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Exploiting Long-Term Redundancies in
Reconstructed Video

Aleksandar Stojanovic and Jens-Rainer Ohm, Member, IEEE

Abstract—In this paper we propose an enhancement to HEVC
that allows the usage of homographies for motion compensation
between temporally far distant frames. First, we show the
benefit of using homographies compared to block-based motion
compensation, particularly for long-term motion compensation
in the presence of zoom. Then we show that beyond the case
where content is temporally repeated, long-term global motion
compensation leads to a better compression ratio in the presence
of zooming out. We show that this is due to the change in scale
on one hand, and the effects of compression on the reference
pictures on the other. Using a model for the distortion of
images caused by compression, it will be shown that a finer
scale reconstructed image that is warped into the perspective
of the image to be encoded can constitute a better predictor
than an immediately neighboring picture. We compared the HM
software with an enhanced system using long-term global motion
compensation with homographies and found that the enhanced
system achieves Bjøntegaard Delta Rate savings of up to 38%.
With the mechanism behind the gains unveiled, we finally try to
find an optimal scale ratio between the frame to be encoded and
the reference frame.

Index Terms—Video Coding, HEVC, Global Motion Compen-
sation, Distortion, Scale, Homography

I. INTRODUCTION

THE main principle of video coding is to exploit the
temporal and spatial correlation of image sequences for

bitrate reduction. In this spirit, we propose a method that
uses long-term redundancies in video. To do so we compute
homographies which are then encoded into the bitstream. This
is currently not supported in HEVC and in this paper we want
to show in which context this constitutes an advantage.

A. Related work

Sprite coding is a concept that was introduced some time
ago in video coding in the context of MPEG-4 object based
coding. The idea is that video sequences can be separated
in three main parts: static background, camera motion, and
moving foreground. Hence, the coding procedure consists
in coding a sprite, that is an image containing the entire
background scene, and the camera motion, which are then
used appropriately for warping the background into every
frame of the sequence. Foreground is coded separately, using
e.g. motion compensation. Sprite coding and global motion
compensation are incorporated in the MPEG-4 standard. A
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potential advantage of the method is that background can be
assumed as less important for high quality coding, and errors
stemming from interpolation that naturally occur with camera
pan and zoom may not need extra compensation, unlike in
hybrid video compression like MPEG-AVC or HEVC.

In the case of the aforementioned sprite coding techniques,
a serious challenge is the proper representation of the camera
motion, which maps the sprite to the background of each frame
of the sequence and vice-versa. An assumption that is used and
works relatively well is that camera motion can be represented
using an affine motion model. This model is a simplification
of the model using homographies used in this paper in the
sense that it does not account for perspective effects.

A reference often cited in this context is [1], where a model
going beyond an affine motion model is introduced for sprite
coding, and along with this a framework for the computation
of camera motion is presented. Another idea on global motion
compensation is given by background mosaicking. Here in the
context of hybrid video compression, all background content
visible at any time in the sequence is stored in a separate
picture buffer, so that it can be re-used at any time, as
presented in [2]. This method was used in MPEG-4 part 2,
however lost its importance and was disregarded in MPEG-4
part 10. The idea was used again in [3], where affine motion
compensation is used for motion prediction using multiple
reference frames. Similar ideas are expressed in [4], however
the idea of affine motion was dropped in favor of conventional
block-based coding, which simplifies the idea to long-term
reference frame buffers, which can be used in H.264/AVC
since syntax to move some frames in a long-term reference
buffer is provided.

These problems notwithstanding, foreground/background
separation was further used in video compression in some
applications, namely in the field of perceptive video compres-
sion, see [5], [6], or [7], to name only a few, or, earlier, in
an application similar in spirit to sprite coding, which was
presented in [8]. In this work, the main idea was again that
optimal PSNR in background portions of the sequence is not
necessary. Another related approach was specifically devel-
oped for navigation video sequences, see [9] and [10]. In this
type of video rotational background motion is predominant,
and is dealt with by using the affine motion model.

During the standardization process of HEVC, higher order
motion models have again become relevant. The context
here however is not perceptional video coding or separate
foreground/background coding, but the classical rate-distortion
optimized video compression. In [11], the usage of an affine
motion model along with new interpolation techniques results
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in some performance improvements. However, separate results
for improvements stemming from interpolation and the affine
motion model, respectively, suggest that the affine motion
model does not really provide a significant advantage, par-
ticularly not in the way it was used for video compression by
the authors.

Recently, a method [12] was introduced to deal specifi-
cally with zoom in video. Basically, it proposes to enhance
H.264/AVC motion vector prediction such that it can deal
better with zoom. However, the method still assumes equal
motion vectors for entire blocks, an assumption that will be
validated for a large set of sequences in Section II-B. However,
it will be shown that this assumption does not hold true when
the temporal distance between the reference frame and the
frame to be encoded increases and a single motion vector per
pixel becomes sensible. The idea from [12] has been used in
the context of HEVC as well, see [13].

A promising path to advanced motion models has been taken
in [14] and [15], work that will be described in more detail
in Section II-B. This proposition has common ground with
the work described here, that is, incorporating homographies
into a video stream. While in this paper a dedicated algorithm
computes a single homography as a representation of camera
pan and/or zoom, in the cited work, a set of homographies is
computed from the different point correspondences that are di-
vided into clusters, each cluster represented by a homography.
The method achieves good performance for high resolution
videos containing strong zoom. The theoretical background
therefore is provided in Section II-B. However it was not
adopted into the HEVC standard.

