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Pilot Beam Pattern Design for Channel Estimation
In Massive MIMO Systems

Song Noh, Michael D. Zoltowski, Youngchul Sungind David J. Love

Abstract—In this paper, the problem of pilot beam pattern interval or the amount of interference induced by neighimpri
design for channel estimation in massive multiple-input mitiple- cells, fast and reliable channel estimation with reducaihimng
output systems with a large number of transmit antennas at gverhead is critical to massive MIMO systems.
the base station is considered, and a new algorithm for pilot  Tg tackle the challenge of channel estimation, much of the
beam pattern design for optimal channel estimation is propeed  prior work focused on time-division duplex (TDD) operation
under the assumption that the channel is a stationary Gauss- assumed channel reciprocity] [2].] [3].][9], and reciprocity

Markov random process. The proposed algorithm designs the . : - - . .
pilot beam pattern sequentially by exploiting the properties of calibration [4] under the assumption of time-invariantiohels

Kalman filtering and the associated prediction error covarance ~ Within the coherence time. More recently, Wiener predittio
matrices and also the channel statistics such as spatial and has been employed to mitigate the impact of channel aging
temporal channel correlation. The resulting design generes a  Over time under the assumption of time-varying channelk [10
sequentially-optimal sequence of pilot beam patterns withlow However, in most wireless systems, frequency-divisionekp
complexity for a given set of system parameters. Numericalesults ~ (FDD) operation is employed, and in this case the problem of

show the effectiveness of the proposed algorithm. channel estimation becomes more challenging because MIMO
channel sounding requires substantial overhead (sucheds fe
I, INTRODUCTION back and/or dedicated times for channel sounding) thaescal

with the number of antennas. Such overhead can limit the
performance improvement that is expected in massive MIMO
systems. There has been some work on channel estimation and
channel state information (CSI) feedback techniques fob FD
assive MIMO systems, based on compressive sensing [11],
%i[;nited feedback([12],113], and projected channéls [14dA\
to improve channel estimation performance, the problem of
pilot beam design was investigated for massive MIMO systems

Multiple-input multiple-output (MIMO) systems with large
scale transmit antenna arrays, so calieassive MIMO sys-
tems, is one of the key technologies for future wireless comm
nications. The large size of the transmit antenna arrayivela
to the number of receive terminals can average out therm
noise, fast channel fading, and some interference, basétkon
law of large number< [2][]3]. Massive MIMO provides high

data rates and energy efficiency with simple signgl prongssi \,nder the assumption of closed-loop trainingl [15] [16].
because the propagation channels to terminal stationedbmw In this paper, we consider the problem of pilot beam design

a base station equipped with massive MIMO are asymptoficallfo; gownlink channel estimation in FDD massive MIMO
orthogonal due to the increased beam resolutidn [4], [Sleystems, for the case where the number of symbol times
However, in practice, such benefits may be limited by channl; channel sounding within a channel coherence time is
estimation accuracy [6]. This is especially true when ftd-f 4 hicaly much less than the number of antennas. To design
quency reuse across neighboring cells is adopted; in t8&, ca gficient pilot beam patterns, we here exploit channelstiat
pilot contamination [[?], [[5]4[B] leads to imperfect chaihne ¢ massive MIMO systems derived fromynamic channel

estimation which, in turn, yi_elds severely degraded Sy_Ste”?nodeIIing [L7]-[19] and analyticathannel spatial correlation
performance. Furthermore, in contrast to the conventiongl,gqels [20]-[23]. Since the gain of beamforming in pradtica
MIMO system employing a small number of antennas, theyireless systems is obtained mainly in slowly fading chésine
overhead required for channel estimation for massive MIMQye focus on slowly fading and exploit the correlated time-
can be overwhelming and thereby severely limit the abovgayiations in the channel by adopting the widely-used Gauss
mentioned benefits of massive MIMO. Since the available\;5rkov channel model [24]. Under this model, the channel
training resources are limited by either the channel cote@e  ogtimation performance can be enhanced through the use of op
T Corresponding author timal Kalman filtering and prediction that exploits the @nt
S. Noh, M. Zoltowski, and D. J. Love are with the School of Efeal and ~ @nd all previously received pilot signals, thereby shartgn
Computer Engineering, Purdue University, West LafaydMe47907, USA (e-  the required time for accurate channel estimation. Our inode
mail:songnoh@purude.edu afichikedz,djlovg @ecn.purdue.edu). Y. Sungis also incorporates spatial channel correlation that depemd
with the Department of Electrical Engineering, KAIST, De@j, South Korea  hoth the antenna geometry and the Scattering environment:

305-701 (e-mail: ysung@ee.kaist.ac.kr). This researchsuaported by Basic - . - . . g
Science Research Program through the National Researctiétion of Korea eXper'memal Investigations and analyt'cal studies hawe- ¢

(NRF) funded by the Ministry of Education (2013R1A1A2A10852). A  firmed that this information is typically available in (ma&g
preliminary version of this work was presented i [1], in athionly the ~ MIMO systems [[4], [5], [20]-4[28] and is locallltime-wise
MISO case is considered. In this paper, the sequential nigsigposed in[]i]
is extended to the MIMO case, power allocation, and the bfading case. 11t means that for a short period of time, the correlation abwristics do
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stationary [25]. By exploiting both the channel dynamicsl an the transmit and receive antenna correlation [21]] [22]e Th
the spatial correlation, we develop a low-complexity pjeam  transmit and receive channel covariance matrices reflect th
pattern design procedure that provides a sequence of dptimgeometry of the propagation paths and remain almost un-
pilot beam patterns that sequentially minimize the channethanged (locally time-wise) when compared to the rapidly-
estimation mean square error (MSE) at each training instantarying instant channel realization, since the array raspo
based on a greedy approach. (The definition of sequentiab the scattering environments changes slowly compared to
optimality will be provided soon.) The key idea underlyilhgt the user’s location[]25],[[28]. Thus, the channel covar@anc
proposed method is the joint use of spatio-temporal channehatrices are assumed to be fixed over the considered time
correlation and signal-to-noise ratio (SNR) combined wlith  period for channel estimation, and the considered Krornecke
exploitation of the structure of the error covariance ncasi channel model is given by
generated with optimal Kalman filtering under the Gauss- L2 1207
Markov model, to derive a sequence of optimal pilot beam H, =R,“H:(R,")", 2)
patterns for each training period. h ~ Nox N . .
. . : . ere{H, € C"*" Lk =1,2,---} is an ergodic sequence
This paper is orgam_zed as follows: The system model _an@'}c random matrices with independent zero-mean Gaussian
background are described in Sectloh Il. Secfioh Il deswsib . . Ny o N
. ; . elements with some variance, alt} ¢ C"**"* andR,. €
the proposed pilot beam pattern design method. Practmass v « . S : : .
X . . : . CNrxNr gre deterministic transmit and receive correlation
of implementing the proposed method are discussed in $ectio_ _. . . . ] H o
- . - - matrices, respectively, i.eR, = +~E{H;'H;} andR, =
[Vl Numerical results are provided in Sectibn V, followed by " o £ )
conclusions in Sectiop V1. ~ E{H;H; } so that ttE{H,H, }) = N;N,.. (Case studies

Notation Vectors and matrices are written in boldface with fOf Some channel models are discussed.in [29].) .
matrices in capitals. All vectors are column vectors. For a !N the downlink training, the channel covariance matrices

matrix A, A7, A" andA* indicate the transpose, Hermitian ¢&" be estimated by subspace estimation methods even withou

transpose, and complex conjugate Af respectively. A the knowledge ofinstan.taneous channel state informdBiah-{ .
and \fa(A) denote thpe trace (J)lfland tfhe vgriance )(/)pt(era)tor [32], and there also exist methods that estimate the dotnlin
respectively. ve@) denotes the column vector obtained by channel covariance matrix using uplink training in FDD sys-

stacking the elements d§ columnwise [A]; ; denotes the el-  [€MS USINg techniques such as frequency calibration matrix
ement ofA at thei-th row, andj-th column. diagas, - - - , a,) [33], log-periodic array[[34], or duplex array approachli35
denotes a diagonal matrix with diagonal elements - - , a Furthermore, under some circumstances the channel covaria

