
ar
X

iv
:1

50
1.

05
59

0v
1

 [
st

at
.M

L
]

 2
2

Ja
n

20
15

Sketch and Validate for Big Data Clustering

Panagiotis A. Traganitis, Konstantinos Slavakis,
Georgios B. Giannakis∗†

Abstract

In response to the need for learning tools tuned to big data analytics, the present paper
introduces a framework for efficient clustering of huge sets of (possibly high-dimensional) data.
Building on random sampling and consensus (RANSAC) ideas pursued earlier in a different
(computer vision) context for robust regression, a suite of novel dimensionality- and set-reduction
algorithms is developed. The advocated sketch-and-validate (SkeVa) family includes two algo-
rithms that rely on K-means clustering per iteration on reduced number of dimensions and/or
feature vectors: The first operates in a batch fashion, while the second sequential one offers
computational efficiency and suitability with streaming modes of operation. For clustering even
nonlinearly separable vectors, the SkeVa family offers also a member based on user-selected
kernel functions. Further trading off performance for reduced complexity, a fourth member
of the SkeVa family is based on a divergence criterion for selecting proper minimal subsets of
feature variables and vectors, thus bypassing the need for K-means clustering per iteration.
Extensive numerical tests on synthetic and real data sets highlight the potential of the proposed
algorithms, and demonstrate their competitive performance relative to state-of-the-art random
projection alternatives.

Keywords. Clustering, high-dimensional data, variable selection, feature vector selection,
sketching, validation, K-means.

1 Introduction

As huge amounts of data are collected perpetually from communication, imaging, and mobile
devices, medical and e-commerce platforms as well as social-networking sites, this is undoubtedly
an era of data deluge [10]. Such “big data” however, come with “big challenges.” The sheer volume
and dimensionality of data make it often impossible to run analytics and traditional inference
methods using stand-alone processors, e.g., [3, 17]. Consequently, “workhorse” learning tools have
to be re-examined in the face of today’s high-cardinality sets possibly comprising high-dimensional
data.

Clustering (a.k.a. unsupervised classification) refers to categorizing into groups unlabeled data
encountered in the widespread applications of mining, compression, and learning tasks [4]. Among
numerous clustering algorithms, K-means is the most prominent one thanks to its simplicity [4].
It thrives on “tight” groups of feature vectors, data points or objects that can be separated via

∗The authors are with the Dept. of Electrical and Computer Engineering and the Digital Technology Cen-
ter, at Univ. of Minnesota, 117 Pleasant St. SE, Minneapolis, MN 55455, USA. Tel: (612) 625-4287; Emails:
{traga003,kslavaki,georgios}@umn.edu

†Work was supported by NSF grants 1343248, 1343860, 1442686, and 1500713. Preliminary parts of this work
appeared at the Proc. of Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2014.

1

http://arxiv.org/abs/1501.05590v1

(hyper)planes. Its scope is further broadened by the so-termed probabilistic and kernel K-means,
with an instantiation of the latter being equivalent to spectral clustering – the popular tool for
graph-partitioning that can cope even with nonlinearly separable data [12].

A key question with regards to clustering data sets of cardinality N containing D-dimensional
vectors with N and/or D huge, is: How can one select the most “informative” vectors and/or
dimensions so as to reduce their number for efficient computations, yet retain as much of their
cluster-discrimination capability? This paper develops such an approach for big data K-means
clustering. Albeit distinct, the inspiration comes from random sampling and consensus (RANSAC)
methods, which were introduced for outlier-resilient regression tasks encountered in computer vi-
sion [8, 14,25,29,30,35].

Feature selection is a rich topic [15] explored extensively from various angles, including pattern
recognition, source coding and information theory, (combinatorial) optimization [31,33], and neural
networks [6]. Unfortunately, most available selection schemes do not scale well with the number
of features D, particularly in the big data regime where D is massive. Recent approaches to
dimensionality reduction and clustering include subspace clustering, where minimization problems
requiring singular value decompositions (SVDs) are solved per iteration to determine in parallel a
low-dimensional latent space and corresponding sparse coefficients for efficient clustering [26]. Low-
dimensional subspace representations are also pursued in the context of kernel K-means [7, Alg. 2],
where either an SVD on a sub-sampled kernel matrix, or, the solution of a quadratic optimization
task is required per iteration to cluster efficiently large-scale data.

Randomized schemes select features with non-uniform probabilities that depend on the so-
termed “leverage scores” of the data matrix [19, 20]. Unfortunately, their complexity is loaded by
the leverage scores computation, which, similar to [26], requires SVD computations – a cumbersome
(if not impossible) task when D ≫ and/or N ≫. Recent computationally efficient alternatives for
feature selection and clustering rely on random projections (RPs) [5,9,19,20]. Specifically for RP-
based clustering [5], the data matrix is left multiplied by a data-agnostic (fat) d×D RP matrix to
reduce its dimension (d ≪ D); see also [18] where RPs are employed to accelerate the kernel K-
means algorithm. Clustering is performed afterwards on the reduced d-dimensional vectors. With
its universality and quantifiable performance granted, this “one-RP-matrix-fits-all” approach is not
as flexible to adapt to the data-specific attributes (e.g., low rank) that is typically present in big
data.

This paper’s approach aspires to not only account for structure, but also offer a gamut of novel
randomized algorithms trading off complexity for clustering performance by developing a family
of what we term sketching and validation (SkeVa) algorithms. The SkeVa family includes two
algorithms based on efficient intermediate K-means clustering steps. The first is a batch method,
while the second is sequential thus offering computational efficiency and suitability for streaming
modes of operation. The third member of the SkeVa family is kernel-based and enables big data
clustering of even nonlinearly separable data sets. Finally, the fourth one bypasses the need for
intermediate K-means clustering thus trading off performance for complexity. Extensive numerical
validations on synthetic and real data-sets highlight the potential of the proposed methods, and
demonstrate their competitive performance on clustering massive populations of high-dimensional
data vs. state-of-the-art RP alternatives.
Notation. Boldface uppercase (lowercase) letters indicate matrices (column vectors). Calligraphic
uppercase letters denote sets (∅ stands for the empty set), and |A| expresses the cardinality of A.
Operators ‖ · ‖2 and ‖ · ‖1 stand for the ℓ2- and ℓ1-norm of a vector, respectively, while (·)⊤ denotes

2

transposition and 1 the all-one vector.

2 Preliminaries

Consider the D ×N data matrix X := [x1, . . . ,xN] with D and/or N being potentially massive.
Data {xn}

N
n=1 belong to a known number of K clusters (K ≪ N). Each cluster Ck is represented by

its centroid ck that can be e.g., the (sample) mean of the vectors in Ck. Accordingly, each datum can
be modeled as xn = Cπn + vn, where C := [c1, . . . , cK]; the sparse K × 1 vector πn comprises the
data-cluster association entries satisfying

∑K
k=1[πn]k = 1, where [πn]k ∈ (0, 1] when xn ∈ Ck, while

[πn]k = 0, otherwise; and the noise vn captures xn’s deviation from the corresponding centroid(s).
For hard clustering, the said associations are binary ([πn]k ∈ {0, 1}), and in the celebrated

hard K-means algorithm they are identified based on the Euclidean (ℓ2) distance between xn and
its closest centroid. Specifically, given K and {xn}

N
n=1, per iteration i = 1, 2, . . ., the K-means

algorithm iteratively updates data-cluster associations and cluster centroids as follows; see e.g., [4].

[i-a] Update data-cluster associations: For n = 1, . . . , N ,

xn ∈ Ck[i] ⇔ k ∈ argmin
k′∈{1,...,K}

‖xn − ck′[i]‖
2
2 . (1a)

[i-b] Update cluster centroids: For k = 1, . . . ,K,

ck[i+ 1] ∈ argmin
c∈RD

∑

xn∈Ck[i]

‖xn − c‖22

=
1

∣

∣Ck[i]
∣

∣

∑

xn∈Ck [i]
xn . (1b)

Although there may be multiple assignments solving (1a), each xn is assigned to a single cluster. To
initialize (1a), one can randomly pick {ck[1]}

K
k=1 from {xn}

N
n=1. The iterative algorithm (1) solves

a challenging NP-hard problem, and albeit its success, K-means guarantees convergence only to
a local minimum at complexity O(NDKI), with I denoting the number of iterations needed for
convergence, which depends on initialization [4, § 9.1].

Remark 1. As (1a) and (1b) minimize an ℓ2-norm squared, hard K-means is sensitive to out-
liers. Variants exhibiting robustness to outliers adopt non-Euclidean distances (a.k.a. dissimilarity
metrics) δ, such as the ℓ1-norm. In addition, candidate “centroids” can be selected per iteration
from the data themselves; that is, c ∈ Ck[i] in (1b). Notwithstanding for this so-termed K-medoids
algorithm, one just needs the distances {δ(xn,xn′)} to carry out the minimizations in (1a) and
(1b). The latter in turn allows {xn}

N
n=1 to even represent non-vectorial objects (a.k.a. qualitative

data), so long as the aforementioned (non-)Euclidean distances can become available otherwise;
e.g., in the form of correlations [4, § 9.1].

