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Graphic-theoretic distributed inference in social networks
Mohammadreza Doostmohammadian and Usman A. Khan

Abstract

We consider distributed inference in social networks where a phenomenon of interest evolves over a given social

interaction graph, referred to as the social digraph. For inference, we assume that a network of agents monitors

certain nodes in the social digraph and no agent may be able to perform inference within its neighborhood; the agents

must rely on inter-agent communication. The key contributions of this paper include: (i) a novel construction of the

distributed estimator and distributed observability from the first principles; (ii) a graph-theoretic agent classification

that establishes the importance and role of each agent towards inference; (iii) characterizing the necessary conditions,

based on the classification in (ii), on the agent network to achieve distributed observability. Our results are based on

structured systems theory and are applicable to any parameter choice of the underlying system matrix as long as the

social digraph remains fixed. In other words, any social phenomena that evolves (linearly) over a structure-invariant

social digraph may be considered–we refer to such systems as Liner Structure-Invariant (LSI). The aforementioned

contributions, (i)–(iii), thus, only require the knowledge of the social digraph (topology) and are independent of the

social phenomena. We show the applicability of the results to several real-wold social networks, i.e. social influence

among monks, networks of political blogs and books, and a co-authorship graph.

Keywords: Distributed estimation and observability, Dulmage-Mendelsohn decomposition, Bipartite graphs, Graph

contractions

I. INTRODUCTION

Social networks appear in a wide variety of contexts ranging from, e.g. humans, animals, communities, to

economics, markets, sales, blogs, and citations; relevant literature includes [1]–[12] and references therein. The

underlying social phenomena of interest (evolving on such networks) also vary widely and include voting models,

flocking, herd behavior, rumor propagation, stock prices, and (community) trends to name a few. An additional

layer of complexity is added by noting that the associated dynamics can be either non-linear or linear. The problem

of inference in social networks, thus, is highly complex as it has to tackle the wide diversity and range of the

underlying social dynamics. What is uniform, however, across all of the social networks and the corresponding

dynamics is the presence of a social digraph, i.e. the social interactions over which a phenomenon of interest

evolves. In this context, we formulate the inference problem, and subsequently the controllability and observability

of social dynamics, on the social digraphs, independent of the particular social phenomenon. Our prime focus is on

linear dynamics, however, as discussed in [1], [2], observability (and controllability) of nonlinear dynamics can also
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Fig. 1. Social network of dynamic influence and fixed interactions with agents monitoring the nodes (states) of the interaction graph

be characterized explicitly on the underlying system digraphs, e.g. the observability of bio- and chemical-networks

based on the state-interactions.

This paper studies distributed inference of social dynamics that naturally evolve over the social digraphs. Each

state within the social dynamics is a node in the corresponding digraph and may represent an opinion [6], or a

belief [7], of an individual, actor, or a member of the social network. The states evolve (linearly or non-linearly)

over the social digraph, i.e. according to the interactions among the members of the social network, see e.g. [8],

[9] for details on relevant social models. In this sense, a social state and a node in the social digraph will be used

interchangeably. For the purpose of inference, we deploy a network of agents that monitor a few nodes (social

states) of the social digraph, see Fig. 1. Since the agent measurements may not be sufficient to build the entire state

estimate, the agents communicate among themselves. A natural question is to design communication among the

agents that results in the distributed observability of the social digraph; in a way that the results are independent

of the particular social dynamics and only depend on the social interactions (digraph).

We study communication design towards distributed observability over a Linear Structure-Invariant (LSI) charac-

terization of social networks. An LSI system is such that the structure (zero/non-zero pattern) of its system matrices

remains fixed but the non-zero elements may take any arbitrary (non-zero) values possibly changing over time.

In this sense, our results are applicable to any social phenomena described over a given social digraph. This

is because any member of the social network can change the weight associated to its neighboring actors (in the

social digraph) but some weight will always be assigned, e.g. see [10], [11]. Related literature on linear social

models includes: Reference [6] on opinion dynamics; Reference [5] on actor influence networks along with [4] on

actor stubbornness; Reference [6], [12] on Markov opinions; and, References [3]–[6] on consensus-based models.

Towards distributed estimation, related work includes the earlier work on Kalman-consensus filters [13]–[15] to

more recent work on moving horizon estimators [16] and distributed Kalman filters [17], [18]. Another important

object of study has been the characterization of distributed observability [19]–[21].

The main contributions of this paper includes the following towards social phenomena modeled by discrete-

time LSI systems (perhaps, after appropriate linearization [1], [2]): First, we mathematically formulate distributed

observability involving the Kronecker product of the agent (communication) topology and the social digraph (the
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LSI system matrix); and, Second, we derive the necessary conditions on the agent topology to ensure distributed

observability. During this process, we specifically address the following: (i) Which states are critical for the

inference of social dynamics? and, (ii) Given the critical states observed by agents, what are the agent connectivity

requirements to ensure distributed observability? The first question aims at studying the contribution of each

observation towards the centralized observability. As we will show, the observations critical for the centralized

observability are also critical for distributed observability. However, the communication among the agents (possessing

these observations) is different. In particular, we show that each critical observation is not required given certain

agent connectivity.