) n

i i ini i oo0ormatricesR; and R,. are approximately knowa priori. For
gz&rgﬁfsdé?@;“%{;tﬁ?jf:gg{n ; xgg:g:a?%éahnslgﬁl;ﬂ? fdo|r§1 %E)nal example, under the virtual channel conditionl[20], the uke o
norm and|al|» for 2-norm. For two matriced andB, A® B uniform linear arrays (ULAs) at the transmitter and the heze
denotes the Kronecker product, aAd< B means thaB— A~ MakesR, and R, approximately Toeplitz. By extending the
is positive semi-definite2{x} represents the expectation of one-fingmodel introduced by Jakes [27], the spatial correlation
x. I, stands for the identity matrix of size, and1 denotes N the flat-fading case can be determined by the physical
a column vector with all one element&., denotes the set of €nvironmentsuch as angle spread (AS), angle of arrival (jAoA

non-negative real numbers= v/—1 is used for the imaginary and antenna geometry [21]. Thatis, in the case of a ULA with
number so that and j may be used as indices. the AoA# and the antenna spacind, the channel covariance

matrix is given by
Il. SYSTEM MODEL
A. System Setup

We consider a massive MIMO system with; transmit  \yhere ) is the wavelength andh is the AS. (This result can
antennas andV, received antennagV; > N;), where the e extended to two-dimensional or planar arrays [23].) When
channel is given by anV, x N; MIMO system with flat  he number of transmit antennas grows large, the eigenspace
Rayleigh fading under the narrowband assumpfion [26] (whic of R, is closely approximated by a unitaiiscrete Fourier
easily extends to the case of wideband frequency-selectivg ansiorm (DFT) matrix with the support of AoA distribution.
channel when the system adopts OFDM transmission [27])}ereafter, we shall assume that the transmitter and thévezce
The received signal at thieth symbol time is given by have the knowledge of the channel covariance matrices. The

_ * _ assumption of knowR; will be revisited in Sectiof 1V.

yi=Hisp twi, k=12 @) 2) Cr?annel Variation in Time and Sotted Transmission
wheres;, is the N, x 1 transmitted symbol vector at tirmie Hj, Sructure: For channel variation in time, we adopt a state-
is the N,. x N MIMO channel matrix at timek, andw; is  space model, i.e., the channel dynamic is given by the first-
the zero-mean independent and identically distributédi{i. order stationary Gauss-Markov process| [1[7]-[1/9]] [36]
complex Gaussian noise vector at tinkewith covariance
matrix o2 I, as shown in Fid]1. (Here, we used the complex hj 1 = ahy + V1 — a?by, (4)
conjugate ors, to keep the notation consistent wiffi (7).)

1) MIMO Channel Correlation Model: For channel corre-
lation, we consider the general Kronecker model that cagtur Ry = a’Ry, + (1 — a*)Ry, (5)

L ("2 arD(i—j)sin(a)
pi= — —u27 zfjsmozd7 3
Rlu=55 ] ¢ )

that satisfies the Lyapunov equation



— 1, N~ channel estimation is given by the Kalman filter for this estat
ST~ . space model[[42]. During the training period, the Kalmaeffilt
dp —= - TN performs a measurement update step for channel estimdtion a
(k ¢ T,) jQ H, =~ > >1 : each symbol time, where the Kalman channel estimate and the
_ // N Nfl_hI/ISE . related error covariance matrices are given[by [42]
. - T ilter . R R
C Lz - Sk hy, = hyo1 + Ki(yr — Si/hyp-1) (8)
(k €1,) _th (k€ Zp) Pi—1 = Py i1 + (1 — a*)Ruy, 9)
Pr =Prpo1 — KiS{Pri_1, (10)

Fig. 1. Massive MIMO system model whete is the eigenvalues of the

prediction covariance matri® ;. _1 11
! whereK, = Pk|k,1sk(SkHPk‘k,18k + O—QQUINT) L hl\() =0,

and Ry, = E{h;hf’} = Ry, = E{bybH} for all k [25], andPu_o = Ry. Here,I.’WC andPWC_l are the e§t|mat|on_and
whereh,, := veqHy), by, is a zero-mean and temporally in- prediction error covariance matrices, ]Lespecuvel)i, aefias
dependent plant Gaussian vector, and (0, 1] is the temporal Py = E:{(hk —hyyp) (hy —hk|k’)H|Y1E7 1, wherehy ;s :=
fading coefficientl (It is easy to verify thathy, k = 1,2,---}  E{h,|y{*"}. During the data transmission period, the channel
is a stationary process under this assumption.) The terhporg predicted based on the last channel estimate of the previo
fading correlation coefficient can be estimated [36]=[39], training period as[42]

and we assume that is known. Then, under the Kronecker

channel model{2) we have ar g, mfing M, = G ffine 0, (11)
R, =R, 9R,. 6)  Puvir,tmpinvin, = a*"Piarsa, i, + (1 — a®™) R,
wherem = 1,..., M. During the data transmission period,

We assume slotted transmission withh consecutive sym- h dicted ch | b d for t b forming:
bols as one slot which is comprised of a training periodHf € predicted channél can be used for transmit beamiorming,

symbols and a data transmission periodiif symbols so that fqr example, eigen-beamfo_rmin [213.143] based on the: pre-
M = M, + M. dicted channel can be applied for maximum rate transmission

In the simple case of multiple-input single-output (MISO)
transmission, maximal ratio transmit beamforming based on
B. Channel Estimation the current channel estimate can be applied, and the transmi

We consider the minimum mean square error (MMSE)signal vector in this case is given by, = Worriarean, 12
approach for channel estimation [40] based on the currenthere d;, is the data symbol at symbol time, k& = IM +
and all previous observations during training periods,, i.e M, +m. From [) andAhy, := hy, — flkuM+M . the received
hy, = E{hk|y1(7k)} wherey,(,k) denotes all received signals signal model can be rewritten as ’
during the pilot transmission up to symbol tirke given by

b4y,
kl

Y = Sfflk|”\,{+1\,{p + Sfﬁhk + wg (12)
(k) _ / /
Yp _{yk/|k Skak ez—p}a . .y . .
The second term i .(12) denotes the additional noise ragulti
whereZ, := {k=IM +m|l =0,1,2,--- ,m=1,--- , M,}. from imperfect channel estimation. By using the deterntimis

At each training symbol time, a_pilot beam vector (or beamapproximation OlelskHAthQ _ NLS]@HPMU\I"'AIPSIC 25
pattern)s; of size Ny, k € Z,, is transmitted for channel ! ! N

. . . . t_>OO.
estimation. During the data transmission period, on theroth [9). the received SNR with the estimated channel is defined as

hand, the base station sends unknown data with transmit , |Ska1k\lM+M 2
beamforming based on the estimated chafinel. Received SNR= TP . P+ - (13)
Note that the received signal modEl (1) can be rewritten as kT RIM My Sk T O

yi = SiThy + w, (7)
IIl. THE PROPOSEDPILOT BEAM PATTERN DESIGN

whereS;, := s, ®Iy. is an N, N,. x N,. matrix. Then, we have . . .
3 ; . In this section, we present our proposed pilot beam pattern
a state-space model obtained frdth (4) ddd (7) and the Optlm%Iesign methods that minimize the channel estimation MSE

2For Jakes’ modely = Jo (27 fpTs) [27], whereJo(-) is the zeroth-order aSSO.CIated V\{[I_th OI.DI.trI]maI hKaImEIm fltl.ter",:.g e)lt/?lsaéne.d (Ijn thtle
Bessel function[T is the transmit symbol interval, anfj, is the maximum previous secton. € channel esumation IS directly

Doppler frequency shift. related to the effective SNR_[44] and thus such pilot beam

