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Abstract—Gamut mapping transforms the colors of an input
image to the colors of a target device so as to exploit the full
potential of the rendering device in terms of color rendition. In
this paper we present spatial gamut mapping algorithms that rely
on a perceptually-based variational framework. Our algorithms
adapt a well-known image energy functional whose minimization
leads to image enhancement and contrast modification. We show
how by varying the importance of the contrast term in the
image functional we are able to perform gamut reduction and
gamut extension. We propose an iterative scheme that allows our
algorithms to successfully map the colors from the gamut of the
original image to a given destination gamut while keeping the
perceived colors close to the original image. Both subjective and
objective evaluations validate the promising results achieved via
our proposed algorithms.

Index Terms—Gamut Mapping (GM), Gamut Mapping Algo-
rithm (GMA), Gamut Reduction (GR), Gamut Extension (GE),
color contrast, variational methods

I. INTRODUCTION

IN the film industry, an important problem at the post
production stage is to reproduce colors for different display

devices such that a person watching a movie on any of these
devices perceives the same colors [9]. To reach this objective,
colorists, by using 3D Look Up Tables (LUTs), map the colors
of the movie material to the colors of each type of target device
(digital cinema projector, HD TV, etc.). However, there are
millions of entries in each LUT and colorists only specify a
few colors manually, and the rest of the colors are interpolated
without taking care of their spatial and temporal context
[8]. Subsequently, the resulting video may have false colors
that were not present in the original material and intensive
manual correction by a skilled colorist is usually necessary. An
automated process called Gamut Mapping (GM) is therefore
needed: GM transforms colors from an input to an output
device gamut, whereas the gamut of a device is the set of
colors that this device is able to reproduce. Intensive research
has been carried out in the GM area; however, it is still an open
field due to the difficulty of the challenges involved. One of
the major tasks is to retain the perceptual color appearance of
the original image into the reproduced image and most of the
algorithms in the literature lack in this regard.

There are two major types of GM: Gamut Reduction (GR)
and Gamut Extension (GE). Gamut reduction involves the
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mapping of colors from a larger source gamut to a smaller
destination gamut. For example, cinema footage needs to be
passed through a gamut reduction method in order to be
displayed on a television screen [8], [23]. On the other hand,
gamut extension refers to the transformation of colors from
a smaller source gamut to a larger destination gamut. Gamut
extension is needed by state of the art digital cinema projection
systems, which often receive a cinema signal that is encoded
with a limited gamut as precaution against commonly poor
projectors; therefore, in order to realize the full potential
of these projectors in terms of colors, a gamut extension
procedure is required [9].

The contribution of this paper is twofold. First, we propose a
perceptually inspired gamut reduction algorithm where gamut
reduction is achieved through contrast reduction, by adapting
a framework [11], [10] that is inspired by the properties of
contrast perception in the human visual system and closely
related to the Retinex theory of color vision [28]; an earlier,
reduced version of this first contribution was presented as a
conference paper in [46]. In that conference paper, experiments
were performed only on 17 images, none of them coming
from videos. The evaluation on videos has been performed
exclusively for this publication. Second, we adapt the afore-
mentioned framework [11], [10] to develop an algorithm for
gamut extension using a contrast enhancement approach. Our
algorithms outperform state of the art techniques [5], [29]
both subjectively and according to the recently presented
perceptually-based metric of [30].

This paper is organized as follows; first, the related work
is summarised in section II. The image energy functional
presented in [11] for perceptually inspired contrast enhance-
ment is described in section III. Then, in section IV, the
contrast enhancement model is adapted to obtain GR and
GE algorithms. In section V, experiments and results are
discussed. Finally, the paper is concluded in section VI.

II. RELATED WORK

A plethora of Gamut Mapping Algorithms (GMAs) exists
in the literature and the interested reader is referred to the
excellent book by Morovič [35]. The GMAs that are dedicated
to perform gamut reduction, to which we refer as Gamut
Reduction Algorithms (GRAs), are classified into two broad
categories. The first category consists of global (also called
non-local or non-adaptive) GRAs [15], [22], [38], [45] that
involve point-to-point mapping of colors (usually through a
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predefined lookup table) from source to destination gamut.
The standard non-local GRA, Hue Preserving Minimum ∆E
(HPMINDE), was proposed by Murch and Taylor [38] where,
in order to reproduce the image, the out-of-gamut colors
are clipped to closest points on the target gamut boundary
along the lines of hue. Non-adaptive GRAs involve either
clipping or compression and completely ignore the spatial
color configuration in the source image. In contrast, the second
category involves the GRAs that take into account the spatial
color information of the original image while fitting the color
gamut of an image into the gamut of a given device [4], [5],
[7], [25], [34], [36], [47]. However, these algorithms are often
computationally expensive, or based on many assumptions,
and may report halo artifacts. McCann [32], [33] proposed a
Retinex-inspired framework that performs spatial comparisons
to reproduce the image while preserving the local gradients at
all scales as in the original image. A similar multi-resolution
GR approach that adapts to the original image content is
suggested by Farup et al. [16]. A cluster based approach is
defined in [29] for the optimization of GM. Alsam and Farup
[5] proposed an iterative GRA that at iteration level zero gives
a result identical to gamut clipping, whereas, by increasing the
number of iterations, the solution approaches spatial gamut
mapping. Unlike the global GRAs, the potential of spatial
gamut reduction methods is to preserve the color gradient
between two out-of-gamut colors instead of mapping them
to the same in-gamut color. Another fundamental motivation
behind spatial gamut mapping, in order to emulate the color
perception properties of the human visual system, is the
possibility to formulate a strategy where two out-of-gamut
colors with identical lightness and chromaticity map to two
different in-gamut colors depending on their spatial context in
the image [25].