We treat distributed observability as generic, i.e. only tied to the structure of the LSI system matrix, and, in

turn, to the social digraph. Our work significantly differs from the related work on centralized observability [1],

[22]–[24], and its dual on centralized controllability [2], [25], due to the following reasons: (a) We show that the

critical measurements, e.g. in [22], can be further partitioned into two classes: Type-α and Type-β, driven by the

structural rank of the LSI system matrix (social digraph); (b) This partitioning further enables us to show: (i) Only

Type-α measurements are required at each agent; and, (ii) Type-β measurements are not necessarily required as

long as each agent has a directed path to all Type-β measurements; (c) Our analysis does not make any assumption

on the structural-rank of the social system in contrast to [20], [26], [27], where full structural-rank is assumed;

(d) The results are also distinguishable from [28], [29], where hierarchical agent topology is assumed. The main

objective here is to design the agent topology in contrast to predetermined networks in [16], [20], [30], [31].

The rest of the paper is organized as follows: Section II gives preliminaries on graph theory, social modeling,

and formulates the distributed estimation problem. Section III provides a mathematical derivation of distributed

observability. Section IV enlists some advanced graph-theoretic concepts subsequently used in Sections V and VI

to derive necessary observations and agent connectivity. We illustrate our approach on examples of real-world social

networks in Section VII. Finally, Section VIII concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we discuss the preliminaries to describe this paper and formulate the distributed inference problem.

A. Social phenomenon: Modeling and interactions

Social networks and complex networks, in general, have been modeled using both linear and nonlinear dynamics,

see [8], [9], [32], and references within. Examples of linear models are in consensus/agreement problems [3]–[5]

and Markov-based opinion formation [6], [12]. Two well-known linear models are social influence networks by

Freidkin and Johnson [5] and French model [33]. The French model formulates the formation of opinions (states)

under the interpersonal influence of peers. Similarly, Freidkin and Johnson model the process of social influence

on opinion evolution. Another socio-economic example is [34], where product prices as states linearly evolve on

a daily basis according to a competitiveness matrix (auction game). Of significant relevance to this paper is the

characterization in [10] and [11] where the structure of the linear model is assumed to be fixed but with time-varying
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interaction weights. In particular, Reference [10] describes examples of a linear state-space on the social networks

resulting from email communication, and social interaction of Monks (members of a particular religious order). On

the other hand, Reference [11] discusses a linear state-space for influence networks, where attitudes, sentiments, or

expectations (states) evolve over time-varying influences of other actors.

For nonlinear social dynamics, simplified modeling methods have been considered, e.g. [1], [2]. Particularly,

observability of nonlinear dynamics is characterized by the structural observability of the corresponding linearized

system [1]. Hence, it is natural to model the social phenomena as LSI systems, where any (non-zero) element of the

system matrix may change (modeling distinct or time-varying phenomena) as long as the structure (social digraph)

is not violated, e.g. see [10] and [11]. Mathematically, we model the social dynamics as

xk+1 = Akxk + vk, k ≥ 0, (1)

where Ak is the system matrix, xk = [x1,k . . . xn,k]T ∈ Rn is the state vector, and vk is Gaussian noise. The

system matrix, Ak, is such that its elements can change but its structure, denoted by A = {aij} and following from

the social digraph, is invariant over time. As an example, consider the email communication network in [10] where

the states are time-series of the email communication among ENRON employees. The number of emails exchanged

are modeled as a linear state-space and their evolution before and after collapse of the company is studied. Another

related LSI description is the monk network where a group of monks are ranked based on their inter-relations (e.g.

liking/disliking, praise/blame, etc.) form the well-known Sampson’s network [35].

We assume that Eq. (1) is monitored by N agents:

yik = Hixk + rik. (2)

where Hi
k = {hij} ∈ Rpi×n is the local observation matrix at agent i and time k; yik ∈ Rpi is the local observation

vector, and rik is local observation Gaussian noise. With this notation, the global observation model is
y1
k

...

yNk

 =


H1

...

HN




x1
k

...

xNk

+


r1
k

...

rNk

 ,
, yk = Hxk + rk, (3)

where yk ∈ Rp is the global observation vector, H = {hij} ∈ Rp×n is the global observation matrix, and rk is

noise. Clearly, we have p = p1 + . . .+ pN .

The agents, i = 1, . . . , N , monitoring the social network, exchange information over a communication graph, GW =

(VW , EW ). The set, VW , consists of all of the agents, whereas the set, EW , is the edge set of ordered pairs, (i, j),

describing that agent j can send information to agent i. The neighborhood at an agent i ∈ VW is denoted by Ni,

defined as

Ni = {j | (i, j) ∈ EW }, (4)

where we use Di to denote the extended neighborhood, i.e. {i} ∪ Ni, and Adj(GW ) denotes the graph adjacency.
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We are explicitly interested in designing the structure of H , i.e. where to place the agents, and the structure of

Adj(GW ), i.e. how the agent should communicate, given only the structure of the LSI system matrix, A, i.e. the

social digraph.

B. Structured Systems Theory

System (social) digraph: In structured systems theory, the system in Eqs. (1)-(2) is typically modeled as a system

digraph, where the nodes are states and the edges are the social interactions given by the system matrix, A = {aij}.

Let X , {x1, . . . , xn} denote the set of states, and Y , {y1, . . . ,yN} denote the set of observations. Then the

system digraph is given by GA = (VA = X, EA). The edge set, EA, is defined as EA = {(xi, xj) | aij 6= 0} to

be interpreted as xi ← xj . In our social model, GA precisely captures the interactions on the social digraph over

which the social phenomena evolve.

Composite digraph: A digraph, Gsys = (Vsys, Esys), described on both states and observations: Vsys = {X ∪ Y},

and Esys = {(xi, xj) | aij 6= 0} ∪ {(yi, xj) | hij 6= 0}. This composite graph, Gsys, is associated to the pair (A,H)

and adds observations (agents) to the system (social) digraph, GA. The following are defined over the composite

graph, Gsys.

