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Abstract

The rapid development of signal processing on graphs provides a new perspective

for processing large-scale data associated with irregular domains. In many practical

applications, it is necessary to handle massive data sets through complex networks,

in which most nodes have limited computing power. Designing efficient distributed

algorithms is critical for this task. This paper focuses on the distributed reconstruction

of a time-varying bandlimited graph signal based on observations sampled at a subset of

selected nodes. A distributed least square reconstruction (DLSR) algorithm is proposed

to recover the unknown signal iteratively, by allowing neighboring nodes to communicate

with one another and make fast updates. DLSR uses a decay scheme to annihilate

the out-of-band energy occurring in the reconstruction process, which is inevitably

caused by the transmission delay in distributed systems. Proof of convergence and

error bounds for DLSR are provided in this paper, suggesting that the algorithm is able

to track time-varying graph signals and perfectly reconstruct time-invariant signals.

The DLSR algorithm is numerically experimented with synthetic data and real-world

sensor network data, which verifies its ability in tracking slowly time-varying graph

signals.

Keywords: Signal processing on graph, graph signal, distributed algorithm, sam-

pling and reconstruction, time-varying signal.

1 Introduction

1.1 Signal Processing on Graph

During the past few years, the emerging field of signal processing on graphs (see [1, 2]) has

attracted vast research interests from multiple disciplines. Consider an N -vertex undirected
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graph, denoted as G(V, E), where V is the set of vertices with |V| = N and E is the set

of edges. A graph signal f ∈ <N is a vector that assigns each vertex a real number.

Equivalently, the vector f is often regarded as a function f : V 7→ <.

Graph-based signal processing has been developed to analyze data or signal associated

with irregular domains, e.g., large-scale networks. It finds wide applications in sensor net-

works [3], image processing [4], recommendation systems [5], etc. Existing research topics

on graph signal processing include: graph signal sampling [6, 7], uncertainty principle [8],

graph filtering [9], spectral graph wavelet [10,11], graph signal compression [12], graph signal

multiresolution [13,14], parametric dictionary learning [15], graph signal coarsening [16,17],

etc.

1.2 Problem Description and Related Works

In this work, we study the distributed reconstruction of smooth graph signals based on

sample measurements obtained at representative nodes. Suppose that the unknown graph

signal lies in the low-frequency subspace, our reconstruction problem is to recover its missing

entries from its known data/signal values sampled from a representative set of nodes.

Some theoretical results have been established for the sampling problem of bandlimited

graph-based signals; see e.g., [18–20]. The relation between the sample size necessary to

obtain unique reconstruction and the cutoff frequency of bandlimited signal space has been

studied. Similar to classical results on time-domain irregular sampling, the idea of “frame”

has been introduced for graph signal processing. The unique reconstruction conditions

have been derived for normalized and unnormalized Laplacians [18, 20]. As the field of

graph signal processing is rapidly developing, we summarize some recent related works as

follows. A least square approach has been proposed in [5] to reconstruct bandlimited graph

signal from signal values observed on sampled vertices, using a centralized algorithm. An

iterative method of bandlimited graph signal reconstruction has been proposed in [6], with

the practical consideration of balancing a tradeoff between smoothness and data-fitting.

Two more efficient iterative reconstruction methods using the local set have been considered

in [21, 22]. A necessary and sufficient condition for perfect reconstruction of bandlimited

graph signal has been derived in [7]. Readers may refer to Section 2.3 for more details of

related works.

Signal processing on graph is naturally related to distributed systems. For large-scale

systems in lack of a central controller, e.g., sensor networks, distributed estimation and

tracking [23] is an important topic. Algorithmic frameworks for distributed regression [24]

and inference [25] have been studied to fit global functions based on local measurements in

sensor networks. Consensus-based methods have been proposed in [26,27] to distributively

compute the maximum likelihood estimate of unknown parameters. Distributed Kalman fil-

tering has been introduced in [28] for target tracking of sensor networks. Diffusion RLS [29]

and LMS [30] algorithms have been proposed for distributed estimation over adaptive net-
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works. To the best knowledge of the authors, there have been few works on the distributed

reconstruction problem of bandlimited graph signal reconstruction. A related work [31] pro-

poses an approximation method that calculates the graph Fourier multipliers distributively,

which we will discuss in subsequent sections.

