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Abstract—In this paper, we consider decentralized sequential
decision making in distributed online recommender systems,
where items are recommended to users based on their search
query as well as their specific background including history
of bought items, gender and age, all of which comprise the
context information of the user. In contrast to centralized
recommender systems, in which there is a single centralized seller
who has access to the complete inventory of items as well as the
complete record of sales and user information, in decentralized
recommender systems each seller/learner only has access to the
inventory of items and user information for its own products and
not the products and user information of other sellers, but can
get commission if it sells an item of another seller. Therefore the
sellers must distributedly find out for an incoming user which
items to recommend (from the set of own items or items of
another seller), in order to maximize the revenue from own sales
and commissions. We formulate this problem as a cooperative
contextual bandit problem, analytically bound the performance
of the sellers compared to the best recommendation strategy
given the complete realization of user arrivals and the inventory
of items, as well as the context-dependent purchase probabilities
of each item, and verify our results via numerical examples on a
distributed data set adapted based on Amazon data. We evaluate
the dependence of the performance of a seller on the inventory
of items the seller has, the number of connections it has with
the other sellers, and the commissions which the seller gets by
selling items of other sellers to its users.

Index Terms—Multi-agent online learning, collaborative learn-
ing, distributed recommender systems, contextual bandits, regret.

I. INTRODUCTION

One of the most powerful benefits of a social network
is the ability for cooperation and coordination on a large
scale over a wide range of different agents [1]. By forming a
network, agents are able to share information and opportunities
in a mutually beneficial fashion. For example, companies can
collaborate to sell products, charities can work together to raise
money, and a group of workers can help each other search
for jobs. Through such cooperation, agents are able to attain
much greater rewards than would be possible individually.
But sustaining efficient cooperation can also prove extremely
challenging. First, agents operate with only incomplete infor-
mation, and must learn the environment parameters slowly
over time. Second, agents are decentralized and thus uncertain
about their neighbor’s information and preferences. Finally,
agents are selfish in the sense that, they don’t want to reveal
their inventory, observations and actions to other agents, unless
they benefit. This paper produces a class of algorithms that
effectively addresses all of these issues: at once allowing
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decentralized agents to take near-optimal actions in the face of
incomplete information, while still incentivizing them to fully
cooperate within the network.

The framework we consider is very broad and applicable
to a wide range of social networking situations. We analyze
a group of agents that are connected together via a fixed
network, each of whom experiences inflows of users to its
page. Each time a user arrives, an agent chooses from among
a set of items to offer to that user, and the user will either
reject or accept each item. These items can represent a variety
of things, from a good that the agent is trying to sell, to a
cause that the agent is trying to promote, to a photo that the
agent is trying to circulate. In each application, the action of
accepting or rejecting by the user will likewise have a distinct
meaning. When choosing among the items to offer, the agent
is uncertain about the user’s acceptance probability of each
item, but the agent is able to observe specific background
information about the user, such as the user’s gender, location,
age, etc. Users with different backgrounds will have different
probabilities of accepting each item, and so the agent must
learn this probability over time by making different offers.

We allow for cooperation in this network by letting each
agent recommend items of neighboring agents to incoming
users, in addition to its own items. Thus if the specific
background of the incoming user makes it unlikely for him
to accept any of the agent’s items, the agent can instead
recommend him some items from a neighboring agent with
more attractive offerings. By trading referrals in this fashion,
all of the agents that are connected together can benefit. To
provide proper incentives, a commission will be paid to the
recommending agent every time an item is accepted by a user
from the recommended agent. When defined appropriately, this
commission ensures that both sides will benefit each time a
recommendation occurs and thus is able to sustain cooperation.

However, since agents are decentralized, they do not directly
share the information that they learn over time about user
preferences for their own items. So when the decision to
recommend a neighboring agent occurs, it is done based solely
on the previous successes the agent had when recommending
that neighbor. Thus agents must learn about their neighbor’s
acceptance probabilities through their own trial and error,
unlike in other social learning papers such as [2]-[5], where
agents share information directly with their neighbors.

Another key feature of our algorithms is that they are
non-Bayesian unlike [2]], [3[]. Instead we model the learning
through contextual bandits, where the context is based on the
user’s background. By building upon the theory of contextual
bandits, we produce a class of algorithms that allows agents to



take near-optimal actions even with decentralized learning. We
prove specific bounds for the regret, which is the difference
between the total expected reward of an agent using a learning
algorithm and the total expected reward of the optimal policy
for the agent, which is computed given perfect knowledge
about acceptance probabilities for each context. We show that
the regret is sublinear in time in all cases. We further show that
our algorithms can operate regardless of the specific network
topology, including the degree of connectivity, degree distri-
bution, clustering coefficient, etc., although the performance is
better if the network is more connected since each agent will
have access to more items of other agents.

The rest of the paper is organized as follows. Related
work is given in Section The problem formulation is
given in Section In Section we consider the online
learning problem involving multiple decentralized agents and
analyze its regret. In Section we develop an algorithm
to achieve sublinear regret when the purchase probability of
the items depend on the other recommended items, and in
Section we develop a faster learning algorithm when
item purchase probabilities are independent of each other.
The effect of connectivity between the agents is given in
Section |V} In Section numerical results demonstrating the
effects of commissions, size of the set of items of agents and
connectivity of agents are given, using an artificial data set
which is based on a real data set. Finally, we conclude the

paper in Section

II. RELATED WORK

This work represents a significant departure from the other
works in contextual bandits, which consider only centralized
agents, single arms played at once, and no incentive issues.
Most of the prior work on contextual bandits is focused on
a single agent choosing one arm at a time based on the
context information provided to it at each time slot [[6]—[9].
In these works the system is centralized, so the agent can
directly access all the arms. Our framework in this paper
differs from the centralized contextual bandit framework in
two important aspects. First, multiple agents who can only
access a subset of arms, and who only get feedback about
this subset, cooperate to maximize their total reward. Second,
each agent can choose multiple arms at each time slot, which
makes the arm selection problem combinatorial in the number
of arms. To the best of our knowledge, our work is the first
to provide rigorous solutions for online learning by multi-
ple cooperative agents selecting multiple arms at each time
step when context information is present. We had previously
proposed a multi-agent contextual bandit framework in [[10]
where each agent only selects a single arm at each time slot.
Different from this work, in this paper we assume that an
agent can select multiple arms, and the expected reward of
the agent from an arm may depend on the other selected arms.
This makes the problem size grow combinatorially in the arm
space, which requires the design of novel learning algorithms
to quicken the learning process. Combinatorial bandits [[11]]
have been studied before in the multi-armed bandit setting, but
to the best of our knowledge we are the first to propose the

[61-191 TU150, [1817 [10] [This work
[19]

Multi-agent no yes yes yes
Cooperative N/A yes yes yes
Contextual yes no yes yes
Context arrival arbitrary N/A arbitrary | arbitraty
process
(syn)chronous, N/A syn both both
(asyn)chronous
Regret sublinear log sublinear | sublinear
Multi-play for no no no yes
each agent
Action set size no no no yes
combinatorial in
number of agents
and items
Action sets of N/A same | different | different
the agents

TABLE I: Comparison with related work in multi-armed
bandits.

decentralized contextual combinatorial bandit model studied in
this paper. This decentralization is important because it allows
us to analyze a social network framework and the fundamental
challenges associated with it including commissions, third-
party sellers, etc. We are also able to consider the specific
effects of the network structure on the regret in our model. In
contrast, our approach in [[10] does not address the network
structure concerns. Several other examples of related work
in contextual bandits are [[12], in which a contextual bandit
model is used for recommending personalized news articles
based on a variant of the UCB1 algorithm in [[13] designed
for linear rewards, and [14] in which the authors solve a
classification problem using contextual bandits, where they
propose a perceptron based algorithm that achieves sublinear
regret.

Apart from contextual bandits, there is a large set of
literature concerned in multi-user learning using a multi-
armed bandit framework [15]-[[19]. We provide a detailed
comparison between our work and related work in multi-
armed bandit learning in Table [ Our cooperative contextual
learning framework can be seen as an important extension of
the centralized contextual bandits framework [6]]. The main
differences are that: (i) a three phase learning algorithm with
training, exploration and exploitation phases is needed instead
of the standard two phase algorithms with exploration and
exploitation phases that are commonly used in centralized
contextual bandit problems; (ii) the adaptive partitions of the
context space should be formed in a way that each learner can
efficiently utilize what is learned by other learners about the
same context; (iii) since each agent has multiple selections
at each time slot, the set of actions for each agent is very
large, making the learning rate slow. Therefore, the correlation
between the arms of the agents should be exploited to quicken
the learning process. In our distributed multi-agent multiple-
play contextual bandit formulation, the training phase, which
balances the learning rates of the agents, is necessary since
the context arrivals to agents are different which makes the
learning rates of the agents for various context different.

There is also an extensive literature on recommender sys-
tems that incorporates a variety of different methods and



frameworks. Table [II] provides a summary of how our work
is related to other work. Of note, there are several papers that
also use a similar multi-armed bandit framework for recom-
mendations. For example, [20]] considers a bandit framework
where a recommender system learns about the preferences
of users over time as each user submits ratings. It uses a
linear bandit model for the ratings, which are assumed to be
functions of the specific user as well as the features of the
product. [21] is another work that utilizes multi-armed bandits
in a recommendation system. It considers a model that must
constantly update recommendations as both preferences and
the item set changes over time.

There are also numerous examples of works that do not
use a bandit framework for recommendations. One of the
most commonly used methods for recommendations are col-
laborative filtering algorithms such as [22[]-[28]], which make
recommendations by predicting the user’s preferences based
on a similarity measure with other users. Items with the
highest similarity score are then recommended to each user;
for instance items may be ranked based on the number of
purchases by similar users. There are numerous ways to
perform the similarity groupings, such as the cluster model
in [24]], [27] that groups users together with a set of like-
minded users and then makes recommendations based on what
the users in this set choose. Another possibility is presented
in [25]], which pre-filters ratings based on context before the
recommendation algorithm is started.