A path, i
path−→ j, from i ∈ Vsys to j ∈ Vsys, is such that there exists a sequence of nodes, {i, i1, . . . , iL−1, j}

in Vsys, with (j, iL−1), . . . , (i1, i) ∈ Esys. A path is called Y-connected, if it ends at a node in Y . A cycle is a path

where the begin and end nodes are the same. With this notation, the following theorem [1] states the conditions

required for structural centralized observability of the social digraph:

Theorem 1. A system is observable if and only if in, Gsys: Accessibility–Each state is the begin-node of a Y-

connected path; and, S-rank condition–There exist a union of disjoint cycles and Y-connected paths covering all

the states.

It is noteworthy that Theorem 1 does not require the exact system parameters but only the zero/non-zero structure.

In this sense, the observability characterization of social systems is generic, i.e. Theorem 1 is applicable to any

choice of social dynamics with a given social digraph, structure of A and H–the set of values for which Theorem 1

does not hold lie on an algebraic variety whose Lebesgue measure is zero [25].

The accessibility and S-rank conditions of Theorem 1 also have algebraic interpretations [36]. Accessibility is

tied with the irreducibility of the structure of
[
A> H>

]>
. Intuitively, each state (node in social digraph) in GA must

have its own ‘downstream’ observation. If a state has no downstream state or observation, the information of that

state (and its ‘upstream’ nodes) are not accessible. The S-rank condition is equivalent to S-rank
[
A> H>

]>
= n. In

other words, if two or more states point to the same downstream node, the distinct information of all the upstream

nodes cannot be inferred from the same downstream node.

Graph-theoretic notions of contractions [22], [23], and Strongly Connected Components (SCC) [37] are useful for

such structured analysis. Some related concepts will be introduced in Sections IV-A and IV-B, whereas, Section IV-C

provides a list of relevant computationally-efficient tools.
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C. Problem formulation: Distributed inference

The problem of estimating the state, xk from the distributed agent observations, yik, can be fundamentally

considered in two different contexts: (i) Central–the agent observations are collected at a center where the estimate

is computed [38]; and, (ii) Distributed–the agents interact with each other over the communication graph, GW , and

each agent estimates the entire state, xk, given its observations and the interactions up to time k. This estimate is

denoted by x̂ik|k at agent i.

In this paper, we explicitly consider the distributed estimation assuming only that the pair, (A,H), is observ-

able [38], i.e. no agent may estimate the entire state within its neighborhood. In other words, neither the pair, (A,Hi),

nor the pair, (A, {Hj}j∈Di), may be observable. It is noteworthy that unlike many estimation schemes [13]–[15],

we assume that each agent exchanges information over GW only once per k. Under these assumptions, we consider

the following problems in this paper. Given the social digraph, GA, Eqs. (1)-(2), and the agent communication, GW :

(a) What is distributed observability of a social digraph? We derive this in Section III leading to a distributed

estimator.

(b) What are the necessary conditions on the agent communication, GW , such that the underlying social digraph

is distributedly observable?

III. DISTRIBUTED OBSERVABILITY

We now describe distributed estimation in more detail where each agent i is to estimate the state, xk, with its

observations, yik, and with its neighboring observations, {yjk}j∈Ni . Each agent, i, thus, estimates the state-vector,

described by Eq. (1), from the following observations:

yjk = Hjxk + rjk, j ∈ {i} ∪ Ni. (5)

Let us assume that the neighbor set has a total of Ni neighbors, i.e. |Ni| = Ni, and is indexed by i1, i2, . . . , iNi .

Then, agent i is to estimate xk from the neighboring observations, yik,y
i1
k , . . . ,y

iNi
k . Or, equivalently, with the

following:

ỹik ,


yik
...

y
iNi
k

 =


Hi

...

HNi

xk +


rik
...

rNik

 . (6)

The above observation model is equivalent to [39]:

zik =
[
H>i . . . H>Ni

]
ỹik , H̃ixk + r̃jk, (7)

with H̃i ,
∑

j∈{i}∪Ni

H>j Hj , r̃ik ,
∑

j∈{i}∪Ni

H>j r
j
k. (8)

In fact, Eq. (7) is just a compact way of writing Eq. (6). The distributed estimation problem over the communication

graph, GW , is now to estimate xk at each agent, i, with the observations, zik. From the standard estimation theory

arguments [38], we know that such an estimation is possible at any agent i, if and only if, the pair, (A, H̃i), is
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observable. For observability at all of the agents, we must consider all such pairs, (A, H̃1), (A, H̃2), . . . , (A, H̃N ),

i.e. the observability of 


A

. . .

A

 ,

H̃1

. . .

H̃N


︸ ︷︷ ︸

,DH


, (9)

compactly written as (I ⊗ A,DH). It is straightforward to show that a centrally observable system does not

necessarily imply that the distributed system is also observable, i.e.

(A,H)-observability ; (I ⊗A,DH)-observability. (10)

We note that the above straightforward description of distributed observability is actually misleading. The primary

reason is that although observation exchanges are considered, the agents may also exchange their local predictors.

This latter exchange does not appear in the above characterization of distributed observability. In the following,

we provide a novel construction to derive distributed observability that accommodates for both observation and

predictor exchanges, and show that distributed observability does not require each agent to be observable in its

neighborhood.