In many practical distributed systems, a central processor is lacking and the majority of

nodes have severely limited data processing power. Moreover, the node-to-node transmis-

sion delay is non-negligible in large-scale networks, i.e., a given node cannot communicate

globally with all other nodes to obtain instant fresh data. These difficulties with large

distributed systems pose a new and practical challenge to graph-based signal processing:

how to reconstruct graph signals distributively and efficiently? This is the motivation of

the present paper, in which we propose a distributed algorithmic solution and answer the

prior question to a reasonable extent.

1.3 Contributions

In this paper, we focus on the distributed recovery problem of graph-based time-varying

signal. We propose a distributed algorithm, namely the distributed least square reconstruc-

tion (DLSR), to adaptively reconstruct the missing values of a graph signal by allowing

neighboring nodes to communicate with one another and make local updates. Due to the

transmission delay caused by node-to-node communication, some out-of-band energy in-

evitably occurs during the distributed signal reconstruction process. The DLSR algorithm

uses a decay factor to dampen this out-of-band energy and achieves perfect reconstruction

of the unknown graph signal. Theoretical convergence proof and error bounds of DLSR is

given in our analysis.

The rest of this paper is organized as follows. In Section II, some preliminaries are

introduced, including the basics of graph signal processing and a review of existing related

works. In Section III, the distributed reconstruction algorithm (DLSR) is proposed and

described in detail. In Section IV, the proof of convergence and error bound analysis for

the proposed algorithm is presented. In Section V, DLSR is evaluated using numerical

experiments with synthetic as well as real-world data.

2 Preliminaries

2.1 Laplacian-Based Graph Signal Processing

The concept of graph Laplacian is widely adopted in spectral graph theory [32] and signal

processing on graphs [1]. For an undirected graph, the graph Laplacian (or unnormalized

Laplacian, combinatorial Laplacian) is defined as

L = D−A,
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where A is the adjacency matrix and D is the diagonal degree matrix, whose elements are

the degrees of the corresponding vertices. The normalized Laplacian is defined as

L = D−
1
2 LD−

1
2 .

Both unnormalized Laplacian and normalized Laplacian are real symmetric positive-semidefinite

matrices and all the eigenvalues are nonnegative [32]. In the rest of the paper, we mainly

focus on the normalized Laplacian. However, we note that analogous results can be easily

obtained for unnormalized Laplacian.

In view of signal processing on graphs, the eigenvalues {λk} of the Laplacian are regarded

as frequencies and the corresponding eigenvectors {uk} are regarded as basis vectors. Con-

sider an arbitrary graph signal f ∈ <N . Its frequency component corresponding to λk is the

inner product between f and the eigenvector uk, denoted as

f̂(λk) = 〈f ,uk〉 =

N∑
i=1

f(i)uk(i).

The eigenvectors associated with small eigenvalues have similar values on neighboring

vertices, while the eigenvectors associated with large eigenvalues are the opposite. As a

result, the frequency components associated with small and large eigenvalues correspond to

the low-frequency and high-frequency parts of the signal, respectively [1, 33].

Suppose f ∈ <N is a graph signal on an N -vertex graph G(V, E). We say f is ω-

bandlimited if its frequency components corresponding to eigenvalues larger than ω are all

zero. In other words, the spectral support of f is a subset of [0, ω]. The subspace consisting

of all ω-bandlimited signals on graph G is called the Paley-Wiener space, which is a Hilbert

space and denoted as PWω(G).

Suppose that for f ∈ PWω(G) only the entries on a selected set of nodes {f(u)}u∈S are

known, where S ⊆ V is the sampled vertex set. The sampling and reconstruction problem

is to recover the ω-bandlimited original signal f based on the sampled data {f(u)}u∈S .

2.2 Frame and Signal Reconstruction

Bandlimited signal reconstruction is closely related to the frame theory. We briefly introduce

its basics in the following.

Definition 1 A sequence of vectors {fi}i∈I is a frame in a Hilbert space H, if there exist

two constants 0 < A ≤ B such that

A‖f‖2 ≤
∑
i∈I
|〈f , fi〉|2 ≤ B‖f‖2, ∀f ∈ H.

Here the constants A and B are called frame bounds.

4



Definition 2 For a frame {fi}i∈I , the frame operator S : H → H is

Sf =
∑
i∈I
〈f , fi〉fi,

where S is invertible and satisfies AI � S � BI.

If the Euclidean matrix norm satisfies ‖I− λS‖ < 1, then

f = S−1Sf = λ

∞∑
j=0

(I− λS)jSf .

Consider the problem of reconstruction of an unknown signal f∗. By defining

f (k) = λ

k∑
j=0

(I− λS)jSf∗,

we can use the following iteration to iteratively reconstruct f∗ (see [34]),

f (k+1) = λSf∗ + (I− λS)f (k) = f (k) + λS(f∗ − f (k)), (1)

which achieves an exponentially shrinking error bound

‖f (k) − f∗‖ ≤ ‖I− λS‖k‖f (0) − f∗‖, ∀k > 0.