The case of gamut extension is different from that of gamut
reduction: only a handful of Gamut Extension Algorithms
(GEAs) exist in the literature. One could think of simply
taking any GRA and use the one-to-one mapping in the
reverse direction to perform gamut extension, as Morovič
comments in [35]. Hoshino [19] proposed the first GEA to
map printed images to the color gamut of high-definition
TV using lightness and chroma mapping. Kang et al. [21]
presented a GEA that was based on numerical fitting of
subjective experimental data to linearly map lightness and
chroma. Anderson et al. [6] presented a user assisted method
where an expert was asked to expand the gamut of some key
frames and the rest of the frames were corrected accordingly.
Lui et al. [31] presented a gamut expansion method in the
Luv space that extends from an anchor point while respecting
the hue lines. Kim et al. [24] described a GEA with three
type of extension strategies: chroma mapping, mapping along
lines from the origin (which they called vector mapping) and
adaptive mapping that is a compromise between the first two
strategies. Casella et al. [13] introduced a sigmoid function
into the linear mapping techniques so that it does not consider
objects of low chroma equivalent to those of high chroma.
Subjective evaluations were performed in Mujis et al. [37],
and Laird et al. [26]. In the latter, they proposed and evaluated

the following five GEAs:

• True-color, where they maintain the color information
between source and destination media.

• Same Drive Signal (SDS), that is used to reproduce the
colors of a small gamut on a wider gamut display using
linear extension.

• Hybrid Color Mapping (HCM), that performs GE by
using a saturation-dependent linear combination of the
true-color and SDS algorithms.

• Chroma, that maps the color of source gamut to the
reproduction gamut along the lines of chroma axis while
keeping the lightness and hue constant.

• Lightness-chroma adaptive, inspired by the work of [24],
which performs GE by altering both lightness and chroma
while keeping the hue constant.

Recently, Heckaman et al. [18] suggested an algorithm that
exploits the use of memory colors such as the green of the
grass or the blue of the sky while preserving the flesh tones.
Jung et al. [20] proposed the search of color corrections
between source and target gamuts into the 1931 CIE XYZ
space.

One of the major problems in GM is the evaluation of
the results. Usually, subjective comparisons are performed
[12], [14]. The most common subjective method is the pair
comparison, where observers are asked to choose which of
two different gamut-mapped versions of an image is more
faithful to the original. However, subjective measures are time
consuming, involve complexities, and do not provide clear
cues to improve the given GMA. Recently, a perceptually-
based Color Image Difference (CID) metric [30] has been
proposed that puts particular emphasis on the assessment of
gamut-mapped images. It is based on evaluating the distortions
in lightness, hue, chroma, contrast and structure of the gamut-
mapped images with respect to the original images.

III. PERCEPTUALLY-BASED COLOR AND CONTRAST
ENHANCEMENT

In this section we briefly recap the main concepts of the
Retinex theory of Land (arguably the most popular approach
for perceptually-based color correction), and its close relation-
ship to the variational method for contrast enhancement which
we will adapt for our gamut mapping purposes.

Land makes in [27] a very clear and detailed explanation of his
Retinex theory and the experiments that led to its postulation.
After scores of perceptual matching tests, his conclusion was
that our perception of the color of an object had a physical
correlate in what he called scaled integrated reflectance, which
is defined, for each waveband (long, medium and short,
corresponding to cone response sensitivities,) as a ratio: the
integral of the radiance of the object over the waveband,
divided by the integral over the same waveband of the radiance
of a white object under the same scene illuminant. The scaling
is a non-linear function that relates reflectance to lightness
sensation. But this implies that in order to perceive the color
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of an object somehow our visual system is comparing the
light coming from the object with the light coming from
a reference white, and Land wondered how we are able to
find this reference white “in the unevenly light world without
reference sheets of white paper” [27]. The sensation of white
will be generated by the area of maximum radiance in all
three bands (this is the von Kries’ model or “white-patch”
assumption, although Land doesn’t cite it); this area could be
used as reference, but Land didn’t know how our visual system
could “ascertain the reflectance of an area without in effect
placing a comparison standard next to the area” [27]. The
solution he proposed consisted of comparing far-away points
through paths: the ratio of the values at the two end-points
of the path can be computed as the sequential product of the
ratios of each point of the path with the following point. The
Retinex algorithm consists of assigning, for each point and
each waveband (long, middle, short), an estimate reflectance
obtained as the average of the sequential products obtained on
many paths, all ending in the given point. Land thought that
this was a plausible explanation of how our visual system
estimates reflectances but he didn’t want to venture where
exactly this type of operations were being carried out, in the
retina or at the cortex; therefore he chose the name “Retinex”
for his approach. The Retinex algorithm is directly applied
to digital images in a straightforward way, where the pixels
will be the points and the three color channels R, G and B
play the role of the wavebands. As proved in [42], Retinex
always increases brightness so it can’t be directly applied
to overexposed pictures; also, if the algorithm is iterated the
results may improve but the convergence image is flat white, so
there is some “sweet spot” of the number of iterations yielding
the best output [10]. Another major source of problems is
Retinex’s reliance on paths: their length, shape and number
condition the results and many works have been proposed
trying to optimize the selection of these variables.