A. Derivation

Consider again the distributed estimation problem where we wish to estimate the dynamics in Eq. (1) via the

observations in Eq. (5). Recall that x̂ik|k denotes the estimate of the state, xk, using all of the observations available

at agent i, and its neighboring agents up to time k. Concatenating the estimates at all agents, the global state

estimate in the network is

x̂k|k ,


x̂1
k|k

x̂2
k|k
...

x̂Nk|k

 . (11)

Considering x̂k|k to be an estimate of some state, we seek the corresponding dynamical system to this state-estimate.

Clearly, the corresponding dynamical system has the following global state vector:

xk ,
[
x>k x>k . . . x>k

]>
= 1N ⊗ xk, (12)

where 1N is a column vector of N ones. To this end, let us assume that the dynamics associated to the above

global state-vector, xk, are given by some linear system:

xk+1 = Zxk + vk, (13)
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where we have Z ∈ Z , and Z is defined as a class of system matrices such that if we choose any matrix Z ∈ Z ,

Eq. (13) remains a valid representation of the global state vector as given by concatenating the system dynamics

of Eq. (1). We now characterize this class of system matrices, Z . We have

xk+1 = 1N ⊗ (Axk + vk) = (W ⊗A)︸ ︷︷ ︸
Z

xk + 1N ⊗ vk︸ ︷︷ ︸
vk

, (14)

where the last equality follow if and only if W is stochastic. It is, in fact, quite straightforward to show that

1N ⊗Axk = (W ⊗A)xk, (15)

for any stochastic matrix, W , leading to the conclusion that any matrix that cannot be decomposed as W ⊗ A is

not a system matrix for the dynamics described by xk+1, i.e.

Z = {Z | Z = (W ⊗A) and W is stochastic}. (16)

The propositions below follow from the above arguments.

Proposition 1. The distributed estimation of the dynamics in Eq. (1) monitored by agents according to Eq. (2),

interacting over a communication graph, GW , is equivalent to the centralized estimation of the following system:

xk+1 = (W ⊗A)xk + vk+1, (17)

zk , DHxk + r̃k, (18)

where W is stochastic and is such that its sparsity (zero/non-zero pattern) is the same as of the adjacency

matrix, Adj(GW ).

We are now in a position to write the optimal filtering equations for the centralized system (equivalent to the

distributed estimation problem) in Eqs. (17)-(18):

x̂k|k−1 = (W ⊗A)x̂k−1|k−1, (19)

x̂k|k = x̂k|k−1 +Kk

(
zk −DH x̂k|k−1

)
, (20)

where Kk is the Kalman gain. The following proposition formally defines the distributed observability.

Proposition 2. A dynamical system monitored by a network of interacting agents is distributively observable if and

only if (W ⊗A,DH) is observable, where W is a stochastic matrix, W , and has the same sparsity as that of the

adjacency matrix, Adj(GW ).

Proof: The proof relies on the fact that the distributed estimation problem is equivalent to the centralized

estimation problem with the system matrices, W ⊗A and DH .

In general the observability of the pair (W ⊗A,DH) can be checked using the algebraic observability tests, i.e.

the rank of the observability Grammian or the PBH test [38]. These tests, however, require the explicit knowledge

of the social phenomenon, i.e. the elements in the associated matrices. As we are concerned with LSI systems
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and social networks with LSI description, we are interested in developing observability tests that are based on the

structure of the social digraph. The structure of the matrix W that makes (W ⊗A,DH) observable, thus defines the

topology of the underlying agent communication, GW , see Proposition 1. In this paper, we will derive the necessary

conditions on the communication topology, GW , to recover this distributed observability.

B. Distributed estimator

Although the centralized system, Eqs. (17)-(18), is equivalent to the distributed estimation problem, we still

have to verify that the centralized (optimal) filtering equations, Eqs. (19)-(20), can be implemented in a distributed

fashion. To this end, we note that Eqs. (19)-(20) consists of two information fusions: one is fusion in the predictor

space, i.e. via W in Eq. (19), and the other is the fusion in the observation space, i.e. via DH in Eq. (20). When

the goal is to design a communication graph, it is advantageous to consider these two fusions separately.

Following the above arguments, we consider the fusion in the predictor space to be implemented over an inter-

agent communication graph, Gβ , and the fusion in the observation space to be implemented over an inter-agent

communication graph1, Gα. We call Gα and Gβ respectively α-network and β-network. With this two-layered

approach to fusion, we can immediately note that GW is now given by Gα∪Gβ . Finally, we denote the neighborhood

at agent i as Nα(i) and Nβ(i), in Gα and Gβ , respectively.

We first consider the prediction in Eq. (19). Assume W to be a stochastic matrix such that the zero and non-

zero pattern follow the sparsity of the adjacency matrix, Adj(Gβ). It can be immediately observed that Eq. (19) is

distributed:

x̂ik|k−1 =
∑

j∈{i}∪Nβ(i)

wijAx̂
j
k−1|k−1, (21)

with W = {wij}. Next consider fusion in the observation space, i.e. Eq. (20). Note that since the Kalman gain, Kk,

is a full matrix in general, Eq. (20) cannot be immediately distributed. In order to keep the implementation of

Eq. (20) distributed and local, an alternate is to assume that the gain matrix, Kk, is block-diagonal, i.e. Kk =

blockdiag[Ki
k, . . . ,K

N
k ], leading to

x̂ik|k = x̂ik|k−1 +Ki
k

∑
j∈{i}∪Nα(i)

H>j

(
yjk −Hjx̂

i
k|k−1

)
. (22)

By restricting the full gain matrix, Kk, to be block-diagonal (or to any non-full structure), the resulting distributed

estimator, Eqs. (21)-(22), is not equal to the centralized counterpart, Eqs. (19)-(20). In other words, the Kalman gain

matrix, Kk, cannot be computed locally from the standard procedures. However, computing such a constrained gain

is possible via an iterative cone-complementarity optimization algorithm, see [40], [41] for details. Nevertheless, if

the centralized equivalent has no solution, then the distributed problem cannot have a solution and it is imperative

to ensure the observability of (W ⊗A,DH).