2.3 Previous Works on Bandlimited Graph Signal Reconstruction

We review some basic concepts and important results regarding band limited graph signal

reconstruction, which have been established in existing works.

Definition 3 [18] A set of vertices U ⊆ V(G) is a uniqueness set for space PWω(G) if

∀f ∈ PWω(G), f is uniquely determined by its values on U , i.e., ∀f ,g ∈ PWω(G), f |U = g|U
implies f = g, where f |U ∈ <|U| is the restriction of f to the subset U .

In order to perfectly reconstruct the bandlimited signals, we need the following relation

between the sampling set and frame has been established.

Theorem 1 [18] If the sampling set S is a uniqueness set for PWω(G), then {Pω(δu)}u∈S
forms a frame in PWω(G), and the upper bound B = 1, where Pω(·) is the orthogonal

projection onto PWω(G), and δu ∈ <N is a graph signal on G whose entries satisfy

δu(v) =

1, v = u;

0, v 6= u.

A method called iterative least square reconstruction (ILSR) has been proposed to

reconstruct the bandlimited signal iteratively. To be consistent with the results of our

work, the method is rewritten as follows.
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Theorem 2 [6] If the sampling set S is a uniqueness set for PWω(G), then the original

signal f∗ ∈ PWω(G) can be reconstructed using the sampled data {f∗(u)}u∈S by the following

ILSR method,

f (k+1) = f (k) + Pω

(∑
u∈S

(f∗(u)− f (k)(u))δu

)
, (2)

where f (k) is a temporary result in the kth iteration.

ILSR is derived from the method of projections onto convex sets (POCS) [35,36], which

is also known as the alternating projection method. The iteration (2) can be obtained by

projecting onto the following two sets alternately,

C1 ={f ∈ <N |f(u) = f∗(u), ∀u ∈ S},

C2 =PWω(G).

An equivalent derivation of ILSR can be obtained with the help of frame theory. Because

of Theorem 1, the above method can also be obtained for λ = 1 in the iteration (1).

Therefore, f (k) in (2) is the same as that in (1).

In addition to ILSR, two more efficient graph signal reconstruction methods, namely

the iterative propagating reconstruction (IPR) and the iterative weighting reconstruction

(IWR), have been proposed and proved to be convergent [21,22].

Sampling and reconstruction of bandlimited graph signal is closely related to irregular

sampling [37–40] or non-uniform sampling [41] in the time domain, which sheds light on

the analysis of graph signal. In fact, ILSR, IPR and IWR all have correspondence in time-

domain irregular sampling, which are known as the Marvasti method [42], the Voronoi

method [43] and the adaptive weights method [37].

2.4 Notation

For a graph G and a cutoff frequency ω, PWω(G) denotes the ω-bandlimited space of graph

signal on G. For any graph signal f ∈ <N , Pω(f) denotes its orthogonal projection onto

PWω(G), and Pω+(f) denotes the projection onto the orthogonal complement space of

PWω(G). The sampling vertex set is denoted as S, and the communication time delay

between vertices u and v is denoted as τ(u, v). It is assumed that one iteration is conducted

at each time step. The true graph signal at the kth time step or iteration is denoted as

f
(k)
∗ , whose entry associated with vertex u is f

(k)
∗ (u). f̃

(k)
∗ denotes a biased estimate of f

(k)
∗ .

In the reconstruction algorithm, f (k) denotes the temporary result obtained after the kth

iteration, with f (k)(u) as its entry associated with vertex u.
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Figure 1: An example of graph signal reconstruction over wireless sensor network.

3 Distributed Reconstruction of Time-varying Bandlimited

Graph Signal

3.1 Motivation

We consider the distributed reconstruction of a time-varying low-frequency signal defined

over graph by sampling at a small portion of nodes. The problem could be described in the

scenario of wireless sensor network (WSN). For a given WSN, there are unknown function

f
(t)
∗ (v) associating with node v at time t. Suppose that the function is slowly varying over

both the time domain and the space domain. A snapshot of such function could be modeled

as an unknown time-varying low-frequency signal f
(t)
∗ ∈ PWω(G) located over a graph.1

Suppose that the WSN is a hybrid network and only a small subset of nodes in S are

equipped with sensors. As a result, one can measure the signal entries on support S as

{f (t)∗ (u)}u∈S at time t. Our purpose is to distributivedly estimate the function values at

all nodes {f (t)∗ (v)}v∈V , by using historical measurements at selected nodes {f (τ)∗ (u)}u∈S,τ≤t.
See Fig. 1 for a demonstration of the raised problem.