B. Contribution of this work

We propose a method that allows to perform long-term
global motion estimation using homographies. Unlike previous
work ([14], [15]) our method allows to use a temporal distance
between the frame to be coded and the warped frame. This
provides an advantage since it allows to achieve gains on
sequences in the common test set that were not reported
previously, except for [16], which constitutes the basis of this
paper. The theoretical foundations for the gains are provided
here. In fact, the gains can be explained by the difference
in scale between the frame to be encoded and the reference
frame, and we experimentally derive an optimal scale ratio.

The rest of the paper is organized as follows. In Section II
we provide a motivation for global motion compensation using
homographies and show in what particular cases homographies
constitute an advantage over block-based motion compensa-
tion in the context of HEVC. In Section III we present a simple
distortion model that is then used to explain the observation
that beyond sequences with repeated content, the presented
method is also beneficial for sequences with change in scale,
namely, zooming out. In Section IV we show the proposed
enhancements to HM and briefly outline the methods used
for homography computation and coding. Section V presents
coding results for the system and we experimentally derive an
optimal scale ratio. Finally we conclude with Section VI.

Fig. 1. PartyScene sequence contains some temporally periodic elements, see
the box in the center. The cropped region at the bottom shows the plush toy is
performing a quasi-periodic motion trajectory. The region has been cropped
after compensating camera motion and zoom on the entire sequence.

II. CAMERA PAN AND ZOOM COMPENSATION

A. Motivation

Our initial motivation for employing global motion estima-
tion was to be able to use methods similar to those presented
in e.g. [17] with sequences containing camera motion and
zoom. In fact, one of the main characteristics of dynamic or
video textures is temporal repetition. As an example, in the
PartyScene sequence, particularly for the cropped region from
Figure 1, there is a temporally repetitive pattern. Note that
the sequence contains camera motion and zoom, and effects
arising from the latter have to be removed before an analysis
of the scene itself can take place. Hence camera motion and
zoom compensation was performed before cropping the region
in Figure 1. It turns out that the region is temporally quasi-
periodic, the period being 130 frames, see Figure 2 (a), where
the lightest diagonal is 130 frames apart from the central
diagonal. Furthermore, it appears that very similar frames
are about 30 frames apart, a fact that could be exploited for
compression purposes, as will be shown later. That camera
motion and zoom compensation are crucial to recognize the
periodicity in this part of the sequence is illustrated in Figure 2
(b), which shows the similarity matrix for the same region as
in Figure 2 (a), however without camera motion and zoom
compensation, that is, the original cropped region was taken.

It will be shown in this Section that, in the presence of
zoom, homographies are necessary to perform long-term mo-
tion compensation between temporally distant frames. In fact,
HEVC already incorporates motion compensation, but block-
based motion compensation is not suitable for the problem
described here.

B. Deriving motion vectors from homographies

Our method proposes to code homographies into the video
stream for long-term compensation. To justify the necessity of
homographies as an alternative to block-based motion com-
pensation, motion vectors will be derived from homographies
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(a) (b)
Fig. 2. Visualization of similarity matrices for the cropped region of the
PartyScene sequence from the Figure 1. (a): after camera motion and zoom
compensation. (b): original cropped region without compensation.

and then conceptually compared to block-based motion vectors
as they are used in standard video coding. The basic equation
for homographies states that for background objects, a relation
between two pixel positions in two frames of a sequence can
be described as follows: x′

y′

n′

 =

 h11 h12 h13

h21 h22 h23

h31 h32 1

 ·
 x

y
1

 , (1)

using homogeneous coordinates. Practically, this means that a
pixel located at (x, y) will be located at position (x′/n′, y′/n′)
in the corresponding image. In this context a motion vector v
would amount to:(

vx
vy

)
=

(
x′/n′

y′/n′

)
−
(
x
y

)
, (2)

that is a vector pointing from the position (x, y) to
(x′/n′, y′/n′). A conceptual difference between motion vec-
tors in video compression and view warping using homo-
graphies for the description of camera motion, is that every
motion vector is valid for a group of pixels, that is a prediction
unit in HEVC, while the motion vector v from equation (2) can
differ from pixel to pixel. Generally speaking, the availability
of a homography is only an advantage if motion vectors differ
on a very fine scale.

C. Visualization of homography-derived motion vectors

One way of giving insight into how motion vectors spatially
differ in practice, is by visualization. Hence, we want to
visualize the spatial variation of motion vectors. It is clear
that the motion vectors differ from pixel to pixel in most
cases, especially in case of zoom. However differences below
a certain threshold are not significant when it comes to
compression. It is widely accepted that motion vector precision
beyond 1

8 of a pixel does not result in a better compression
ratio in a realistic video encoder. This was already shown
in [18], and is still widely accepted. Hence, to visualize on
what scale significant motion vector differences occur, we will
consider motion vector differences greater or equal to 1

8 of a
pixel, by visualizing them with arrows. We want to emphasize
cases in which motion vector differences of more than 1

8 of a
pixel occur for spatially close pixels.

To visualize motion vector differences, the sequence
BQSquare, which was used in the standardization process of
HEVC, will serve as an example. The sequence has resolution

WQVGA, and contains camera pan and zoom simultaneously,
as can be seen in Figure 3.

Fig. 3. Frames number 1 and 150 from BQSquare sequence with resolution
WQVGA. The change in perspective comes from zooming out and camera
pan.

