits of piecewise geodesic
approximations on manifolds.

Lie groups are manifolds with a compatible group structure.
The group structure permits defining “coloured” Brownian mo-
tion on Lie groups. Sampling from coloured Brownian motion
produces random variables with Brownian distributions that
are generalisations of Gaussian random variables. Formulae
from [7] were re-derived for estimating the parameters of
Brownian distributed random variables. The derivation demon-
strated that standard techniques, such as using Kolmogorov’s
backward equation, remain applicable in the more general
setting of processes on manifolds.
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[47] D. Applebaum, “Lévy processes—from probability to finance and quan-
tum groups,” Notices of the American Mathematical Society, vol. 51,
no. 11, pp. 1336–1347, 2004.

[48] R. L. Stratonovich, “A new representation for stochastic integrals and
equations,” SIAM Journal on Control and Optimization, vol. 4, pp. 362–
371, 1966.

[49] M. Yor, “Sur quelques approximations d’intégrales stochastiques,”
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