When the signal is time-invariant, the problem reduces to bandlimited graph signal re-

construction, where the nodes with and without sensors correspond to sampled and missing

data. In the distributed setting, the centralized iteration (2) no longer applies, as it is

impossible for every node to obtain the instant estimation errors {f∗(u)− f (k)(u)}u∈S .

In what follows, we focus on the generalization of ILSR method to distributed systems

and time-varying signals. We proposed an algorithm called distributed least square re-

construction (DLSR). By letting each node conducting the iteration locally at each time

1One may argue how one could model the WSN as a graph, e.g., how the weighted edges are yielded

among all nodes. However, this problem is beyond the topic of this paper. We always assume the graph is

available or could be estimated by some available methods.
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instant, DLSR can adaptively reconstruct the missing entries of a slowly time-varying graph

signal.

3.2 Algorithm Description

The basic idea of DLSR is to spread the current estimation errors associated with the

representative nodes (which are equipped with sensors) to all other nodes over the connected

network. Every node iteratively updates its own estimation based on its received messages.

The driver of the proposed algorithm is on those nodes with sensors, which calculates

the error between the measurement f
(k)
∗ (u) and the temporary estimation f (k)(u) in the

kth iteration by

ε(k)(u) = f
(k)
∗ (u)− f (k)(u), ∀u ∈ S.

Then the estimation errors at node u (u ∈ S) are transmitted to other nodes in the network.

At the kth iteration, an arbitrary v collects a set of delayed but most recent estimation

errors,

{ε(k−τ(u,v))(u)}u∈S , ∀v ∈ V(G),

where τ(u, v) denotes the transmission delay from node u to node v 2. We denote the

maximal transmission delay of the network by

τ = max
u∈S,v∈V(G)

τ(u, v).

Utilizing the most recent estimation errors, node v updates its local estimate by

f (k+1)(v) = (1− µk+1βk+1)f
(k)(v) + µk+1

∑
u∈S

ε(k−τ(u,v))(u)(Pωδu)(v), ∀v ∈ V(G) (3)

where µk+1 and βk+1 denote the stepsize and decay factor, respectively. (Pωδu)(v) denotes

the entry at v of the lowpass component of δu, which could be calculated and stored before

the system starts.

Please refer to Table 1 and Table 2, which describe the detailed iterative process of

signal reconstruction at the presentative nodes and the remaining nodes, respectively.

3.3 An Example

In order to provide some intuition for our distributed algorithm, let us refer to Fig. 1 and

describe what happens on a typical node in the network.

• As a representative node equipped with sensor, node 1 will get a measurement f
(k)
∗ (1)

at the kth iteration and then calculate the estimation error ε(k)(1). The estimation

error will be send to its neighbors of node 2, 4, and 5, and then forwarded to others.

At the same slot, node 1 will receive the estimation errors of other nodes with sensors

2For simplicity, we may set e(k−τ(u,v))(u) = 0 if k − τ(u, v) < 0.
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Table 1: DLSR Algorithm at Representative Node u ∈ S.

Parameter: S, {τ(u′, u)}u′,u∈S , µk, βk;

Initialization: f (0)(u) = 0, calculate (Pωδu′)(u), ∀u′ ∈ S;

For k = 0, 1, 2, · · ·

1) Input: f
(k)
∗ (u);

2) Estimation:

ε(k)(u) = f
(k)
∗ (u)− f (k)(u);

3) Communication:

Send ε(k)(u) and ε(k−1−τ(u
′,u))(u′) to neighbors, ∀u′ ∈ S\u;

Receive ε(k−τ(u
′,u))(u′) from neighbors, ∀u′ ∈ S\u;

4) Update Storage:

Save ε(k−τ(u
′,u))(u′), ∀u′ ∈ S\u;

5) Update Estimation:

f (k+1)(u) = (1− µk+1βk+1)f
(k)(u)

+µk+1
∑
u′∈S

ε(k−τ(u
′,u))(u′)(Pωδu′)(u).

End

and use the most recent ones (ε(k−1)(2) from node 2 and ε(k−2)(3) from node 5).

Consequently, it could update the estimation by

f (k+1)(1) = (1− µk+1βk+1)f
(k)(1)

+ µk+1

(
ε(k)(1) · (Pωδ1)(1) + ε(k−1)(2)(Pωδ2)(1) + ε(k−2)(3)(Pωδ3)(1)

)
.