3Transmit beamforming in FDD requires feedback informafionchannel  pattern design can be leveraged to improve the trainingeébas
state information (CSl) from the receiver. Thus, the quadtiversion of the  channel capacity.
downlink channel or the index of the quantized version ofdhannel chosen
from a receiver can be fed back to the base stafioh [41]. litiadda quantized
(or analog) version of the received training siggal € CV~ can be fed back A, Greedy Sequential Design
to enable channel estimation at the base stafion [1]. Thesfot the paper . . . .
is not feedback quantization but optimal design of the fileam pattern for We notice from[(Ill) that the channel estimation error during
channel estimation. the data transmission period depends onlyap®Ry, and the




estimation error covariance matd; a7, 107+ 27, at the last  the eigen-decomposition (ED) @W’ at each pilot symbol
pilot symbol time.a and Ry, are given, but the estimation time k, and this can be computationally expensive sifGe
MSE at the last pilot symbol time, @ ;1,4 17, 1as401,), AN is large for massive MIMO systems. However, due to the
be minimized by properly designing the pilot beam patternfollowing proposition regarding the eigen-space of therKah
sequence{siylk = U'M +m, I’ < I, m = 1,...,M,}. prediction error covariance matrix associated with Prdjuos
Here, sinCeP;rr a4z, 1S @ function of S = {s;|j = @, we can eliminate such heavy complexity burden when
UM+ m,m = 1,---,M,,j < IM + M,}, S should be designing a sequentially optimal pilot beam pattern seqgeien
jointly optimized to minimize the MSE at time = [M + M,,.
However, this joint optimization is too complicated becaus
the impact ofS on P s s, 10401, IS intertwined over tim@.
Furthermore, optimal channel estimationkat= M + M, for
some! is not the only optimization goal since the MSE at
k =1M + M, for each and every should be optimized for
the I’-th data transmission period. Therefore, we first adopt Proof: Proof is by induction. LeR; = UXU# andR, =
a greedy sequential optimization approach to design tta pil V'V be the ED ofR; andR.., respectively. ThenP,, =
beam pattern sequence, which is formally stated as follows. (U ¢ V)A()(U @ V)#, whereAV) = S o T.

Problem 1: For each pilot symbol timé: starting from 1, For any pilot symbol timé: = IM +m (m =1,..., M,),
givens, for all pilot symbol timej < k, designs;, such that ~ SUppose that the Kalman prediction matrix for tilnés given
by Prjp1 = (UaV)A® (UaV)?, whereU e CNe*Nr and

Proposition 2: The Kalman filtering error covariance matrix
P, and the Kalman prediction error covariance makwix;.
generated by sequentially optimsl given by Propositiof]1
are simultaneously diagonalizable wiiy, for any k£ andk’(<
k), under the assumption @, = Ry, = R, ® R,.[8

min {r (P (14) v e CV-*N- are unitary matrices, and®) € RN:N-x NN,
SL|Sk|Z = Nollsell2 = Nopp. (15) Isa diagonal matrix given as
. L . . k) _ di (k) (k)
The solution to Problefil1 is given by the following proposi- A" = diagA}", - AN, (18)
tion. By PropositiorllL s, is given by a scaled version of a column
Proposition 1: Given all previous pilot signals; (j < k), vectoru;, of U, i.e., sy = /ppu;, With

i) in the MISO case, the pilot beam pattesp at time k _ *) ) . (k)2
minimizing tr(Py;,) is given by a scaled dominant eigenvector ik := argmax tr {(pPAi + 0 In.) " pp(A;) } . (19
of the error covariance matriRy;, of the Kalman prediction !

for time k [1], and Then, from the measurement upddiel (1B, is given by
ii) in the MIMO case, if the Kalman prediction error *) .
covariance matrixP ;. for time k£ is decomposed as Pyr=(U®V) {A — (ej,€;,)®
. —1
Py = (U V)diagAy, -, Ax)(Ua V)", (16) oA (oA +021n,) AR [} (e V)R
whereU € CNe*Nt andV € CN-*N+ are unitary matrices, = (U®V)A(k) (U V), (20)

andA; € RfTXNT is a diagonal matrix with nonnegative real (k)
element§| then a locally optimal pilot beam pattesp at time ~ where A" is a diagonal matrix with nonnegative elements.
k for minimizing tr(Py,;) is given by a scaled version of a (See Appendi{ B for details.) Thu®, and Py, are
column vector of the unitary matrikJ in (I8). simultanecz%sly diagc?alizable. Sin®, = R; ® R, [E:(
] . U V) AV (U V)", P from the prediction sted [9)
Proof: See Appendikh. i(s also ?simulganeous)ly dia50|nalizable wiRy, sincePy;, is
Interestingly, it can be shown in the MISO case that thesimultaneously diagonalizable witR,.
pilot beam patterrs; obtained from[(3B) is equivalent to the  Now consider a symbol timé during the first data trans-
first principal component direction @, given by mission period. In this case, the prediction error covaman
matrix is given by

argmaxg, 2, var (sf(hk — flk‘k)) ) a7) Pt omia
pTM|Mp
As seen in the proof, in the MIMO case, it is not easy to = QQmPMp‘Mp + (1 —a*™Ry, (21)
obtain a globally optimal solution, but the obtained logall 1) 2m A1) x(My) H
optimal solution yields a nice property that can be exptbite =U® V)(A —a”(AY - A ))(U ®@ V)",

to derive an efficient pilot beam pattern design algorithroteN

B < (M) . o
that to obtain the (sequentially) optimal, we need to perform Wherem = 1,..., Mg andA""" is defined in[(2D). Thus, any

prediction error covariance matrix during the first dataiqubr

4The difficulty in applying standard dynamic programming J45] to the IS .SImUItaneOUS|y d_lagonahzable Wlmk\k for k < Mp' Since
problem is that the contribution af, at time & to the cost function is not ~this Kalman recursion repeats, we have the claim. B
localized at timek. It affects the so-called branch metric at timend all the

following branch metrics. 6Such an initial parameter is a typical value for the Kalmaterfiland there
5This assumption will be verified shortly in Propositich 2. will be no loss [[45].




Note that the assumptioh {16) is valid under the Kroneckefrom 1, givens; for all pilot symbol timei < k, designs;
channel correlation model together with the pilot beamguatt such that
selection proposed in Propositibh 1. Proposifibn 2 stdtas t .
all Kalman error covariance matrices under the sequeptiall i tr (Puarsar, |v) (23)
optimal pilot beam pattern design have the same set of eigen- 2 _ 2 _
vectors asRy. This has an important practical implication: SLISklF = Nellsellz = Nepp, (24)
in each pilot transmission period, the base station tratssmi where [AM + M, is the end of the pilot period to which
a pilot beam pattern at timé chosen from a fixed set of belongs.
orthogonal beam patterns, i.e., the transmit eigenveofdrs,,
according to some order depending {mg’% =1,---,N¢}
(defined in [(IB)). Note thal(20) shows how a sequentially Pinriar,x = a* M Py + (1 — a* M~ "Ry,  (25)
optimal pilot beam pattern at timé reduces the channel
estimation error by changing the eigenvalue distributicmf
A® to A with the measurement update step (only &h¢h
subblock is updated a&!" = 62 (p, A" + 021y, )~1AM),
and [21) shows how the eigenvalues of the channel predictio
error covariance matrix change (frofh(k) to A("”m)) during
the pure prediction period. Exploiting these facts, we ps&p
an efficient algorithm to obtain the sequence of sequentiall
optimal pilot beam patterns to minimize the channel esiionat
MSE at each symbol time. The algorithm is summarized in

Since we have

the solution to Probler] 2 is given by minimizing®y,,,) and
Algorithm [T can be used for this purpose too.

ﬁ. Pilot Power Allocation

In the pilot beam pattern design in Sectibn _1ll-A, we
considered equal pilot power for each pilot symbol time. We
relax the equal-power constraint here and consider the pilo
beam pattern design problem again.