Besides various distances and centroid options, hard K-means in (1) can be generalized in three
additional directions: (i) Using nonlinear functions ϕ : RD → H, withH being a potentially infinite-
dimensional space, data {xn} can be transformed to {ϕ(xn)}, where clustering can be facilitated

3

(cf. Sec. 3.3); (ii) via non-binary πn ∈ [0, 1]K , soft clustering can allow for multiple associations per
datum, and thus for a probabilistic assignment of data to clusters; and (iii) additional constraints
(e.g., sparsity) can be incorporated in the [πn]k coefficients through appropriate regularizers ρ(π).

All these generalizations can be unified by replacing (1) per iteration i = 1, 2, . . ., with

[i-a] Update data-cluster associations: n = 1, . . . , N ,

πn[i] ∈ argmin
π∈[0,1]K ;
1
⊤
π=1

δ

(

ϕ(xn),
K
∑

k=1

πkck[i]

)

+ ρ(π) . (2a)

[i-b] Update cluster centroids:

{ck[i+ 1]}Kk=1 ∈ argmin
{ck}

K
k=1⊂H

N
∑

n=1

δ

(

ϕ(xn),
K
∑

k=1

[

πn[i]
]

k
ck

)

. (2b)

In Sec. 3.3, function ϕ will be implicitly used to map nonlinearly separable data {xn}
N
n=1 to linearly

separable (possibly infinite dimensional) data {ϕ(xn)}
N
n=1, whose distances can be obtained through

a pre-selected (so-termed kernel) function κ [4, Chap. 6]. The regularizer ρ(π) can enforce prior
knowledge on the data-cluster association vectors.

To confirm that indeed (1) is subsumed by (2), let ϕ(xn) = xn; choose δ as the squared Euclidean
distance in R

D; and set ρ(π) = 0, if π ∈ EK := {ek}
K
k=1, whereas ρ(π) = +∞ otherwise, with ek be-

ing the kthK-dimensional canonical vector. Then (2a) becomes πn[i] ∈ argmin
π∈{0,1}K ; 1⊤

π=1‖xn−
∑

k πkck[i]‖
2
2, which further simplifies to the minimum distance rule of (1a). Moreover, it can be

readily verified that (2b) {ck[i+ 1]}Kk=1 ∈ argmin{ck}Kk=1

∑

n‖xn −
∑

k[πn[i]]kck‖
2
2 separates across

ks to yield the centroid of (1b) per cluster.
To recognize how (2) captures also soft clustering, consider that cluster Ck is selected with

probability πk := Pr(Ck), and its data are drawn from a probability density function (pdf) p
parameterized by θk; i.e., x|Ck ∼ p(x;θk). If p is Gaussian, then θk denotes its mean µk and
covariance matrix Σk. With θ := [θ⊤

1 , . . . ,θ
⊤
K]⊤ and allowing for multiple cluster associations,

the likelihood per datum is given by the mixture pdf: p(x;π,θ) =
∑K

k=1 πkp(x;θk), which for
independently drawn data yields the joint log-likelihood (Π := [π1, . . . ,πN])

ln p(X;Π,θ) =

N
∑

n=1

ln

(K
∑

k=1

[πn]kp(xn;θk)

)

. (3)

If ϕ(xn) := xn, ck := p(xn;θk), and δ(xn,
∑

k πkck) := − ln(
∑

k[πn]kp(xn;θk)) in (2), then soft
K-means iterations (2a) and (2b) maximize (3) with respect to (w.r.t.) Π and θ. An alternative
popular maximizer of the likelihood in (3) is the expectation-maximization algorithm; see e.g., [4,
§ 9.3].

If the number of clustersK is unknown, it can also be estimated by regularizing the log-likelihood
in (3) with terms penalizing complexity as in e.g., minimum description length criteria [4].

Although hard K-means is the clustering module common to all numerical tests in Sec. V, the
novel big data algorithms of Secs. III and IV apply to all schemes subsumed by (2).

4

3 The SkeVa Family

Our novel algorithms based on random sketching and validation are introduced in this section.
Relative to existing clustering schemes, their merits are pronounced when D and/or N take pro-
hibitively large values for the unified iterations (2a) and (2b) to remain computationally feasible.

3.1 Batch algorithm

For specificity, the SkeVa K-means algorithm will be developed first for D ≫, followed by its variant
for N ≫.

Using a repeated trial-and-error approach, SkeVa K-means discovers a few dimensions (features)
that yield high-accuracy clustering. The key idea is that upon sketching a small enough subset of
dimensions (trial or sketching phase), a hypotheses test can be formed by augmenting the original
subset with a second small subset (up to d affordable dimensions) to validate whether the first subset
nominally represents the full D-dimensional data (error phase). Such a trial-and-error procedure is
repeated for a number Rmax of realizations, after which the features that have achieved the “best”
clustering accuracy results are those determining the final clusters on the whole set of dimensions.

Starting with the trial-phase per realization r, ď dimensions (rows) of X are randomly drawn

(uniformly) to obtain X̌(r) := [x̌
(r)
1 , . . . , x̌

(r)
N] ∈ R

ď×N . With ď small enough, K-means is run on

X̌(r) to obtain clusters {Č
(r)
k }Kk=1 and corresponding centroids {č

(r)
k }Kk=1 [cf. (1a) and (1b)]. These

sketching and clustering steps comprise the (random) sketching phase.
Moving on to the error-phase of the procedure, the quality of the ď-dimensional clustering is

assessed next using what we term validation phase. This starts by re-drawing ď′-dimensional data

{x̌
(r′)
n }Nn=1 (ď′ ≪ D − ď), generally different from those selected in draw r. Associating each x̌

(r′)
n

with the cluster x̌
(r)
n belongs to, the centroids corresponding to the extra ď′ dimensions are formed

as [cf. (1b)]

č
(r′)
k =

1
∣

∣Č
(r)
k

∣

∣

∑

x̌
(r)
n ∈Č

(r)
k

x̌(r′)
n . (4)

Let x̄
(r)
n := [x̌

(r)
n

⊤, x̌
(r′)
n

⊤]⊤ and c̄
(r)
k := [č

(r)
k

⊤, č
(r′)
k

⊤]⊤ denote respectively the concatenated data
and centroids from draws r and r′, and likewise for the data and centroid matrices X̄(r) and

C̄(r). Measuring distances {δ(x̄
(r)
n , c̄

(r)
k)} and using again the minimum distance rule data-cluster

associations and clusters {C̄
(r)
k }Kk=1 are obtained for the “augmented data.” If per datum xn the

data-cluster association in the space of ď dimensions coincides with that in the space of d := ď+ ď′

dimensions, then xn is in the validation set (VS) V
(r)
D ; that is,

V
(r)
D :=

{

xn

∣

∣

∣
x̌(r)
n ∈ Č

(r)
k1

, x̄(r)
n ∈ C̄

(r)
k2

, and k1 = k2

}

. (5)

Quality of clustering per draw is then assessed using a monotonically increasing rank function f of

the set V
(r)
D . Based on this function, a ď-dimensional trial r1 is preferred over another ď-dimensional

trial r2 if f(V
(r1)
D) > f(V

(r2)
D).

The sketching and validation phases are repeated for a prescribed number of realizations Rmax.

At last, the ď-dimensional sketching r∗ := argmaxr∈{1,...,Rmax} f(V
(r)
D) yields the final clusters,

namely {Č
(r∗)
k }Kk=1; see Alg. 1.

5

Algorithm 1 Batch SkeVa K-means

Input: DataX; number of clustersK; reduced dimensions ď and ď′ for the sketching and validation
phases, respectively; ranking function f ; number of realizations (draws) Rmax.

Output: Data-cluster associations on X.
1: for r = 1 to Rmax do

2: Randomly sample ď ≪ D rows of X to obtain X̌(r).

3: Run K-means on X̌(r); obtain clusters {Č
(r)
k }Kk=1 and centroids {č

(r)
k }Kk=1 [cf. (1)].

4: Randomly sample ď′ ≪ D rows of X (other than those in step 2) to obtain X̌(r′).

5: Per cluster k, form c̄
(r)
k := [č

(r)
k

⊤, č
(r′)
k

⊤]⊤.

6: Associate {x̄
(r)
n }Nn=1 to closest {c̄

(r)
k }Kk=1.

7: Identify validation set V
(r)
D [cf. (5)].

8: end for

9: r∗ := argmaxr∈{1,...,Rmax} f(V
(r)
D).

10: Associate data to clusters on X as in {Č
(r∗)
k }Kk=1.

