Loading [MathJax]/extensions/MathMenu.js
A Novel Joint RFID and Radar Sensor Network for Passive Localization: Design and Performance Bounds | IEEE Journals & Magazine | IEEE Xplore

A Novel Joint RFID and Radar Sensor Network for Passive Localization: Design and Performance Bounds


Abstract:

Nowadays, passive and semi-passive wireless devices are increasing their appeal, particularly in the new scenario of the Internet of Things, thanks to their low complexit...Show More

Abstract:

Nowadays, passive and semi-passive wireless devices are increasing their appeal, particularly in the new scenario of the Internet of Things, thanks to their low complexity and low energy consumption. In this context, radio-frequency identification (RFID) and radar sensor networks (RSNs) are rising interest when the localization of (semi-)passive tags (without active transmitters) and moving passive objects is required. In this paper, we propose a novel network architecture capable of jointly localizing (semi-)passive tags and moving passive objects through the analysis of their backscattered response. The reciprocal interference in objects/tags localization arising from the signal variations caused by objects' and tags' movement is characterized. We present an analytical derivation, based on the Cramér-Rao bound, providing the theoretical localization accuracy of tags and passive objects. The proposed approach represents a fundamental design tool providing insights on how system parameters (power and signal format), network topology, interference, and network configuration (monostatic or multistatic) affect the localization performance.
Published in: IEEE Journal of Selected Topics in Signal Processing ( Volume: 8, Issue: 1, February 2014)
Page(s): 80 - 95
Date of Publication: 24 October 2013

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.