. M,
Algorithm . : . P : @
__ 7 Pl P
Algorithm 1 Sequentially Optimal Pilot Beam Pattern Design
- ce b
Require: Perform the ED ofR;, = UXU¥ and R, = I ®)
VIV7, andRy, = R; @ R,. StoreA!") = diag= ® T), ki ki Fhen K
andU:[ul,---,uNt]. . . ! ’ . .
. Fig. 2. The use of the-th transmit eigenvecton; as the pilot beam in a
A = A and partition\ = [)‘F{a s a)\J:C/,]T slot wherek? € K; andp; = My — ||ps|[1: (2) w; is not used and (bj; is
while [ =0,1,--- do used.
for m =1to M do First, we will derive a necessary condition of an optimal
k=IM+m

i h pilot beam sequence that is useful for further pilot deg@his
It m < M, then 2 condition is given in Propositidd 3.) To do so, let us first defi
i) = argmax; Z;V:*l pp’;’;ﬁ (Seel(IP) and(39).) some notations. For < i < Ny, let K; = {k|sx = /pru;} =

Sk = \/Ppli, (ki kS, Kl b € {IM + 1, IM + M,} be the time
Xip < 02,/ (ppXi, +021)  (Step *) index set in the-th slot for which thei-th transmit eigenvector
end if u; (obtained fromR; = UXU? andU = [uy,--- ,uy,]) is
A a?A+ (1—a)AV)  (Step **) used as the pilot beam pattern. Note that some eigenvectors
end for may not be used as the pilot beam pattern depending on the
end while channel statistics. Under the assumption that the tratesmit

(Here,./ denotes the element-wise division akg is thej-th ~ has total powerl,p, for the pilot transmission period, we
element of\;. Step * incorporates the measurement updatélenote byp. the pilot signal power for the use of theth
step [20) and Step ** incorporates the prediction sfep §21). transmit eigenvector at time, € K; and define a pilot interval

vector p; = [p},p, ,pf,C”]T as shown in Fig[d2. The
In Algorithm[d], the Kalman filtering error covariance matrix following proposition provides a property regarding opim

tr(Pyx) is minimized at each timé with the hope that such pilot power allocation.

a sequence minimizes the channel estimation MSE at the end

of the pilot period of a slot. Since the important estimation

measure is the estimation error at the end of the pilot perioﬁle condition that afi the oiiot power for a transmit eigen-

of each slot (which affects the channel estimation quabity f . tion is allocated to the last f the ei direct
the data transmission period under the time-varying chann Irection 1S aflocated (o the last use ot (Ne eigen-airéctro
e slot. That is, one transmit eigen-direction should potear

assumption, as seen ifi_{11)), we consider a modificatio o in the bilot beriod of each slot
to Algorithm [1 to design a pilot beam pattern sequenceMOre than once in the priot period of each siot.

targeting at the estimation error only ldt/ + M, for thei-th  Proof: See AppendiX.
transmission block.

Proposition 3: An optimal pilot beam pattern sequence
inimizing t(Par4 a7, 1i0s+02,) N the l-th slot should satisfy

Now consider the problem of joint design of beam patten
Problem 2: For each pilot symbol timé = [M +m starting  index selection and power allocation. As seen in SecticAlll



tr(Aglzv1+1v1p))+ Z tr(Agl]VI+IVIp))
2| KC;|=0

tr(Piary ayjiney ar,) = g
| K, l=1

, 2 A (k) ;
gl L i _
_ tr <a2(lM+Mp k?) A((Tki) —:_ - +(1- G 2UM+Mp—k ))A§1)> + Z tr(Agle+pr))
i:|KCi =1 Prill; OwlnN, i:|IC;|=0
2(IM+Mp—k*) zA(_kT‘)
x Y (), @)
i | =1 prilN; T+ o2 In,

where Agkz) _ a2(k17lel)A§lM+l) F(1- a2(k1711w—1))A2(_1)‘

the pilot beam pattern sequence design is a difficult problersolved by water-filling power allocation [47] (see Appenlx

even with fixed pilot power. In the case of pilot beam patternfor details), and the corresponding algorithm is summadrize
sequence design with power control, we have a more complin Algorithm [2. In the MIMO case,p needs to be solved
cated situation. Our approach to this complicated jointgtes numerically from [Gll), whereas in the MISO case we have
problem is to separate the beam pattern index selectiorh@nd ta closed-form solution given by

power allocation, although it is suboptimal. We again use th X

sequential beam pattern index selection base@ dn (19)heget v, -k Ow o2

with Propositioi B, but now we do not know the allocated pilot Pri = | @ NG (28)
power beforehand. To circumvent this difficulty, we exptbi¢ i

property of the argumentilﬂ]lgg. Note that the argumerf®) (1 where (-)* = max(-,0) and v is evaluated from the power
is an increasiffunction of A" for any positivep,. Hence, ~ constraint[(217).

if we chooseA ™ st. A% = Agk) for all i ', this indexi’ In high and I_ow SNR reg_imes, the optimal power allocation
is optimal. Note that for this selection method, we do notthee C@n be approximated by simpler forms:

the knowledge of the current pilot powgy, at timek (p, in  Case 1) High SNR: pki/\gf') > 02

the case of[(119)). However, there may not be such an index

and hence, we replace this majorization criterion with gpéém

Mppp(1 — a) al\r{pfki”

i = 29
trace criterion since all the elemenzksgk) are non-negative. P 1 —aMr (9)
(Having the maximum trace is at least a necessary condition (k) _ . (k%)
for being the majorizing index.) Based on this, we propose tgvhere;; * is thej-th dlagonal element oA ;" °.
choose the beam pattern index at tilnéo minimize t(Py;,) Case 2) Low SNR: pki)\(.’?l) <2
(or equivalently (P57, %) as follows. First, consider time "
k = IM + 1 under the assumption that the pilot sequence and Pt = Mppp (30)

power is already determined for the previous slots. We ohoos
11 1= argmax; tr(AEl)). With the first index selected, consider
k = 1M +2. Now, applying the condition of Propositih 3, we  |n the special case of static channels, ie.= 1, the
chooseis := argmax;¢; y tr(Al@)). This is possible without proposed power allocation strategy covers the result of &t
knowing piar.1 since OnlyAZ(-Q) is affected bypiar1 andis and Sayeed [48], which considers the MMSE channel estima-

is not considered fromk > IM + 9. Then, we proceed to tion with power control for quasi-static channels.
k = IM + 3. In this way, we can choosg, - - - , iy, without
knowing piar+1, - - -, pivr+m, based on the trace criterion and C. Block-fading Channel Model

i = argma, e, _; tr (a2(l1\4+]wp—ki)Al(_k%)) _

Proposition B. For a selected indéxkC; = {Jlﬁ} and for an
unselected index, K; = 0. Then, we have ;" [K;| < M,
(Let us usek’ for kj.) Onceiy,--- iy, are determined, the
optimization goal P/ ar, 1040,) 1S given by [22).

In this subsection, we consider a block Gauss-Markov fading
channel model under which the channel is constant for each
slot, i.e.,hy =h; for k =IM +m (m =1,2,---, M), but
varies continuously across slots accordinghio; = ah; +

Based on[(22), the pilot power optimization problem is,/T—¢?b,. We assume that the base station equipped with

formulated as

min Z tr<
? || =1

st |l = Mppp, pri =0,

Q2UMAM,—k) ;2 A (K7)

i wrhi (26)
pkiAZ(-k ) + 0-’12,UIN7‘

(27)

wherep = [piapr41, - - - ,p“\”MP]T. The problem[{26) can be

A real-valued function$ defined on some se¥ of n x n Hermitian
matrices isincreasing on H if A < B = ¢(A) < ¢(B), wheneverA,B €
H [46, Ch. 16].