Fig. 4. Frames number 1 and 150 from the Station sequence. The change
in perspective is extreme, considering that within a few seconds the scale of
the scene has completely changed due to zooming out.

For the visualization of motion vector differences, only the
upper left part of each frame in the image will be used. Figure
5 shows the cropped upper left region of the size 128x128
pixels of BQSquare. Arrows show the motion vector difference
generated as follows: first, for every pixel in the image, a
motion vector is derived. It is computed using a homography
that describes the relation in between the first frame and
the respective frame using the algorithm for camera motion
compensation introduced in [16] and briefly summarized in
Section IV-A. Second, the motion vector of the upper left
pixel is taken as a reference and motion vector differences with
respect to this vector are computed. In a final step quantization
with a precision of 1

8 of a pixel is applied. The arrows are
normalized, that is, the length of the arrows is independent
of the length of the motion vector difference. Hence only the
change in direction can be illustrated. Every arrow stands for
a region of 4x4 pixel, as visualizing a vector in the image for
every pixel is not possible.

Since motion vector differences of less than 1
8 of a pixel

are not considered, the absence of arrows in large parts of the
considered region of frame number 2 signifies that the motion
vectors remain very similar in the considered area. In frame
number 3, for the considered region of 128x128 pixels, four
regions with a different motion vector arise. With increasing
temporal distance, the differences between neighboring pixels
increases which is illustrated in the second row of Figure 5
which shows the result for vector differences for frames 9,
14 and 19, respectively. Figure 6 is the same visualization,
however for the sequence Station, which has 1080p resolution.
Here the situation is different, that is, the motion vectors seem
to differ spatially from pixel to pixel even when the considered
frames are temporally close. This is due to the particularly
strong zoom, see Figure 4, where the size of objects in
the scene has completely changed during the time of 150
frames. This becomes particularly apparent when compared
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Fig. 5. Cropped upper left region of the size 128x128 pixels of BQSquare.
Frames number 1, 2, 3, 9, 14, and 19 (left to right, top to bottom) are shown.
In addition, arrows show the motion vector difference from the upper left
motion vector and the motion vector at the current location. This illustrates
that, in the presence of zoom, the difference between neighboring pixel motion
vectors increases with the temporal distance of the considered frames.

to Figure 3, where the change in size is considerably less
important. Hence it can be concluded that the spatial variation
of motion vectors depends on the strength of the zoom in the
sequence on one hand and the temporal distance between the
considered frames on the other. While the visualization was
useful to give a general impression of the spatial variation
of motion vectors, we further want to provide a quantitative
analysis in the sequel.

Fig. 6. Cropped upper left region of the size 128x128 pixels of Station.
Frames number 1, 2, 3, 5, 7, and 9 (left to right, top to bottom) are shown. In
addition, arrows show the motion vector difference from the upper left motion
vector and the motion vector at the current location. All motion vectors are
derived for the pixel position using a precomputed homography that can be
assumed as being exact.

D. Lower and upper bounds for motion vector differences

As already mentioned background motion can be modeled
using homographies. For convenience, we want to restate
equations (1) and (2) in a less general way, namely by
disregarding perspective effects. This means that h31 and h32

are zero, which will cause n′ to be 1 which obviates it. Hence,

for that case equation (1) can be written as:(
x′

y′

)
= Ah ·

(
x
y

)
+

(
h13

h23

)
, (3)

with
Ah =

(
h11 h12

h21 h22

)
. (4)

This is in fact the affine motion model endowed with a
displacement vector. The model is still able to represent zoom.
Equation (2) for motion vectors still holds with n′ = 1. Now
let us define the two pixel locations x0 and x1. We are now
interested in their respective motion vectors v0 and v1 and
how they differ. Clearly, this depends on the distance between
x0 and x1. Therefore we define the difference δ as

δ = x1 − x0, (5)

which makes ‖δ‖2 the distance between x0 and x1. Then we
have for the difference in corresponding vectors δ′:

δ′ = v1 − v0

= (x′1 − x1)(x′0 − x0)
= Ahx1 − x1 −Ahx0 + x0

= (I −Ah)(x1 − x0)
= (I −Ah)δ,

(6)

with I being the identity matrix. We are interested in some
bounds on the difference in vectors. We can therefore consider
the squared `2 norm of δ′:

‖δ′‖22 = ‖v1 − v0‖22
= ‖(I −Ah)δ‖22
= ((I −Ah)δ)

T
((I −Ah)δ)

= δT(I −Ah)T(I −Ah)δ.

(7)

The last line is a form of Rayleigh’s Quotient if we set that
‖δ‖22 = 1, that is fix x0 and x1 to be direct left or right, upper
or lower neighbors. In fact we have that

λ0 ≥ δT(I −Ah)T(I −Ah)δ ≥ λ1, (8)

with λi being the eigenvalues of (I − Ah)T(I − Ah). More
generally, for any ‖δ‖2, we have

‖δ‖22λ0 ≥ δT(I −Ah)T(I −Ah)δ ≥ ‖δ‖22λ1, (9)

Considering that the eigenvalues λi are also the squares of
the singular values of (I −Ah), we have that

‖δ‖2s0 ≥ ‖δ′‖2 ≥ ‖δ‖2s1. (10)

Hence using the homography we can find a lower bound for
the motion vector differences between neighboring pixels.