The Automatic Color Enhancement (ACE) algorithm of Rizzi
et al. [43] is also based on perception, and its relationship
with Retinex will become clear shortly. ACE is designed to
mimic some basic characteristics of the human visual system,
like the white patch and the grey world mechanisms, lateral
inhibition, the independence of chromatic channels, or the
influence of spatial relationships in the scene. The authors
perform experiments that show how ACE has several excellent
properties: it allows to obtain very good color constancy, it
increases the dynamic range of the input and, unlike Retinex,
it can deal both with under- and over-exposed pictures, it
can perform de-quantization (eliminating quantization artifacts
produced by encoding an image with an unsufficient number of
bits per channel), and it can reproduce some visual perception
ilusions. Its main limitation is its computational complexity,
O(N2) where N is the number of pixels.

In the work titled “Perceptual color correction through vari-
ational techniques,” Bertalmı́o et al. [11] start by recalling
the variational histogram equalization method of Sapiro and
Caselles [44], in which it is shown that the minimization of

the energy functional

E(I) = 2
∑
x

(I(x)− 1

2
)2 − 1

AB

∑
x

∑
y

|I(x)− I(y)| (1)

produces an image I with a flat histogram. The range of I is
[0, 1], x, y are pixels and A,B are the image dimensions.

In [11] the energy in Eq. (1) is interpreted as the difference
between two positive and competing terms

E(I) = D(I)− C(I), (2)

the first one measuring the dispersion around the average
value of 1

2 (as in the gray world hypothesis), the second term
measuring the contrast as the sum of the absolute value of
the pixel differences. But this measure of contrast is global,
not local, i.e. the differences are computed regardless of the
spatial locations of the pixels. This is not consistent with how
we perceive contrast, which is in a localized manner, at each
point having neighbors exert a higher influence than far-away
points. Therefore, [11] proposes an adapted version of the
functional of Eq. (1) that complies with some very basic visual
perception principles, namely those of white patch, locality
and not excessive departure from the original data:
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(I(x)− I0(x))2, (3)

where α, β and γ are constant and positive weights, I is a
color channel (R,G or B), w(x, y) is a normalized Gaussian
kernel of standard deviation σ, and I(x) and I(y) are two
intensity levels at pixel locations x and y respectively.

By minimizing the image energy in Eq. (3) the aim is to
maximize the contrast (second term of the functional), while
not departing too much from the original image (third term)
and also preserving the gray world hypothesis (first term).
We can intuitively explain how the contrast term operates by
considering the following. Since γ > 0, in order to minimize
E(I) we need to increase

∑
x

∑
y w(x, y)|I(x) − I(y)|, i.e.

the local contrast, a weighted sum of local pixel differences.
So if a pixel has a larger value than all the pixels in its
neighborhood, then increasing the local contrast is achieved
by enlarging these differences, increasing the pixel value even
more. Conversely, when a pixel has a smaller value than all the
pixels in its neighborhood, then increasing the local contrast
is achieved by making the pixel value even smaller. If γ < 0,
then the minimization of Eq. (3) reduces, not increases, the
contrast, as pointed out in [10]. The radius σ of the kernel
w(x, y) controls how local the contrast enhancement is: a very
large σ corresponds to the global case of Eq. (1), whereas with
a small σ value the contrast term is computed over small pixel
neighborhoods.

It is formulated in [11] that the solution to the minimization
of Eq. (3) can be found as the steady state of the evolution
equation

Ik+1(x) =
Ik(x) + ∆t

(
α
2 + βI0(x) + γ

2RIk(x)
)

1 + ∆t(α+ β)
(4)
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where the initial condition is Ik=0(x) = I0(x). The function
RIk(x) indicates the contrast function:

RIk(x) =

∑
y∈I w(x, y)s

(
Ik(x)− Ik(y)

)∑
y∈I w(x, y)

(5)

where x is a fixed image pixel and y varies across the image.
The slope function s() is a regularized approximation to the
sign function, which appears as it is the derivative of the
absolute value function in the second term of the functional;
in [11] they choose for s() a polynomial of degree 7.

In [11] it is shown that Eq. (3) has a single minimum and
that it is also a fixed point of ACE. In other words, we can
say that ACE is a numerical implementation of the gradient
descent of Eq. (3). The minimization of Eq. (3) yields very
good color constancy results and this method shares all the
good properties and possible applications of ACE, plus the
numerical implementation in [11] has a reduced complexity
of O(NlogN), where N is the number of pixels.