N; antennas serves a single-antenna terminal for simpl2]ty [
each coherence time block @dff symbols is composed of a
training period of),, symbols and a data transmission period
of My symbols; andM, < N;. By stacking M, symbols
during thel-th training period, we have the received signal
y: € CM», given by

yi =S{'h; + wy, (31)

where y; = [ym+1.---,yen,]” and S =
[Sinr41 - siva, ). We further assume th&/”S; = p I,



Algorithm 2 Sequential Pilot Beam Pattern Design with Powerof eigenvectors is the same Ry, andP;;; and thafRj, does

Allocation not change over time under the considesationary Gauss-
Require: Perform the ED ofR;, = UXU¥ and R, = Markov channel model. This tracking feature of the proposed
VI'VH whereR;, = R; @ R, StoreA?) — diagz ®T), method vyields a significant gain over the previous method in
andU = [uy, -+ ,up,]. time-varying channels when the channel dynamic is known, as
A =AM and partitionx = [AT .- AR)T seen in Sectiof V.
while I =0,1,--- do '
K;,=0for1<i<N, IV. DISCUSSION PRACTICAL IMPLEMENTATION AND
for m =1 to M, do MULTI-USERSCENARIO
k=IM+m ] In this section, we make some comments relative to practical
i)y = argmaX,not used in this slop_; Aij» WhereA;; is  jmplementation of our proposed pilot design and channel
the j-th element ofA;, i.e., =, Aij = tr(A;). estimation scheme in real-world massive MIMO systems.
Setk;, =k First, consider the type and amount of feedback necessary
A—a’X+(1- az)A(l) for a massive MIMO system. One approach is to have the
end for mobile station estimate the full channel state vector aed fe
Obtain the power allocatiop by solving [26). that back to the base station. For a massive MIMO system,
for i =1 to N; do this approach requires a large amount of feedback and may
if |IC;| =1 then be difficult to implement in practice. Alternatively, the bite
Ski = /Pri Wi, station may simply feed back the received sigpale CN- at
end if each time instant, i.e., have the mobile station effegtitreins-
end for mit back the inner product between the current beamforming
for m=1to M do vector and the current channel state vector plus noise, s&d u

Perform Kalman measurement update and predictiothat information to form an estimate of the channel at thebas
with the obtained{s;} to track the correct error co- station [1]. The latter method is more effective in termstad t

variance matrix. amount of feedback and does not require any modifications to
end for the algorithm proposed in this paper.
end while Second, consider the estimation of the channel fading eoeffi

Note that in the first for-loop, the measurement update stepienta in the channel time-varying modéll (4). Sincelepends
is not implemented since we do not choose the used eigemn the mobile speed of the receiver, it can be estimated by
direction index again and thus we only need the predictiorusing the uplink received signal directly [36]=[39]. (A gile
steps to select the eigen-direction indices. correction due to the uplink and downlink carrier frequency
difference in FDD systems should be applied.) This problem
falls into the general area of system identification of state
[44], [49). The following proposition provides a property o Space models. Especiall_y, blind techniques based on stdbspa
optimal S; under the block-fading channel model. approaches can be applied here. Interested readers aredefe
to [39, Section 2].

Next, throughout the paper, we assume that the downlink
channel covariance matriRy, is known to the system. Ry

Proposition 4: Given all previous pilot signalS;. (I’ < 1),
the pilot beam signd,; at thei-th training period minimizing

tr(Py) ist give?tﬁy }t(hel scaled O\I/_e;fsion of thf,, dominant , s estimated at the receiver (mobile station) and fed back to
;lgenv?c otr]scl) h € raiman p_red Iction error covarianceral the pase station through some control channel, the feedback

i—1 for the -t training period. overhead may be significant. Fortunately, there exist nutho
Proof: See AppendiXD. that can circumvent this difficulty. One way is to estimate

As in the symbolwise Gauss-Markov channel model a”the downlink qhannel covariance matiX;, from. the uplink
Kalman prediction error covariance matrices that are used f Chag:t?rL;?ggrfl%nrﬁethrga;[l”%\[ﬁiu%g?ﬂgrgosgwggggﬁ{n};\t(r;i?(neven
the orthogonal pilot beam pattern design have the same set i : P : L
eigenvectors oRy, i.e., Ry, Py, andP;, aresimultaneously ough they are a bit separated in the frequency domain in the
diagonalizable. (Proof is omitted since it can be shown simi- FDFI?Jrct:s;?m(l)r:fr(\?vseteger:aead?(r)s gsrz r:\jggengi[?nﬂ;cho d to
larly as in Propositiofi]2.) Thus, the proposed algorithmhia t btain R. baséd on the pong fina_model an(? the Toeolitz
previous section can easily be extended to the block-fadin istributicl;n theorem for 1-dimensignal or 2—dimenionagb[1)
Gauss-Markov channel model. Previously, it was proposed by " . . ; .

niform arrays. Consider a 1-dimensional large unifornaarr

some other researchers that thg, dominant eigenvectors of . S
Ry, are used for thell, pilot symbol times for every slot Wit NVi antenna elements for simplicity. Each element of
A the array performs spatial-sampling of the signal. Thus, if

under the block i.id. fading model [48]. However, in our we view these spatial samples as discrete-time samples, the
proposed method, we use for tidé, pilot beam patterns in P P pies,

the /-th .SIOt theM,, dominant elgenv.eCtorS m’l\l’ instead of 8Note that in the MISO downlink case, the uplink is SIMO. In time-
Ry to incorporate channel dynamics and to track the moSfomain duplex (TDD) case, the uplink and downlink channetacance
efficient M, eigen-directions over time. Note that the full set matrices are the same.




conventional (discrete-time) frequency domain corresigon  Finally, consider the multi-user case. Note that the system
to the virtual angle domali.For the one-ring model with model [1) is for a single-user MIMO channel. However, many
a uniform array under a far-field assumption, the channebf current real-world wireless communication systems aseh
covariance matrixRy, is Toeplitz [23]. It is known that when in 3GPP support user-dedicated pilot and control chanmels i
the size of a Toeplitz covariance matrix is large, the Tdepli addition to a common pilot and control channel for effective
matrix can be eigen-decomposed by a DFT matrix, which ishannel estimation for each user. Thus, the proposed method
known as the Toeplitz distribution theorein [23],[50],[[51] can be applied to these dedicated pilot channels. Furthermo
i.e., Rp =~ FDF¥ whereF is a DFT matrix andD is a the proposed method can well be combined with the re-
diagonal matrix that contains the virtual angular powercta¢  cently proposed joint spatial division and multiplexin@ QM)
values. (This is why the eigen-decomposition of a Toeplitzframework for multiuser massive MIMO systems [23]. In the
covariance matrix is also called the spectral decompasjtio JSDM, the multiple users (MU) in a sector are partitioned int
For a one-ring model with angle-of-arrival (AoA) and angle- groups each of which has approximately the same channel
dispersion Q), the elements oD are non-zero only for the covariance matrix. (Each set of the partition can be viewed
angle spectrunfAoA — A, AoA + A). Thus, when AoA and as a virtual subsector.) Here, if the groups or subsecta@s ar
A are given,Ry can be constructed from the correspondingsulfficiently well separated in the AoA domain, the dominant
columns ofF and the angular power spectral values. Note thaktigenvectors of the channel covariance matrices becorne lin

the k-th column ofF is given by early independent for different groups. To serve MU-MIMO
1 in the same time-frequency slot, we can choose the users that
——[1, e 18R 2m/N ou28k2m /N o N=D&2T/NIH - (32) have non-overlapping supports of their AoA distributionims
VN [23]. Then, the optimal pilot beam patterns become differen

This is simply the steering vector for the physical angleand orthogonal among non-overlapping groups. In this case,
0, = sin‘l(gk/\/d)_ Under the model, the channel is given the system mode[]1) can be regarded as the signal model for
by a random linear combination of column vectors or steera scheduled user in one of the non-overlapping subsectors of
ing vectors with the form[{32) looking at the angle rangethe overall multi-user downlink.

(AOA — A, A0A + A). (Channel estimation in the previous

sections is nothing but estimation of these random linear V. NUMERICAL RESULTS

combination coefficients.) The AoA can be estimated from |, this section, we provide some numerical results to evalu-

the uplink signal model (there are numerous practical AoAyie the performance of the proposed algorithms. We coresider
or DoA estimation algorithms) and can be pre-measured or ¢ {32,250} transmit antennas and¥, € {1,2} receive
_predetermlned for _each carrier frequency by reflectingype t  5ntennas for our massive MIMO systems. We adoptad'H
ical scattering environment. The angular power Spectrum Cacarier frequency and00us symbol duration with a typical
also be estimated based on one of typical spectral estimatig,opije speed range from = 3km/h (a = 0.9999) to

methods|[[5R]. Here, the angular power spectrum is estimate km/h (a = 0.9995). For all considered pilot design meth-

by using the uplink signal and a correction similar to thase i 45 e used Kalman filtering and prediction for the channel
[33]{35] can be applied to obtain a downlink counterpart.egtimator. To evaluate the channel estimation performanee

Simulations will be presented towards the end of the nextompyted the normalized mean square error (NMSE), given by
section in which the pilot beam patterns are approximated by 1 tr(Pyyx). The pilot symbol SNR was defined as/o>