One may notice that the new estimation is not the output of the proposed algorithm,

because our purpose is to estimate the strength of the signal associated with the node

without sensor. However, the new estimation errors at representative nodes will be

transmitted over the network to help all others to conduct their estimation.

• As a regular node that is not equipped with sensor, at the kth iteration, node 5 will

receive ε(k−1)(1), ε(k−2)(2), and ε(k−1)(3) from its neighbors. Then it will transmit the

most recent estimation errors of nodes with sensors to its neighbors 1, 3, and 6. The

estimate of node 5 is updated by

f (k+1)(5) = (1− µk+1βk+1)f
(k)(5)

+ µk+1

(
ε(k−1)(1)(Pωδ1)(5) + ε(k−2)(2)(Pωδ2)(5) + ε(k−3)(3)(Pωδ3)(5)

)
.
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Table 2: DLSR Algorithm at Non-representative Node v ∈ V(G)\S.

Parameter: S, {τ(u, v)}u∈S,v∈V(G)\S , µk, βk;

Initialization: f (0)(v) = 0, calculate (Pωδu)(v), ∀u ∈ S;

For k = 0, 1, 2, · · ·

1) Communication:

Send ε(k−1−τ(u,v))(u) to neighbors, ∀u ∈ S;

Receive ε(k−τ(u,v))(u) from neighbors, ∀u ∈ S;

2) Update Storage:

Save ε(k−τ(u,v))(u), ∀u ∈ S;

3) Update Estimation:

f (k+1)(v) = (1− µk+1βk+1)f
(k)(v)

+µk+1
∑
u∈S

ε(k−τ(u,v))(u)(Pωδu)(v);

4) Output: f (k+1)(v).

End

The new estimate will be sent out as a temporary result of the proposed algorithm.

3.4 Discussions

Asynchronization is one of the most common issues in distributed systems. In our dis-

tributed reconstruction setting, asynchronization leads to communication delay between

nodes that are connected through multiple links, which induces a deviation of the esti-

mated signal from the bandlimited space. However, as long as the maximum delay in the

network is bounded by a constant τ , the proposed method can successfully annihilate the

out-of-band estimation error and achieves perfect reconstruction.

Node failure is also a common problem in WSN. The proposed DLSR is robust to both

communication failure and sensor failure. In the former case, some links are broken and fail

to work. The data packets have to be delivered through new route and the transmission

delay may increase. Even in this case, the DLSR is still going to work, provided that the

network remains connected and the maximum transmission delay is bounded. In the case

of a sensor failure, some presentative nodes (i. e. u ∈ S) no longer obtain the sampled

data, which means that they can act the same as the regular nodes. As long as the system

is designed with some redundancy, the DLSR can still work, provided that there remain

enough number of functional sensors.

The proposed algorithm requires that the vectors {Pωδu}u∈S be calculated in advance
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and their entries be stored in the respective nodes. In some practical situation this pre-

calculation could be unavailable. However, a distributed method proposed by [31] can be

used to calculate {(Pωδu)(v)}u∈S approximately at node v.

In fact, the operation Pω(·) for any given graph signal can be approximately calculated

by a distributed method proposed by [31]. By this method, it will take some (depends on

the network scale) rounds of data transmission and calculation to obtain the approximate

projection. Therefore, another distributed method can be readily proposed by directly

applying the above approximate projection to ILSR with a stepsize µ to track time-varying

signal. Our method differs from this approach in the following aspects.

• Supposing the period of a time step composed of one transmission and calculation

is fixed in both methods, it will take some time steps to implement one iteration of

ILSR by directly applying the method in [31] to ILSR. Therefore, the data used in the

calculation are all sampled several time steps earlier. In our method, the iteration is

conducted in one time step and use the current data at every node, which means the

samples are as fresh as possible, the delay is only caused by transmission, and there

is no waiting. Although nonuniform delays may violate the bandlimited property,

we will prove in the following section that the out-of-band energy can be eliminated

eventually.

• The projection Pω(·) should be conducted for different graph signals as the itera-

tion goes on by directly applying the method in [31] to ILSR, and each projection

takes some time steps. In the proposed method, only pre-calculating (precisely or

approximately using the method in [31]) the frame elements, {Pωδu}u∈S , are enough

to reconstruct the graph signal, which is more economical.