In particular, we can take the sequence Tempete, the ho-
mography that describes the relation between the first frame
and frame number 23 (it will be shown later that this is an
optimal distance for long-term prediction for this sequence,
and the zooming can be assumed constant throughout the
sequence). Using equation (10) with the corresponding ho-
mography we can immediately compute a lower bound on
how neighboring motion vectors will differ. From the singular
values of I − Ah, it immediately follows that even for 2x2
blocks (i.e. ‖δ‖22 ≤ 2), ‖δ′‖2 will not be small enough to
assign all pixels in the block the same motion vector, that is,
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if we use a motion vector precision of 1
8 of a pixel. In other

words, it is sensible to use a different motion vector for every
pixel, which can be achieved using homographies.

Similar results are obtained for the sequences including
zoom, like Waterfall, Tempete, and Concrete, when consid-
ering high temporal distances (e.g. 15-35 frames), and for
Station, where zoom is “stronger”, this is already the case
for close frames (distances of 1-4 frames).

Finally, two cases emerge where a homography may be
sensible to describe motion compensation:

1) Particularly strong zoom in the video, as in the example
of Station (1080p) sequence, see Figure 6.

2) Motion compensation with frames that are temporally
distant in video containing zoom, see second row of
Figure 5.

In the former case it has been shown that gains in video
compression with HEVC can be achieved, see [15]. In this
paper we will concentrate on the latter case. In general,
when zooming is not so important, gains can be achieved
by applying long-term motion compensation in the case of
zooming out. While this Section has outlined that to perform
long-term motion compensation in videos containing zoom
the usage of homographies is necessary, the next Section will
reveal why doing so can be advantageous in the first place.
Finally, it will become clear that in both cases, the gains arise
from the fact that we predict from images with finer scale.
Understanding the real source of the gains that can be achieved
with sequences containing zoom can allow to generalize gains
for a very few sequences with very strong zoom to the more
general case of zooming out.

III. EFFECTS OF TEXTURE SCALING IN MOTION
COMPENSATION

A. Characterization of video distortion through compression

The power spectral density of a signal can be expressed in
the following way:

Φss(ω) = E
{∣∣∣S(ω)

2
∣∣∣} , (11)

where S(ω) is the Discrete Time Fourier Transform of the
sampled signal s(n) and E {·} denotes the expected value of
a given expression. It is well known that that R(D) (R denotes
the rate, D the distortion) can be characterized for a discrete
stationary Gaussian source, using a relation from [19]. In fact,
it turns out that for such a signal with a spectral density Φ(ω)
and the distortion given in a parametric form by:

Dθ =
1

2π

∫ π

−π
min [θ,Φ(ω)] dω, (12)

and

R(Dθ) =
1

4π

∫ π

−π
max

[
0, log

Φ(ω)

θ

]
dω. (13)

The R(D) curve is generated by assigning values from the
interval [0, sup Φ(ω)] to θ. The notation sup(·) is used for
the supremum of a function.

More importantly, for the case described by equations (12)
and (13), the distortion of the source can be characterized by

H(ω) = max(0,1− Θ
Φ(ω) )s +

Gaussian non-white
noise

s′

Fig. 7. The principle of the optimum forward error channel to model the
distortion of a compressed source.

the forward error channel, as shown in Figure 7. The source
signal is filtered with a filter H(ω),

H(ω) = max

[
0, 1− θ

Φ(ω)

]
(14)

and Gaussian noise with a spectral density

Φnn(ω) = max

[
0, θ(1− θ

Φ(ω)
)

]
(15)

is added to the signal. This is an idealized description of how
the compression will affect the signal in order to achieve
a given rate and does not propose a real system that will
have the given properties. Hence the proposed R(D) curve
is a simplification that may not be accurate. Furthermore,
the assumption of a Gaussian distribution does not fit the
reality with DCT coefficients, where the distribution for DCT
coefficients of residual signals from hybrid video coding are
closer to a Laplace distribution, see e.g. [20]. All the before-
mentioned notwithstanding, the given model provides useful
insight in how the signal is affected by compression and will
be very important to explain effects that can be observed
with methods building upon HEVC. The rate distortion theory
above applies to the 2-D case (i.e. images) in a similar fashion,
but we relinquish to formulate the equations, since they have
been presented in [21].

It is clear that the effect of compression on the images,
which is the signal that is of interest, cannot be simply
described by ideal low-pass filtering. However, if typical power
spectral densities as they are assumed for images are used,
the resulting effect of filtering with H(ω) can be described
as non-ideal low-pass filtering. This result can be obtained
when inserting, for instance, the power spectral density of an
auto-regressive process, e.g. AR(1), into equation (14).

To complete this analysis we tried to verify the above in a
practical example. The upper row of Figure 8 shows the first
frame of the sequence Waterfall, which is mostly consisting
of texture and therefore has desired signal characteristics.

To obtain an estimate of the power spectral density of an
image, the relation given by equation (11), which defines the
power spectral density as the expected value of the squared
absolute value of the spectrum, is used as a basis. Practically,
the expected value will be estimated by computing the mean
over a series of square regions of the size 8×8 pixels. For the
sake of simplicity the two chroma channels will be discarded
and only luma will be used. The result as seen in the upper
row of Figure 8 is computed as follows:

Z(eiΩ) =
1

N

N∑
n=1

∣∣Sn(eiΩ)
∣∣2 , (16)
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where Ω is a vector of spatial frequency, that is Ω = (ωx, ωy).
Hence Z(eiΩ) is an estimate for the expected value of the
power spectral density of the image. For convenience, the
natural logarithm was plotted.