DFT vectors without much loss in performance. (R : )
In summary, the proposed pilot design and channel estimatheI data symbﬁl SNR Waf] def";]ed@dh”w’ gndlth_e wo ENR .
tion method can be run in the following practical way: values were the same throughout the simulation. The noise

] ; ) ) variances? was determined according to the SNR value with
1) first estimate the AoA based on the uplink signal andpp = pa = 1, and the received SNR is defined Bs](13), which

selects the columns oF corresponding t(A0A — incorporates the effect of beamforming gain and imperfect
A, .AOA +A); ) channel estimation. The channel estimation performance fo
2) estimate the angular power profile fofAOA —  gach of the considered methods was averaged ovedo

A, AoA + A) from the uplink channel response [52], ponte Carlo runs.

and finally obtain a downlink power profile via cor-  Fjrst, we considered thexponential correlation model for
rection [33]-[35]. This downlink angular power profile 2)i—j|

gives AL in Algorithm 1: cfr;a@elispaztll?_lj‘corrilatlon, glvgn ﬁRt]i,gt-h: trt _tandd
3) estimate the mobile speed of the terminal (idbased Rrlij = 7, wherer, and r, are the transmit an
on the uplink by using one of system identification receive correlation coefficients between two adjacentranae
algorithms [36]-[39]; and elements, respectively(= r, = r for simplicity). Since the

phase ofr is irrelevant to the eigenvalues &, we assume

without loss of generality that the phaseras fixed to be zero

(i.e.,r € R). Fig.[3 shows the channel estimation performance

of several pilot pattern design methods|[49] for the exptiaén
®The virtual angle¢ is related to the physical angle by & = £ sin(6), channel correlation model Wlbh:_ 0.6, N_t = 32,andN, = 2.

whered is the antenna spacing andis the carrier wavelength. Whety \ = The performance of th@/, dominant eigenvectors dky as

1/2, -2 <0 < corresponds to-J < & < 1. the M, pilot beam patterns for every pilot period is also shown.

4) finally run one of the algorithms in the previous sec-
tions. (By reciprocity, the AoA and the terminal velocity
are the same for the up and down links.)
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It is seen that the proposed algorithm tracks the channid sta 05f
fast due to the ability of the proposed method’s tracking the
spectral distribution of the channel MSE. Thus, the progose
method converges more quickly. The use of orthogonal or o3
random beam patterns (which span the overall space) yields 02f
reasonable performance with slightly increased convexgen
time compared to the proposed method. In the case of the fixed
M, dominant eigenvectors dRy, for the pilot beam pattern 00T 30 a0 50 60 70 80 90 100
in every pilot period, one can only minimize the channel MSE Time
along the fixedM, eigen-directions, and the coverage of only Fig. 5.
M, fixed eigen- dlrect|0ns in the space is not enough for verypkm/h
Iarge N; when M, is small. Hence, the channel estimation Then, the parameters for the channel covariance matRges
MSE performance of the fixed pilot beam pattern method iandR g are given byAy = = (arctan(s"};r) arctan(%:")),
saturated quickly. By replacing the channel estimatiomrerr ¢, = %(arctan(szr) —|—arctan( L)), Ag = arctan(7),
plus noise with independent additive Gaussian noise duringndfy = %. Finally, the channel covariance matrix is given by
the data transmission phasel[44], we showed the trainisgeba R,, = Ry ® Ry [23]. Fig.[d shows the empirical cumulative
lower bound on achievable data rate in Hify. 3. The proposedistribution function (CDF) of the eigenvalues Bf, obtained
method also guarantees a good (average) lower bound an the above, and exhibits rank-deficiency in the spatiahokeh
achievable rate due to precise channel estimation. covariance matrices due to local scattering around thevesce
Next, we considered the (more realistim)e-ring channel  Note that 70 % to 80% of the eigenvalues are zero.

model which well models typical cellular configurations]21 Fig. [§ shows the performance of the two proposed algo-
[23]. The channel spatial correlation with a ULA is given rithms for the considered one-ring channel model: one with
by () and depends on AoA and AS A, and this model fixed pilot power and the other with pilot power design. It
can be extended to the 2-dimensional array case (See [2id seen that proper power allocation can enhance the channel
for details.) Indeed, we considered a transmitter empbpyin estimation performance especially both in low SNR andahiti
a 10 x 25 uniform planar array (UPA) on half-wavelength tracking periods, but the performance gain is small and the
lattice, D = % with N, = 1. In order to compute the two methods yield almost the same performance at the steady
vertical and horizontal channel covariance matriBgs, Ry,  state. Thus, simpler Algorithid 1 with fixed pilot power can be
we assume that the transmit antenna is located at an elevatiased without much performance loss.
of h = 60m, the scattering ring of the receiver has radius Fig.[@ shows the channel estimation performance of sev-
r = 30m, and the distance from the transmittersis= 100m.  eral pilot pattern design methods for the considered one-
The path loss between the transmitter and the receiver éngiv ring model. It is seen that the proposed method (Algorithm
by (1 + ()" )~1, where the path loss exponent is set asl) significantly outperforms other pilot design methodshbot

= 3.8 and the reference distance is set &s = 30m. in the transient and steady-state behaviors. Especidily, t

NMSE

041

NMSE versus time indek where M = 15, M,, = 10, andv =
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NMSE and received SNR versus time indewhere M = 5, M, = 1, 02 = 10~ 1%, andv = 3km/h

pilot beam patterns are ineffective since they span all the
N,;-dimensional space and such patterns cannot capture the
dominant channel uncertainty in space at each pilot symbol
time [1]. The fixedM,, eigen-direction method outperforms the
random or orthogonal pilot design methods in the beginning.
This is because the estimated channel from the fiXgcigen-
direction pilot design is a linear combination of the fixéf,
eigen-directions, and the use of this channel estimate s th
beamforming direction yields a rough channel matching & th
begining. However, as time goes, the channel estimationen t
limited subspace is not enough for accurate channel estimat
and this yields the performance saturation. To assess thalac
. system performance loss due to channel estimation error, we
-5 o 5 10 15 20 2 investigated the bit error rate (BER) performance. Fijy. 7
SNR (dB) .
(a) QPSK modulation shows the BER per_formance based on the estlm_ated channel
corresponding to Fig16 for the same setup. It is seen that
the proposed method significantly outperforms other method

B 1 Note that the channel MSE performance directly affects en th
10 .. ) BER perfor_mance_z. o
. ty We also investigated the performance variation due to the
10 ] mobile speed. Fid.]8 shows the steady-state performance of
. several pilot beam pattern design methods and the corrdspon
4 107 ] ing Kalman filtering channel estimation channel as the neobil
+ Orthogonal (Transien) velocity v varies from0km/h to 30km/h. Note that the
107 e i cioenveciors (Hansient ] proposed design yields much better performance in the case
¥ Proposed Design (Transient) of fast-fading when compared to the other design methods.
—— Orthogonal (Steady-state) ] ] ] ]
ey -state) 1 Finally, we evaluated the proposed design in the considered
T proposed besign (Steady-state) one-ring model using th&R, estimation method based on
107 - é = = - 2 the DFT matrix and the Toeplitz distribution theorem (TDT)
SNR (dB) _ presented in Sectioh_]V. Fid.] 9 shows the received SNR
(b) 16-QAM modulation performance. (Here, we used the block-fading channel Gauss
BER performance wher®/ = 5, M, = 1, andv = 3km/h Markov model in Sectiof III-C since this case was not covered

so far, but the performance is not much different from theesam

proposed method yields a received SNR loss of approximatelfor the symbol fading case.) We assumed that AoA dnd
3dB compared to the perfect channel state information casare known. It is seen that the DFT/TDT-based method yields
during the transient tracking phase. Orthogonal and randoralmost the same performance as the proposed algorithm with



0.9r

0.8

0.7

N
o

[N
©

[N
®

N
~
T

+ - Orthogonal
g x - Random
0.6F < 16 - = =M ei H
x o " p eigenvectors
o A ¥, * Proposed Design
s 05r 5 15 ¥iix - Perfect CSIT
z g + X
0.4f & 141 + x "
& +
x.
0.31 + T 13 + Ty
. + N *
021 IR S 12 T
E REERRREE 3 *
0.1f R LGN
_______________
o ! . 10 . .
0 5 10 25 30 0 5 10 25 30

15
Velocity (km/h)

15
Velocity (km/h)

11

(a) Channel estimation
NMSE and SNR versus the terminal velocityvhere M = 2, M, = 1, ando2 = 10715

(b) Received SNR
Fig. 8.