An important difference to keep in mind is that the rec-
ommendation systems in other works are a single centralized
system, such as Amazon or Netflix. Thus the system has
complete information at every moment in time, and does not
need to worry about incentive issues or pay commissions.
However, in this paper each agent is in effect its own separate
recommendation system, since agents do not directly share
information with each other. Therefore the mechanism we
propose must be applied separately by every agent in the
system based on that agent’s history of user acceptances. So
in effect our model is a giant collection of recommendation
systems that are running in parallel. The only cross-over
between these different systems is when one agent suggests
which of its items should be recommended by another agent.
This allows for an indirect transfer of information, and lets
that other agent make better choices than it could without this
suggested list of items.

Also, it is important to note that decentralization in the
context of our paper does not mean the same thing as in
other papers such as [[29]. Those papers assume that the users
are decentralized, and develop mechanisms based on trust and
the similarity of different users in order to allow wusers to
recommend items to each other. We are assuming that the
agents are decentralized, and so each user still only gets a
recommendation from one source, it is just that this source
may be different depending on which agent this user arrives
at. Thus this paper is fundamentally different from the works
in that literature.

ITII. PROBLEM FORMULATION

There are M decentralized agents/learners which are in-

dexed by the set M := {1,2,..., M}. Let M_; :== M —{i}.

Ttem-]  Memory- Uses [Performan-| Similarity | Central-
based based, context ce distance ized(C),
(IB), model- info. measure Decent-
user- based ralized(D)
based
(UB)
[30T [ UB Memory- No Ranking -
based precision
(22 T UB Bayesian- No MAE, Pearson
based latent RMS, correlation
semantic 0/1 loss
model
231 UB Bayesian- No [Precision& | Pearson C
based Recall correlation
Markov
B model
[[24] | IB_[Cluster model| No - Cosine C
1251 | UB Memory- Yes |Precision& - C
based Recall
[26] | UB Bayesian No |Precision& | Pearson C
classifier Recall correlation
B model
[27] | UB [Cluster model| No MAE& Pearson C
Coverage | correlation
128 T UB | MDP model No Recall  |Self-defined C
similarity
1207 | UB | MAB model No Reward Lipschitz C
continuous
[21] | UB | MAB model | Yes Regret Lipschitz C
continuous
Our | UB | MAB model | Yes Regret Holder D
work continuous

TABLE 1II: Comparison with prior work in recommender
systems.

Each agent 7 has an inventory of items denoted by F;, which it
can offer to its users and the users of other agents by paying
some commission. Users arrive to agents in a discrete time
setting (t = 1,2,...). Agent 7 recommends N items to its
user at each time slot. For example, /N can be the number
of recommendation slots the agent has on its website, or it
can be the number of ads it can place in a magazine. We
assume that NV is fixed throughout the paper. Each item f € F;
has a fixed price p} > (0. We assume that the inventories of
agents are mutually disjoint[] For now, we will assume that
all the agents in the network are directly connected to each
other, so that any agent can sell items to the users of any
other agent directly without invoking intermediate agents. We
will discuss the agents in more general network topologies in
Section Let F := U;e pmF; be the set of items of all agents.
We assume that there is an unlimited supply of each type of
item. This assumption holds for digital goods such as e-books,
movies, videos, songs, photos, etc. An agent does not know
the inventory of items of the other agents but knows an upper
bound on |]-'j|E]j € M_; which is equal to Fiax.

We note that our model is suitable for a broad range of appli-
cations. The agent can represent a company, an entrepreneut,
a content provider, a blogger, etc., and the items can be goods,
services, jobs, videos, songs, etc. The notion of an item can be
generalized even further to include such things as celebrities
that are recommended to be followed in Twitter, Google+, etc.
And the prices that we introduce later can also be generalized
to mean any type of benefit the agent can receive from a user.
For expositional convenience, we will adopt the formulation

'Even when an item is in the inventory of more than one agent, its price
can be different among these agents, thus different IDs can be assigned to
these items. We do not assume competition between the agents, hence our
methods in this paper will work even when the inventories of agents are not
mutually disjoint.

ZFor a set A, |A| denotes its cardinality.



of firms selling goods to customers for most of the paper, but
we emphasize that many other interpretations are equally valid
and applicable.

A. Notation

Natural logarithm is denoted by log(-). For sets .A and B,
A — B denotes the elements of A that are not in B. P(-) is
the probability operator, E|-] is the expectation operator. For
an algorithm «, F,[-] denotes the expectation with respect to
the distribution induced by . Let [t] := {1,...,t — 1}. Let

ﬂg = Ztoil 1/t2.
B. Definition of users with contexts

At each time slot ¢ = 1,2,.. ., a user with a specific search
query indicating the type of item the user wants, or other
information including a list of previous purchases, price-range,
age, gender etc., arrives to agent <. We define all the properties
of the arriving user known to agent 7 at time ¢ as the context of
that user, and denote it by x;(t). We assume that the contexts
of all users belong to a known space X, which without loss
of generality is taken to be [0,1]? in this paper, where d is
the dimension of the context space. Although the model we
propose in this paper has synchronous arrivals, it can be easily
extended to the asynchronous case where agents have different
user arrival rates, and even when no user arrives in some time
slots. The only difference of this from our framework is that
instead of keeping the same time index ¢ for every agent, we
will have different time indices for each agent depending on
the number of user arrivals to that agent.

C. Definition of commissions

In order to incentivize the agents to recommend each other’s
items, they will provide commissions to each other. In this
paper we focus on sales commission, which is paid by the
recommended agent to the recommending agent every time a
user from the recommending agent purchases an item of the
recommended agent. We assume that these commissions are
fixed at the beginning and do not change over time. The system
model is shown in Fig. [T] Basically, if agent ¢ recommends
an item f of agent j to its user, and if that user buys the item
of agent j, then agent 7 obtains a fixed commission which is
equal to ¢; ; > 0. All of our results in this paper will also
hold for the case when the commission is a function of the
price of the item f sold by agent j, i.e., ¢; ; (p?c) However we
use the fixed commission assumption, since privacy concerns
may cause the agent j or the user to not want to reveal the
exact sales price to agent ¢. We assume that ¢; ; < p? for all
i,j € M, f € F;. Otherwise, full cooperation can result in
agent j obtaining less revenue than it would have obtained
without cooperation. Nevertheless, even when ¢; ; > pic for
some f € F; C F;, by restricting the set of items that agent
j can recommend to agent i to F; — JF;, all our analysis for
agent ¢ in this paper will hold.

Agents may also want to preserve the privacy of the items
offered to the users, hence the privacy of their inventory in
addition to the privacy of prices. This can be done with the
addition of a regulator to the system. The regulator is a non-
strategic entity whose goal is to promote privacy among the

User Recommendations | Reward collection

arrivals| to agent i’s user and learning
Agenti reward = p’]} +cij
y - purchase rate feedback
zi(t)--> for f and j for x;(t)
Ni(t)
i requests 2 i f
items from j ! |:> q I:> f .sold
z;(t) H J g items
Agentj
Fj

purchase rate feedback
for g and ¢’ for x;(t)

reward = p) —¢; j

; 1Own item selected by agent i

i+ Ttem selected by agent j when called by agent i

Fig. 1: Operation of the system for agent i for N = 3
recommendations. At each time a user arrives to agent ¢ with
context x;(t), agent ¢ recommends a set of its own items and
items from other agents, which is denoted by N;(t).

agents. If agent 7 wants to recommend an item from agent j,
it can pass this request to the regulator and the regulator can
create private keys for agent j and the user of agent ¢, such that
agent j sends its recommendation to agent ¢’s website in an
encrypted format so that recommendation can only be viewed
by the user, who has the key. The regulator can also control
the transaction between agent j and agent ¢’s user such that
agent j pays its commission to agent ¢ if the item is sold. Note
that the regulator does not need to store the previous purchase
histories or the inventories of the agents. Also it only regulates
transactions between the agents but not the recommendations
of an agent to its own users.

D. Recommendations, actions and purchase probabilities

The N items that agent ¢ recommends to its user are
chosen in the following way: An item can be chosen from the
inventory J; of agent 7, or agent ¢ can call another agent j and
send the context information of x;(t) of its user, then agent j
returns back an item f’ with price pjf, to be recommended
to agent i based on z;(t). Let N;(t) be the set of items
recommended by agent ¢ to its user at time t. Let Ay be
the set of subsets of F with N items. Let AV € Ay be a set
of N recommended items.

Consider agent 4. Let U; := M_; U F;. For u; € F;, let
(us, 1) ((u4,0)) denote the event that u; is recommended (not
recommended) to agent ¢’s user. For u; € M_;, let (u;,ny,)
denote the event that agent 7 requests n,,, (distinct) items to

3 Another method to preserve the privacy of prices is the following: Agent
7’s item will be recommended by agent ¢ without a price tag, and when the
user clicks to agent j’s item it will be directed to agent j’s website where the
price will be revealed to the user.



be recommended to its user from agent u;. Let (u;,n;) =
{(wi, ;) }u;cu; be an action for agent i. Based on this, let

L; = {(u;,n;) such that n,,, € x{0,1} for u; € F; and

Ny, €1{0,...,N} for u; € M_; and Z nu,;N}7

u; €U;

be the set of actions available to agent i. We assume that
|F;| > N for all j € M. Let k; be the components of vector
(ui,n;) € L; with nonzero n,,. Since n,, = 0 means the
corresponding item will not be recommended for u; € F;,
and the corresponding agent will not recommend any items to
agent ¢ for u; € M_;, k; is enough to completely characterize
the action of agent ¢. Thus, for notational simplicity we denote
an action of agent 7 by k;. With an abuse of notation k; € L;
means that (u;,n;) corresponding to k; is in £;. For u; €
U;, we let n,, (k;) be the value of n,, in the vector (u;,n;)
corresponding to k;. Let M, (k;) be the set of agents in M _;
that recommend at least one item to agent ¢, when it chooses
action k;. We define m;(k;) as the number of items agent j
recommends to agent ¢ when agent ¢ chooses action k; € L;.
Clearly we have m;(k;) = n;(k;) for j € M_;, and m;(k;) =
Zuieﬂ Ty, (k‘l) Let m(kz) = (ml(k:z), . ,mM(kz)) be the
recommendation vector given action k;,

m_j(k;) == (ma(ki), ... ,mj1(ki),mypa(ki), . ..o mar(ki)),

and F;(k;) C F; be the set of own items recommended by
agent 7 to its user when it takes action k; € L;. For a set
of recommended items N € Ay, let G;(N) = N N F;
and g;(N) = |G;(N)|. Let g_;(N) = {g;(N)}jem_,.
Below, we define the purchase probability of an item f that
is recommended to a user with context x along with the set
of items N € Ap.