4 Convergence Analysis

We will first study the convergence behavior of DLSR in a general situation that the ban-

dlimited graph signal to be constructed varies slowly by time, and then specialize the result

to a time-invariant case. In order to simplify the expression, we will fix stepsizes µ and β to

be constants in studying the time-varying case. Finally, we let the stepsizes be diminishing

and show that DLSR achieves a perfect reconstruction of time-invariant signal.

4.1 Tracking Time-Varying Signal Using Constant Parameters

The proposed DLSR algorithm is equivalent to the following iteration in the vector form

f (k+1) = (1− µβ)f (k) + µ
∑
u∈S

(
F
(k)
∗u − F(k)

u

)
Pωδu, (4)

where

F
(k)
∗u − F(k)

u = diag
{
f
(k−τ(u,i))
∗ (u)− f (k−τ(u,i))(u)

}
i=1,··· ,N

11



is a diagonal matrix composed of the delayed estimation error at node u.

Although Pωδu is bandlimited for any u, by introducing F
(k)
u , the delayed signal (F

(k)
∗u −

F
(k)
u )Pωδu no longer belongs to the low-frequency subspace PWω(G). As a result, the

sequence of estimated signals {f (k)} are no longer ω-bandlimited. This existence of out-of-

band energy makes DLSR critically different from its centralized version (2) and substan-

tially complicates the convergence analysis. Since f (k) is not ω-bandlimited, we need to

study its low-frequency and high-frequency components separately.

For given node set S and cutoff frequency ω, we may define an operator T on a graph

signal f as

Tf = Pω

(∑
u∈S

f(u)δu

)
(5)

=
∑
u∈S

f(u)Pωδu.

According to Theorem 1, if S is the uniqueness set of graph G with respect to ω, {Pωδu}u∈S
is a frame in PWω(G). For any f ∈ PWω(G), using the fact that

f(u) = 〈Pωf , δu〉 = 〈f ,Pωδu〉, ∀u ∈ S,

Tf can be rewritten as

Tf =
∑
u∈S
〈f ,Pωδu〉Pωδu, ∀f ∈ PWω(G),

which is the frame operator of {Pωδu}u∈S , and the frame bounds are A and B.

The definition of T implies

‖Tf‖ ≤

∥∥∥∥∥∑
u∈S

f(u)δu

∥∥∥∥∥ ≤ ‖f‖
and one has ‖T‖ ≤ 1. By defining f̃

(k)
∗ as

f̃
(k)
∗ = (βI + T)−1Tf

(k)
∗ , (6)

one further gets

Tf
(k)
∗ = β f̃

(k)
∗ + Tf̃

(k)
∗ . (7)

According to (5), both Tf
(k)
∗ and Tf̃

(k)
∗ are within the low-frequency space PWω(G). There-

fore one can obtain from (7) that f̃
(k)
∗ ∈ PWω(G). As a consequence, Pω+ f̃

(k)
∗ = 0, where

Pω+ denotes the projection operator onto the high-frequency subspace which is the orthog-

onal complement of PWω(G).

By defining the in-band error and out-of-band error as, respectively,

e(k) =
∥∥∥Pωf (k) − Pω f̃

(k)
∗

∥∥∥ , (8)

e
(k)
+ =

∥∥∥Pω+f (k) − Pω+ f̃
(k)
∗

∥∥∥ =
∥∥∥Pω+f (k)

∥∥∥ , (9)
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the following proposition gives inequalities that
{
e(k)
}

and {e(k)+ } satisfy. Further, it will be

shown that if the signal varies slowly enough, by properly selecting the stepsize µ, DLSR

can track time-varying signals.

Proposition 1 Supposing the true signal satisfies∣∣∣f (k+1)
∗ (u)− f (k)∗ (u)

∣∣∣ ≤ ∆, ∀u ∈ V(G), k ≥ 1, (10)

if ∆ ≤ min
{

∆max, βBe+/(|S|τ)
}

and

µmin ≤ µ < min

{
µmax,

1

β +A
,

Bη

C + |S|
3
2 τ2∆

}
, (11)

the errors
{
e(k)
}

and {e(k)+ } satisfy

e
(k+1)
+ ≤ (1− µβ)e

(k)
+ + µ2C +M(µ)∆, (12)

e(k+1) ≤ (1− µβ − µA)e(k) + µ‖T‖e(k)+ + µ2C +M(µ)∆. (13)

In the above inequalities,

M(µ) = |S|
3
2 τ2µ2 + |S|τµ+

√
N, (14)

∆max is the positive root of

|S|
3
2 τ2

(
4N

1
2 − |S|

1
2

)
∆2 +

(
2|S|τβBe+ + 4N

1
2C
)

∆− β2B2
e+ = 0,

µmin and µmax are the roots of(
C + |S|

3
2 τ2∆

)
µ2 +

(
|S|τ∆− βBe+

)
µ+
√
N∆ = 0,

A and B are the frame bounds of T in PWω(G), ‖T‖ is the norm of T, Bη, Be and Be+
are constants satisfying

(β +A)Be = (β + ‖T‖)Be+ , (15)

and C is a constant

C = τ
√
|S|
(
(β + ‖T‖)(Be +Be+) +Bη

)
. (16)

The proof of Proposition 1 is postponed to 7.1.