This method can be used for contrast enhancement since
it produces good results without halos, contrast reversals,
spurious colors or any other kind of visual artifact. The main
reason for this, formally proven in [11], is that unless σ is too
small, the minimization of Eq. (3) preserves the ordering of the
level lines of the original image. Furthermore, the algorithm
has a local but not pixel-wise nature: the value at each pixel
is updated according to comparisons with all its neighbors.
This comparison procedure has a sort of anchoring behavior,
preventing pixel values from having sudden changes, which
helps to explain why the same algorithm applied independently
to the frames of a video produces results without temporal
artifacts; we have corroborated this in our experiments, as we
shall see. Finally, the algorithm does not produce hue shifts
either, as it can be seen in the examples in Ferradans et al.
[17]. A possible reason is that both large and small contrasts
are modified in the same way and by a very similar amount.
This amount is the maximum contrast modification allowed by
the competition of the contrast term with the other two terms
in the equation; therefore, it depends on the weights α, β, γ
but not on the magnitude of the local contrast.

There is a very close connection between the formulation
of [11] (Eq. (3)) and Retinex. In their kernel-based Retinex
(KBR) formulation [10], Bertalmı́o et al. take all the essential
elements of the Retinex theory (channel independence, the
ratio reset mechanism, local averages, non-linear correction)
and propose an implementation that is intrinsically 2D, and
therefore free of the issues associated with paths. The results
obtained with this algorithm comply with all the expected
properties of Retinex (such as performing color constancy
while being unable to deal with overexposed images) but
don’t suffer from the usual shortcomings such as sensitivity
to noise, appearance of halos, etc. In [10] it is proven that
there isn’t any energy that is minimized by the iterative
application of the KBR algorithm, and this fact is linked
to its limitations regarding overexposed pictures. Using the
analysis of contrast performed by Palma-Amestoy et al. [39],
the authors of [10] are able to determine how to modify the

basic KBR equation so that it can also handle overexposed
images, and the resulting, modified KBR equation turns out
to be essentially the gradient descent of the energy of Eq. (3).
In this way, the connection between Retinex, ACE, and the
perceptual color correction of [11] (Eq. (3)) becomes explicit.

IV. GAMUT MAPPING VIA ENERGY FUNCTIONAL
ADAPTATION

In this section, we adapt the image energy functional defined in
Eq. (3) in order to perform gamut mapping from the gamut of
the original image to the target gamut of a given device. Firstly,
we replace the first term of the functional, α2

∑
x(I(x)− 1

2 )2,
by α

2

∑
x(I(x) − µ)2, where µ is the mean average of the

original image, I0. In this way we are penalizing departures
from the original mean, instead of imposing the gray world
assumption, which could cause a change in the color palette of
the result; this modification was already used by Ferradans et
al. [17] for local contrast enhancement of tone mapped images.
The resulting evolution equation is

Ik+1(x) =
Ik(x) + ∆t

(
αµ+ βI0(x) + γ

2RIk(x)
)

1 + ∆t(α+ β)
(6)

Also, we recall from [10] that γ ∈ R in the functional
is positive or negative depending on whether we want to
maximize or minimize the contrast, respectively, and we will
use positive values for gamut extension and negative values
for gamut reduction.

A. Gamut Reduction Algorithm

In order to perform a gamut reduction operation we minimize
the contrast of the source image using Eq. (6) until the colors
of the larger gamut converge to the smaller destination gamut.
In cases where we need to apply GR, the contrast coefficient γ
will be negative and the value of α will be small. The evolution
Eq. (6) has a steady state for each particular set of values for α,
β, ∆t and γ. For example, in Fig. 1a, a chromaticity diagram is
shown with different gamuts (visible spectrum, sRGB gamut,
source gamut, target gamut and reproduced gamut). It can
be seen that when β = 1, α = 0, and γ = 0 the steady
state of the evolution equation is equivalent to the original
image. In the same figure we show that as γ decreases and α
increases following a |γ|20 slope, the steady state of Eq. (6) has
a gamut which is gradually smaller. Fig. 1a shows that, just by
selecting a small enough value for γ (γ = −3.21 in this case)
we are already performing gamut reduction. However, in this
case, colors that were originally inside the target gamut move
inwards too much, and the appearance of the image becomes
washed-up, as Fig. 1b shows.

To improve the previous result, we present an iterative method
in terms of the contrast coefficient γ. At each iteration, we
run Eq. (6) for some particular α, β, and γ until we reach the
steady state. The steady state of each iteration will provide
us with some pixels of the final result. At iteration 1, we set
β = 1, α = 0, and γ = 0, and therefore the original image
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(a)
(b)

Fig. 1: Perceptual GR Approach. (a): Gamuts on chromaticity diagram. (b): Contrast reduction results. Top left: original image.
Top right: γ = −0.22. Bottom left: γ = −0.83. Bottom right: γ = −3.21. As gamma becomes smaller the image becomes
more washed out.

(a) (b) (c) (d)

Fig. 2: Gradual mapping of colors. Out-of-gamut colors (in green) when (a): γ = 0, (b): γ = −0.22, (c): γ = −0.83, (d):
γ = −3.21. As gamma decreases the number of out-of-gamut pixels is reduced.