The above estimated power spectral density can be immedi-
ately used to verify qualitatively the assumed model for image
degradation by compression. As an example, we used the first
frame of the waterfall sequence. It was encoded with different
QP’s of 37 and 42. Both QP’s are chosen such to have visible
degradation, i.e. coding artifacts, which can be seen in the
middle and lower row of Figure 8. The effect of low-pass
filtering can be observed by considering the estimated power
spectral densities that are provided along with the images.
In fact, inserting the estimated power spectral density into
equation (14) clearly makes H(ω) a low-pass filter which
principally verifies the above for HEVC and the Waterfall
sequence.

−4

−2

0

2

4

−4

−2

0

2

4
−15

−10

−5

0

5

ω
x
 axisω

y
 axis

lo
g

(Z
)

−4

−2

0

2

4

−4

−2

0

2

4
−15

−10

−5

0

5

ω
x
 axisω

y
 axis

lo
g

(Z
)

−4

−2

0

2

4

−4

−2

0

2

4
−15

−10

−5

0

5

ω
x
 axisω

y
 axis

lo
g

(Z
)

Fig. 8. The logarithm of the power spectral density is estimated for
the original and two reconstructed images that were coded using the HM
software at a QP of 37 and 42. In both cases the unaltered HM software
was used. Differences can best be perceived when considering values close
to {ωx, ωy} = {−π,−π}.

B. Effects of changes in scale or perspective in video
The notion of scale to be used here is very simple. It is

assumed that in images that are seen in a video the sampling
remains unchanged, which corresponds to the physical reality.
Beyond the sampled signal (which is the image) it is assumed
that there is a corresponding continuous signal, s(t), which
is sampled during the imaging process. While the sampling
remains unchanged, zooming is modeled by simply scaling
the continuous signal, that is the scaled signal is given by
s(αt), where α is the scaling factor that will be used in the
sequel, with α always being strictly positive.

Let us define a continuous 1-D signal s(t) with its corre-
sponding Fourier transform F(s(t)) = S(f). We are interested
in the effect of scaling a signal (e.g. zooming in sequences), or
more precisely in the effect of scaling on the Fourier transform.
Indeed, the Fourier transform of a signal s(αt) is

Sα(f) =
1

α
S(
f

α
), (17)

for positive α.
Let us consider a spectrum S(f) of to the signal s(t) as

in the example of Figure 9. The influence of scaling can
be illustrated easily in this case, as a scaling with α in
time implies a scaling with 1

α in the frequency domain, and
weighting with factor 1

α .

S(f)

−f1 f1

1

Sα(f)

−f1α f1α

1

α

α > 1 Sα(f)

−f1α f1α

1

α

α < 1

Fig. 9. Effect of scaling the signal s(t) on the the Fourier transform S(f).

Practically this implies that when a signal is scaled with
a factor α < 1, that is, the shape of the signal broadens,
the Fourier spectrum will become narrower and multiplied by
1
α > 1, which is an increase in amplitude. Speaking of video
sequences, this property can easily be extended to the 2-D
image case, where zooming out of a scene can be regarded
as the scaling of the signal with an α > 1 in both spatial
directions. Considering that imaging is the process of mapping
the real world on a 2-D plane, zooming in can be reasonably
thought of as scaling in the real world. This analogy being
made, we can now analyze the video compression process
with special focus on zooming in videos.

It is clear that the imaging process entails low-pass filtering,
since the physical pixels on CCD or CMOS sensors have a
certain area and the light falling onto that area is spatially
integrated (effects arising from optics put aside). Considering
this, it is now interesting to review the process of scaling
(zooming when speaking of video sequences). The signal
falling on the sensor can be scaled as shown in Figure 9 to
model zooming. The effect that details disappear in a video
when zooming out can be modeled by saying that the details
“are moving towards higher frequencies” and at some stage
are filtered out somewhere in the image acquisition process.
The idea itself may not be so important, but when combined
with the effects occurring from compression, this can be used
to explain the gains observed later in the results part of the
paper.

C. Prediction from compressed images with different scale

To explain the gains with sequences containing change in
scale, the assumption will be made that all the preceding
notwithstanding, distortion from compression can be modeled
with ideal low-pass filtering. Furthermore, we will assume that
the image is a continuous 1-D signal with a corresponding
Fourier Transform.
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The compression process can hence be modeled as shown
in Figure 10 (a). The Fourier Spectrum is simply low-pass
filtered, so that the spectrum of the compressed image is
given by Scomp(f) from Figure 10 (b). In the presence of
zooming out, the long-term picture buffer from Figure 12
contains images with a slightly finer scale. Using our model,
we can assume these images to have a spectrum Sα(f), α < 1,
which is shown in (c). As all images are compressed with the
same QP, and the scene does not change completely, we will
assume the same Hcomp(f) for all images to model the low-
pass filtering that results from the compression, see (c). The
resulting Spectrum Sα,comp(f) is shown in (d). The difference
between Scomp(f) from (b) and Sα,comp(f) from (d) is that
a part of the Spectrum is “saved” by the contraction of the
Spectrum caused by scaling.

f

S(f)

f1−f1 fc−fc

Hcomp(f)

(a)
f

Scomp(f)

f1−f1 fc−fc

(b)

f

Sα(f)

αf1 f1−f1 fc−fc

Hcomp(f)

(c)
f

Sα,comp(f)

αf1 f1−f1 fc−fc

(d)
Fig. 10. (a) shows the Fourier Spectrum of an image being low-pass filtered,
and (b) the resulting Spectrum of the compressed image given by Scomp(f).
The same image at a slightly finer scale has the Spectrum Sα(f) which is
shown in (c). As this image was compressed with the same QP, the same
Hcomp(f) can be used to model the low-pass filtering that results from the
compression, see Figure 10 (c). The result is in turn the Spectrum Sα,comp(f)
that is shown in Figure 10 (d). The difference with respect to Scomp(f) from
Figure 10 (b) is that a part of the Spectrum is “saved” by the contraction of
the Spectrum caused by scaling.