With regards to selecting f , a straightforward choice is the VS cardinality, that is f(V
(r)
D) :=

|V
(r)
D |, which can be thought as the empirical probability of correct clustering. Alternatively, a

measure of cluster separability, used extensively in pattern recognition, is Fisher’s discriminant
ratio [4], which in the present context becomes

FDR(r) :=
K
∑

k1=1

K
∑

k2=1;
k2 6=k1

∥

∥

∥
c̄
(r)
k1

− c̄
(r)
k2

∥

∥

∥

2

2
(

σ̄
(r)
k1

)2
+
(

σ̄
(r)
k2

)2
(6)

where (σ̄
(r)
k)2 is the unbiased sample variance of cluster k:

(

σ̄
(r)
k

)2
:=

1

|Č
(r)
k | − 1

∑

x̌n∈Č
(r)
k

∥

∥

∥
x̄(r)
n − c̄

(r)
k

∥

∥

∥

2

2
. (7)

The larger the FDR(r), the more separable clusters are. Obtaining FDR(r) is computationally light
since distances in (7) have been calculated during the validation phase of the algorithm. The only
additional burden is computing the numerator in (6) in O[(ď+ ď′)K2] complexity. Based on FDR,
a second choice for f is

f(V
(r)
D) =

∣

∣V
(r)
D

∣

∣ exp

(

−
1

FDR(r)

)

.

Instead of FDR(r), the exponent is −1/FDR(r) to avoid pathological cases where FDR(r) approaches

+∞, e.g., when all points in a cluster are very concentrated so that (σ̄
(r)
k)2 ≈ 0.

Alg. 1 incurs overall complexity O(NKRmaxďI), where I is an upper bound on the number
of iterations needed for K-means to converge in step 3, plus O(NKRmaxď

′) required in step 6 of
Alg. 1. Parameters ď, ď′, and Rmax are selected depending on the available computational resources;
(ď, ď′) should be such that running the computations of Alg. 1 on (ď+ ď′)-dimensional vectors can
be affordable by the processing unit used. A probabilistic argument for choosing Rmax can be
determined as elaborated next.

6

Remark 2. Using parameters that can be obtained in practice, it is possible to relate the number
of random draws Rmax with the reliability of SkeVa-based clustering, along the lines of analyzing
RANSAC [14].

To this end, let p denote the probability of having out of R SkeVa realizations at least one
“good draw” of ď “informative” dimensions, meaning one for which K-means yields data-cluster
associations close to those found by K-means on the full set of D dimensions. Parameter p is a
function of the underlying cluster characteristics. It can be selected by the user and reflects one’s
level of SkeVa-based big data clustering reliability, e.g., p := 0.95. The probability of having all
“bad draws” after R SkeVa repetitions is clearly 1− p. Moreover, let q denote the probability that
a randomly drawn row of X is “informative.” In other words, q quantifies prior information on the
number of rows (out of D) that carry high discriminative information for K-means. For instance,
q can be practically defined by the leverage scores of X, which typically rank the importance of
rows of X in large-scale data analytics [5, 20]. An estimate of the leverage scores across the rows

of X expresses q as the percentage of informative rows. Alternatively, if xnj
= mk + Σ

1/2
k vnj

is the data generation mechanism per cluster k, with vnj
∼ N (0, ID), then the ith entry of xnj

is e⊤i xnj
∼ N (e⊤i mk, [Σk]ii). Thus, rows of X are realizations of a Gaussian 1 × N random

vector. If these rows are clustered in K ′ groups, q can capture the probability of having an
“informative” row located within a confidence region around its associated centroid that contains
a high percentage α ∈ (0, 1) of its pdf mass. Per SkeVa realization, the probability of drawing

ď “non-informative” rows can be approximated by (1 − q)ď. Due to the independence of SkeVa

realizations, 1 − p = (1 − q)ďR, which implies that R ≃ log(1 − p)/[ď log(1 − q)]. Clearly, as R
increases there is (a growing) nonzero probability that the correct clusters will be revealed. On the
other hand, it must be acknowledged that if R is not sufficient, clustering performance will suffer
commensurately.

It is interesting to note that as in [14], R only depends implicitly on D, since q is a percentage,
and does not depend on the validation metric or pertinent thresholds and bounds.

3.2 Sequential algorithm

Drawing a batch of ď′ features (rows of X) during the validation phase of Alg. 1 to assess the
discriminating ability of the features drawn in the sketching phase may be computationally, espe-

cially if ď′ is relatively large. The computation of all distances {δ(x̄
(r)
n , c̄

(r)
k)} in step 6 of Alg. 1

can be prohibitive if ď′ becomes large. This motivates a sequential augmentation of dimensions,
where features are added one at a time, and computations are performed on only a single row of X
per feature augmentation, till the upper-bound ď′ is reached. Apparently, such an approach adds
flexibility and effects computational savings since sequential augmentation of dimensions does not
need to be carried out till ď′ is reached, but it may be terminated early on if a prescribed criterion
is met. These considerations prompted the development of Alg. 2.

The sketching phase of Alg. 2 remains the same as in Alg. 1. In the validation phase, and for

each dimension in the additional ď′ ones, {č
(r′)
k }Kk=1 are obtained as in Alg. 1 [cf. (4)], and likewise

for V
(r)
D . If f(V

(r)
D) is smaller than the current maximum value f

(r)
max in memory, the ď-dimensional

clustering {Č
(r)
k } is discarded, and a new draw is taken. This can be seen as a “bail-out” test, to

reject possibly “bad clusterings” in time, without having to perform the augmentation using all ď′

dimensions.

7

Algorithm 2 Sequential (Se)SkeVa K-means.

Input: Data X; number of clusters K; reduced dimensions ď and ď′ of reduced dimensions for
the sketching and validation phases, respectively; ranking function f ; number of realizations
(draws) Rmax.

Output: Data-cluster associations on X.
1: for r = 1 to Rmax do

2: Randomly sample ď ≪ D rows of X to obtain X̌(r).

3: Run K-means on X̌(r) to obtain clusters {Č
(r)
k }Kk=1 and centroids {č

(r)
k }Kk=1.

4: Initialize the auxiliary set of dimensions A = ∅.
5: for j = 1 to ď′ do
6: Randomly sample 1 dimension of X (other than those in step 2 and in A) to obtain row

x̌(r′) of X.
7: Include sampled dimension in A.

8: Form {c̄
(r)
k := [č

(r)
k

⊤, č
(r′)
k]⊤}Kk=1 as in Alg. 1.

9: Associate {x̄
(r)
n }Nn=1 to closest {c̄

(r)
k }Kk=1.

10: Identify validation set V
(r)
D [cf. (5)].

11: if f(V
(r)
D) < f

(r)
max or |∇f(V

(r)
D)| ≤ ǫ then

12: Go to step 2.
13: end if

14: end for

15: f
(r+1)
max = f(V

(r)
D).

16: r∗ = r.
17: end for

18: Data-cluster associations on X according to {Č
(r∗)
k }Kk=1.

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

Number of augmented dimensions

f(
V

S
)

Figure 1: f(V
(r)
D) vs. the number of augmented dimensions ď′ for a synthetic data-set, with D =

2, 000, N = 1, 000, ď = 50, and full-rank data-model (cf. Secs. 3.2 and 5).

Experiments corroborate that it is not necessary to augment all D − ď dimensions (cf. Fig. 1),
but using a small subset of them provides satisfactory accuracy while reducing complexity. An
alternative route is to stop augmentation once the “gradient” of f , meaning finite differences across

augmented dimensions, drops below a prescribed ǫ > 0; that is, |∇f(V
(r)
D)| ≤ ǫ. The sequential

approach is summarized in Alg. 2, and has complexity strictly smaller than O[NKRmax(ďI + ď′)].

Remark 3. Using N in the place of D whenever D ≪ N , or equivalently, replacing X ∈ R
D×N

with X⊤, both the batch and sequential schemes developed for D ≫ can be implemented verbatim
for N ≫. This variant of SkeVa K-means will be detailed in the next subsection for nonlinearly
separable clusters.

3.3 Big data kernel clustering

A prominent approach to clustering or classifying nonlinearly separable data is through kernels;
see e.g., [4]. Vectors {xn}

N
n=1 are mapped to {ϕ(xn)}

N
n=1 that live in a higher (possibly infinite-)

dimensional spaceH, where inner products defining distances inH, using the induced norm ‖·‖H :=

〈· | ·〉
1/2
H , are given by a pre-selected (reproducing) kernel function κ; that is, 〈ϕ(xn) | ϕ(xn′)〉H =

κ(xn,xn′) [4]. An example of such a kernel is the Gaussian one: κΣ(xn,x) := exp[−(x −
xn)

⊤Σ−1(x− xn)/2]/[(2π)
D/2(detΣ)1/2].