Assumption 1: Group-dependent purchase probability:
We assume that the inventory of each agent forms a separate
group (or type) of items. For example, if agents are firms,
then firm ¢ may sell televisions while firm j sells headphones.
For each item f recommended together with the set of items
N € Ay, if f is an item of agent j, i.., it belongs to
group F;, then its acceptance probability will depend on
other recommended items in the same group, i.e., G;(N\). The
acceptance probability of an item f € F; may also depend
on groups of other items offered together with f and also on
their number, ie., g_; (N), but not on their identities. For
f € Fj, a user with context x € A will buy the item with
an unknown probability g (z,N) := qr(z,G;(N),g_;(N)).
For all f € F, users with contexts similar to each other have
similar purchase probabilities. This similarity is characterized
by a Holder condition that is known by the agents, i.e., there
exists L > 0, a > 0 such that for all 7,2’ € X = [0, 1]%, we
have

lqr (2, N) = qp (2", N)| < L|z — "[|",
where || - || denotes the Euclidian norm in R?.

In Assumption [} we do not require the purchase proba-
bilities to be similar for different sets of recommendations
from the same group, ie., for f € N and f € N’ such

that G;(N) # G;(N'), the purchase probability of f can be
different for context z € X. Even though the Holder condition
can hold with different constants L; and o for each item
f € F, taking L to be the largest among Ly and « to be
the smallest among cy we get the condition in Assumption [T}
For example, the context can be the (normalized) age of the
user, and users with ages similar to each other can like similar
items. We will also consider a simplified version, in which the
purchase probability of an item is independent of the set of
other items recommended along with that item.

Assumption 2: Independent purchase probability: For
each item f offered along with the items in the set N' € Ay,
a user with context x will buy the item with an unknown
probability g7 (z, N') := gz (x), independent of the other items
in N, for which there exists L > 0, o > 0 such that for all
z,x’ € X, we have |gqr(z) — qr(2")] < Lljx — 2|~

When Assumption [2] holds, the agents can estimate the
purchase probability of an item by using the empirical mean of
the number of times the item is purchased by users with similar
context information. The purchase probabilities of items can be
learned much faster in this case compared with Assumption [I]
since the empirical mean will be updated every time the item is
recommended. However, when the purchase probability of an
item is group-dependent, the agents need to learn its purchase
probability separately for each group the item is in.

E. Objective, rewards and the regret

The goal of agent ¢ is to maximize its total expected reward
(revenue). However, since it does not know the purchase prob-
ability of any item or the inventories of other agents a-priori, it
must learn how to make optimal recommendations to its users
over time. In this subsection we define the optimal actions for
the agents and the “oracle” benchmark (optimal) solution the
agents’ learning algorithms compete with, which is derived
from the unknown purchase probabilities and inventories.

The expected reward of agent ¢ at time ¢ from recommend-
ing a set of items N to its user with context x;(t) = z is
given by

(N, z) = Z

FEWN—Fi)

ciinar (@ ND) + Y phag (@ Ny,

FENINF;

where j(f) is the agent who owns item f. Based on this, given
a user with context x, the set of items which maximizes the
one-step expected reward of agent ¢ is

N () := argmax (o;(N, x)) .

NE.AN

)

Since the inventory of other agents and ¢f(z,N), € X,
N € Ay are unknown a priori to agent 7, N} (z) is unknown
to agent ¢ for all contexts x € X. For a recommendation vector
m = (my,...,my), agent j has (‘ﬁ‘) actions k; € L; for
which m/(k;) = mj for all j’ # j. Denote this set of actions
of agent j by B;(m). For an action k; € B;(m), let

> ap(a Filks), m_j(ky),

feF;k;)

Tk, (x) =



be the purchase rate of action k]'ﬂ for a user with context .
The purchase rate is equal to the expected number of items in
F;(k;) sold to a user with context =, when the number of items
recommended together with F;(k;) from the other groups is
given by the vector m_;(k;). For actions of agent ¢ such that
m;(k;) > 0, the best set of items agent j can recommend to
agent ¢ (which maximizes agent ¢’s expected commission from
agent j) for a user with context = is F;(k} (k;, z)), where

]f;(ki, Z‘) =

argmax ;g ().
kjeB;(m(ksi))
According to the above definitions, the expected reward of
action k; € L; to agent 4 for a user with context z is defined
as

Wik, () = Z p;Qf(xvfi(ki)am—i(ki))

feFi(ks)

D Tk (ke (2)- 2
JEMi(ki)
Then, given a user with context x, the best action of agent @
is
K} () := argmax i i, (). 3
ki€L;

Note that for both Assumptions (1| and 2} f1; () (z) =
oi(N;(x), z). Let ; be the recommendation strategy adopted
by agent ¢ for its own users, i.e., based on its past observations
and decisions, agent ¢ chooses a vector «;(t) € L, at each time
slot. Let 3; be the recommendation strategy adopted by agent
1 when it is called by another agent to recommend its own
items. Let « = (a1,...,ay) and B8 = (B1,...,0m). Let

fl’ (1) be the expected total reward of agent 4 by time 7'
from item sales to its own users and users of other agents and
commissions it gets from item sales of other agents to its own
users. For f € F;, let Y*(¢) be a random variable which
is equal to 1 when agent ¢+ recommends its own item f to its
user at time ¢ (0 otherwise), let Yf "% (t) be a random variable
which is equal to 1 when agent ¢ recommends its own item f
to agent j when it is called by agent j at time ¢ (0 otherwise).
For j € M_;, let Y**(t) be a random variable that is equal
to 1 when agent ¢ asks for recommendations from agent j at
time ¢ for its own user (0 otherwise). Let the (random) reward
agent ¢ gets from the set of recommendations made by (o, 3)
to its user at time ¢ be

=) VP

feF:
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and let
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be the total expected reward agent ¢ can get based only on

HIf Fj(kj) = 0, then 7 1. () = 0.

recommendations to its own users by time 7'. Let

® Y Y7 () (5)

feF:

Ua ﬁ(t .T](t

be the number of items of agent ¢ purchased by agent j’s user
at time t. Clearly we have

T
T)+ Eap | Y. iUk gtz;(t)

t=1jeM_;

We can see that Q7, 5(T) > S, 5(T). Agent i’s goal is to
maximize its total reward S, 5(7") from its own users for any
T'. Since agents are cooperative, agent ¢ also helps other agents
Jj € M_; to maximize S}, 5(T') by recommending its items
to them. Hence the total reward the agent gets, QL s(T), is
at least Sg, g (T).

We assume that user arrivals to the agents are independent
of each other. Therefore, agent j will also benefit from agent
1 if its item can be sold by agent 7. In this paper, we develop
distributed online learning algorithms (c,3) for the agents
in M such that the expected total reward S, 5(T") for any
agent ¢ € M is maximized. This corresponds to minimizing
the regret, which is given for agent ¢ at time 7" as

Qfx,ﬁ(T) =

RZ ,,6 Z/’Lz kY (x4 (1)) xl( )) - S;,B(T) (6)
Note that the regret is calculated with respect to the highest
expected reward agent ¢ can obtain from its own users, but
not the users of other agents. Therefore, agent ¢ does not act
strategically to attract the users of other agents, such as by
cutting its own prices or paying commissions even when an
item is not sold to increase its chance of being recommended
by another agent. We assume that agents are fully cooperative
and follow the rules of the proposed algorithms. We provide
a comparison between cooperative and strategic agents in the
following remark.

Remark 1: In our cooperative algorithms, an agent j when
called by agent 7 recommends a set of items that has the
highest probability of being purchased by agent ’s user. This
recommendation does not decrease the reward of agent j,
compared to the case when agent j does not cooperate with any
other agent, since we assume that p} > ¢ for all f € Fj.
However, when the commission is fixed, recommending the
set of items with the highest purchase rate does not always
maximize agent j’s reward. For example, agent j may have
another item which has a slightly smaller probability of being
purchased by agent ¢’s user, but has a much higher price than
the item which maximizes the purchase rate. Then, it is of
interest to agent j to recommend that item to agent 7 rather
than the item that maximizes the purchase rate. This problem
can be avoided by charging a commission which is equal to a
percentage of the sales price of the item, i.e., ¢; ;(p}) = ¢ ;p}
for some 0 < ¢; ; < 1 for f € F;. Our theoretical results will
hold for this case as well. We will numerically compare the
effects of a fixed commission and a commission which is equal
to a percentage of the sales price on the learning rates and set
of items recommended by the agents in Section



We will show that the regret of the algorithms proposed in
this paper will be sublinear in time, i.e., R, 5(T) = o(T?),
¢ < 1, which means that the distributed learning scheme
converges to the average reward of the best recommender
strategy N;*(z) given in (or equivalently k] (x) given in
lb foreachi € M,z € X, ie., Rflﬂ(T)/T — 0. Moreover,
the regret also provides us with a bound on how fast our
algorithm converges to the best recommender strategy.

IV. CONTEXTUAL PARTITIONING ALGORITHMS FOR
MULTIPLE RECOMMENDATIONS

In this section we propose a series of distributed online
learning algorithms called Context Based Multiple Recommen-
dations (CBMR). We denote the part of CBMR which gives an
action to agent i at every time slot for its own user with a$BMR
and the part of CBMR which gives an action to agent 7 at every
time slot for the recommendation request of another agent
with BEBMR When clear from the context, we will drop the
superscript. Basically, an agent using CBMR forms a partition
of the context space [0,1]%, depending on the final time 7,
consisting of (m7)? sets where each set is a d-dimensional
hypercube with dimensions 1/mr X 1/mz X...x1/mr. The
sets in this partition are indexed by Zr = {1,2,..., (m7)?}.
We denote the set with index [ with ;. Agent 7 learns about
the rewards and purchase rates of its actions in each set in
the partition independently from the other sets in the partition
based on the context information of the users that arrived to
agent ¢ and the users for which agent ¢ is recommended by
another agent. Since users with similar contexts have similar
purchase probabilities (Assumptions [I] and [2), it is expected
that the optimal recommendations are similar for users located
in the same set I; € Zp. Since the best recommendations are
learned independently for each set in Zp, there is a tradeoff
between the number of sets in Zr and the estimation of the
best recommendations for contexts in each set in Zr. We will
show that in order to bound regret sublinearly over time, the
parameter myp should be non-decreasing in 7.