(a)
(b)

Fig. 3: Modified Perceptual GR Approach. (a): Gamuts on chromaticity diagram. (b): Top left: original image. Top right:
γ = −0.22. Bottom left: γ = −0.83. Bottom right: γ = −3.21. In the modified perceptual GR approach, the reproduced image
covers a wider range of gamut and appears pleasant in appearance.

is obtained as the steady state. We select the pixels that are
inside the destination gamut for the final image and leave them
untouched for the following iterations. We move to iteration
2, where we decrease γ (for example, setting γ = −0.05) and
increase α in relation to γ by |γ|20 . We run again Eq. (6) until
steady state, and we check whether any of the colors that were
outside the gamut at the previous iteration have been moved

inside the destination gamut. If this is the case, we select them
for the final image and leave them untouched for the following
iterations. We keep iterating by decreasing γ (and increasing
α accordingly) until all the out-of-gamut colors come inside
the destination gamut. An example of this iterative procedure
is shown in Fig. 2, where green pixels represent out-of-gamut
pixels remaining in that iteration. It can be seen in Fig. 3a
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(a) Original image (b) Iσ , σ = 25 (c) Iσ , σ = 100 (d) Iσ , σ = 200 (e) Ifinal, using Eq. (7)

Fig. 4: Effect of standard deviation (σ). The small values of standard deviation (σ) of the Gaussian kernel (w) preserve colors
but introduce artifacts. The larger values of σ produce the gamut reduced images that are free from artifacts, but where colors
are less saturated.

(a)

(b)

Fig. 5: Perceptual GE Approach. (a): Gamuts on chromaticity
diagram. (b): Left: input image. Right: result of first trial of
perceptual GEA. As any of the colors from the source image
touches the boundary of the target gamut, the reproduction is
achieved.

that the reproduced gamut is covering a much wider range of
colors than previously. It is shown in Fig. 3b that the colors
are better preserved as compared to the previous example (see
Fig. 1b).

We also want to note that the standard deviation σ of the
Gaussian kernel w is of great importance; we observe in Fig.
4 that a small value of σ leads to the preservation of colors but
may introduce a few artifacts, whereas for the larger values of
σ each color pixel is strongly influenced by the surrounding
colors. Therefore, our method computes several gamut mapped
images Iσ by using four different values of standard deviations
σ ∈ {σ1, · · · , σ4}. Subsequently, in order to obtain a final
gamut mapped image Ifinal, we select for each pixel x, a
value out of four gamut mapped images Iσ(x) which has
the minimum Lab ∆E distance with compared to the original
image value Iorig(x)

Ifinal(x) = arg min
Iσ

(Lab(Iσ(x))− Lab(Iorig(x)))
2
,∀x,

σ ∈ {σ1, · · · , σ4}. (7)

(a)

(b)

Fig. 6: Modified Perceptual GE Approach. (a): Gamuts on
chromaticity diagram. (b): Left: input image. Right: result of
proposed perceptual GEA. The result of GEA are pleasingly
saturated (see the grass, water, roof of the house) and covers
a wider range of gamut.

This procedure increases the computational cost, but the
quality of the reproduced image improves to a great extent.

B. Gamut Extension Algorithm

In this section, the goal is to develop a gamut extension
algorithm that is capable of accurately expanding the colors
from a smaller source gamut to a larger destination gamut.
To this end, we enhance the contrast of the source image by
running the evolution Eq. (6) to the steady state while keeping
the sign of γ positive and defining α as |γ|20 . To select the value
of γ that is adequate for the extension, we pick the minimum γ
for which any of the colors touches the boundary of the target
gamut as it is presented in Fig. 5a. The drawback in this case
is that the reproduced image (Fig. 5b) is less saturated, so
we can’t realize the full potential of the reproduction device
in terms of colors. To overcome this problem, we apply Eq.
(6) to larger values of γ and let the original gamut exceed
the destination gamut upto a certain threshold level (Te). This
threshold Te controls the level of saturation; a large value of Te
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(a) Input image (b) GE without preprocessing (c) Histogram shifted image (d) GE with preprocessing

Fig. 7: Effect of preprocessing stage in GEA. Notice the trees in the background; the colors are preserved when GE is applied
after preprocessing.

Fig. 8: Original sRGB images. The first 3 images of row 3 and the fifth image of row 4 are from CIE [14]. Rest of the images
are courtesy of Kodak.

indicates a higher saturation level, whereas a small value of Te
yields a less saturated output (however, the higher saturation
level comes at the cost of less perceptually valid results). After
this, the colors that were placed outside the destination gamut
in the previous stage are mapped back inside using our gamut
reduction algorithm. It is shown in Fig. 6b that the reproduced
image is much more pleasing and exhibits a wider gamut (Fig.
6a) as compared with the gamut-extended image in Fig. 5b.

A preprocessing might be needed in cases where the source
image has a medium-to-large dynamic range, since in this case
when we apply the GEA the colors with low intensity levels
tend to go towards black, something which is evident in Fig.
7b (see trees and forearms of the man). This indicates that the
image content has a significant impact on the results of the
GEA. To cope with this, we introduce a preprocessing step
in our GEA where we give a shift to the histogram of each
channel of the source image, from low towards high intensity
values. The shift in histograms depends on the difference

between the source and the target gamut; the shift is larger if
the difference between gamuts is large, whereas a small shift
is required when the difference between gamuts is smaller. As
we mentioned earlier, we let our GEA extend the color gamut
of the source image outside a certain threshold (Te) of the
destination gamut. Once the threshold Te is achieved, we then
take the corresponding γ and estimate the shift value as

shift(c) =
γIc
γref

c ∈ {R,G,B} (8)