For simplicity in exposition, our novel kernel-based (Ke)SkeVa K-means approach to big data
clustering will be developed for the hard K-means. Extensions to kernel-based soft SkeVa K-means
follow naturally, and are outlined in Appendix A. Similar to (1), the kernel-based hard K-means
proceeds as follows. For i ∈ {1, 2, . . . , I},

[i-a] Update data-cluster associations: For n = 1, . . . , N ,

xn ∈ Ck[i] ⇔ k ∈ argmin
k′∈{1,...,K}

‖ϕ(xn)− ck′[i]‖
2
H (8a)

9

[i-b] Update cluster centroids: For k = 1, . . . ,K,

ck[i+ 1] ∈ argmin
c∈H

∑

xn∈Ck[i]
‖ϕ(xn)− c‖2H

=
1

∣

∣Ck[i]
∣

∣

∑

xn∈Ck[i]
ϕ(xn) (8b)

where Euclidean norms ‖ ·‖2 in the standard form of K-means have been replaced by ‖ ·‖H. As the
potentially infinite-size {ck[i+1]}Kk=1 cannot be stored in memory, step (8b) is implicit. In fact, only
κ and the data-cluster associations suffice to run (8). To illustrate this, substitute {ck[i + 1]}Kk=1

from (8b) into (8a) to write

∥

∥

∥

∥

∥

ϕ(xn)−
1

∣

∣Ck′ [i+ 1]
∣

∣

∑

x
′
n∈Ck′ [i+1]

ϕ(x′
n)

∥

∥

∥

∥

∥

2

H

= 〈ϕ(xn) | ϕ(xn)〉H (9)

−
2

∣

∣Ck′ [i+ 1]
∣

∣

∑

x
′
n∈Ck′ [i+1]

〈ϕ(xn) | ϕ(x
′
n)〉H

+
1

∣

∣Ck′ [i+ 1]
∣

∣

2

∑

(x′
n,x

′′
n)∈(Ck′ [i+1])2

〈ϕ(x′
n) | ϕ(x

′′
n)〉H

= κ(xn,xn)−
2

∣

∣Ck′ [i+ 1]
∣

∣

∑

x
′
n∈Ck′ [i+1]

κ(xn,x
′
n)

+
1

∣

∣Ck′ [i+ 1]
∣

∣

2

∑

(x′
n,x

′′
n)∈(Ck′ [i+1])2

κ(x′
n,x

′′
n) . (10)

Having established that distances involved in SkeVa K-means are expressible in terms of the
chosen kernel κ, the resulting iterative scheme is listed as Alg. 3. After randomly selecting an
affordable subset X̌(r), comprising ν̌ columns of X per realization r, and similar to the trial-and-
error step in line 3 of Alg. 1, the (kernel) K-means of (8) is applied to X̌(r). The validation phase
of KeSkeVa K-means is initialized in line 4, where a second subset X̌(r′) comprising ν̌ ′ columns

from X \ X̌(r). The distances between data {ϕ(x
(r′)
n)} and centroids {č

(r)
k } involved in step 5 of

Alg. 3 are also obtained through kernel evaluations [cf. (10)]. This KeSkeVa that operates on the
number of data-points rather than dimensions follows along the line of RANSAC [14] but with two
major differences: (i) Instead of robust parameter regression, it is tailored for big data clustering;
and (ii) rather than consensus it deals with affordably small validation sets across possibly huge
data-sets.

During the validation phase, clusters Č
(r′)
k are specified according to x

(r′)
n ∈ Č

(r′)
k ⇔ k ∈

argmink′∈{1,...,K}‖ϕ(x
(r′)
n) − č

(r)
k′ ‖

2
H. Gathering all information from draws (r, r′), the augmented

clusters C̄
(r)
k := Č

(r)
k ∪ Č

(r′)
k (step 5 of Alg. 3) lead to centroids

c̄
(r)
k :=

1
∣

∣C̄
(r)
k

∣

∣

∑

xn∈C̄
(r)
k

ϕ(xn) . (11)

10

Given the “implicit centroids” obtained as in (11), data X(r) are mapped to clusters {C̄
(r)
k } which

are different from Č
(r)
k . To assess this difference, the distance between ϕ(x

(r)
n and c̄

(r)
k is computed,

and columns of X(r) are re-grouped in clusters { ˇ̄C
(r)
k }Kk=1 as

x(r)
n ∈ ˇ̄C

(r)
k ⇔ k ∈ argmin

k′∈{1,...,K}

∥

∥

∥
ϕ
(

x(r)
n

)

− c̄
(r)
k′

∥

∥

∥

2

H
. (12)

Recall that distances are again obtained through kernel evaluations [cf. (10)].
The process of generating clusters and centroids in KeSkeVa K-means can be summarized as

follows: (i) Group randomly drawn data X(r) into clusters Č
(r)
k with centroids č

(r)
k ; (ii) draw

additional data-points, augment clusters C̄
(r)
k , and compute new centroids c̄

(r)
k ; (iii) given c̄

(r)
k , find

clusters ˇ̄C
(r)
k as in (12). Since č

(r)
k 6= c̄

(r)
k in general, data belonging to Č

(r)
k do not necessarily belong

to ˇ̄C
(r)
k , and vice versa; while data common to ˇ̄C

(r)
k and Č

(r)
k , that is data that have not changed

“cluster membership” during the validation phase, comprise the validation set

V
(r)
N :=

{

x(r)
n ∈ X̌(r)

∣

∣

∣
∃k s.t. x(r)

n ∈
(

Č
(r)
k ∩ ˇ̄C

(r)
k

)}

. (13)

Among Rmax realizations, trial r∗ with the highest cardinality |V
(r∗)
N | is identified in Alg. 3, and data

are finally associated with clusters {Č
(r∗)
k }Kk=1. The overall complexity of Alg. 3 is O(DKRmaxν̌

2I)
in step 3, when {κ(xn,xn′)}Nn,n′=1 are not stored in memory and kernel evaluations have to be

performed for all employed data per realization, plus O(DRmaxν̌ν̌
′) in step 5. If {κ(xn,xn′)}Nn,n′=1

are stored in memory, then Alg. 3 incurs complexity O(KRmaxν̌
2I +Rmaxν̌ν̌

′), which is quadratic
only in the small cardinality ν̌.

Algorithm 3 Kernel (Ke)SkeVa K-means

Input: Data X; number of clusters K; number ν̌ and ν̌ ′ of data during sketching and validation
phase, respectively; number of realizations Rmax.

Output: Data-cluster associations on X.
1: for r = 1 to Rmax do

2: Randomly sample ν̌ ≪ N columns of X to obtain X̌(r).

3: Apply K-means [cf. (20) and (2)] on {ϕ(x
(r)
n)}ν̌n=1; obtain clusters {Č

(r)
k }Kk=1 and centroids

{č
(r)
k }Kk=1.

4: Randomly select ν̌ ′ ≪ N columns of X, other than those of step 2, to obtain X̌(r′).

5: Associate {ϕ(x
(r′)
n)}ν̌

′

n=1 to the closest centroids {č
(r)
k }Kk=1; obtain clusters {C̄

(r)
k }Kk=1 and cen-

troids {c̄
(r)
k }Kk=1 [cf. (11)].

6: Obtain clusters { ˇ̄C
(r)
k } on X̌(r) according to (12).

7: Identify the validation set V
(r)
N .

8: end for

9: r∗ = argminr∈{1,...,Rmax}|V
(r)
N |.

10: Associate {ϕ(xn)}
N
n=1 according to the closest centroids obtained from clusters {Č

(r∗)
k }Kk=1.

One remark is now in order.

11

Remark 4. Similar to all kernel-based approaches, a critical issue is selecting the proper kernel
– more a matter of art and prior information about the data. Nonetheless, practical so-termed
multi-kernel approaches adopt a dictionary of kernels from which one or a few are selected to run
K-means on [23]. It will be interesting to investigate whether such multi-kernel approaches can be
adapted to our SkeVa-based operation to alleviate the dependence on a single kernel function.

4 Divergence-Based SkeVa

A limitation of Algs. 1 and 2 is the trial-and-error strategy which requires clustering per random
draw of samples. This section introduces a method to surmount such a need and select a small
number of data or dimensions on which only a single clustering step is applied at the last stage of
the algorithm. As the “quality” per draw is assessed without clustering, this approach trades off
accuracy for reduced complexity.

4.1 Large-scale data sets

First, the case where random draws are performed on the N data will be examined, followed by
draws across the D dimensions. Any randomly drawn data from {xn}

N
n=1 will be assumed centered

around their sample mean.
Since intermediate clustering will not be applied to assess the quality of a random draw, a

metric is needed to quantify how well the randomly drawn samples represent clusters. To this end,
motivated by the pdf mixture model [cf. (3)], consider the following pdf estimate formed using the
randomly selected data

p̌(r)(x) :=
1

ν̌

ν̌
∑

n=1

κ
(

x(r)
n ,x

)

(14)

where κ stands for a user-defined kernel function, parameterized by x
(r)
n , and satisfying

∫

κ(x
(r)
n ,x)dx = 1 for the estimate in (14) to qualify as a pdf. Here, the Gaussian kernel

κΣ(x
(r)
n ,x) := exp[−(x−x

(r)
n)⊤Σ−1(x−x

(r)
n)/2]/[(2π)D/2(detΣ)1/2] is considered with Σ := σ2ID.