There are two versions of CBMR: one for group-dependent
purchase probabilities given by Assumption |1} which is called
CBMR-d, and the other for independent purchase probabilities
given by Assumption [2 which is called CBMR-ind. The
difference between these two is that CBMR-d calculates the
expected reward from each action in £; for agent i separately,
while CBMR-ind forms the expected reward of each action in
L; based on the expected rewards of the items recommended
in the chosen action. We have

N-1
7 (N =n+ M -2
Li = )
e= (W) (O
which grows combinatorially in N and M and polynomially
in |F;|. We will show that CBMR-ind provides much faster

learning than CBMR-d when Assumption 2| holds. We explain
these algorithms in the following subsections.

A. Definition of CBMR-d

The pseudocode of CBMR-d is given in Fig. 2] At any
time ¢ in which agent ¢ chooses an action k; € L,, for any
agent j € M;(k;), it should send a request to that agent for

m;(k;) recommendations along with the context of its user
x;(t) and the recommendation vector m(k;). If the agents
do not want to share the set of recommendations and prices
they made for agent ¢’s user with agent ¢, they can use the
regulator scheme proposed in Section CBMR-d can be
in any of the following three phases at any time slot ¢: the
training phase in which agent ¢ chooses an action k; such that
it trains another agent j by asking it for recommendations and
providing 4’s user’s context information z, so that agent j will
learn to recommend its set of m;(k;) items with the highest
purchase rate for a user with context x, the exploration phase
in which agent ¢ forms accurate estimates of the expected
reward of actions k; € L; by selecting k; and observing the
purchases, and the exploitation phase in which agent ¢ selects
the action in £; with the highest estimated reward to maximize
its total reward. The pseudocodes of these phases are given in
Fig.

At each time ¢, agent ¢ first checks which set in the partition
Zr context x;(t) belongs to. We separate the set of actions in
L; into two. Let

LA,L' = {(u“nl) € L; such that Ny = 0, Yu; € M_i},

be the set of actions in which all recommendations are from
Fi, and L£; = L; — L; be the set of actions in which at least
one recommendation is from an agent in M _,.

The training phase is required for actions in L;, while only
exploration and exploitation phases are required for actions in
ﬁi. When agent ¢ chooses an action k; € Ei, the agents j €
M (k;) recommend m(k;) items from F; to agent i. Recall
that NV;(t) denotes the set of N items that is recommended
to agent ¢’s user at time ¢, based on the actions chosen by
agent ¢ and the recommendations chosen by other agents for
agent . For k; € L, let N]ii’l(t) be the number of times
action k; is selected in response to a context arriving to the
set I; € Zp by time ¢. Since agent 7 does not know F; and
the purchase rates for j € M;(k;), before forming estimates
about the reward of action k;, it needs to make sure that j
will almost always recommend its set of m;(k;) items with
the highest purchase rate for agent i’s user. Otherwise, agent
1’s estimate about the reward of action k; might deviate a lot
from the correct reward of action k; with a high probability,
resulting in agent ¢ choosing suboptimal actions most of the
time, hence resulting in a high regret. This is why the training
phase is needed for actions in L;.

In order to separate training, exploration and exploitation
phases, agent i keeps two counters for actions k; € L; for
each I; € Zr. The first one, i.e., Niki,l(t), counts the number
of user arrivals to agent ¢ with context in set I; in the training
phases of agent ¢ by time ¢, in which it had chosen action
k;. The second one, i.e., N, k;.1(t), counts the number of user
arrivals to agent ¢ with context in set ] ; in the exploration and
the exploitation phases of agent ¢ by time ¢, in which it had
chosen action k;. The observations made at the exploration
and the exploitation phases are used to estimate the expected
reward of agent ¢ from taking action k;. In addition to the
counters Ny (t), Ni, ;(t) and N3, ,(t), agent 7 also keeps
control functions, D1 (t), Dy, (t), ki € L; and Ds(t), which



Context Based Multiple Recommendations for dependent
purchase probabilities (CBMR-d for agent ¢):

1: Input: Dy (t), Day(t), k € Ly, Ds(t
2: Initialize: Partition [0,1]? into (mr)
the set Zr = {1,2,..., (m7)%}. _
3 Ny, =0,Vke Lyl €Iy, Nj, =0, Ny, =0,
Vk € Cwl cIr.
: NZ = {Nk 1YkeL;s N2l = {N2 kl}kez:
: rklfo ﬂkl—o forallkEEl,IZGIT

4
5
6 7] = {Tkz}lez: , T = {sz}zec
7
8

), T, mp
d gets, indexed by

. while ¢ > 1 do
Algorithm «; (Send recommendations to own

users)
9. forl=1,...,(mr)? do
10 if x;(t ) e Il then
11: if 3k € £, such that N}, < Di(t) then
12: Run Explore(k, N} ;, 74, ;, t)
13: else if 3k € £; such that Nim < Dy i(t)
then .
14: Run Train(k, Nf,k,l’ t)
15: else if 3k € £; such that N, ; < Dj(t) then
16: Run Explore(k, Né}k’l, T b
17: else ‘
18: Run Exploit(N}, N5 ;. 7}, t)
19: end if
20: end if

21:  end for
22:  Algorithm f; (Send recommendations to other
agents’ users)

23: for j € M_; such that i € M;(a;(t)) do

24: Receive x;(t) and m(o;(t))

25: for [ =1,...,(mr)¢ do

26: if 2;(t) € I; then

27: if 3 k € B;(m(«a;(t))) such that
Ni, < Di(t) then

28: Run Explore2(k, N{ ,, 7}, 7, 1)

29: else o

30: Run Exploit2(IN;, &}, m(a;(t)), 7. t)

31 end if

32: end if

33: end for

34:  end for

35 t=t+1

36: end while

Fig. 2: Pseudocode of CBMR-d for agent .

are used together with the counters determine when to train,
explore or exploit. The control functions are deterministic and
non-decreasing functions of ¢ that are related to the minimum
number of observations of an action that is required so that the
estimated reward of that action is sufficiently accurate to get
a low regret in exploitations. We will specify the exact values
of these functions later when we prove our regret results.

In addition to the counters and control functions mentioned
above, for each k; € £; and I; € Zp, agent i keeps a sample
mean reward 7, ,(t) which is the sample mean of the rewards
(sum of prices of sold items and commissions divided by
number of times k; is selected except the training phase) agent
1 obtained from its recommendations when it selected action
k; in its exploration and exploitation phases for its own user
with context in I; by time t. Agent ¢ also keeps a sample

Train(k, n, t):
1: Select action o;(t) = k.
2: Receive reward 7 (t) := Oy, 5(t,z;(t)) given in @)
3 n++.
Explore(k, n, 7, t):
1: Select action o;(t) = k.
2: Receive reward 7 (t) := Op, 5(t, z;(t)) given in @)
3 r=(nr+7,t)/(n+1).
4:n+ +.
Exploit(n, r, t):
1: Select action «;(t) € arg max; ¢, 7%
2: Receive reward 7o, (1) (t) = OF, 5(t,x(t)) given in
3 Tay(t) = (Nau(®)Tas (1) T Fas (1) (1) / (Nas ) + 1)
4 Mg, ) + +-
Explore2(k, n, «, 7, t):
1: Recommend set of items F;(k) to agent j.
2: Receive purchase feedback 7y (t) = U} st z;(1))
given in (5) and the commission.
3w = (nm+7(t)/(n+1).
4:n++.
Exploit2(n, 7w, m, j, t):
1: Select action f3;(t) € arg maXyep, (m) T
2: Recommend set of items J;(5; (¢ )) to agent J-
3: Receive purchase feedback 7g, (1) (t) := aﬁ(t x;(t))
given in ?5]) and the commission.
4 Tgu(0) = (Mg, (1) Tpu(e) + Tpu(e) (1)/ (mgy) +1)-
5t ng ) ++

Fig. 3: Pseudocode of the training, exploration and exploitation
modules for agent .

mean purchase rate ﬁ}ii,z(t) which is the sample mean of the
number of agent i’s own items in F;(k;) sold to a user (either
agent ¢’s own user or user of another agent) with context in
set I; when agent 7 selects action k; for that userE] Note that
when agent 7 chooses action k;, agent j € M_; has (m‘f(k‘ ))
different sets of items to recommend to agent ¢. In order for
agent j to recommend to agent ¢ its best set of items that
maximizes the commission agent ¢ will get agent j must
have accurate sample mean purchase rates 7, ,(t) for its own
actions k; € B;(m(k;)). Therefore, when a user with context
x;i(t) € Il arrives at time ¢, agent ¢ checks if the following set
is nonempty:

Sia(t) := {ki € £; such that Nj, ,(t) < D (1) or ks € £;
such that N{ ;. (t) < Do, (t) or N, (t) < Ds(t)},

in order to make sure that it has accurate estimates of the
expected rewards of each of its actions k; € L;, as well as
to make sure that other agents have accurate estimates about
the purchase rates of their own set of items for a user with
context in set I;.

For k; € L;, let &;. 1(t) be the set of rewards collected
from selections of action k; at times ¢’ € [t] when agent ¢’s
user’s context is in set [;, and all the other agents in M;(k;)
are trained sufficiently, i.e., N:f7ki,l(t/) > Doy, (t'). For k; €
L, let Ei,.(t) be the set of rewards collected from action

SWe will explain how agent i selects an action k; when agent j requests
items from ¢ when we describe BEMBR'd.



k; by time ¢. If S, ;(t) # 0, then agent i trains or explores
by randomly choosing an action «;(t) € S;;(¢). If S;;(t) =
(), this implies that all actions in £; have been trained and
explored sufficiently, so that agent ¢ exploits by choosing the
action with the highest sample mean reward, i.e.,

(7

o;(t) € argmax 7y, (t).
ki€L;
We have 7 ,(t) = (Zreg;i,z(t) 7)/|Ek, 1(1)[{’) When there is
more than one action which has the highest sample mean
reward, one of them is randomly selected.