where Ic denotes the mean of the color channel Ic. In our
GE experiments we observe that even for a large difference
between the source and the target gamuts, a maximum amount
of contrast coefficient γ = 2 is required, therefore we fix the
reference gamma value γref = 2 to calculate the shift factor
for the histograms. We perform preprocessing on the image by
giving a shift to the histogram of each channel independently
using the shift value of Eq. (8). Even though this improvement
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Fig. 9: Results of GRAs on still images. Column 1: original
images. Column 2: output of HPMINDE clipping [38]. Col-
umn 3: output of Lau et al. [29]. Column 4: output of Alsam et
al. [5]. Column 5: output of our algorithm. Compare colors and
details in the following regions: row 1, yellow bike’s mudguard
and green helmet; row 2, colors at girl’s shoulder; row 3, color
of red suit, beanie, socks, helmet and floor; row 4, fruit bowl,
cake and gift boxes. Results of HPMINDE [38] and Lau et al.
[29] are courtesy of Cheryl Lau.

in the model comes at the expense of some computational
complexity, nonetheless the results are much more enhanced
as shown in Fig. 7d.

V. EXPERIMENTS AND RESULTS

As stated in the introduction, good GMAs should not only
reproduce the colors accurately but they should also generate
results that match the inputs in terms of perception. In this
section, we present both the subjective and objective evaluation
of our GMAs on some very commonly used color images
in the literature for gamut mapping applications. The original
sRGB images are illustrated in Fig. 8 and these images exhibit
a variety of spatial and chromatic characteristics. Furthermore,
we perform experiments on videos, confirming that our GMAs
can be applied independently on a frame-by-frame basis
without producing temporal artifacts.

To compute the results for both GRA and GEA, we work in the
RGB color space by fixing the parameters β = 1, ∆t = 0.10
and α = |γ|

20 . We apply Eq. (6) to the source image until
convergence, which we assume that has been reached when
the difference between two consecutive steps falls below 0.5%.
In case of GR, we decrease the gamma value with the change
∆γ = 0.03 in order to obtain the final gamut mapped as
explained in section IV-A. In the case of GE we need to select
a γ value which is enough to extend the gamut of the source
image to a certain threshold (Te).

The primaries of gamuts that are used in this paper are
summarised in Table I, and we will refer the gamuts using
the naming convention mentioned in the same table.

Fig. 10: Detail preservation using GRAs on still images.
Column 1: original cropped regions. Column 2: output of
HPMINDE [38]. Column 3: output of Lau et al. [29]. Column
4: output of Alsam et al. [5]. Column 5: output of our
algorithm. This is a closer (zoomed-in) view of the regions
cropped from Fig. 9.

TABLE I: Primaries of gamuts.

Gamuts Red Primaries Green Primaries Blue Primaries
x y x y x y

BT.709/sRGB 0.640 0.330 0.300 0.600 0.150 0.060
DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
Simulated BT.709 0.610 0.330 0.330 0.530 0.150 0.060
Simulated DCI-P3 0.640 0.330 0.300 0.600 0.150 0.060
Toast 0.570 0.320 0.300 0.530 0.190 0.130
Toy 0.510 0.320 0.310 0.480 0.230 0.190

A. Results of GRA

To perform GR, we apply the procedure explained in section
IV-A to map the colors of the original image inside the target
gamut. We perform GR using four different values for the
standard deviation σ ∈ {50, 100, 150, 200} of the Gaussian
kernel w, and combine all the four gamut reduced versions
into a final gamut mapped image using Eq. (7).

1) Subjective Quality Assessment: In order to validate the
efficiency of our GRA, we apply our method on a rather
challenging target gamut named ‘Toy’ in Table I. Given an
image in sRGB, our algorithm maps the gamut of the original
image into the gamut ‘Toy’. The results presented in Fig. 9
show that our proposed framework works well in preserving
the colors, texture and color gradients from the out-of-gamut
regions while staying faithful to the perception of the original
image. For example, in Fig. 10, rows 1 and 4, it can be seen
that the colors reproduced by our GM algorithm (fifth column)
are much more saturated than those of HPMINDE [38] (second
column), and the state of the art algorithms of Lau et al. [29]
(third column) and Alsam et al. [5] (fourth column). Similarly,
in Fig. 10, row 2, our algorithm not only reproduces the color
efficiently but also preserves a great amount of texture. In Fig.
10, row 3, we can see our method accurately represents the
difference in the lightness of identical hue (see the pink socks
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(a) Image sequence 1 (professional footage)

(b) Image sequence 2 (amateur video)

Fig. 11: Results of GRA. In both image sequences: top row, original frames; middle row, output of Alsam et al. [5]; bottom
row, output of our algorithm. In the first 3 columns of image sequence 1, notice the color of the girl’s skin, her shirt and the
poster on wall, whereas in the last 2 columns notice the colors of the door, cushions on sofas and the lamp. In image sequence
2, differences in perception and color reproduction can be seen in almost every region of the frames such as floor, inside the
shop, and clothes of pedestrians and street artists. Original image sequence 1 is property of CBS Interactive and taken from
[1]. Original image sequence 2 is from [2].

TABLE II: Quality assessment of GRAs on still images (Fig.
8): CID perceptual error.

Mean Median RMS
HPMINDE Clipping [38] 0.0674 0.0514 0.0873
Lau et al. [29] 0.0665 0.0695 0.0807
Alsam et al. [5] 0.0472 0.0398 0.0627
Our GRA 0.0368 0.0285 0.0495

and pink beanie).