Remark 1 According to Proposition 1, the out-of-band error (12) shows the necessity of

the decay factor β. If β = 0, the out-of-band error cannot be proved to converge, and the

error may accumulate with the iterations. The decay factor β enhances the robustness of

iteration.

Remark 2 The inequality (13) shows that the out-of-band error e
(k)
+ also affects the in-band

error e(k+1), which implies that the in-band error cannot be very small if the out-of-band

error exists. In other words, it is important to eliminate the out-of-band error.

13



Taking the limit superior of (12) and (13), one obtains

lim sup
k→∞

e
(k)
+ ≤

(
D +

E

β

)
µ+

M(µ)

βµ
∆, (17)

lim sup
k→∞

e(k) ≤
(

1 +
‖T‖
β

)(
Dβ + E

β +A
µ+

M(µ)

(β +A)µ
∆

)
. (18)

where D and E are constants. The above results imply that for a constant stepsize µ, the

out-of-band error e
(k)
+ will eventually get below a threshold that is determined by µ and

∆. Similarly, Pωf (k) will converge to the neighborhood of Pω f̃
(k)
∗ , and the error is also

controlled by µ and ∆.

Remark 3 Because bias is introduced by the multiple 1 − µβ in the iteration, the low-

frequency and high-frequency components of the temporary estimate will get into the neigh-

borhoods of Pω f̃
(k)
∗ and 0, respectively. Because of the influence of the decay factor β, the

reconstructed signal is biased. It will be proved in Corollary 1 that in the time-invariant

case, these two components will exactly converge to Pω f̃
(k)
∗ and 0.

4.2 Recovering Time-invariant Signal Using Constant Parameters

For the time-invariant case, f
(k)
∗ can be written as f∗ and F

(k)
∗u becomes f∗(u)IN . Similar to

(6), f̃∗ can also be defined as

f̃∗ = (βI + T)−1Tf∗. (19)

Then Proposition 1 becomes the following corollary for ∆ = 0.

Corollary 1 For time-invariant true signal f∗, supposing the in-band error and out-of-band

error are defined as, respectively,

e(k) = ‖Pωf (k) − Pω f̃∗‖,

e
(k)
+ = ‖Pω+f (k) − Pω+ f̃∗‖ = ‖Pω+f (k)‖,

the error {e(k)} and {e(k)+ } satisfy

e
(k+1)
+ ≤ (1− µβ)e

(k)
+ + µ2C, (20)

e(k+1) ≤ (1− µβ − µA)e(k) + µ‖T‖e(k)+ + µ2C, (21)

if

µ < min

{
1

β +A
,
Bη
C
,
βBe+
C

}
,

where the constants are the same as those in Proposition 1.

Besides, (17) and (18) become, respectively,

lim sup
k→∞

e
(k)
+ ≤ C

β
µ =

(
D +

E

β

)
µ, (22)

lim sup
k→∞

e(k) ≤ Dβ + E

β +A

(
1 +
‖T‖
β

)
µ. (23)
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Remark 4 For the time-invariant case, the out-of-band error e
(k)
+ will get below a threshold

that is proportional to the stepsize µ. It means that the out-of-band energy will be almost

eliminated eventually along with the iteration if µ is small. Pωf (k) will converge to the neigh-

borhood of Pω f̃∗, and its radius is also proportional to µ. Therefore, for diminishing stepsize

µk approaching 0, Pωf (k) and Pω+f (k) will strictly converge to Pω f̃∗ and 0, respectively, for

a sequence of properly chosen diminishing stepsize.

The bias will be estimated next. Because f∗, f̃∗ ∈ PWω(G), the iteration f (k) will converge

to f̃∗. Considering the definition of f̃∗ in (19), the bias satisfies

f̃∗ − f∗ = (βI + T)−1Tf∗ − f∗

= (βI + T)−1Tf∗ − (βI + T)−1(βI + T)f∗

= −β(βI + T)−1f∗.