Now, the two cases of prediction from images with equal
and finer scale can be directly compared. The signal available
in the former case is given in Figure 11 (a) which can be
directly taken from Figure 10 (b). In the latter case, the
compressed signal has to be scaled with factor 1

α first in order
to match the current image (in practice this is done by warping,
see Figure 12). The process results in what is given in Figure
11 (b), that is, S 1

α ,comp(f), which is obtained by re-scaling
Sα,comp(f) from Figure 10 (d). Comparing (a) and (b) shows
that in (b) more “high-frequent” information is available, that
could be useful since the original S(f) should be predicted.

f

Scomp(f)

f1−f1 fc−fc

(a)
f

S 1
α ,comp(f)

f1−f1 1
αfc−fc

(b)
Fig. 11. (a) is the Spectrum already shown in Figure 10 (b), which is
now compared to the re-scaled signal S 1

α
,comp(f). The latter is obtained by

scaling the Sα,comp(f) with the factor 1
α

. It becomes apparent that in case
(b) more “high frequent” information is available, and since ideally the full
signal as seen in Figure 10 (a) should be reconstructed, using Sα,comp(f)
seems to pose an advantage.

IV. PROPOSED METHOD

We have shown that homographies are useful to achieve a
motion vector precision of 1

8 of a pixel in every pixel location
in the presence of zoom and long-term motion estimation.
Furthermore, we have shown that it can be assumed that details
can be better preserved with long-term motion compensation
from compressed images, that is, prediction from finer scale
distorted images is advantageous. The two taken together, we
propose a system as presented in Figure 12. It uses an extra
long-term picture buffer where pictures are stored and then a
picture with a given distance is warped into the perspective of
the frame to be encoded. The latter is then inserted into the
reference picture buffer for the purpose of motion compen-
sation. We want to emphasize that the enhanced encoder and
decoder use the same number of reference pictures, that is,
the oldest reference picture is simply replaced by the warped
long-term reference.

To allow the decoder to perform the same procedure the
homography is coded into the bitstream. Instead of coding
the floating point values of the homography themselves we
encoded motion vectors generated from the homography acting
on the corner points of the image. This allows the decoder to
derive the homography. For the decoder it is sufficient to have
four motion vectors to derive one homography per frame and
thereby perform the same warping operation at the decoder.
In practice, the bits stemming from those four motion vectors
are negligible with respect to the overall bitrate, even for high
QP values.

Transform/
Quantization

Inverse
Transform

De­blocking &
Loop
Filter

Intra
Prediction

Motion
Compensation

Motion
Estimation

­

Mode
Decision

LTFW Algorithm

Long­term   
buffering

Frame warping

Inverse
Transform

IBDI off

TU

TU

PU

PU

PU

CU

Camera Motion
Estimation

Fig. 12. Overall concept of the proposed method. We use long-term frame
warping (LTFW) in a separate frame buffer to warp a temporally distant
frame into the perspective of the currently coded frame. The generated frame
is then inserted into the reference frame buffer and can be used for motion
compensation.

A. Homography estimation

The assumption behind the techniques presented here is that
global motion can be modeled with homographies. However
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it is not a trivial problem to compute homographies between
any two frames of a sequence. The algorithm we use in this
paper has been presented in [16]. We want to only outline the
most important elements of the method:

1) Points that are well-suited for tracking are selected and
tracked over time using the Lukas-Kanade algorithm.

2) A robust method is employed to derive homographies
from point correspondences.

3) An algorithm automatically decides when to restart the
estimation, i.e. when a new reference frame is selected
to re-initialize the tracking from. Matrix multiplication
of the homographies is used to relate frames after the
re-initialization.

Another important factor in the warping process is the interpo-
lation method. In a similar fashion as in [11], we use bicubic
spline interpolation which has proven to perform similarly as
the interpolation method used in HEVC and hence constitutes
a state-of-the-art interpolation method for video compression.

B. Complexity
The proposed scheme adds to both, the overall compuational

and space complexity. The global motion estimation with
homographies as described in section IV-A consists mainly
in tracking a number of points using the Lukas-Kanade al-
gorithm. In our particular implementation a real-time motion
estimation with sequences of resolution up to CIF is possible.
For the results presented in this paper, and the sequences
with low resolution (up to CIF), global motion estimation was
estimated in real time, that is about 30 frames a second. If
the number of tracked points is limited, this is also possible
with higher resolution video, however, for the results presented
here, the processing frequency for a 720p sequence was of
about 15 frames per second. We shall mention that this does
not really add to the overall encoder complexity, since with the
HM software that we used for our experiements, only about
2 frames can be encoded per minute on the same machine.
The additional decoder complexity is very limited, since the
additional operations necessary for decoding our streams is
limited to warping one picture in the decoded picture buffer
and hence decoding time is comparable to HM.