In Fig. 11 we show the results for our gamut reduction method

and for the state of the art algorithm of Alsam et al. [5] on
two different image sequences, one professional and the other
amateur, from which we have selected challenging shots that
are colorful and have noticeable camera and object motion.
Both GRAs are applied to each frame independently. We used
the target gamuts ‘Toy’ and ‘Toast’ to reduce the gamut of
image sequence 1 and image sequence 2 respectively. It can
be seen that, for both sequences (selected frames) shown in
the figure, our algorithm produces more saturated results as
compared with the method of Alsam et al. [5]. For example,
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Fig. 12: Detail preservation using GRAs on video, all regions are cropped from Fig. 11. Top row: original cropped regions.
Middle row: output of Alsam et al. [5]. Bottom row: output of our algorithm.

Fig. 13: Simulation of relationship between DCI-P3 and
BT.709 gamuts. Left: original gamuts. Right: simulated
gamuts.

in Fig. 12, the color reproduction of the girl’s skin (column
1) is perceptually more faithful in our results than in those of
Alsam et al. [5]. Furthermore, in columns 2 and 6, we can
see that the method of [5] has problems preserving the color
of the very bright regions, whereas our algorithm efficiently
reproduces those regions. It can be seen in column 4 that the
algorithm of [5] introduces a shift in the hue (see blue color),
while on the other hand our method represents colors more
faithfully. Moreover, the colors reproduced by our algorithm
are more saturated and pleasant as compared with [5] (see
column 5).

Since we are using an extreme target gamut to map the colors
of image sequence 1, we experience a few spatial artifacts in
our results; similar artifacts are observed in the results obtained
with the method in [5]. In cinematography, the content of
digital video needs to be mapped from the camera gamut to

Fig. 14: Spatial artifacts due to GRA. Top row: original
images. Middle row: effect of extreme target gamut. Bottom
row: effect of realistic target gamut. The relationship of target
gamut and spatial artifacts can be seen at the forehead of the
person, cup and on the pants.

the BT.709 gamut, and these gamuts exhibit not so extreme
differences with respect to each other. Therefore, to test our
GRA under a real scenario, we obtain a new target gamut by
simulating the difference between DCI-P3 and BT.709 gamuts
inside the BT.709 gamut. The simulation of gamuts is shown
in Fig. 13. It turns out that our GRA performs efficiently under
realistic settings without introducing any spatial artifacts as it
can be seen in Fig. 14. Moreover, we observed that it makes
sense to apply our GRA on each frame independently, since
there are no temporal artifacts and therefore no coherence
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Fig. 15: Quality assessment of GRAs on the still images from
Fig. 8 using the CID [30]. Horizontal axis: row-wise image
number of Fig. 8. Vertical axis: perceptual error.

between frames is required. The full videos are available for
the reviewers at www.ip4ec.upf.edu/node/91.

2) Objective Quality Assessment: Visually, the results pre-
sented so far underline the good performance of our GRA
in terms of visual quality. This subjective outcome is backed
by using the perceptual color quality measure presented in
[30]: the Color Image Difference (CID) metric estimates the
perceptual differences given by the changes, from one image
to the other, in features such as hue, lightness, chroma, contrast
and structure.

Comparisons using the CID metric in the still images of
Fig. 8 are provided in Fig. 15. In this figure, we can see
that our algorithm outperforms the other methods in 15 out
of 17 test images. Moreover, the CID statistical data (mean,
median and root mean square) is also presented in Table II,
which justifies the reliable performance of our algorithm over
the other approaches. In addition to objective quality tests
on still images we also compare, using the CID metric, the
perceptually-based efficiency of our algorithm and Alsam et
al. [5] on the image sequences shown in Fig. 11 and on an
animated video (where we perform reduction from the BT.709
to the ‘Toast’ gamut). The graphs shown in Fig. 16 and the
CID statistical data presented in Table III depict that our
method produces results with less perceptual error than the
other method.

In conclusion, both subjective and objective assessments show
that our GRA produces a gamut reduced video which is,
perceptually, more faithful to the original video as compared
with the other methods.

B. Results of GEA

1) Subjective Quality Assessment: To quantify the perfor-
mance of our GE approach, we use ‘BT.709’ as a target gamut
and set the saturation threshold Te = 10% of the total number
of pixels. We apply the proposed GEA on videos that have the
starting color gamut equal to the ‘Toast’ gamut (for the sake
of fair comparisons, these videos are reduced to the ‘Toast’
gamut using clipping in the Lab color space). We compare our

TABLE III: Quality assessment of GRAs on videos: CID
perceptual error.