1Considering fusion over separate graphs is important because different connectivity conditions may be required for each fusion. For example,

we showed in [37] that when the system matrix, A, is full-rank, observation fusion is not required.
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Finally, it can be shown that the networked error in the distributed estimator, Eqs. (21)-(22), evolves as

ek = (W ⊗A−KkDH(W ⊗A))ek−1 + qk, (23)

which is stable if and only if (W ⊗A,DH) is observable [18]. This is consistent with Proposition 2.

IV. RECOVERING OBSERVABILITY:

A GRAPH THEORETIC APPROACH

We now focus on developing the necessary conditions on the agent communication graph, GW = Gβ ∪ Gα, in

order to recover the distributed observability of the pair (W ⊗ A,DH). We cast this problem from a structural

viewpoint (as introduced in Theorem 1), i.e. the analysis is irrespective of the particular social phenomena, elements

in W ⊗A and DH , and only relies on the (composite) social digraph, i.e. the structure of the system matrix, W ⊗A,

and the observation matrix, DH . In order to develop our results in the structural context, we need some advanced

graph theoretic concepts that are covered below in Sections IV-A and IV-B. These concepts provide the foundations

and related preliminaries for the agent classification in Section V, and for the necessary conditions on designing

the agent communication network in Section VI.

A. Contractions in Bipartite graphs

The graph-theoretic concepts and notations stated in this section can be found in [42]. We cast these definitions

in our framework of system digraphs and illustrate them in Figs. 2 (b)–(e) using a 3-node system digraph, GA of

Fig. 2 (a).

Bipartite graphs: A bipartite graph, Γ = (V+,V−, EΓ), is such that its nodes can be partitioned into two disjoint

sets: V+ and V−, such that all of its edges ∈ EΓ start in V+ and end in V−. We construct a bipartite graph, ΓA

in Fig. 2 (b), from the social digraph, GA, of Fig. 2 (a): Define V+ = X and V− = X , with the edge set, EΓA ,

defined as the collection of (v−j , v
+
i ), if (vj , vi) ∈ EA.

Matching: A matching, M, on the system digraph, GA, is defined as a subset of the edge set, EA, with no

common end-nodes. In the bipartite graph, ΓA, it is defined as a subset of edges where no two of them are incident

on the same node, i.e. all the edges in M are all disjoint. The number of edges, |M|, in M is the size of the

matching. A matching,M, with maximum size, is called maximal matching, denoted byM, which, is non-unique,

in general. A maximal matching is shown as blue highlighted edges in Fig. 2 (a) and (b).

Matched/Unmatched nodes: Let M be a maximal matching on ΓA. Let ∂M+ and ∂M− denote the nodes

incident to M in V+ and V−, respectively. Then δM = V+\∂M+ is the set of unmatched nodes, shown in a box

in Fig. 2 (b).

Auxiliary graph, denoted by ΓMA , is a graph associated to a maximal matching,M. It is constructed by reversing

all the edges of maximal matching,M, and keeping the direction of all other edges, i.e. EΓA\M, in ΓA, see Fig. 2

(c).
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Fig. 2. (a) A simple social digraph, GA. (b) Bipartite graph, ΓA, obtained from GA, where a maximal matching is highlighted in blue. (c)

Auxiliary graph ΓM
A ; (d) Alternating path; (e) Contractions. (f) A social digraph to illustrate SCCs.

Alternating path: In the auxiliary graph, ΓMA , an alternating path is a sequence of edges starting from an

unmatched node in δM and every second edge in M, see red highlights in Fig. 2 (d). The name comes from the

alternating edges between unmatched part, E\M, and matched part, M, in ΓMA .

Contraction: In the auxiliary graph, ΓMA , assign a contraction, Ci, to every unmatched node, vi ∈ δM. The

set, Ci, contains all states reachable in V+ by alternating paths starting from vi. Further, define C as the set of

all Ci’s. Intuitively, in a contraction, states are contracted to a fewer number of nodes, shown in Fig. 2 (e) as a

social digraph where now the contraction is highlighted in green.

B. Strongly Connected Components

We illustrate on the social digraph, GA in Fig. 2 (f).

Strong-connectivity: A digraph is strongly-connected if every two nodes in the digraph are connected by a path,

i.e., vi
path−→ vj for every vi, vj , in the digraph.

SCC: In a not strongly-connected digraph, a Strongly Connected Component (SCC), Si, is defined as its maximal

strongly-connected partitions. The highlighted blue edges in Fig. 2 (f) represent strong connectivity in each SCC.

Matched SCC: An SCC, i, is matched, denoted by S	i , if it contains a union of disjoint cycles covering all of

its nodes. We denote the set of all matched SCCs by S	. In Fig. 2 (f), S1 is un-matched and S2 is matched.

Parent/Child SCC: An SCC, i, is parent, denoted by Spi , if it has no outgoing edges to any other state in GA.

Any non-parent SCC is child, denoted by Sci . In Fig. 2 (f), S1 is child and S2 is parent. Let Sp be the set of all

parent SCCs. Following this convention, S	,pi is the matched parent SCC, S	,p is the set of matched parent SCCs,

and so on.