As for the space complexity, the basic scheme as described
in Figure 12 requires a number of additional frames to be
stored. In particular, with a frame distance of 20 between the
frame to be coded and the warped frame, 16 additional frames
need to be kept in memory. However, we want to stress that
those are not additional reference frames. In addition, a fixed
frame distance is only important for our later experiments
in this paper, and is not required in general. By relaxation
of this condition, one could use varying long-term frame
distances, and thereby considerably decrease the number of
stored frames. It will be shown later (in Figure 15) that varying
the distance within certain bounds does not have a strong effect
on the compression ratio.

V. RESULTS

The results shown here compare the conventional HM2.2
with HM2.2 enhanced by homography-based long-term pre-
diction. In fact we use the same algorithm as we did in

[16], however with the high efficiency setting instead of low
complexity. Also a broader range of sequences is used for the
experiments.

A. Results with fixed frame distance

Tests of the performance of the algorithm presented in
Figure 12, that is, a system that warps old reference frames
into the perspective of the frame to be encoded are presented
here. A fixed temporal distance of 20 frames between encoded
and warped reference frame is used. A more detailed analysis
on how the temporal distance affects the gains achieved with
the method will be conducted in Section V-C.

The encoder settings are listed in Table I and are identical to
those listed in [22] that were used for the core experiments in
JCTVC after the CfP for HEVC. We use the low delay/high ef-
ficiency setting, up to the RateGOPSize that has been changed
from 4 to 1. The parameters of this setting are summarized in
Table I.

PARAMETER VALUE

GOP STRUCTURE IBBB
QP I 22, 27, 32, 37
QP B 23, 28, 33, 38
FRAME RATE 24, 30, 50 OR 60 FRAMES/S
NUMBER REFERENCE FRAMES 4
SEARCH RANGE 64 PIXELS
MAXIMUM CODING UNIT WIDTH 64 PIXELS
MAXIMUM CODING UNIT HEIGHT 64 PIXELS
MAXIMUM CODING PARTITION DEPTH 4
MAXIMUM TU TRANSFORM SIZE 25

MINIMUM TU TRANSFORM SIZE 22

INTER TU MAXIMUM DEPTH 3
INTRA TU MAXIMUM DEPTH 3
ENTROPY CODING MODE CABAC
HIERARCHICAL B CODING OFF
DEBLOCKING LOOP FILTER ON
MERGE MODE ON
ADAPTIVE LOOP FILTER ON

TABLE I
HM2.2 ENCODER SETUP FOR HIGH EFFICIENCY/LOW DELAY.

The coding results are given in Table II. The method
presented in Figure 12 seems to introduce a lot of novel
aspects to HEVC based compression since it incorporates
elements that used to play a role in outdated video coding
standards under new conditions, that is, state-of-the-art global
motion estimation, transmission and interpolation. As already
shown in Figure 1, temporal repetition accounts for some
of the gains. However looking closer at the gains another
characteristic is typical for the sequences where gains are
observed. In fact, unlike PartyScene, where there is zooming
in, in Waterfall, Tempete, Concrete Jets, Station and BQSquare
there is zooming out. It is now important to note that zooming
out in the scene together with a setting as shown in Figure 12
implies prediction from finer scale images, the case described
in Section III-C.

All the sequences presented have a frame rate of 30 frames
per second, except for PartyScene with 50 frames per second
and BQSquare with 60. The resolution is given in Table II, and
furthermore the first 300 frames were used for the BQSquare
sequence, the first 150 for Station and the first 200 for Jets.
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For comparison, with a QP setting of GOP related QP of
4, that is varying QP from frame to frame, for the reference
encoder and enhanced system a Bjøntegaard Delta Rate of
-27.5 % can be achieved for the Waterfall sequence and
-7.5 % for the BQSquare sequence. Hence the coding gains
are slightly lower, but for the following discussion on optimal
distances between reference frame and frame to be encoded,
the usage of equal QP is a natural choice in order to get clear
results that are not affected by changes in QP from frame to
frame.

It will be seen in Section V-C that the gains depend on
the scale ratio between the warped frame and the frame to be
encoded. Slightly better results than those presented here can
be achieved by varying this ratio, but the distance ∆ = 20 is,
in most cases, close to the optimum, see Figure 15. The only
exception is the Station sequence, were the zooming out is
very strong as pointed out previously. Hence we can mention
the results for a frame distance of ∆ = 4 for Station, which
is a ∆-Rate of 38.141%, which is significantly better than the
15.112% that are achieved with ∆ = 20.

As mentioned before, gains for the Station sequence were
already presented in [14], [15], but no details on the imple-
mentation nor the precise realization are given. We want to
emphasize that the sequence BQSquare (for which we could
achieve gains) was included in the common conditions of the
core experiments, see [22], and therefore tested in [14], [15],
but there no gains could be acheived for BQSquare or any
other of the test sequences included in the test set, since the
mechanism presented here was not discovered at the time.

Sequence Res. ∆PSNR ∆Rate
WATERFALL 336X272 1.393 dB -28.765 %
BQSQUARE WQVGA 0.342 dB -7.632 %
CONCRETE CIF 0.586 dB -10.585 %
TEMPETE CIF 0.727 dB -14.949 %
PARTYSCENE WQVGA 0.222 dB -4.576 %
SHERIFF 360P 0.234 dB -4.813 %
JETS 720P 0.634 dB -26.811 %
STATION 1080P 0.329 dB -15.112 %

TABLE II
BJONTEGAARD DELTA RESULTS FOR HM2.2 AND A FIXED TEMPORAL

DISTANCE OF ∆ = 20 FRAMES BETWEEN REFERENCE FRAME AND FRAME
TO BE ENCODED.