Having linked random samples with pdf estimates, the assessment whether a draw represents
well the whole population {xn}

N
n=1 translates to how successful this draw is in estimating the actual

data pdf via (14). A random sample where all selected data form a single cluster is clearly not a
good representative of {xn}

N
n=1. For example, if the selected points are gathered around 0 (recall

that drawn data are centered around their sample mean), then the resulting pdf estimate (14) will
resemble the uni-modal (thick) dashed curve in Fig. 2. Such a pdf estimate is a poor representative
of the whole data-set, and clustering on that small population of data should be avoided. On the
contrary, random draws yielding the multi-modal (thick) solid curve in Fig. 2 should be highly rated
as potential candidates for clustering. As a first step toward assessing draws is a metric quantifying
how “far” the pdf p̌(r) is from p̌(0)(x) := κ(0,x).

Among candidate metrics of “distance” between pdfs, the Cauchy-Schwarz divergence [27] is
chosen here:

∆CS

(

p̌(r) ‖ p̌(r
′)
)

:= − log

(

∫

p̌(r)(x)p̌(r
′)(x)dx

)2

∫

[p̌(r)(x)]2dx
∫

[p̌(r
′)(x)]2dx

.

12

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

Figure 2: Examples of pdf mixtures fitted to data-points. Reference pdf estimate is the uni-modal
thick dashed curve; the larger the divergence from this estimate, the larger the probability of
producing meaningful clustering.

The reason for choosing ∆CS over other popular divergences, such as the Kullback-Leibler one, is
the ease of obtaining pdf estimates via (14). Specifically, the numerator in ∆CS can be expressed
as [cf. (14)]

∫

p̌(r)(x)p̌(r
′)(x)dx

=
1

ν̌ν̌ ′

ν̌
∑

n=1

ν̌′
∑

n′=1

∫

κ
(

x(r)
n ,x

)

κ
(

x
(r′)
n′ ,x

)

dx . (15)

The right-hand-side of (15) is simplified further if the chosen kernel is the Gaussian one. As the
convolution of Gaussian pdfs is also Gaussian, it is not hard to verify that

∫

κΣ
(

x(r)
n ,x

)

κΣ
(

x
(r′)
n′ ,x

)

dx = κ2Σ
(

x(r)
n ,x

(r′)
n′

)

for which (15) becomes
∫

p̌(r)(x)p̌(r
′)(x)dx =

1

ν̌ν̌ ′
1⊤K

(r,r′)
2Σ 1

where the ν̌ × ν̌ ′ matrix K
(r,r′)
2Σ has (n, n′)th entry [K

(r,r′)
2Σ]nn′ := κ2Σ(x

(r)
n ,x

(r′)
n′). It thus follows

that

∆CS

(

p̌(r) ‖ p̌(r
′)
)

=− 2 log

(

1

ν̌ν̌ ′
1⊤K

(r,r′)
2Σ 1

)

+ log

(

1

ν̌2
1⊤K

(r,r)
2Σ 1

)

+ log

(

1

ν̌ ′2
1⊤K

(r′,r′)
2Σ 1

)

. (16)

13

Algorithm 4 Divergence (Di)SkeVa K-means on N .

Input: Data X; number of clusters K; number ν̌ and ν̌ ′ of points for sketching and validation
phases, respectively; number of realizations Rmax; ∆max = 0, ∆′

min = +∞.
Output: Data-cluster associations.
1: for r = 1 to Rmax do

2: Let X̌(r) denote ν̌ randomly selected points after centered around their sample mean.
3: if ∆CS(p̌

(r) ‖ p̌(0)) > ∆max then

4: Let X̌(r′) denote ν̌ ′ randomly selected points, other than those in step 2, after centered
around their sample mean.

5: X̄(r) := [X̌(r), X̌(r′)].
6: if ∆CS(p̄

(r) ‖ p̌(r
′)) < ∆′

min then

7: ∆′
min := ∆CS(p̄

(r) ‖ p̌(r
′)).

8: ∆max := ∆CS(p̌
(r) ‖ p̌(0)).

9: r∗ := r.
10: end if

11: end if

12: end for

13: Perform K-means on X̌(r∗) and associate X to clusters obtained by K-means on X̌(r∗).

Notice that when r′ is simply {0}, the last summand in (16) becomes log κ2Σ(0,0) = −D(log 2π)/2−
(log det 2Σ)/2.

The metric in (16) is computed per draw of the so-termed divergence-based DiSkeVa K-means
summarized in Alg. 4. A number Rmax of realizations are attempted to discover a “good” draw
r∗ of data, to which clustering is finally performed. Line 3 in Alg. 4 checks whether the randomly
selected subset yield via (14) a pdf p̌(r) that differs enough from the “singular” pdf p̌(0) = κΣ(0, ·).
If the divergence exceeds ∆max, realization r will be further explored, otherwise r + 1 is drawn.
Notice that threshold ∆max is adaptively defined and takes, according to line 8, the maximum
recorded value from realization r = 0 till the current one.

If p̌(r) passes the first check of being far from p̌(0), lines 4 to 10 implement the second step of
consenting whether r is indeed a “good” realization. To this end, a number of ν̌ ′ additional data-
points is drawn to form X̄(r) := [X̌(r), X̌(r′)] in line 5. The mixture pdf p̄(r) corresponding to X̄(r),
should stay as close as possible to p̌(r) since reliable pdf estimates should remain approximately
invariant as extra data are added. Drastic changes of ∆CS before and after augmentation suggests
that the draw is likely not to be a good representative of the whole population. Notice here that
∆′

min is also adaptively defined to take the minimum value among all recorded divergences from the
start of iterations. Moreover, both updates of ∆′

min and ∆max are performed once the candidate
draw r has passed through the “check-points” of lines 3 and 6.

In the case where the Gaussian kernel is employed, Alg. 4 has overall complexity o[DRmaxν̌
2 +

DRmax(ν̌ν̌
′ + ν̌ ′2)], if the kernel matrix K2Σ of all data {xn}

N
n=1 is not stored in memory and

calculations of all kernel sub-matrices in (16) are performed per realization; plus, O(Dν̌KI) for a
single application of K-means on the finally selected draw r∗. If K2Σ is available in memory, then
Alg. 4 incurs complexity o[Rmaxν̌

2 +Rmax(ν̌ν̌
′ + ν̌ ′2) +Dν̌KI], that is quadratic only in the small

subset sizes.

Remark 5. Along the lines of Remark 2, let p denote the probability of having out of R SkeVa

14

realizations at least one “good draw” of size ν̌, meaning one for which K-means yields centroids
close to those found with the “full data-set.” Moreover, let q denote the probability of a datum
to lie “close” to its associated centroid. For example, q can capture the probability of having a
datum located within a confidence region which is centered at its associated centroid and contains
a high percentage of its pdf mass. The probability of having all “bad draws” is clearly 1 − p.
Assuming that data are drawn independently, the probability of having one draw contain only data
located “far away” from centroids is (1− q)ν̌ . Due to the independence of random draws in SkeVa,
1 − p = (1 − q)ν̌R, which implies that R ≃ log(1 − p)/[ν̌ log(1 − q)]. Analogous to Remark 2, this
argument neither involves N nor it depends on the validation metric or pertinent thresholds and
bounds.

4.2 High-dimensional data

Alg. 4 remains operational also when DiSkeVa K-means deals with D ≫. Although the proposed
scheme can be generalized to cope with both N ≫ and D ≫, for simplicity of exposition it will be
assumed that only D ≫. To this end, consider the following pdf estimate R

ď:

p̌(r)(x̌) :=
1

N

N
∑

n=1

κ
(

x̌(r)
n , x̌

)

, ∀x̌ ∈ R
ď

where x̌
(r)
n denotes a ď× 1 subvector of the D × 1 vector xn.

The counterpart of Alg. 4 on dimensions is listed as Alg. 5. Although along the lines of Alg. 4,
there is a notable difference. In the validation step, where dimensions are increased (cf. line 6) and
a pdf estimate is needed for the augmented set of variables. To define divergence between pdfs of

different dimensions, vectors have to be zero padded from the ď-dimensional x̌
(r)
n to the (ď + ď′)-

dimensional χ̄
(r)
n := [x̌

(r)
n

⊤,0⊤]⊤. Recall here that x̄
(r)
n := [x̌

(r)
n

⊤, x̌
(r′)
n

⊤]⊤. To avoid confusion, pdf
mixtures on these zero-padded vectors are given by

q̄(r)(x̄) =
1

N

N
∑

n=1

κ
(

χ̄(r)
n , x̄

)

, ∀x̄ ∈ R
ď+ď′ . (17)

Similar to Alg. 4, the overall complexity of Alg. 5 is o[(ď+ ď′)N2Rmax] for computations in (16),
plus O(ďNKI) for a single application of K-means on the finally selected draw r∗.

Remark 6. If multi-core machines are also available, the validation phases of Algs. 1-5 can be
readily parallelized, using recent advances on efficient parallel computing platforms such as MapRe-
duce [11,13].