The other part of CBMR-d, i.e., (3;, gives agent ¢ the
set of items to recommend to agent 5 when agent j takes
an action a;(t) = k; € L; for which i € M;(k;), and
sends to agent 7 its user’s context x;(t) € I; € Zr and the
recommendation vector m(k;). In order to recommend the
set of items with the maximum purchase rate for the user
of agent j, agent ¢ should learn the purchase rate of its own
items for the recommendation vector m(k;). Agent 4 responds
to agent j’s request in the following way. If there is any
k; € B(m(k;)) for which the purchase rate is under-explored,
i.e., Ni ;(t) < Di(t), then agent 7 recommends to agent j the
set of items F;(k;). Otherwise if all purchase rates of actions
in B(m(k;)) are explored sufficiently, i.e., N,ihl(t) > Dy ()
for all k; € B(m(k;)), then agent ¢ recommends to agent j
the set of its own items which maximizes the sample mean
purchase rate, i.e., F;(k¥(k;,1,t)), where
l%f(kj,l,t) = argmax ﬁlii,l(t)'

kieB(m(k;))

In the following subsection we prove an upper bound on

the regret of CBMR-d.

B. Analysis of the regret of CBMR-d

For each [, € Zr and k; € L; let [y,
SUp e, ik (), By infrer, pik, (T), Wik,
SUp,e;, ik, () and 7, := infuer, 7k, (2). Let 27 be the
context at the center of the set ;. We define the optimal reward
action of agent ¢ for set [; as

ki (1) := argmax ju; y, (2] ),
ki€L;

and the optimal purchase rate action of agent j for agent ¢
given agent ¢ selects action k; for set I; as

K (kiy 1) =

argmax 7j; (2]).
kjeB;(m(ki))

Let
' = 0
Kb a10(t) = {k7 €L FH ey T Pkl = at }7

be the set of suboptimal reward actions for agent ¢ at time ¢,
and

j ki o . =
yg,al,l(t) = {kj € Bj(m(k;)) C Tk (kil) 0 T Tkl > alt‘)},

be the set of suboptimal purchase rate actions of agent j for
agent ¢, given agent ¢ chooses action k; at time ¢, where 6 < 0,

6 Agent z does not need to keep Slihl(t) in its memory. Keeping and
updating 7} ,(t) online, as new rewards are observed is enough.

a1 > 0. The agents are not required to know the values of the
parameters # and a;. They are only used in our analysis of the
regret. First, we will give regret bounds that depend on values
of 0 and a;, and then we will optimize over these values to
find the best bound. Let Yr := sup,cx Hi ks (z)(7), Which is
the maximum expected loss agent ¢ can incur for a time slot
in which it chooses a suboptimal action.

The regret given in (6) can be written as a sum of three
components:

R'(T) = E[R.(T)] + E[R(T)] + E[R,,(T)],

where RY(T) is the regret due to training and explorations by
time 7', R%(T) is the regret due to suboptimal action selections
in exploitations by time 7, and R? (T') is the regret due to near
optimal action (k; € £;—Kj , (t)) selections in exploitations
by time T of agent ¢, which are all random variables. In
the following lemmas we will bound each of these terms
separately. The following lemma bounds E[R:(T)]. Due to
space limitations we give the lemmas in this and the following
subsections without proofs. The proofs can be found in our
online appendix [31].

Lemma 1: When CBMR-d is run with parameters D (t) =
Ds(t) = t*logt, Dy, (t) = maxjer,(i) (i)t logt:
and mp = [T7][] where 0 < 2 < 1 and 0 < v < 1/d,
we have

max

; ~ F,
B[R (T)] < Yy2? (|z:i| UL (( . /21>) T+ 10g T
+ Y24 | LT,

Proof: We sum over all exploration and training steps by
time 7. The contribution to the regret is at most Yr in each
of these steps. [ ]

From Lemma [T we see that the regret due to explorations
is linear in the number of sets in partition Zr, i.e., (mT)d,
hence exponential in parameters v and z. We conclude that 2
and ~y should be small to achieve sublinear regret in training
and exploration phases.

For any k; € L; and I; € Zp, the sample mean f;“l(t)
represents a random variable which is the average of the
independent samples in set E,Q ,(t). Different from classi-
cal finite-armed bandit theory '[713], these samples are not
identically distributed. In order to facilitate our analysis of
the regret, we generate two different artificial i.i.d. processes
to bound the probabilities related to F}‘%l(t), ki € L;. The
first one is the best process in which rewards are generated
according to a bounded i.i.d. process with expected reward
T4 i, 1» the other one is the worst process in which rewards are
geherated according to a bounded i.i.d. process with expected
reward p, . Let 7“2"‘5‘[(7) denote the sample mean of the
7 samples from the best process and et (7) denote the
sample mean of the 7 samples from the worst process. We
will bound the terms E[R? (T)] and E[R.(T)] by using these
artificial processes along with the Holder condition given in
Assumption [I] Details of this are given in [31]. The following
lemma bounds E[R:(T)].

"For a number 7 € R, let [r] be the smallest integer that is greater than
or equal to 7.



Lemma 2: When CBMR-d is run with parameters Dy (t) =
Ds(t) = t*logt, Doy, (t) = maxjer k) (i)t logt,
and mp = [T7], where 0 < z < land 0 < v < 1/d,
given that 2LYR(Vd)*t™7* + 2(Yr + 2)t7*/2 < a1t?, we

have
E[R(T)] < 24 YR |L;| BT + 24T 2Y | L1 | BTV 212 2.

Proof: This proof is similar to the proof of Lemma
2 in [32]. The difference is that instead of bounding the
probabilities that a suboptimal arm in F; will be chosen or
another agent j € M_; chooses a suboptimal arm in F; when
called by agent i, we bound the probabilities that a suboptimal
action in £; is chosen and a suboptimal action in L, is chosen.
Another difference is that every time a suboptimal action is
chosen, the one-step regret can be at most Yrg. [ |

From Lemma [2| we see that the regret increases exponen-
tially with parameters v and z, similar to the result of Lemma
[I] These two lemmas suggest that v and z should be as small as
possible, given that the condition 2LYr(V/d)*t =7 +2(Yg +
2)t=%/2 < a1t? is satisfied.

When agent ¢ chooses an action k; € L; such that j €
M, (k;), there is a positive probability that agent j will choose
a suboptimal set of m;(k;) items to recommend to agent ¢’s
user, i.e., it will choose a suboptimal purchase rate action for
agent ¢’s action. Because if this, even if agent ¢ chooses a near
optimal action k; € £;—Kj , ;(t) it can still get a low reward.
We need to take this into account in order to bound E[R?, (T)].
The following lemma gives the bound on E[R! (T')].

Lemma 3: When CBMR-d is run with parameters Dy (t) =
Dg(t) = t7 1ogt, D2k7(t) = maneMi(ki) (ninzz’:))tz logt,
and mp = [T7], where 0 < z < land 0 < v < 1/d,

given that 2LYR(Vd)*t—7* + 2(Yr + 2)t=*/2 < a1t?, we

have
Fmax
meaxm)ﬂ”

Proof: If a near optimal action in L; is chosen at time
t, the contribution to the regret is at most a1t?. If a near
optimal action k; € ﬁi is chosen at time ¢, and if some
of the agents in M, (k;) choose their near optimal items to
recommend to agent ¢, then the contribution to the regret
is at most 2a;t?. Therefore, the total regret due to near
optimal action selections in £; by time 7' is upper bounded
by 201 Y1, t? < (20, T%)/(1 + 6), by using the result
in Appendix A in [32]. Each time a near optimal action in
k; € £~i is chosen in an exploitation step, there is a small
probability that an item chosen by some agent j € M;(k;) is
a suboptimal one. Using a result similar to Lemma 3 in [32],
the expected number of times a suboptimal arm is chosen is
bounded by 2(;,-™*,;)Bs. Each time a suboptimal arm is

[ Finax /2]
chosen, the regret can be at most Yg. ]

From Lemma [3] we see that the regret due to near optimal
actions depends exponentially on 6 which is related to the
negative of v and z. Therefore, v and z should be chosen as
large as possible to minimize the regret due to near optimal
actions. Combining the above lemmas, we obtain the finite
time regret bound for agents using CBMR-d, which is given

E[RL(T)] < (20,T"0)/(1 4 6) + 2YR(

in the following theorem.

Theorem 1: When CBMR-d is run with pa-
rameters Di(t) =  Ds(t) = t2/Gatd)ogy,
Doy, (t) = maxjep, k) (ém(‘,‘cxi))tm/(?’“"’d) logt, and

mp = [T/ G+ we have

4(YR(Ld®*/? +1) 4+ 1)

RU(T) < T3ata ( +Yr21Z; log T)

- 2a+d)/(Ba +d)
L iy 27 YRILi5
20/ (30 + d)
. . F

T5a7a2%YR(2|L; )+ 2Y; max ,

TR R(RIL B + 16D + 2 (5 ) o
ie. R(T) = O(ZiTﬁ%ﬂ), where Z; = |Li| +
o
|£i|([Fmax/2w)‘

Proof: The highest orders of regret come from explo-
rations and near optimal arms, which are O(T7¢**) and
O(T'*9) respectively. We need to optimize them with respect
to the constraint 2LYx(vVd)*t =7 + 2(Yg + 2)t=%/2 < a;t?,
which is assumed in Lemmas 2] and Bl The values that mini-
mize the regret for which this constraint holds are § = —z/2,
v =2/(2a) ay = 2YRr(Ld*/? +1) 4+ 4 and z = 2a/(3a + d).
The result follows from summing the bounds in Lemmas [T} 2]
and 3B [ |

Remark 2: A uniform partition of the context space such as
Zr may not be very efficient when user arrivals have contexts
that are concentrated into some (unknown) regions of the
context space. In such a case, it is better to explore and train
these regions more frequently than regions with few context
arrivals. Algorithms that start with the entire context space as a
single set and then adaptively partition the context space into
smaller regions as more and more users arrive may achieve
faster convergence rates, i.e., smaller regret, for the types of
arrivals mentioned above. Such an algorithm that will work
for N =1 is given in [32].