Partial order, �, defines the existence of edges within components. Mathematically, Si � Sj implies that some

node in Si has a path to some node in Sj . In Fig. 2 (f), S1 � S2.

Remark 1. Every child SCC, Sci , has a parent SCC, Spj , i.e., Sci � S
p
j . Matched parent SCCs are defined over

cyclic (matched) part of GA and they lack any unmatched node. On the other hand, contractions are defined over
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unmatched part of GA, and include an unmatched node.

C. Computational Algorithms

Given the system digraph, GA and its bipartite counterpart, ΓA, we can use efficient algorithms to compute the

maximal matching,M, e.g. the maximum flow algorithm [43]. These three objects, GA,ΓA,M, are then used in the

Dulmage-Mendelsohn (DM) decomposition [42], [44] to obtain the set of contractions, C, and the set of matched

parent SCCs, S	,p. Maximal matchings can be efficiently computed in O(
√
n|EA|) using the approach in [45].

Efficient algorithms to decompose a digraph into maximal SCCs include the well-known Tarjan’s algorithm [46]

and related Depth-First-Search (DFS) algorithms [47]. These algorithms have polynomial order in |EA|.

V. NECESSARY MEASUREMENTS FOR OBSERVABILITY

In this section, we find necessary observations for centralized observability, i.e. observability of (A,H). More

precisely, we look for the states in the social digraph, GA, whose observations ensure generic observability. We

approach this problem in two stages to recover both conditions in Theorem 2. First, we find necessary agents to

meet the accessibility property and, second, we look for agents recovering the S-rank.

A. Recovering accessibility

It is known that the accessibility of system states has a direct connection with SCCs in the social digraph [37].

The reason is that states in SCC are all accessible to each-other; if an agent, i, is accessible to a state in SCC, Sj ,

it is accessible to all other states in Sj . Every state xk included in Sj is connected to agent, i, via a path of state

nodes, i.e. xk
path−→ Y .

Theorem 2. At least one observation from every matched parent SCC is necessary to recover the observability of

the social digraph, GA, .

Proof: If parent SCC, S	,pi , has no outgoing edges, adding an observation is the only way to recover the

accessibility of its states, see [37] for more details.

Corollary 1. If a social digraph is observable, then every matched parent SCC, S	,pj , has a link to an agent in Gsys.

Hence, all S	,ci ’s are accessible: S	,ci

path−→ S	,pj

path−→ Y .

Definition 1. We name the observations in matched parent SCCs as Type-β, and agents measuring them as β-agents.

Remark 2. To recover accessibility, agents observing different states of the same parent SCC belong to an

equivalence class2 and are called equivalent. They are called independent if their observations are from distinct

parent SCCs.

2An equivalence relation is defined as having three requirements of reflexivity, symmetry, and transitivity.
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Fig. 3. Possible maximal matchings (shaded arrows) in a contraction where observation are added tp the unmatched node shown as red shaded

arrow.

B. Recovering S-rank

We now characterize the necessary observations for recovering the S-rank condition. Specifically, we show that

adding observation in contraction sets recovers the S-rank of
[
A> H>

]>
. To study the contraction property

of the system we review some useful lemmas below.

Lemma 1. The S-rank of
[
A> H>

]>
equals the size of a maximal matchingM in its composite digraph, Gsys,

see [2].

Lemma 2. Any choice of maximal matching gives the same contraction set. Mathematically, having two maximal

matchings,M1 6=M2, any unmatched state vi ∈ δM1 can be reached along an alternating path from a state vj ∈

δM2; the set C is the same for both of matchings, see [42], [48].

Lemma 3. For any choice of maximal matching, M, there is only one unmatched node in every contraction, Ci,

see [48].

Lemma 4. Adding an observation of an unmatched node in δM recovers the S-rank by 1, [42].

Example: We illustrate Lemmas 1–4 in Fig. 3 where a contraction of 3 nodes, x1, x3, x5, into 2 nodes, x2, x4,

is shown. The number of possible maximal matchings is
(

3
2

)
= 3. From Fig. 3, a maximal matching gives one

unmatched node in the contraction: e.g. in Fig. 3 (b), x1 is the unmatched node, and after reversing the (highlighted)

edges in that maximal matching, nodes x3 and x5 are reachable from x1. Simarly, Figs. 3 (c) and (d) show the

remaining maximal matchings.

Proposition 3. Let a matrix HCi define an observation from an unmatched node in a contraction Ci, then

S-rank

 A

HCi

 = S-rank (A) + 1. (24)

Proof: Directly follows from Lemma 3 and 4. Since there is an unmatched node, note that S-rank(A) < n.

For any choice of maximal matching M (say highlighted edges in Fig. 3 (b)) there is only one unmatched node,

(x1 ∈ Ci = {x1, x3, x5}), where other states in Ci\x1 are all matched. Therefore, observing x1 improves the S-rank

by 1.

October 17, 2018 DRAFT



14

Theorem 3. To recover the S-rank of A, one distinct state observation from every contraction set Ci is necessary.

The proof follows from the previous arguments. For S-rank recovery, the observations from any state in a

contraction, Ci, are equivalent. In other words, for any state in the contraction, there exists a maximal matching

where this state is unmatched. If two contraction sets, say Ci and Cj , share a state, observation from that common

state only recovers the S-rank of one of them. Hence, a distinct observation from the other contraction set is

required. The observations are called independent if they are distinct and are taken from distinct contractions.

Definition 2. We name the observations in the contractions as Type-α, and the agents measuring them as α-agents.