5 Numerical Tests

We validated the proposed algorithms on synthetic and real data-sets. Tests involve either large
number of data (N ≫) and/or large number of dimensions (D ≫). The following methods were
also tested: (i) The standard hard K-means [cf. (1)], run on the full range of N data-points and D
dimensions, which is abbreviated in the figures as “full K-means”; (ii) the state-of-the-art RP-based
feature-extraction scheme [5, Alg. 2], with a Bernoulli-type RP matrix as in [1]; (iii) the randomized

15

Algorithm 5 Divergence (Di)SkeVa K-means on D.

Input: Data X; number of clusters K; number ď and ď′ of dimensions for sketching and validation
phases, respectively; number of realizations Rmax; ∆max = 0, ∆′

min = +∞.
Output: Data-cluster associations.
1: for r = 1 to Rmax do

2: Center randomly selected X̌(r) around their sample mean to obtain X̌(r).
3: if ∆CS(p̌

(r) ‖ p̌(0)) > ∆max then

4: Center randomly selected X̌(r′), other than those in step 2, around their sample mean
to obtain X̌(r′).

5: Form X̄(r) := [X̌(r)⊤, X̌(r′)⊤]⊤.

6: Form X̄
(r)

:= [X̌(r)⊤,0⊤]⊤ and estimate pdf mixture q̄(r) [cf. (17)].
7: if ∆CS(p̄

(r) ‖ q̄(r)) < ∆′
min then

8: ∆′
min := ∆CS(p̄

(r) ‖ q̄(r)).
9: ∆max := ∆CS(p̌

(r) ‖ p̌(0)).
10: r∗ := r.
11: end if

12: end if

13: end for

14: Perform K-means on X̌(r∗) and associate X to clusters obtained by K-means on X̌(r∗).

feature-selection (RFS) algorithm [5, Alg. 1; ǫ = 1/3], a leverage-scores-based scheme; and (iv) the
“approximate kernel K-means” algorithm [7, Alg. 2], which solves for an “optimal” data-cluster
association matrix given a randomly selected subset of the original data-points. For fairness, the
naive kernel K-means algorithm in [7, Alg. 1] is not tested, because a random draw of data and the
application of K-means is done only once in [7, Alg. 1]; hence, the attractive attribute of multiple
independent draws is not leveraged as in SkeVa. To mitigate initialization-dependent performance,
each realization of K-means, including also its usage as a module in other competing methods, is
run five times with different initialization per run, keeping finally only the data-clusters association
that results with the smallest sum of distances of data from the associated centroids.

As figures of merit we adopted the relative clustering accuracy and the execution time (in
secs). Relative clustering accuracy is defined as the percentage of points assigned to the correct
clusters (empirical probability of correct clustering), relative to that of (kernel) K-means on the
full data-set. Regarding computational time evaluations, tests in Sec. 5.1 are run using Matlab [22]
on a SunFire X4600 PC with a 32-core AMD Opteron 8356, clocked at 2.3GHz with 128GB RAM
memory [24], without the use of parallelization, on a single computational thread. Tests in Secs. 5.2,
5.3 and 5.4 are run on an HP ProLiant BL280c G6 server using 2 eight-core Sandy Bridge E5-2670
processor chips (2.6GHz) and 128GB of RAM memory [24]. In the latter tests, algorithms were
allowed to exploit MATLAB’s inherent multithread capabilities [21] on the 16 cores of the server.
Moreover, all plotted curves are averages over 50 Monte Carlo realizations.

To construct synthetic data, D × 1 vectors {xn}
N
n=1 were generated according to the following

model per cluster k:

xnj
= mk +Σ

1/2
k vnj

, j ∈ {1, . . . , N/K} (18)

where it is assumed that N is an integer multiple of K, mk is the D × 1 mean (centroid) of
cluster k, noise vnj

∼ N (0, ID) is standardized Gaussian, and Σk is the covariance matrix of the

16

0 50 100 150 200

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(a) Relative clustering accuracy

0 50 100 150 200
0

2

4

6

8

10

Number of sampled dimensions − d

T
im

e(
s)

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(b) Clustering time (secs)

Figure 3: Synthetic data (D = 2, 000 and full-rank model).

data generated for cluster k; hence, xnj
∼ N (mk,Σk). Means {mk}

K
k=1 are selected uniformly

at random from a D-dimensional hypercube, as in [5]. To accommodate data-models with limited
degrees of freedom, the “rank of data,” controlled by the number of non-zero eigenvalues of Σk,
was used as a tuning parameter. In certain cases, clusters were well separated—a scenario where
K-means achieves relatively high clustering accuracy. Throughout this section Rmax = 10 except
for the tests using the KDDb database [32] for which Rmax = 20.

5.1 Large number of dimensions (D ≫)

Tests cases in this subsection have D ≫ N . Competing methods are the “full K-means,” RP
[5, Alg. 2], and RFS [5, Alg. 1; ǫ = 1/3]. Model (18) was used to generate N = 1, 000 D-dimensional
vectors for K = 5 clusters, for several values of D, and variable “data-rank.” It can be seen from
Figs. 3 and 4 that Algs. 1 (SkeVa K-means) and 2 (SeSkeVa K-means) approach the accuracy
of the full K-means algorithm as the number of sampled dimensions d increases. As expected,
computational time is significantly lower than that of full K-means, since the latter operates on
all D dimensions. Moreover, SeSkeVa K-means needs more time than RP [5] to achieve the same
clustering accuracy (cf. Figs. 3 and 4), since RP utilizes K-means as a sub-module only once,
after dimensionality-reduction has been effected by left-multiplication of X with a (fat) d × D
RP matrix. However, this changes as D grows large. As Fig. 5 demonstrates, whenever D is
massive, left-multiplying X by the RP d ×D matrix in [5] can become cumbersome, resulting in
computational times larger than those of SeSkeVa K-means.

Fig. 6 shows results for the real data-set ARCENE [16], which contains mass-spectra of pa-
tients diagnosed with cancer, as well as spectra associated with healthy individuals. Clustering

17

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(a) Relative clustering accuracy

0 10 20 30 40
0

2

4

6

8

10

Number of sampled dimensions − d

T
im

e(
s)

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(b) Clustering time (secs)

Figure 4: Synthetic data (D = 2, 000 and rank equal to 500).

0 20 40 60 80 100
0.948

0.97

0.99
1

1.01

1.03

1.05

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
Alg. 1
Alg 2.

(a) Relative clustering accuracy

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

Number of sampled dimensions − d

T
im

e
(s

)

full k−means
RP
Alg. 1
Alg. 2

(b) Clustering time (secs)

Figure 5: Synthetic data (D = 500, 000 and rank equal to 1, 000).

18

0 200 400 600 800 1000
0.87

0.9

0.93

0.96

1

1.03

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(a) Relative clustering accuracy

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

Number of sampled dimensions − d

T
im

e(
s)

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(b) Clustering time (secs)

Figure 6: Simulated performance for real data-set ARCENE.

involves grouping 100 (D = 10, 000)-dimensional spectra in two clusters (K = 2). The number of
augmented dimensions for all employed algorithms is ď′ = 100. All proposed algorithms approach
the performance of RP and full K-means, while requiring less time. Alg. 5 is the fastest one at a
comparable performance.

Fig. 7 depicts results for the real ORL database of 400 face-images, from 40 different subjects
(10 each) [2,28]. Images have size 92×112 with 8-bit grey levels, resulting in D = 10, 304. Only 30
images (3 subjects) were used, and as such the task is to group these images into K = 3 clusters.
As with the ARCENE data, the number of additional dimensions for all proposed algorithms is
ď′ = 100. Algs. 1, 2, and 5 exhibit similar performance, while requiring much less time than the
full K-means. Again, Alg. 5 is the fastest one at a comparable performance.

Tests were also performed on a subset of the KDDb 2010 data-set (K = 2, D = 2, 990, 384) [32].
The version of the data-set is the one transformed by the winner of the KDD 2010 Cup (National
Taiwan University). In each run 10, 000 data-points were chosen randomly from both classes, and
clustering was performed on this subset. The RFS performance is not reported in Fig. 8 as there
were issues regarding memory usage due to the required SVD computations. Here, the number of
augmented dimensions is ď′ = 1, 000. All algorithms exhibit performance similar to full K-means;
however Alg. 1 and Alg. 5 require significantly less time than all competing alternatives.

It should be noted also that the required amount of memory per iteration for Algs. 1 and 2 is
at most O[N(ď+ ď′)], in contrast with the competing algorithms whose memory requirements grow
linearly with D.

19

0 50 100 150 200 250 300 350 400
0.59

0.66

0.73

0.81

0.88

0.95
1

1.03

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(a) Relative clustering accuracy

0 50 100 150 200 250 300 350 400
10

−1

10
0

10
1

10
2

10
3

Number of sampled dimensions − d

T
im

e(
s)

full k−means
RP
RFS
Alg. 1
Alg. 2
Alg. 5

(b) Clustering time (secs)

Figure 7: Simulated performance for real data-set ORL.