Theorem ] indicates that agent ¢ can achieve sublinear regret
with respect to the best “oracle” recommendation strategy
which knows the purchase probabilities of all the items in F.
However, the learning rate of CBMR-d can be slow when M,
N and F are large since the set of actions is combinatorial in
these parameters. As a final remark, since regret is sublinear,
the average reward of CBMR-d converges to the average
reward of the best “oracle” recommendation strategy, i.e.,
limr_,o RY(T)/T = 0.

C. Definition of CBMR-ind

In this subsection we describe the learning algorithm
CBMR-ind. We assume that Assumption 2| holds. let J; ; :=
{1;,2;,...,N;} denote the set of the number of recommen-
dations agent ¢ can request from agent j, where we use the
subscript 7 to denote that the recommendations are requested
from agent j. Let jl = Ujem_,Jij, and J; = F; U jl be
the set of arms of agent 7. We have |J;| = | Fi| + (M —1)N.
We denote an arm of agent ¢ by index u. For arm v € Ji» let
j(u) be the agent that is called for item recommendations to

agent 4’s user, and let n(u) be the number of requested items



from agent j(u)ﬂ For u € F;, j(u) =4 and n(u) = 1. In
CBMR-ind, at each time ¢, agent ¢ chooses a set of arms such
that the total number of item recommendations it makes to
its user is V. It is evident that choosing such a set of arms is
equivalent to choosing an action k; € £,. Every action k; € L;
maps to a unique set of arms. Thus, for an action k; € L;, let
A(k;) be the set of arms corresponding to k;.

Let G;,(x) C F; be the set of n items in F,; with the
highest purchase probabilities for a user with context x. For
an arm u € F;, let its purchase rate for a user with context
z be viy(z) == qu(x), and for an arm u € J;, let it be

Via(®) = Ypeg, ) e (). Since Assumption [2] holds,

we have 7

pig (@)= Y pria@ A+ D cijuVial(@).
ueF;NA(k;) u€A(k;)—F;

Different from CBMR-d, which estimates the reward of each
action in L£; separately, CBMR-ind estimates the purchase
rates of the arms in J;, and uses them to construct the
estimated rewards of actions in £;. The advantage of CBMR-
ind is that the purchase rate estimate of an arm u € J; can be
updated based on the purchase feedback whenever any action
L; that contains arm u is selected by agent .

The pseudocode of CBMR-ind is given in Fig. 4, CMBR-
ind partitions the context space in the same way as CBMR-
d. Unlike CBMR-d, CBMR-ind does not have exploration,
exploitation and training phases for actions k; € L£;. Rather
than that, it has exploration and exploitation phases for each
arm u € JF;, and exploration, exploitation and training phases
for each arm u € jz Since a combination of arms is selected
at each time slot, selected arms can be in different phases. For
each v € J; and I; € Zp, CBMR-ind keeps the sample mean
purchase rate 17;7 ,(t), which is the sample mean of the number
of purchased items corresponding to arm u, purchased by users
with contexts in [; in exploration and exploitation phases of
agent ¢ by time ¢.

Similar to the counters and control functions of CBMR-
d, CBMR-ind also keeps counters and control functions for
each uw € J; and I; € Zp. Basically, for u € J;, ul(t)
counts the number of times arm w is selected by agent ¢ to
make a recommendation to a user with context in [; by time t.
Counters N} () and N3, ,(¢) are only kept for arms u € ;.
The former one counts the number of times arm wu is trained by
agent ¢ for times its users had contexts in ; by time ¢, while
the latter one counts the number of times arm u is explored
and exploited by agent ¢ for times its users had contexts in I;
by time ¢. Let

Smd( )= {u € F; such that Ni_’l(t) < Dy(t) oru € J;
such that N{ , ;(t) < Da(t) or N3, ,(t) < Ds(t)}, (8)
where D (t), Do, (t), u € J; and D3(t) are counters similar
to the counters of CBMR-d. Assume that z;(t) € I;. If

Sint(t) # 0, then agent i randomly chooses an action a;(t) €
L; from the set of actions for which A(k;) NS} () # 0. Else

85(u), u € J; is different from j(f), f € F, which denotes the agent that
owns item f, and n(u) is different from 7 (k;), which denotes the number
of items agent j should recommend when agent i chooses action k; € L;.

if S"'(t) = 0, then agent i will choose the action

S P )+ iyt (9)

ueF;NA(k;) ueA(k;)—F;

a;(t) = arg max
ki€L;

After action «;(t) is chosen, the counters and sample mean
purchase rates of arms in A(«;(t)) are updated based on in
which phase they are in.

Agent 7 responds to item requests of other agents with users
with contexts in I; € Zr in the following way. Any under-
explored item u € F;, i.e., N ,(t) < D;(t) is given priority to
be recommended. If the number of under-explored items is less
than the number of requested items, then the remaining items
are selected from the set of items in u € JF; with the highest
sample mean purchase rates such that N}, ;(t) > D;(t). The
pseudocode of this is not given due to limited space.

Context Based Multiple Recommendations for
independent purchase probabilities (CBMR-ind for agent
1):
1: Input: Dy (t), Do (t), u € Ji, Ds(t
2: Initialize: Partition [0,1]? into (mr)
the set Ir = {1,2,..., (mr)?}.
3: N}M =0,Yu e J;, I € Ir,
N{'ul:() N3 1 =0,Yu e J;,l € Ir.

) T, mr.
¢ sets, indexed by

4: l_OVUGZ,IleIT

5: while ¢ >1do

6: forl=1,...,(mp)¢ do

7 if xl(t) 6 Il then

8: if SP(t) # 0 (given in ) then

9: Choose «;(t) randomly from the subset of
L; such that A(a;(t)) NSM(¢) # 0.

10: else ’

11: Choose «;(t) as in (9).

12: end if

13: end if

14:  end for
15:  Receive reward O}, 5(t,x;(t)) given in ||
16:  for u € A(a;(t) do

17: if u € J; and N Tul < Dy ,(t) then

18: NY oo+ +
19: else 1f u € Jl and N ul > Dy . (t) then
) —i N2,u,l7u 1+Uj(u (t,zi(t))
20: V“‘;l = T (given in l).
21: N3 w1 ++.
22: else )
23: Vyg = (Nﬁ U1+ Y () (N5, + 1)
24: Nz
25: end if
26:  end for
27: t=t+1.

28: end while

Fig. 4: Pseudocode of CBMR-ind for agent .

D. Analysis of the regret of CBMR-ind

In this subsection we bound the regret of CBMR-ind. Under
Assumption 2] the expected reward of an item f to agent &
for a user with context  is k; s(x) := plj}qf(aj) for f € F;
and k; f(z) := ¢; jqf(z) for f € F;. For a set of items N,
let f,,(N) denote the item in N with the nth highest expected
reward for agent i. For an item f € F and I} € Zp, let



Ki gy = infeer, ki f(x), and Ry gy := sup,ey, ki f(x). For
the set [; of the partition Z7, the set of suboptimal arms of
agent ¢ at time ¢ is given by

ué,al,l(t) = {'LL c fz : ﬁi,fN(]-'),l - Ri,u,l 2 alte}

7 = 6
U {u e RGN () T B f ) (Fin) ol = axt } :

We will optimize over a; and 6 as we did in Section [[V-B
The set of near-optimal arms at time ¢ for I; is J; —Uj , ().
Similar to the approach we took in Section [[V-B] we divide the
regret into three parts: R.(T"), R.(T) and R} (T), and bound
them individually. Different from the analysis of CBMR-d,
here R:(T) denotes the regret in time slots in which all
selected arms are exploited and at least one them is suboptimal,
while R!(T) denotes the regret in time slots in which all
selected arms are exploited and all of them are near-optimal.
In the following lemma, we bound the regret of CBMR-ind
due to explorations and trainings.

Lemma 4: When CBMR-ind is run by the agents with
Di(t) = t*logt, Dau(t) = (Tias)t*logt, Ds(t) = t*logt
and mp = [T7], where 0 < z < 1 and 0 < v < 1/d, we
have

E[Ry(T)] < YR2(|7i| + (M — 1)N)T*

N
+ YR2d <|$| + (M . 1) Z (Fmax>> TZ+"/d IOgT
z=1 o
Proof: For a set I} € Zp, the regret due to explo-
rations is bounded by |7;| [T* log T']. Agent 4 spends at most
M (Fme<) [T*log T'] time steps to train agent j. Note that
this is the worst-case number of trainings for which agent j
does not learn about the purchase probabilities of its items in
set I; from its own users, and from the users of agents other
than agent ¢. The result follows from summing over all sets
in IT. |

In the next lemma, we bound E[R(T)].

Lemma 5: When CBMR-ind is run by the agents with
Di(t) = t*logt, Dau(t) = (1ia5)t*logt, Ds(t) = t*logt
and mp = [T7], where 0 < z < 1 and 0 < v < 1/d, given
that 2LYR(Vd)*t=7* + 2(Yg 4 2)t~*/2 < a1t?, we have

E[RL(T)] < 2MYYR|J:| BT 4 2972 NYR|J;| B2 T2/ 2.