VI. CONCLUSIONS

method for pilot beam pattern design for massive MIMO

Received SNR (dB)

low computational complexity by exploiting the propertiafs

o B + Orthogonal the Kalman filtering and prediction error covariance masic
Ll T _j_mng‘;g‘nvems Furthermore, we have considered the joint design problem of
o Lp eigenvectors pilot beam pattern and pilot beam power and the extension
-4y T Dropose e of the proposed method to the case of the block Gauss-
x roposed Design (DFT) . .
ekt - Perfect CSIT I Markov channel model. Numerical results have validated the
5 10 15 20 25 30 35 40 45 50 55 60 effectiveness of the proposed algorithm, and it is showtttiea

Slot time (I)

Fig. 9. Received SNR versus slot indexwhere M = 5, M, = 2, 02, =
10~1, andv = 3km/h

proposed pilot design method significantly outperformseoth
pilot design methods especially under the realistic ong-ri
channel correlation model.

. . L APPENDIX
perfectly knownRy,! Thus, the simple practical estimation

of Ry, based on the DFT and the TDT seems to work well A Proof of Proposition I
Here, to overcome the drawback of the method of using the See [1] for the MISO case. We here prove the MIMO case.
fixed M, dominant eigenvectors dkn, we also considered a  Case 1) k # IM + 1: From [10),arg ming, tr(Py;,) can
modified method that initially chooses, (> M,) dominant be written as
eigenvectors o250 x 250 Ry and uses)M, patterns out of % 9 A aH
the choserL,, patterns in a round-robin mgnnérp =50was Argmaxtr (Pri-1Su(Sk Prje-1Sk + 00 In, ) 'S Prjea) -
used for Fig[P. Note that up to the first 5 slots the modified (33)
method almost tracks the proposed method. This means thgince t{ABC) = tr(BCA) andS;, = s; ® Iy,, the cost
roughly 10 eigen-directions out &f, = 50 are most significant function in [33) can be rewritten as

and contain most of the channel power. Hencéd, jfwere 10, .

the performance of the modified method should be very good J =1tr (((sk ® INT)HPk‘k_l(sk ®Iy,)+ UiINT)

and be comparable to that of the proposed method. However,

the problem here is that one does not know the number (Sk®IN7‘)HPi\k—1(Sk®IN7~))-
of dominant eigen-directions containing most of the chéanne_. . _ _
power a priori with a proper threshold level. One can view SiNce the Kalman pregllctlon error covariance maky;, ., =
that the proposed algorithm exploits both the most significa (U ® V)A(U @ V)™ by [he assumption, wher&. =
eigen-direction and the channel power of each directiorr ovediagAy, -+, Ay,), U € CH*% and V. e C~*¥r, and
time.

(34)

since the columns oUJ = [uy,--- ,uy,] spanC"¢, we have

We have considered the problem of pilot beam pattern
design for massive MIMO systems, and proposed a new

systems, based on the stationary Gauss-Markov channelmode
by exploiting channel statistics such as temporal and spa-
tial channel correlation that can be used for better system
performance. The proposed method yields a greedy (i.e.,
sequentially optimal) sequence of pilot beam patterns with
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Sk = Zf.vzfl ciu;, where Y, |¢;|* = p,, and [3#) can be beam patterns. Hence, the proof in Case 1) is applicable to

rewritten as this case just withP ., replaced byP | 1)ar4 s, -
J=uw{([Usp @ VI TA[Us 0 VI + 021y, )

(UHs, @ VI A2 (U, @ VH)} B. Derivation of Py,

Py
-1
=t { ([(Ziciei) ® V] HA[(ZiCiei) ® VA + UngNT) =Pt — Prjp—1Sk(SE Prip—1Sk + 00In,) 'SPy
= (U V)APUeV)' —(UaV)A® ( /e, @ V)
((Ziciei) ® VH)HAQ((Ziciei) ® VH)} (35) P o 2p .
, Lo L [(VArer, @ VITAD (Vipes, @ V) + oLy, |

wheree; is thei-th unit vector, and the last step{36) holds @ e viA® (U V)” - (U VIA® (/ppei, ® V)
because ®) 2 T -
[V(ppAik +olly,) 'V ] (V/prei, ® V)
AP (UeV)!
Y UevA®(UaV)? - (Ug V)A®
[Pp(eikeﬁ) ® (PPAZ(':) + O-i'IN'I‘)il] A(k)(U ® V)H

(e; @ V) TAP(e; @ VH) = 6,VAIVH (37)

wherep € {1,2} andJ;; is the Kronecker delta. The cost
function [36) can be rewritten as

N, 212
Jer, - en) =Y L || N (38) © K P T
15 yCNy ) — o Zn |Cn|2)\n7 + 0_7%}7 = (U ® V)A( )(U ®V) — (U X V) {(elkelk)@)
(k) (k) 2 =14 (k) H
where A; = diag\i1, -+, \in,). The Lagrangian of the [pPAik (PpAi” +ouln,) Ay ]}(U®V)
optimization of [38) is given by —(UaV) {A(k) — (e el )@
N, 242 B
Do lem|* A, 2 p A<.k)(p AP £ 621y ) ARV ue v,
EZ;ancn|2Anj+U%U+V ;|Cm| —Pp | [p k PRy k]}

where the equalitya) follows because

wherev is a Lagrange dual variable. The Karush-Kuhn-Tucker I ~1
(KKT) conditions of the optimization of (38) are given by [(\/@eik @ VI TAW (\/ppei, @ VI + aiINT}

oL Xy (X, lenlXnj +07,) = cidij (2, lem[2A7, ) k -1
0= G =2 (ZJ lenPAng +02])2 e =V (pPAl('k) + UiINT) Ve (41)
i J n n, w
It is easy to verffy thatey — pye® for some i’ € and the equality(b) follows becausgA;A,) ® (B1B2) =

{1,2,--- N} and e = 0 for all i # i with v — (A1 ® B1)(A2 ® Bs). The equality(c) holds because

[op

-3 (A/Jiw satisfies the KKT conditions. Since{38) is not AP [pp(eike;f’;) ® (ppAL + a?UINT)_l] AP

PP)‘?/j)2
convex in terms of{¢;}, the solution to the KKT conditions k 2 —1 . (k
f{c } = (eikez;) ® {ppAEk)(ppAl(-k) + Ui;INT) Agk)} .

is not unique. However, all such solutions with only one non-
zeroc; are stationary points of the optimization, i.e., each of
them is a local optimum. Among such solutions the best ong: proof of Proposition 3

is given byc; = for i = i, and¢; = 0 for all 4 " . L . .
s gV ye Ve LTk ¢ e For thel-th pilot transmission period with = [M + m, let

where T . ;
p = [pivs1,--., pivyn,)” be apower allocation vector with
i} 1= argmax tr{(ppAi + anINT)_l(ppAf)} the pilot beam pattern sequence determined Ky, 1 < i <
i N,}. The channel estimation MSE at tim&/ + M, is given
N,
o by
= argmax _ (39)
‘ j=1 pphij + o, ol ~ (IM+M,)
. . . N tr(P iy ar, iniar,) = Y (A, )
andsy = ,/ppu;, is a locally optimal solution to minimizing =
tr(Pk|k). N (kie 1)
Case 2) k = IM + 1: In this case, we havé/, prediction = Ztr (a2(m—1)Ai il 41— a2(m—1))A§1>> . (42)
steps without a measurement update step before the first =

pilot symbol time & in the /-th slot. In this case, still the (k) (k)
measurement update forrh_{10) Aatis valid with Py, whereA;”’ € RN~V is thei-th diagonal sub-block ofA
replaced by the error covariance matk,;_1ya4as, Of the  defined [@D). ¢ = M, + 1, kix, = (M when |K;| = 0.)