Notice that the necessary observations for S-rank recovery are different from Type-β observations recovering

accessibility. Type-α and Type-β observations are both equally critical for centralized observability; however, they

play different roles in distributed case as will be discussed in Section VI. To the best of our knowledge, this is not

considered in the literature and makes this work of more interest as compared to centralized observability recovering

in [2], [22], [23].

C. Necessary conditions for centralized observability

We now merge the necessary conditions from the previous in the following theorem as the main result of this

section.

Theorem 4. For a social digrpah, GA, the observations necessary for generic observability are:

(i) one from every contraction set, Ci;

(ii) one from every matched parent SCC, S	,pi .

Proof: The proof follows from Theorems 2 and 3.

Theorem 4 is not only true for the centralized case where all observations are collected at a central coordinator as

in [22], [23], but is also applicable to the distributed case. If each agent has access to these necessary observations

it can infer the global information of all social states. However, in the distributed case, agents have partial

measurements and thus, the idea is to recover these necessary conditions by communicating and sharing information

among the agents.

VI. RECOVERING LOCAL OBSERVABILITY AT EACH AGENT

In this section, we extend the results to distributed estimator, where the observations are available over a network.

Through the links in the network, agents can share necessary information on their observations and/or predictions,

and recover their partial observability. Assuming no information loss over the communication links, the chief

objective is to design the necessary topology of the agent network to ensure distributed (generic) observability.

Recall that by distributed observability we imply the observability of the pair (W ⊗A,DH).
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Theorem 5. Consider the composite digraph, Gsys, to have the necessary observations, H , from Theorem 4. The

digraph possesses generic distributed observability if and only if every agent, i, has the following characteristics:

(i) For every contraction, Cl, agent i receives a direct link from an α-agent measuring a state in Cl;

(ii) Either one of the following for every S	,pl :

(a) Agent i receives a direct link from a β-agent measuring a state in S	,pl ;

(b) Agent i sends its information via a sequence of agents making a directed path to a β-agent, say j, with

a state observation in S	,pl .

Proof: Sufficiency is proved in [18]. Necessity follows a similar argument: The proof of parts (i) and (ii)-(a)

comes directly from Theorem 4; in part (i), receiving a state observation from every contraction Cl recovers the S-

rank condition at each agent, while, in part (ii)-(a), receiving a state observation from every S	,pl directly recovers

the accessibility at agent i. Part (ii)-(b) recovers the accessibility in W ⊗A indirectly. A directed path from agent i

to β-agent j makes the inaccessible SCC S	,pl at agent i, accessible via agent j.

Condition (i) defines an α-network, Gα, where agents share measurements directly with each other. Whereas,

condition (ii)-b defines a β-network, Gβ , over which the agents only share their predictions. Notice that, this

connectivity requirement is weaker than the necessary condition in [19], where each agent requires to transmit/share

both its observations and predictions to every other agent over the same network. It is noteworthy that (ii)-(a) is a

straightforward technique to recover accessibility [49]. But it may require long-distance links as compared to (ii)-

(b). In particular, when the system is full S-rank there are no Type-α agents and any strongly-connected network

is sufficient (not necessary) to satisfy (ii)-(b). This assumption is prevalent to guarantee stability of distributed

estimators, e.g. in [20], [30], [31], however, as we have shown, it is only applicable to full S-rank systems.

Minimal observability: We now consider the minimal conditions for distributed observability, i.e. minimal number

of agents and their connectivity. When the matched parent SCCs and contractions share some states, observation

of those common states recovers both S-rank and accessibility. Thus, it reduces the minimal number of necessary

agents. Here, we first define the necessary number of different type of agents. From Proposition 3, each Type-α

observation recovers one S-rank deficiency of the social digraph, A. Similarly, since all parent SCCs are disjoint,

every Type-β observation recovers the accessibility of one matched parent SCC.

Remark 3. Let nα and nβ denote the number of necessary Type-α and Type-β observations, respectively. Then,

nα = |C| = n− S-rank(W ⊗A), nβ =
∣∣S	,p∣∣ . (25)

Note that S-rank(W⊗A) = S-rank(A), because W is full S-rank [26], [37]. Further, the number, nβ , of necessary

Type-β observations is to be corrected as the sets S	,p and C may share some states–e.g. see Section VII. Adjusting

for the possible shared states, we have the following lemma.

Theorem 6. The minimum number of necessary observations for distributed observability is |C|+|S	,p|−|S	,p∩C|.

The proof is straightforward and follows the previous discussion. Notice that α-agents necessitate strict connec-
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tivity in the network as compared to β-agents. Recovering the S-rank is only possible via a direct observation;

however, the accessibility can be obtained via a direct observation or a directed path to a β-agent, where the latter

case gives minimal connectivity requirements for β-agents.

Remark 4. Condition (ii)-(b) in Theorem 5 gives the minimal connectivity requirement for β-agents. The α-agents

are more critical than the β-agents because of their stringent connectivity. This implies that observation of any

state in S	,p ∩ C 6= ∅ are of Type-α. In other words, nβ = |S	,p| − |C ∩ S	,p|. Further note that the observability

of (W ⊗A,DH) is tied to the structure, A, of the social digraph, GA, [26]. Particularly, the S-rank of A defines the

number of Type-α observations as discussed above. This, in turn, affects the agent network, GW , i.e. the structure

of the matrix W , as provided in Theorem 5.