Proof: Let € denote the space of all possible outcomes,
and let w be a sample path. Let W} (t) := {w : S;;(t) = 0}
denote the event that CBMR-ind is in the exploitation phase at
time ¢. The idea is to bound the probability that agent ¢ selects
at least one suboptimal arm in an exploitation step, and then
using this to bound the expected number of times a suboptimal
arm is selected by agent ¢. Let V; ,(t) be the event that a sub-
optimal action v € J; is chosen at time ¢ by agent :. We have
E[RUT)] < YR Yiezy Yotmt Zoucrss (1) PVai (0, Wi(1).
Similar to the proof of Lemma 2 in [32]], by using a Chernoff
bound it can be shown that for any u € U, (t) N F;, we have
P(Vi, (t),Wi(t)) < 2/t%, and for any u € Uj,(t) N T;, we
have P(Vi (1), Wi(t)) < 2/t* 4+ 2N|F,j)|B2/t*~*/%. Here
different from Lemma 2 in [32]], N comes from a union bound
which is required to bound the probability that agent j will
recommend an item which is not in the set of the best n(u)

items of agent j when agent ¢ chooses arm u. We get the final
regret result by summing the P(V; (t), Wi (t))s over the set
of suboptimal arms in each set in the partition Zp, over the
sets in the partition Z7, and over time, and then by using the
result in Appendix A in [32]. [ ]
Different from Lemma E[RL(T)] is linear in |7;| instead
of in |£;]. In the next lemma, we bound the E[R (T)].
Lemma 6: When CBMR-ind is run by the agents with
Di(t) = t*logt, Dau(t) = (13)t*logt, Da(t) = t*logt
and mp = [T7], where 0 < z < 1 and 0 < vy < 1/d, given
that 2LYR(Vd)*t=7* 4+ 2(Yg + 2)t~%/? < a1t?, we have

E[RL(T)] < (2NayT'?) /(1 + 0) + 2YR N Faxo-

Proof: Since agent 7 can choose at most /N arms at
each time step, if all arms chosen at time ¢ by agent ¢ and
by the other agents called by agent i are near-optimal, then
the contribution to the regret is bounded by 2Na;t%. This is
because for a near optimal arm u € JF;, the contribution to the
regret is at most aqt?, while for a near optimal arm in u € ji,
if agent j(u) chooses its near optimal items to recommend
to agent 4, the contribution to the regret is at most 2a;t?.
Therefore, the total regret due to near optimal arm selections
by agent ¢ and the agents ¢ calls by time 7" is upper bounded
by 2Nay 31—, 1 < (2Na;T'+%)/(1 + 6) from the result in
Appendix A in [32].

However, each time a near optimal arm in u € jl is chosen
in an exploitation step, there is a small probability that an item
chosen recommended by agent j(u) is a suboptimal one. Using
a result similar to Lemma 3 in [32], the expected number
of times a suboptimal arm is chosen by the called agent is
bounded by n(u)FiaxfB2. Each time a suboptimal item is
chosen by the called agent j(u), the regret can be at most
YRr. The result follows from summing these terms. [ ]

Combining the above lemmas, we obtain the regret bound
for agents using CBMR-ind.

Theorem 2: When CBMR-ind is run by the agents with
Dy (t) = 2/Gotd) ogt Dy, (t) = (@a&z;)tza/(saw) log t,

Ds(t) = t?*/Getd) Jog t and mp = [TV B2+4)7, we have
, 2ata (AN(Yg(Ld*/? +1) + 1)
R'(T) < T'3a+d
(T) = ( (20 +d)/ (B +d)
N Tﬁ 2d+2NYR‘$|ﬁ2
20/ (3 + d)

+ Tﬁ2dYR(2‘Z|B2 + ‘$| + (M — 1)N) + QYRNFmaXﬁ%

+ Yr2%Z! log T)

ie. R(T) = O (Z;T%), where Z! = |7;| + (M —
DY, (). |
Proof: The highest orders of regret come from E[R:(T)]
and E[R! (T)], which are O(T7%*%) and O(T'*?), respec-
tively. We need to optimize them with respect to the constraint
2LYR(Vd)*t= 7 +2(Yr +2)t~*/? < a1t?, which is assumed
in Lemmas [5] and [6] This gives us 0 = —z/2, v = z/(2a)
a; = 2YR(Ld*/? + 1) + 4 and z = 2a/(3a + d). The result
follows from summing the bounds in Lemmas [ [5| and [6]
The result of Theorem 2] indicates that the regret of CMBR-
ind is sublinear in time and has the same time order as
the regret of CBMR-d. However, the regret of CMBR-ind



depends linearly on |7;|, which is much better than the linear
dependence of the regret of CBMR-d on |£;].

We would also like to note that the number of trainings
and explorations, and hence the regret, can be significantly
reduced when agent ¢ knows |F;| for all j € M_;. In
this case, agent ¢ can use the control function Dj ,(t) :=
(lfj(“)l)t%‘/(?’“”) logt to decide if it needs to train arm w.

n(u)

E. Comparison of CBMR-d and CBMR-ind

In this subsection we compare CBMR-d and CBMR-ind in
terms of their regret bounds, training and exploration rates,
and memory requirements. Note that the regret bound of
CBMR-d depends on the size of the action space L£;, which
grows combinatorially with M and N, and is an N degree
polynomial of |F;|. In contrast the size of the arm space
Ji is just |F;| + (M — 1)N. This is due to the fact that
CBMR-d explores and exploits each action without exploiting
the correlations between different actions. When the purchase
probabilities depend on the set of items offered together, in
the worst case there may be no correlation between rewards
of different actions, and therefore the best one can do is to
form independent sample mean estimates for each action in /C;.
However, when the purchase probabilities are independent of
the items offered together, since the expected reward of agent
i from an action k; € L£; is the sum of the expected rewards of
the individual arms chosen by agent ¢ in that action, substantial
improvement over the regret bound is possible due to smaller
number of explorations and trainings.

Another advantage of CBMR-ind is that it requires a signif-
icantly smaller amount of memory than CBMR-d. CBMR-d
needs to keep sample mean rewards and sample mean purchase
rates for all actions and for all partitions of the context space,
while CBMR-ind only needs to keep sample mean purchase
rates for all arms and for all partitions of the context space.

V. PERFORMANCE AS A FUNCTION OF THE NETWORK

In our analysis in the previous section we assumed that all
agents are directly connected to each other. In reality some
agents may not be connected to each other. For example,
agents 7 and j can both be connected to agent j’, but there
may not exist a direct link between agent ¢ and agent j. This
can happen when, for example, a pair of companies has a trade
agreement between each other, but there is no trade agreement
between companies ¢ and 7. We assume that whenever a trade
link exists between agents ¢ and j it is bidirectional. In this
case, even though 7 cannot ask j for items to recommend, @
can ask j’ and j’ can ask j for an item. Then, if i sells j’s
item, agent ¢ will get commission ¢; ;» from j’, while agent
j' will get commission ¢, ; + ¢; ;» from agent j so that it
recovers the payment it made to agent ¢ from agent j. We call
agent j' the relay agent. Let MI" denote the set of agents that
are directly connected to agent .

If agent ¢ only cooperates with the agents in Mg" and all
cooperating agents use CBMR-d or CBMR-ind, then agent
can achieve the sublinear regret bounds given in Theorems [I]
and [2] with respect to the optimal distributed recommendation
policy involving only the agents in {i} UMY, However, since

agent ¢ cannot exploit the advantage of the items of other
agents which are in M_; — M, its regret can be linear
with respect to the optimal distributed recommendation policy
involving all the agents.

CBMR-d and CBMR-ind can be modified in the following
way to account for agents distributed over the network. Let
M, j(p) be the set of relay agents between agents ¢ and j
when they are connected through path p. Let D,, := | M, ;(p)|.
Let hy(p) be the agent that is connected directly to agent ¢
in path p, let ho(p) be the agent that is connected directly to
agent h1(p), and so on. Then, the commission framework is
modified such that when agent 7 sells agent j’s item it gets
a commission ¢; 5, (,) from agent hi(p), agent hy(p) gets a
COMMIssion ¢y, (p),ho(p) + Cishy (p) from agent ho(p), and so
on, such that Chp, ()i < pjf where f € Fj is the item
recommended by agent j to agent ¢’s user. Using this scheme,
all agents benefit from the series of transactions described
above, thus it is better for them to cooperate based on the
rules of the commission scheme than to act on their own. We
assume that agent j will not recommend an item to agent
hp,(p) if Chp, (). > pgc for all f € F;. Assume a connected
network of agents G(M, E) in which the maximum degree
is Dj and the longest path has D; hops, where E denotes
the set of direct links between the agents. Assume that the
commissions ¢; ; > 0 are given between any agent 7 and j with
direct links. We define agent 4’s regret RE( ME) (T) to be the
difference between the expected total reward of the optimal
policy for which agent ¢ has access to the set of all the items
of all agents in the network G(M, E) (but if the item is in
Fj, it gets the commission from agent j’, which is the agent
that is directly connected to agent ¢ in the lowest commission
path from agent ¢ to agent j) and the expected total reward of
the learning algorithm used by agent i. The exploration and
training control functions are run using (Dy,)P" Fj,.x instead
of Fiuax. This way agent ¢ will help the relay agents learn the
other agent’s recommendations accurately such that sublinear
regret bounds can be achieved. The following theorem gives
a bound on the regret of agents when they use the modified
version of CBMR-ind discussed above, which we call CBMR-
ind-N. A similar bound can also be proven for the modified
version of CMBR-d.

Theorem 3: When Assumption [2] holds, if CBMR-ind-N is
run by all agents in G(M, E), with agent ¢ running CBMR-
ind-N with the set of arms J; as described in Section [[V-C|
defined using ./\/l‘ijir and F; instead of M and F;, control
functions Dy(t) = Ds(t) = t?*/Getdlogt, Dy (1) =
((D’“f(:;)F‘““")tga/(w‘*d) logt, and my = [TY/(Ge+d)7]; and
if commissions are such that all agents j € M_; will get
a positive reward when their items are sold by agent zﬂ we
have,

, atd 2d+2NYR|ji|ﬂ2
? TY<T3+d — — — — " =
e T P [

+ 2YRN(Dk)Dh'Fmax62

°If the commission an agent needs to pay to sell an item to the user of
agent 4 is greater than the price of all the items of that agent, then that agent
can be removed from the set of agents which agent ¢ can cooperate with.
Then, our results will hold for the remaining set of agents.