B. Power spectral density of reconstructed frames

To verify the above model on the gains achieved, we con-
sidered estimating the power spectral density of reconstructed
frames from both the original encoder and the system using
LTFW as described in this paper. The power spectral density
of an image can be estimated as described previously by using
equation (16). For the case of the Waterfall sequence and QP
37 the power spectral density of the last frame was estimated
for both the encoding method with the long-term warped
prediction and the original encoder and shown in Figure 14
where (a) is the original encoder and (b) the enhanced system.
The gains in terms of PSNR that are of about 1 dB for the case
of QP=37 (see Figure 13). This shows that the conjecture that
by using the presented long-term warping technique, details
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Fig. 13. Rate-distortion curves for a set of sequences and with a temporal
distance of 20 frames between encoded and warped reference frame.

contained in “higher frequency” components of the signal can
be better predicted. The effect does not appear in an idealized
fashion as presented in Figure 11, but the model seems to
capture well the principal mechanism behind the presented
gains for sequences with zooming out.
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Fig. 14. The estimated power spectral density for the last frame of the
sequence Waterfall. (a) is the original encoder and (b) the enhanced system
with warping. It shows that the gains in PSNR are reflected in the fact that
the power spectral density contains more “high frequency” components when
warping is used. Differences can only be perceived when considering values
close to {ωx, ωy} = {−π,−π}.

C. Results with different frame distances

The usage of homographies in video compression allows the
usage of far distant frames for reference despite camera motion
and zoom. With the principle of prediction from images with
different scale, we will now try to find an optimal relative
scale for prediction. Assuming that the focal length f in the
frame to be encoded is given with f = 1, we will denote the
focal length of the warped framed as f∆, with ∆ being the
temporal distance measured in number of frames. This ensures
that the ratio f∆

f is equal to f∆.
We encoded the entire sequences multiple times using a

range for ∆ of 15 to 35. The optimal ∆ for each sequence
is given in Table III. For the sake of conciseness, we will not
provide any details how we estimated a constant focal length
ratio over the whole sequence but it will suffice to say that
for the sequences that we analyzed the ratio remained almost
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constant throughout the sequence and we used regression to
get an estimate for the latter. Hence Table III also provides an
estimate for the optimal value of this ratio.
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Fig. 15. Bjøntegaard Delta Rate savings for a set of sequences containing
camera motion and zooming out. Varying the distance between the frame to
be coded and the reference frame causes change to the compression ratio.
The given examples show that the variation of the performance around the
optimal frame distance is not too strong.

For the purpose the Bjøntegaard Delta Rate savings de-
pending on the temporal distance between the frame to be
coded and the reference frame that is warped are presented in
Figure 15. This Figure illustrates that a fixed temporal distance
may not be necessary since variation around the optimum is
oftentimes not so strong, which would allow for flexible frame
distance requiring less memory in the encoder and decoder.

Sequence optimal ∆ f∆

WATERFALL 21 0.9566
BQSQUARE > 35 < 0.9536
CONCRETE 17 0.9463
TEMPETE 23 0.91

TABLE III
TABLE CONTAINS VALUES FOR OPTIMAL ∆ BETWEEN WARPED

REFERENCE FRAME AND FRAME TO BE CODED. FURTHERMORE THE
ESTIMATED RELATION BETWEEN FOCAL LENGTHS IS COMPUTED FOR THE

RESPECTIVE VALUE OF ∆.

From the values presented in Table III, it can be concluded
that the optimal relative focal length is between 0.91 and 0.95
if Bjøntegaard Delta is considered (that is, the overall optimal
∆ is computed taking all QP’s into consideration at the same
time), regardless of the spatial characteristics of the encoded
images.

A first application of the found ratio was already provided
in Section V-A, where the gains for Station were shown not
only for the long-term, but also for warped frames within the

reference buffer, that is, ∆ = 4. Indeed, the relative focal
length in that case is 0.95, compared to approximately 0.8 in
the case of ∆ = 20, where the rate savings achieved are less
than half, see Table II.

The analysis in Section III-C may suggest the following: the
smaller the ratio f∆/f , the stronger the effect of acquiring
high frequency information. However, two limiting factors
have to be mentioned. First, when the scale ratio is low this
means that not the entire image can be predicted but only
the portion that is seen in the fine scale view. Second, when
the scale ratio becomes very small, the warping process turns
into decimation (or subsampling) which may incur aliasing.
Analyzing this problem is a future research field and could lead
to an interpolation method that incorporates low-pass filtering.
However this analysis is beyond the scope of this paper.

VI. CONCLUSION AND FUTURE WORK

We have shown that in the context of HEVC, global
motion compensation using homographies is sensible in the
special cases of repeated content and/or zoom. Our system
can compute camera motion and zoom throughout an entire
sequence and in this paper we have shown how this can be
used to improve the compression efficiency in a video coding
system that is based on HEVC. The results presented here
are specific for HEVC and our method. In future, we plan to
change the interpolation method (e.g. one incorporating low-
pass filtering) or enhancing the system to allow for multiple
homographies per frame. The latter would render the tracking
a more challenging task since the long-term tracking of objects
in a video is still considered a challenge in computer vision.
Furthermore, to take advantage of the presented effect, the
objects would have to undergo change in scale, a circumstance
that renders the tracking particularly challenging. All consid-
ered, this constitutes a future option in video coding that could
help improve compression beyond the current state-of-the-art.
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