VII. ILLUSTRATIONS

We provide a simple example to explain the concepts and results established in this paper. Consider an n = 6-

state system, whose digraph, GA, associated bipartite graph, ΓA, and auxiliary graph, ΓMA , are shown in Fig. 4. The

maximal matching,M, is shown as black edges in ΓA and ΓMA . The contractions and unmatched nodes are illustrated

in Fig. 5 (left). The unmatched nodes are δM = {3, 4}. The contractions are determined via the alternating paths

in auxiliary graph as C = {{3, 1}, {4, 5, 6, 1}}. Both parent SCCs are matched (cyclic), thus S	,p = {{5}, {6}}.

It can be verified that the S-rank of the associated system matrix is 4. From Theorem 4, we require nα =

6 − 4 = 2 observations from C, and nβ = 2 observations from S	,p. Note that C ∩ S	,p = {5, 6}, therefore,

having a Type-α observation of x5 or x6 recovers accessibility of S	,p1 = {5} or S	,p2 = {6}, respectively. We
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get min{nβ} = 2 − 1 = 1. We choose the following observations: Type-α agents, a, b, observing x3, x5; Type-β

agent c observing x6. Next, we define the necessary network connectivity from Theorem 5: (i) agents a and b send

their observations directly to each other, and agent c, over Gα; and, (ii) agent c receives information from agents a

and b over Gβ .

A. Large-scale Social Networks

We now provide some insights of our results towards inference in social networks. Consider a social group

of actors with states, e.g. opinions, sentiments, emotions, etc., that evolve over social interactions. The influence

network, e.g. friendship, co-authorship, swarming, etc., is time-invariant but the influence weight of actors may

vary over time, and different weight assignment model the evolution of different states resulting into different

social phenomena. Our aim is to infer such phenomena by observing some necessary states without considering

any particular dynamics but only the social interactions (digraph). For distributed inference, first, we classify these

states (and the agents observing them) according to Definitions 1 and 2. The necessary network of agents is defined

according to Theorem 5.

Following the discussion in Section II-A, the structure of any social digraph is highly relevant to the dynamics that

may take place over the social network. In this context, we use some of the well-known social network models [50],

[51] and explore the graphical observability results developed in this paper. These networks have been used for

the estimation of corresponding social phenomena modeled as LSI systems as discussed in Section II-A. Each

node (circles in Figs. 6–8) represents a state, e.g., heading, opinion, buying habits, etc., in the social digraph and

evolves over social interactions. Theorem 4 characterizes the necessary observerations. These observations (and their

associated agents) are classified as Type-α (red circles) and Type-β (green circles). Finally, Theorem 5 characterizes

the network of these agents accordingly. The results are summarized in the table below:

n = |VA| E = |EA| nα nβ

Monks 18 88 0 1

Blogs 1224 19025 436 0

Books 105 882 0 1

Coauthorship 1461 5484 37 248

(a) Sampson’s Monastery Network, mentioned earlier in Section II-A, is a directed network of interactions among

the Monks in a monastery. The digraph from [51] is shown in Fig. 6. The network is full S-rank, implying nα = 0,

and is strongly-connected so nβ = 1. To illustrate agent connectivity, assume a collection of such monasteries, each

with one necessary Type-β measurement monitored by one β-agent. From our results, it is necessary for the agents

to communicate over a strongly-connected network in order to estimate any social phenomena on the union of the

corresponding social digraphs.

(b) Political Blogs: A social digraph of hyperlinks between weblogs on US politics [52], shown in Fig. 7 (left).

Each node represents a blog linked to other political blogs; the state at each node could be the popularity of the
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Fig. 6. Directed Sampson’s network with 18 actors.

blog evolving via political commentary [53]. The blogs can be seen to have two dominant clusters constituting

blogs that are more followed and hyperlinked. The digraph has nα = 436 unmatched nodes. We may observe that

most of the Type-α agents appear on the boundary of the network where the blogs are less cited (hyperlinked),

and thus, may not be inferred from the interior nodes. This specific example of inference of the popularity of such

blogging network shows that: (i) hubs (nodes with high degrees) are not necessary for observability; and, (ii) to

extract the popularity of all blogs in a distributed way, a fully-connected network is necessary (and sufficient [18]).

(c) Books on US Politics: Amazon.com data–undirected edges represent co-purchasing of books by the same

buyers [54], digraph is shown in Fig. 7 (right). The network has full S-rank, thus nα = 0, and is further connected

so nβ = 1, and can be an observation from any node.

Fig. 7. Social digraphs: (Left) Political blogs during the 2004 US Elections with 1224 nodes; (Right) Network of political books with 105

nodes.

(d) Co-authorship in Network Science: A digraph of researchers in network theory [55], shown in Fig. 8. The

states may model a novel concept or a result and the links represent the influence among the authors. The digraph

contains 268 components out of which 248 are matched. All of matched components are parent resulting into

nβ = 248; and, nα = 37. Wiring according to Theorem 5, each agent may infer any phenomena that evolves over

this social digraph.

VIII. CONCLUSIONS

This paper formally develops the necessary conditions for distributed observability of social networks modeled

as LSI systems. We characterize necessary observations, agent classification, and network connectivity that enable
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Fig. 8. Co-authorship network with 1461 nodes

each agent to infer any social phenomena evolving over a given social digraph. In particular, we show that the

distributed observability requires no more observations than the centralized case; however, it necessitates certain

classification and connectivity requirements on the agents observing those states. We partition the necessary agents

to Type-α with strict connectivity requirements, and Type-β with milder connectivity. We provide combinatorial

algorithms to define such partitioning and show the relevance and applicability to real world examples of large-scale

social systems. These results can be applied in distributed estimation of smart grids and other physical systems.
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