500 600 700 800 900 1000
0.97

0.991

1

1.01

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
Alg. 1
Alg. 5

(a) Relative clustering accuracy

500 600 700 800 900 1000
10

1

10
2

10
3

10
4

10
5

Number of sampled dimensions − d

T
im

e
(s

)

full k−means
RP
Alg. 1
Alg. 5

(b) Clustering time (secs)

Figure 8: Simulated performance for real data-set KDDb.

20

5.2 Large number of points (N ≫)

Here we deal withN ≫ D. Alg. 4 is compared with the “fullK-means” and the “approximate kernel
K-means” algorithm [7]. N = 100, 000 vectors with D = 5 were generated according to (18) for
K = 5 clusters. Although “approximate kernel K-means” can accommodate nonlinearly separable
clusters by using nonlinear kernel functions, the linear kernel was used here: κ(x,y) := x⊤y, ∀x,y.
The Gaussian kernel function κΣ, with Σ := ID, was used in (14). Fig. 9 shows clustering accuracy
across the number ν̌ of randomly selected data per draw. The number of additional points ν̌ ′ is
set equal to 100. As Fig. 9 demonstrates, Alg. 4 approaches the performance of the full K-means
algorithm, even with ν̌ = 100 sampled data, while requiring markedly lower execution time than
both “full” and “approximate kernel K-means.”

5.3 Kernel clustering

Nonlinearly separable data are mapped here using a prescribed kernel function to high-dimensional
spaces to render them linearly separable. Algs. 3 and 4, with kernel K-means applied only at the
end, are compared with the “full kernel K-means” and the “approximate kernel K-means” [7].
Throughout, Σ := 5ID was used in (14). Tests were performed on a subset (N = 35, 000) of the
MNIST-784 data-set, which contains 28× 28 pixel images of handwritten digits grouped in K = 10
clusters. The kernel used in this case is the sigmoid one κ(x,y) = tanh(αx⊤y+ b) with parameters
α = 0.0045, b = 0.11, in accordance to [34]. Both the sigmoid and the Gaussian (for the case of
Alg. 4) kernels are considered stored in memory. Fig. 10 depicts the relative clustering accuracy for
this data-set and the required time in seconds. It is clear that accuracies of all three algorithms are
close and approach the performance of “full kernel K-means” as the number of sampled data-points
increases. However, the time required by Algs. 3 and 4 is significantly less than the time required
by the “full” and “approximate kernel K-means.”

5.4 Exploiting multiple computational threads

To showcase the scalability of the proposed algorithms in the presence of multiple computational
nodes, the algorithms were run on multiple computational threads. The independent draws r of the
proposed algorithms were executed in parallel. Moreover, competing algorithms were allowed to
exploit MATLAB’s multithread capabilities, e.g., matrix-matrix multiplications in RP [21]. Figs. 11
and 12 show simulation results for the ARCENE and KDDb data-sets, respectively. Clearly, par-
allelization of the iterations on the proposed algorithms is beneficial since the algorithms exhibit
about an order of magnitude less required time than that of competing methods.

6 Conclusions and Future Research

Inspired by RANSAC ideas that have well-appreciated merits for outlier-resilient regression, this
paper introduced a novel algorithmic framework for clustering massive numbers of high-dimensional
data. Several members of the proposed sketching and validation (SkeVa) family were introduced.
The first two members, a batch and a sequential one tailored to streaming modes of operation,
required K-means clustering in low-dimensional spaces and/or a small number of data-points.
To enable clustering of even nonlinearly separable data, a third member of the family leveraged
the kernel trick to cluster linearly separable mapped data. A divergence metric was utilized to

21

0 50 100 150 200 250 300 350 400
0.82

0.87

0.92

0.977

1

1.02

Number of sampled points − ν

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
Alg. 4
Approximate kernel k−means

(a) Relative clustering accuracy

0 50 100 150 200 250 300 350 400
10

−2

10
−1

10
0

10
1

10
2

Number of sampled points − ν

T
im

e
(s

)

full k−means
Alg. 4
Approximate kernel k−means

(b) Clustering time (secs)

Figure 9: Synthetic data (D = 5, N = 100, 000, K = 5).

2000 3000 4000 5000 6000 7000
0.93

0.94

0.96

0.98

1

1.014

Number of sampled points − ν

R
el

at
iv

e
A

cc
ur

ac
y

Kernel K−means
Alg. 3
Alg. 4
Approximate Kernel K−means

(a) Relative clustering accuracy

2000 3000 4000 5000 6000 7000
0

50

100

150

200

Number of sampled points − ν

T
im

e(
s)

Kernel K−means
Alg. 3
Alg. 4
Approximate Kernel K−means

(b) Clustering time (secs)

Figure 10: A subset of the MNIST data-set.

22

0 200 400 600 800 1000
0.87

0.903

0.935

0.967

1

1.01

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
RFS
Alg. 1

(a) Relative clustering accuracy

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

Number of sampled dimensions − d

T
im

e(
s)

full k−means
RP
RFS
Alg. 1

(b) Clustering time (secs)

Figure 11: A subset of the ARCENE data-set with multithreading.

500 1000 1500
0.981

0.99

1

1.01

Number of sampled dimensions − d

R
el

at
iv

e
A

cc
ur

ac
y

full k−means
RP
Alg. 1

(a) Relative clustering accuracy

500 1000 1500
10

0

10
1

10
2

10
3

10
4

Number of sampled dimensions − d

T
im

e
(s

)

full k−means
RP
Alg. 1

(b) Clustering time (secs)

Figure 12: A subset of the KDDb data-set with multithreading.

23

develop the fourth member of SkeVa K-means that bypasses intermediate K-means clustering
to trade-off accuracy for reduced complexity. Extensive numerical tests on synthetic and real
data-sets demonstrated the competitive performance of SkeVa over state-of-the-art schemes based
on random projections. Future research will focus on the rigorous performance analysis of the
proposed framework, and on the application of SkeVa to spectral clustering and its MapReduce
implementation.

Appendices

A Soft Kernel K-means

Since this appendix deals with N ≫, the clustering schemes of Sec. 2 will be applied here to a
reduced number ν̌ of D × 1 vectors. Let X̌(r) ∈ R

D×ν̌ denote the subset of data obtained by
sketching columns of X. In this context, (2) proceeds as follows. For i = 1, 2, . . .,

[i-a] Update data-cluster associations: For n = 1, . . . , ν̌,

πn[i] ∈ argmin
π∈[0,1]K

1
⊤
π=1

δ
(

ϕ
(

x(r)
n

)

,
∑

k
πkck[i]

)

+ ρ(π) . (19a)

[i-b] Update cluster centroids:

{ck[i+ 1]}Kk=1 ∈ argmin
{ck}⊂H

ν̌
∑

n=1

δ

(

ϕ
(

x(r)
n

)

,
∑

k

[

πn[i]
]

k
ck

)

. (19b)

Recall that given a kernel κ, if ϕ(x) := κ(x, ·), then inner products in H can be obtained as kernel
evaluations: 〈ϕ(x) | ϕ(x′)〉H = 〈κ(x, ·) | κ(x′, ·)〉H = κ(x,x′), where 〈· | ·〉H denotes the inner
product in H. Moreover, function δ is chosen as

δ
(

ϕ
(

x(r)
n

)

,
∑

k
[πn]kck

)

=
∥

∥

∥
ϕ(x(r)

n)−
∑

k
[πn]kck

∥

∥

∥

2

H
,

with ‖ · ‖H := 〈· | ·〉
1/2
H . It can be shown then by the Representer’s theorem [4] that due to the

limited number of data {ϕ(x
(r)
n)}ν̌

′

n=1, looking for a solution of (19b) in H is equivalent to looking

for one in the low-dimensional linear subspace H(r) := span{ϕ(x
(r)
1), . . . , ϕ(x

(r)
ν̌)}, of rank ≤ ν̌,

and where span stands for the linear span of a set of vectors. For notational convenience, let

Φ(X̌(r)) := [ϕ(x
(r)
1), . . . , ϕ(x

(r)
ν̌)], and Φ(X̌(r))b :=

∑ν̌
n=1 bnϕ(x

(r)
n), for any b ∈ R

ν̌ .
Centroid ck belongs to H(r), and can be expressed as a linear superposition of Φ(X̌(r)).