Mean Median RMS
Alsam et al. [5] 0.0528 0.0413 0.0623
Our GRA 0.0372 0.0221 0.0474

algorithm with the SDS algorithm [26], which is similar to the
industrial method of performing gamut extension in new TV
screens [41]. We evaluate results of our GEA and SDS [26]
by comparing them with the ground truth in order to analyze
their efficiency. In Fig. 17, we present the results of our gamut
extension procedure on videos where it can be seen that our
expansion algorithm generates images that are pleasant and
realistic in appearance. Fig. 18 shows zoomed-in details from
Fig. 17. In columns 1 and 5, it can be seen that our GEA
enhances the color of trees while keeping the sky color closer
to the ground truth, whereas SDS [26] noticeably changes the
color of sky regions. It is shown in columns 2 and 4 that
the reproduction of skin color (face of the man and woman’s
arms) by our GEA is realistic in appearance, but the SDS
algorithm [26] reproduces flesh tones very much departed from
the ground truth. The results also show that the SDS approach
[26] over-saturates some regions, which in turn looks artificial.
For example, in columns 3 and 6, it is clearly noticeable that
our GEA achieves very good color reproduction (wall, hood
of the shed and hat) without introducing any unnatural colors.
On the other hand, the results produced by [26] are highly
saturated and quite different from the original content. We
have noticed that our GEA not only extends the color gamut
perceptually but also performs contrast enhancement, which is
evident in Fig. 18 (columns 3 and 6); if this were a problem,
the original contrast could easily be restored with a very small
amount of simple blurring.

Our GEA shows a robust performance in both image se-
quences. It can also be seen that the results obtained using
our algorithm are less saturated than those of SDS [26] in a
few regions. If we increase the saturation threshold (Te) our
algorithm will achieve more saturated colors, at the expense
of increasing the perceptual error of the results.

2) Objective Quality Assessment: The primary purpose of
our gamut extension algorithm is to process the colors of
a digital video in order to display it with digital cinema
projectors. In this case, a video should be mapped from an
BT.709 source gamut to a DCI-P3 target gamut. However,
paper evaluation of the results would require a wide gamut
digital cinema projector to display the mapped video under
special (cinematic) lighting conditions and/or a way to present
the DCI-P3 results in the paper, as we are limited by sRGB
for the article. Therefore, to quantify the performance of our
gamut expansion method, we take an experimental approach
where we simulate the difference between DCI-P3 and BT.709
gamuts inside the BT.709 gamut. Thereafter, we convert the
BT.709 videos to the simulated sRGB gamut using a clipping
on the xy components in the xyY color space while keeping
the luminance component unchanged. Finally, we map the
videos from the simulated BT.709 gamut to the simulated
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(a) Image sequence 1 (Fig. 11a) (b) Image sequence 2 (Fig. 11b) (c) Animated video

Fig. 16: Quality assessment of GRAs on videos using the perceptual difference measure CID [30]. Horizontal axis: time (in
frame numbers). Vertical axis: perceptual error.

(a) Image sequence 1

(b) Image sequence 2

Fig. 17: Results of GEA. In both image sequences; top row, ground truth (BT.709 gamut); middle row, output of Same Drive
Signal algorithm [26]; bottom row, output of our GEA. In both image sequences, the results of our GEA are more pleasing
and perceptually faithful to the ground truth as compared with the output of the SDS algorithm [26]; see zoomed-in details in
Fig. 18. Both image sequences are the property of Paramount Pictures and taken from [3].
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Fig. 18: Comparison of GEAs, details from Fig. 17; top row, ground truth; middle row, output of Same Drive Signal algorithm
[26]; bottom row, output of our GEA. The results of the SDS algorithm [26] are highly saturated and off from the ground
truth. See the reproduction of sky, trees, skin tone, wall, clothes, fruit bucket and hat.

(a) Sequence 1, Fig. 11a (b) Sequence 1, Fig. 11a (c) Sequence 1, Fig. 17 (d) Sequence 2, Fig. 11b

Fig. 19: Quality assessment of GEAs on videos using the perceptual metric CID [30]. Horizontal axis: time (in frame numbers).
Vertical axis: perceptual error.

DCI-P3 gamut. Since in this case we have a ground truth to
compare with (simulated DCI-P3 gamut is equal to the original
BT.709 gamut), we can assess our gamut extension algorithm
quantitatively using the CID metric. For this experiment we
set Te = 3% since source and target gamuts have small color
differences. The results are presented in Fig. 19, where it can
be seen that our reproduction is perceptually more faithful to
the original content than the results of SDS. The CID statistical
data is summarised in Table IV, which justifies the good the
performance of our GEA on videos.

We have observed in our experiments that the quality of the
input signal also matters; if there exist any artifacts due to
compression or noise in the input video they may become
prominent once passed through the GE module. A possible
way to deal with such kind of input material is to perform
preprocessing using the approach reported in [40].

Finally, we want to stress that, as it was the case with our
GRA, no temporal artifacts appear in the results of our GEA
either.

TABLE IV: Quality assessment of GEAs on videos: CID
perceptual error.

Mean Median RMS
SDS [26] 0.0105 0.0060 0.0128
Our GEA 0.0031 0.0024 0.0041

VI. CONCLUSIONS

We have presented gamut mapping algorithms based on a
perceptually inspired variational framework, which is modified
in order to perform gamut reduction and gamut extension. The
main advantage of our method is its perceptual inspiration, that
allows us to mimic some basic properties of the human visual
system while performing the mapping, and this is corroborated
by the good scores we obtain with a perceptual metric for
color and contrast distortion. The proposed gamut mapping
algorithms have shown a robust performance in a variety of
scenes which indicates their strong potential to be used in
color management pipelines both in the film and broadcast
industries.

For future work we intend to make use of other perceptual
metrics to optimize our gamut reduction algorithm. In the case
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of gamut extension, we will perform an intensive subjective
evaluation using special equipment in controlled viewing con-
ditions.
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