7

Kalman prediction for timek based on all the previous pilot (@2) holds because; only affects thei-th subblock of the
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Note that the denominator of the right-hand side (RHS) in

of the pilot period is given by channel prediction from thetla (50) is obviously positive definite and the numerator is also

pilot use ofu; at time k‘i,ci‘. Combining Kalman prediction

and measurement update steps, we have for k}u—:hlci

(A7)
—tr ob (@A + (1 o)Al (43)
Pri (a2p§[\§k§*1) +(1—a®)AD) + 02 1n,
J
(ki)
= F(A) )

wheref(z_xgkf”)) andfxgké;*l) are defined in[(46.47). (Here,

we have slight abuse ofynotatioA/B meansB~!A for two

matricesA andB.) Proof is by an iterative argument. We star

from j = |K;] andj — 1 = |K;| — 1 for the original ;. By
Lemmall and RemaiK 1[_(43) is reduced by updafipg=
Pri + pri_, andpy

positive semi-definite because each term on the RHE ih (51)
is positive semi-definite because

¢DD + 0% (D - D)

a®i(1 — azpf)crf”AEkj”)
(e, D + 021N, ) (pr, D + 02 1y,)
[(2%71 —AMAP 4

=e(1—a®)>(AM)? + ¢

o (AL + i (AY - AP ))). (51)

w

Note thatAZ(.l) - ]&Z(-k) for all k. (Remember that the channel

tis stationary and the measurement update only improves the

channel estimation quality.) Hence, we have the claim.l
Remark 1. In case that we contropy, ,,px; € Ry,

<~ (kj— . L .
= 0, when we consider the two power f(AE,EJ V) is minimized whene = ¢ := p;, ,. This can

values forj — 1 andj. With this improvement, we construct easily be shown byf (.7&1(-1?*1) - f(./_xl(-’?}”)) > 0. One can

anewk; = {k{, -, kj_o, ki } with |K}| = [K;| -1 and
a new power allocatiofpy., -+, pys_ P | F pk‘im]T
for K. Then, we apply the same Zargumeﬁt to the
power terms of the newly constructéd,. In this way, [43)
is minimized by allocating all the power for theth eigen-
direction tok}

increasing function of (rz_&l(.kj)), we have the claim. |
Lemma 1: Given anyp,,: Pk ERy setp  =pp =
J— J J— J—
eandp,: = py: +eforanye € [0, ppi 1]. Then, the following
holds: =’ .

FAL) = A8 ) >0, (45)
where

02 (i AT 4 (11— a7 AD)

f(Az('ijfl)) =1 i — (ki_,) i
Pri (a2pj AT+ (- azpj)Agl)) + o3 In,
: ,

(46)
) 9 A (Ki_1)

~ (ki) owl\,;

Ai,ej V= (ki. ) (47)
Pri 1Ai U+ oy,
i

Agk;,l) _ azpéflj—xik;i) F(- a2p;’-71)A§l) (48)
ko = IM, ki € K, and2 < j < |Ki|. (49)

Proof: For notational simplicity, we omit the upper index

i of k! and p} when there is no ambiguity. Defin® :=
a2 A 4 (1= a2 AN and D = a2 AN 4 (1 -

7

a2 A with AL = A1 ;. Then, [@5) can be

rewritten as

tr ( 2D _ ~0’3,f) )
pr; D+ odln, pr; D+ o3ln,
Cy ( UEU(EDD-FG?U(D~—1~D)) ) .
(pe,D + 02 In,)(pr;D + 0% In,)

(50)

last tw

lic,| for the originalKC;. Since [(4P) is a monotone

write a similar equation to[{30). Although the detail is not
shown here, in this case the corresponding denominator is

Ooositive definite and the corresponding numerator includes

obviously positive semi-definite term and the term

(prys — (1 = a2) [AY (1 = 2Pt AV 4

aQ(Pj—lJer)A(kj)) + aQ(Pj—lJij)(A(.l) _ A(kj))A(kj—l)

7 7 ’

which is positive semi-definite.

D. Proof of Proposition 4]
From [10) and[(34)argming, tr(P;;) can be written as

argma tr ([s{fpm_lsl +031A{p]—1s{fp%|l,1sl). (52)
l

For orthogonal pilot signals, the objective functibnl(5ahde
rewritten as

tr (IF (o1 + 02 /ppIn )SI T SIP]_,S1) . (59)

DefinePl_rgw = Pl\l—l + U?%J/ppINt = Pl17{72wPfa/3 andF :=
Pf'g/j S;. Then, [G8) can be rewritten as
tr ((FHF)—1FHP;;/U2PI2“,1P;£U/2F)
ZZ/QF(FHF)—ID)
(54)
(55)

—tr (F7F)~712RHP, )PP P

—tr (B7P, )P}, P,/ °B)

where B := F(FFF)~1/2, The equality [[B4) holds by the
positive definiteness oF“F and t{ABC) = tr(BCA).

BecauseB'B = I,,, the optimalB that maximizes[(35) is
given by the), dominant eigenvectors Gf;;fPﬁlflP;i/Q
by Ky-Fan [53]. Let the ED oP;;,_, beP;;_; = UADUY,

where the diagonal matriA ") contains the eigenvalues of
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Pj;_; in a decreasing order. The®; ;/QPf‘l 1Pl_,zfi/2 is  (@0) holds only ifp;: = 0.

given by When N, = 1, the optimal power allocation is determined
(2 from (61) as
_ A
P, ;fpzu 1Pl,£u/2 =U 0 A U, (56) i o o2 i
A + 05/ ppl, ppi = | @M HMp—k Zw_ Cw (62)
’“ AR
from P, = UAY + 62 /p,Ix,)U. Since g(z) = . '
midz’ z > 0 is a monotone increasing function of B =  Wherek; = {k'} andv is determined by the power constraint
U(:,1: M,), which is achieved b, = \/p,U(:,1: M,). & (7). given by
-1
1—a™e 9 1
E. Power Allocation B |=1 7
The problem of[(26) can be solved by the standard conv
optimization method. The Lagrangian of the problem is glverfx_ Suboptimal Power Allocation .
by Consider the hlgh SNR case first, i,e,” RN o2, where
Nr 2(M+M,—k") ;2 3 (k") )\(k ) = dlag(A(’C )) The cost functlonIZZG) can be written as

K
itk |=1 j=1 Pki)‘z('j )+0120

Owij
L(p,&,v) Z Z o <a2(lM+Mpkl)02 A ))
E tr . W
k’L
Ky l=1 pri A + 02Ty,

Epipri +U pri — Myp 2(IM+Mp—k") ;2 T 2(IM+Mp—k*)
2 2 R ) gy 3 D

1t |=1 it Ki|=1 o Priln, o Pri )
where §,; and v are the Lagrange multipliers associated to G2(M+My—k)
the constraints, and\i = d|aq_A (* )) for k' € K;. The = min o
Karush-Kuhn-Tucker (KKT) conditions are then written as Glkil=1
This can be solved and the solution is given byl (29).
pri > 0, Z pri = Mppp, (57) (k")
= In the low SNR (p: ;] ' < o7,), the cost function[(26)
-0 Elkl= 0 58 can be written as
Eki = 0, &ipgi =0, » (2 (58) Z 2(0M+Mp—k*) ;2 A (k%)
Ny 2(IM+M,—k') .2 ‘ tr v e
oL(p,&,v a P oo (A 7
Kt — ) ‘ 2 i
7j=1 (pkz)\ +O'w) i A(k ) _ 2I
] _ Z 2(AM+Mp—k )aitr In, + i - OwlN,.
From the above conditions, we have isiCs =1 prilN;" 7 + 021N,
N Q24 My— ) 52 (/\S_ci'))? pk?Agkl)
: . o (59) pri A + o3Iy,
j=1 (pkl)\ to ) ~ Z Q2(M+Mp—k") g (AZ(_M) B pkiAl(_kT‘)) 7
Ni 2(M+My—k") (/\(k’))2 it Ky =1 ‘ »
- - - pri = 0. (60) = max Z pria MM =R g (A,Ekl)) .
j=1 (pki)\gj ) +cr?u) | Ky =1
, This can be solved and the solution is given byl (30).
2 .
If 220D S (A > v, @8) holds only ifpy.: > 0,
and by KE])) this |mpl|es that REFERENCES
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