L (4N(YR( Ld*/? +1) + 1)
2a+d)/(Ba+d)
+ 552 R (21 Fi] B2 + |+ (M —

+ Yr2%Z! log T>

N),

. ; 20+d
ie., R p(T) =0 (Z{TS@M), where Z] :=
T (P07 Py

=1

}Z’mof: Thezproof is similar to the proof of Theorem 2] but
more explorations and trainings are required to ensure that all
agents in all paths learn the rewards of their arms accurately
for each set in Zr, before exploiting them. ]

Theorem [3| indicates that the regret increases exponentially
in Dy and is an D, Nth degree polynomial in Dj. While
this makes CBMR-ind-N impractical in non-small world net-
works, CBMR-ind-N can achieve small regret in small world
networks in which most agents are not directly connected
to each other but all agents can be reached a with small
number of hops. Because of the additional commission the
relay agent gets, an item which j will recommend when it
is directly connected to agent ¢ may not be recommended
by j when it is connected via agent j'. This results in sub-
optimality compared to the case when all agents are connected.
In Section[VI|we numerically compare the effect of the agents’
commissions on the performance.

More refined versions of Theorem [3| can be derived if we
focus on specific networks. One interesting network structure
is when there is a monopolist agent which is directly connected
to all of the other agents, while other agents are only directly
connected to the monopolist agent. Corollary [I] gives the
regret bound for agent ¢ when it is the monopolist agent, and
Corollary [2] gives the regret bound for agent ¢ when it is not
the monopolist agent.

Corollary 1: When agent ¢ is the monopolist agent, if it
runs CBMR-ind-N with Dy (t) = (77:5)1**/®** log t and
everything else remaining the same as in TheoremP;], it will
achieve R, Gr(M, E)( )=0 ((]—" + (M )N)Tsa+d

Corollary 2: When agent ¢ is a non-monopolist agent, if it
runs CBMR-ind-N with Dy, () = (M, {ise) 2/ Gatd) 1og ¢

n(u
and everything else remaining the same as in Theorem [3] it

will achieve R, Grom,m) (1) =0 ((.7-' + N)M2NTaa+d)

Corollaries [T] and 2] imply that the learning is much faster,
and hence the regret is much smaller when an agent has direct
connections with more agents. This is because agent ¢ learns
directly about the purchase probabilities of items in agent j’s
inventory when it is directly connected to it, while the learning
is indirect through a relay agent otherwise.

||+ (M —

VI. NUMERICAL RESULTS
A. Description of the Data Set

The Amazon product co-purchasing network data set in-
cludes product IDs, sales ranks of the products, and for each
product the IDs of products that are frequently purchased
with that product. This data is collected by crawling the
Amazon website [33] and contains 410,236 products and
3,356,824 edges between products that are frequently co-
purchased together. We simulate CBMR-ind and CBMR-d
using the following distributed data sets adapted based on
Amazon data. For a set of N; chosen products from the

Amazon data set, we take these products and other F; products
that are frequently co-purchased with the set of /Ny products
as our set of items.

The set of products that are taken in the first step of the
above procedure is denoted by Cp. The set of all products,
i.e., F, contains these N; products and the set of products
frequently co-purchased with them, which we denote by C;.
We assume that each item has a unit price of 1, but have
different purchase probabilities for different types of users.
Since user information is not present in the data set, we
generate it artificially by assuming that every incoming user
searches for a specific item in Cp. This search query (item)
will then be the context information of the user, hence the
context space is C. Thus, we set Zp = Cp,. Based on this, the
agent that the user arrives to recommends N items to the user.
The agent’s goal is to maximize the total number of items sold
to its users.

We generate the purchase probabilities in the following
way: For group-dependent purchase probabilities, when n of
the products recommended for context z € Cj are in the
set of frequently co-purchased products with item x, then
the purchase probability of each of these products will be
ge(n) =1 —an, where 0 < a < 1/N. For the other N —n
products which are not frequently co-purchased with item z,
their purchase probability is g,. = b, where 0 < b < 1 —a.
For independent purchase probabilities, when a product recom-
mended for context x is in the set of frequently co-purchased
products with item z, the purchase probability of that product
will be g.. When it is not, the purchase probability of that
product will be g,,., for which we have g. > gy..

We assume that there are 3 agents and evaluate the per-
formance of agent 1 based on the number of users arriving
to agent 1 with a specific context z*, which we take as the
first item in set C;,. We assume that 7' = 100,000, which
means that 100, 000 users with context x* arrive to agent 1.
Since the arrival rate of context x* can be different for the
agents, we assume arrivals with context z* to other agents are
drawn from a random process. We take N7 = 20, F} = 2 and
N = 2. As a result, we get 30 distinct items in F which are
distributed among the agents such that |F;| = 10 for every
agent 7. Since the context space is discrete we have d = 1,
and there is no Holder condition on the purchase probabilities
as given in Assumptions [I] and 2} hence we take o = 1/13
such that 2a/(3ac + d) = 1/8. Unless otherwise stated, we
assume that g. = 0.1, g, = 0.01, @ = 0.5 and ¢; ; = 0.5.

B. Comparison of the reward and regret of CBMR-d and
CBMR-ind for group-dependent purchase probabilities

We run both CBMR-d and CBMR-ind for group-dependent
purchase probabilities assuming that both items that are
frequently co-purchased with context x* are in agent 1’s
inventory. The “oracle” optimal policy recommends one of the
frequently co-purchased items and another item in agent 1’s
inventory to the user with context z*, instead of recommending
the two frequently co-purchased items together. Expected total
reward of the “oracle” optimal policy, total rewards of CBMR-
d and CBMR-ind, and the number of trainings of CBMR-d



and CBMR-ind are shown in Table for agent 1. We have
|£1| =58 and | 71| = 14.

We see that the total reward of CBMR-ind is higher than
the total reward of CBMR-d for this case. This is due to the
fact that CBMR-d spends more than double the time CBMR-
ind spends in training and exploration phases since it trains
and explores each action in £ separately. The time averaged
regrets of CBMR-d and CBMR-ind are given in Fig. 5} It
is observed that CBMR-ind performs better than CBMR-d in
all time slots, and the time averaged regret goes to 0. From
these results it seems that CBMR-ind is a good alternative to
CBMR-d even for group-dependent purchase probabilities.

C. Effect of commission on the performance

In this subsection we numerically simulate the effect of
commissions c; ; that agent 1 charges to other agents on
the total reward of agent 1. We consider CBMR-ind for
independent purchase probabilities. We assume that agent 1
has one of the frequently co-purchased items for context x*,
while agent 3 has the other frequently co-purchased item.
The total reward of agent 1 as a function of the commissions
c1,2 = c1,3 = c is given in Table We note that there is no
significant difference in the total reward when the commission
is from 0 to 0.1. This is because 0.1 commission is not
enough to incentivize agent 1 to recommend other agent’s
items to its users. However, for commissions greater than
0.1, the optimal policy recommends the two frequently co-
purchased items together, hence agent 1 learns that it should
get recommendations from agent 3. Therefore, after 0.1 the
total reward of the agent is increasing in the commission.
Another remark is that ¢ = 0 corresponds to the case when
agent 1 is not connected to the other agents. Therefore, this
example also illustrates how the rewards change as network
connectivity changes. Since prices of items are set to 1 in
this section, the commission agent 1 charges can increase
up to 1. But if the prices are different, then the commission
cannot exceed the recommended item’s price. In theory, in
order to maximize its total reward from its own users, agent

Optimal [ CBMR-d [ CBMR-ind
Total Reward | 11000 8724 9485
Trainings - 12391 5342

TABLE III: Total rewards of the “oracle” optimal policy,
CBMR-d and CBMR-ind, and number of trainings of CBMR-
d and CBMR-ind for group-dependent purchase probabilities.

0.12

0.1

0.081

0.06

0.04¢

time averaged regret

0.02¢

0 ) A 6 8 10

time x 10

Fig. 5: Time averaged regrets of CBMR-d and CBMR-ind for
group-dependent purchase probabilities.

Commission ¢c[ 0 0.1 0.2 03 04 0.5
Reward 1047110422 1147612393 13340 14249
(CBMR-ind)

TABLE IV: Total reward of agent 1 as a function of the
commission it charges to other agents.

i can adaptively select its commissions ¢; j, j € M_; based
on what it learned about the purchase probabilities. CBMR-
d and CBMR-ind can be modified to adaptively select the
commissions. Due to the limited space, we leave this as a
future research topic.

D. Effect of the set of items of each agent on the performance

In this subsection we compare three cases for independent
purchase probabilities when agents use CBMR-ind. In C-1
agent 1 has both items that are frequently co-purchased in
context =¥, in C-2 it has one of the items that is frequently
co-purchased in context z*, and in C-3 it has none of the
items that are frequently co-purchased in context x*. The total
reward of agent 1 for these cases is 17744, 14249 and 9402
respectively, while the total expected reward of the optimal
policy is 20000, 15000 and 10000 respectively. Note that the
total reward for C-3 is almost half of the total reward for
C-1 since the commission agent 1 gets for a frequently co-
purchased item is 0.5. The time averaged regret of CBMR-
ind for all these cases is given in Figure [6} We see that the
convergence rate for C-1 is slower than C-2 and C-3. This
is due to the fact that in all of the training slots in C-1 a
suboptimal set of items is recommended, while for C-2 and
C-3 in some of the training slots the optimal set of items is
recommended.

0.2 :
——C-1
= ——C2
Eh0.15
Lih)
-
=]
()
% o1
-
2
o]
E 0.05}
g
0 1 1 1
2 4 6 8 10
time

Fig. 6: Time averaged regret of CBMR-ind for independent
purchase probabilities when agent 1 has both frequently co-
purchased items (C-1), only one of the frequently co-purchased
items (C-2) and none of the frequently co-purchased items (C-
3).

VII. CONCLUSION

In this paper we have presented a novel set of algorithms
for multi-agent learning within a decentralized social network,
and characterized the effect of different network structures on
performance. Our algorithms are able to achieve sublinear
regret in all cases, with the regret being much smaller if
the user’s acceptance probabilities for different items are
independent. This paper can be used as a groundwork for
agents in many different types of networks to cooperate in



a mutually beneficial manner, from companies, charities, and
celebrities who wish to generate revenue to artists, musicians,
and photographers who simply want to have their work publi-
cized. By cooperating in a decentralized manner and using our
algorithms, agents have the benefit of retaining their autonomy
and privacy while still achieving near optimal performance.
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