Specifically, there exists bk ∈ R
ν̌ s.t. ck = Φ(X̌(r))bk. Upon defining B := [b1, . . . , bK], then

[c1, . . . , cK] = Φ(X̌(r))B. Moreover,

δ
(

ϕ
(

x(r)
n

)

,
∑

k
[πn]kck

)

=
∥

∥

∥
ϕ(x(r)

n)− Φ
(

X̌(r)
)

Bπn

∥

∥

∥

2

H

24

which can be also obtained through kernel evaluations. Letting K(r) denote the ν̌ × ν̌ kernel

matrix with (n, n′)th entry [K(r)]nn′ := κ(x
(r)
n ,x

(r)
n′), and k

(r)

n′(r) the ν̌ × 1 vector with nth entry

[k
(r)

n′(r)]n := κ(x
(r)
n ,x

(r)
n′), it follows from the linearity of inner products that for any ν̌ × 1 vector ξ,

〈Φ(X̌(r))ξ | ϕ(x
(r)
n)〉H = ξ⊤k

(r)

n(r) and 〈Φ(X̌(r))ξ | Φ(X̌(r))ξ〉H = ξ⊤K(r)ξ. As such, the quadratic
term in (20) becomes

∥

∥

∥
ϕ
(

x(r)
n

)

− Φ
(

X̌(r)
)

Bπn

∥

∥

∥

2

H

=
〈

ϕ
(

x(r)
n

)

∣

∣

∣
ϕ
(

x(r)
n

)

〉

H
− 2
〈

Φ
(

X̌(r)
)

Bπn

∣

∣

∣
ϕ
(

x(r)
n

)

〉

H

+
〈

Φ
(

X̌(r)
)

Bπn

∣

∣

∣
Φ
(

X̌(r)
)

Bπn

〉

H

= κ
(

x(r)
n ,x(r)

n

)

− 2π⊤
n B

⊤k
(r)

n(r) + π⊤
nB

⊤K(r)Bπn (20)

which shows that kernel K-means in (19) boils down to solving a finite-dimensional optimization
task w.r.t. B and Π := [π1, . . . ,πν̌].

Moreover, distances in H between ϕ(x
(r′)
n) ∈ Φ(X̌(r′)) and centroids č

(r)
k = Φ(X̌(r))b

(r)
k needed

in step 5 of Alg. 3 can be efficiently computed because they are also expressible in terms of kernel
evaluations as follows;

∥

∥

∥
ϕ
(

x(r′)
n

)

− Φ
(

X̌(r)
)

b
(r)
k

∥

∥

∥

2

H

=
〈

ϕ
(

x(r′)
n

)

∣

∣

∣
ϕ
(

x(r′)
n

)

〉

H
− 2
〈

Φ
(

X̌(r)
)

b
(r)
k

∣

∣

∣
ϕ
(

x(r′)
n

)

〉

H

+
〈

Φ
(

X̌(r)
)

b
(r)
k

∣

∣

∣
Φ
(

X̌(r)
)

b
(r)
k

〉

H

= κ
(

x(r′)
n ,x(r′)

n

)

− 2b
(r)
k

⊤k
(r)

n(r′)
+ b

(r)
k

⊤K(r)b
(r)
k .

References

[1] D. Achlioptas, “Database-friendly random projections,” in Proc. of SIGMOD-SIGACT-
SIGART. ACM, 2001, pp. 274–281.

[2] AT&T Laboratories Cambridge, UK. The ORL database of faces. [Online]. Available:
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

[3] T. Bengtsson, P. Bickel, and B. Li, “Curse-of-dimensionality revisited: Collapse of the particle
filter in very large scale systems,” in Probability and Statistics: Essays in Honor of David
A. Freedman. IMS, 2008, vol. 2, pp. 316–334.

[4] C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.

[5] C. Boutsidis, A. Zouzias, M. Mahoney, and P. Drineas, “Randomized dimensionality
reduction for K-means clustering,” Computing Research Repository, 2011. [Online]. Available:
arXiv:1110.2897

25

[6] C. Chatterjee and V. Roychowdhury, “On self-organizing algorithms and networks for class-
separability features,” IEEE Trans. Neural Networks, vol. 8, no. 3, pp. 663–678, 1997.

[7] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, “Approximate kernel K-means: Solution to
large-scale kernel clustering,” in Proc. of Knowledge Discovery Data Mining, San Diego CA:
USA, Aug. 2011.

[8] O. Chum and J. Matas, “Optimal randomized RANSAC,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 30, no. 8, pp. 1472–1482, 2008.

[9] K. L. Clarkson and D. P. Woodruff, “Low rank approximation and regression in input
sparsity time,” in Proc. of Symposium on Theory of Computing, June 2013, pp. 81–90.
[Online]. Available: arXiv:1207.6365v4

[10] K. Cukier, “Data, data everywhere,” The Economist, 2010. [Online]. Available:
http://www.economist.com/node/15557443.

[11] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” Comm.
ACM, vol. 51, no. 1, pp. 107–113, 2008.

[12] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel K-means: Spectral clustering and normalized
cuts,” in Proc. of SIGKDD Intl. Conf. Knowledge Discovery Data Mining. ACM, 2004, pp.
551–556.

[13] A. Elgohary, A. K. Farahat, M. S. Kamel, and F. Karray, “Embed and conquer: Scalable
embeddings for kernel K-means on MapReduce,” in Proc. of Intl. Conf. Data Mining, Shenzen:
China, Dec. 2014.

[14] M. Fisher and R. Bolles, “Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography,” Comm. ACM, vol. 24, pp. 381–
395, June 1981.

[15] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” J. Machine
Learning Research, vol. 3, pp. 1157–1182, 2003.

[16] I. Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the NIPS 2003 feature
selection challenge,” in Proc. of Neural Info. Process. Systems, vol. 4, Whistler BC, Canada,
2004, pp. 545–552.

[17] M. Jordan, “On statistics, computation and scalability,” Bernoulli, vol. 19, no. 4, pp. 1378–
1390, 2013.

[18] B. Kang, W. Lim, and K. Jung, “Scalable kernel K-means via centroid approximation,” in
Proc. of NIPS, Granada: Spain, Dec. 2011.

[19] M. Mahoney, “Randomized algorithms for matrices and data,” Found. Trends Machine Learn.,
vol. 3, no. 2, pp. 123–224, 2011.

[20] ——, “Algorithmic and statistical perspectives on large-scale data analysis,” in Combinatorial
Scientific Computing, U. Naumann and O. Schenk, Eds. Chapman and Hall/CRC, 2012,
ch. 16, pp. 427–459. [Online]. Available: arXiv:1010.1609v1

26

[21] Mathworks. Matlab multicore. [Online]. Available: http://www.mathworks.com/discovery/
matlab-multicore.html

[22] MATLAB, version 8.2.0.701 (R2013a). Natick MA: USA: The MathWorks Inc., 2013.

[23] C. Micchelli and M. Pontil, “Learning the kernel function via regularization,” J. Machine
Learning Research, vol. 6, pp. 1099–1125, Sept. 2005.

[24] Minnesota Supercomputing Institute. [Online]. Available: http://www.msi.umn.edu/

[25] D. Nistér, “Pre-emptive RANSAC for live structure and motion estimation,” Machine Vision
Appl., vol. 16, no. 5, pp. 321–329, 2005.

[26] V. M. Patel, H. V. Nguyen, and R. Vidal, “Latent space sparse subspace clustering,” in Proc.
of ICCV, Sydney: Australia, 2013, pp. 225–232.

[27] J. C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives.
Springer, 2010.

[28] F. Samaria and A. Harter, “Parameterization of a stochastic model for human face identifi-
cation,” in Proc. of Workshop on Applications of Computer Vision, Sarasota FL: USA, Dec.
1994.

[29] R. Toldo and A. Fusiello, “Robust multiple structures estimation with J-linkage,” in Proc. of
ECCV. Marseille: France: Springer, 2008, pp. 537–547.

[30] P. H. Torr and A. Zisserman, “MLESAC: A new robust estimator with application to estimat-
ing image geometry,” Computer Vision and Image Understanding, vol. 78, no. 1, pp. 138–156,
2000.

[31] B. Yu and B. Yuan, “A more efficient branch and bound algorithm for feature selection,”
Pattern Recognition, vol. 26, no. 6, pp. 883–889, 1993.

[32] H.-F. Yu, H.-Y. Lo, H.-P. Hsieh, J.-K. Lou, T. G. Mckenzie, J.-W. Chou, P.-H. Chung, C.-H.
Ho, C.-F. Chang, J.-Y. Weng, E.-S. Yan, C.-W. Chang, T.-T. Kuo, P. T. Chang, C. Po, C.-Y.
Wang, Y.-H. Huang, Y.-X. Ruan, Y.-S. Lin, S.-D. Lin, H.-T. Lin, and C.-J. Lin, “Feature engi-
neering and classifier ensemble for KDD cup 2010,” in Proc. ACM SIGKDD Conf. Knowledge
Discovery Data Mining, Washington, DC, July 2011.

[33] H. Zhang and G. Sun, “Feature selection using Tabu search method,” Pattern Recognition,
vol. 35, pp. 701–711, 2002.

[34] R. Zhang and A. I. Rudnicky, “A large scale clustering scheme for kernel K-means,” in Proc.
ICPR, vol. 4, Quebec, Canada, 2002, pp. 289–292.

[35] M. Zuliani, C. S. Kenney, and B. S. Manjunath, “The multiRANSAC algorithm and its ap-
plication to detect planar homographies,” in Proc. of ICIP, vol. 3, Genova: Italy, 2005, pp.
III–153–6.

27