For f∗ ∈ PWω(G), according to the frame bounds of operator T, we have

‖(βI + T)−1f∗‖ ≤
1

β +A
‖f∗‖,

and then

‖f̃∗ − f∗‖ ≤
β

β +A
‖f∗‖. (24)

Thus, the bias is determined by β and decreases with the decrease of β.

Combining (22), (23), and (24), the following proposition gives the limit superior of the

total error, as a function of β and µ.

Proposition 2 The total error for the time-invariant case satisfies

lim sup
k→∞

‖f (k) − f∗‖ ≤ Fβ +G
µ

β
+Hµ+ Jβµ,

where F , G, H, and J are constants.

Proposition 2 can be easily proved by summing up (22), (23), and (24).

4.3 Recovering Time-Invariant Signal Using Variable Parameters

Finally we will back to the general situation of variable stepsize and decay factor. According

to Proposition 2, by discarding the higher order of a diminishing stepsize µk, the best βk

satisfies βk ∼ O(
√
µk) to minimize the total error. Accordingly, the total error bound can

be controlled by adjusting µk and βk. In other words, the reconstruction error can be made

arbitrarily small: DRSL achieves perfect reconstruction.

The following proposition gives the convergence analysis for a special choice of dimin-

ishing stepsize and decay factor.
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Proposition 3 For diminishing stepsize µk = µ1/
√
k and decay factor βk = β1/

4
√
k, the

total error satisfies the following inequality,

‖f (k) − f∗‖ ≤ K/
4
√
k,

where K is a constant. It means that the total estimation error decreases on the rate of

1/ 4
√
k and converges to zero eventually.

The proof of Proposition 3 is postponed to 7.2.

5 Experiments

Experiments are designed to confirm the theoretical analysis and test the performance of the

proposed distributed algorithm. The graph is generated by 100 randomly located nodes and

the edges are generated by 4-nearest neighbors of the nodes, and the weights are inversely

proportional to the square of geometric distance. Among the 100 nodes, 20 of them are

randomly selected as the sampling set. The cutoff frequency is chosen to guarantee that the

sampling node set is a uniqueness set, which can be determined by the method given in [5].
3 The bandlimited signal is generated by filtering the high-frequency components off. The

transmission delay of each pair of nodes is simply regarded as the number of hops between

them in the graph. The maximal transmission delay of this graph is 14.

5.1 Tracking Time-Varying Signals

5.1.1 Tracking Performance

In this experiment, the tracking performance of DLSR is verified. The parameters are

chosen as ∆ = 0.005, µ = 0.1, and β = 10−3. The time-varying signal is generated by

adding a random bandlimited increment whose largest absolute entry is ∆ for each time

step. The aiming signal and iterative results of four nodes are focused on, as illustrated in

Fig. 2. The nodes associated with the upper two subfigures are in the sampling set, and

the nodes in the lower two subfigures are not in the sampling set. All the nodes can track

the aiming signal for not dramatic changes. The proposed algorithm can track the slowly

varying graph signal along with time.

5.1.2 Parameters β, µ, and ∆

In this experiment, the regions for the parameters β and µ that guarantee the convergence

of DLSR are plotted in Fig. 3 for different ∆, which describes the varying rate of time-

varying signals. The experiment results show that for time-varying case the algorithm is

3 Proposition 2 of [5]: The sampling set S is a unique set for PWω(G) if the cutoff frequency satisfies

ω ≤ σmin, where σ2
min is the smallest singular value of (L2)Sc , which is the submatrix of L2 containing only

the rows and columns corresponding to the complementary set of S, and L is the normalized Laplacian of

G.
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Figure 2: Time-varying aiming signal and iterative results of four nodes. The proposed

algorithm can track the aiming signal over time.

not convergent if the stepsize is too large or too small. If the µ is too small, the estimation

cannot track the varying signal. This will not happen for the time-invariant case (∆ = 0).

5.2 Reconstruction of Time-Invariant Signal

5.2.1 Convergence Performance

In this experiment, DLSR is used to reconstruct time-invariant signals. The convergence

curves of distributed and centralized algorithms with constant stepsizes µ = 0.01 and µ =

0.02 are illustrated in Fig. 4, with the decay factor β = 0.01. The centralized algorithm

uses fresh data from the sampled nodes, while the distributed algorithm uses data with

transmission delay. It is easy to see that a larger stepsize results in a faster convergence.

The bias caused by β can be seen in the convergence curves of distributed algorithms, while
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Figure 3: The probability of convergence for different choices of µ and β in time-invariant

and time-varying cases.

the error of centralized algorithm shrinks exponentially to zero with no bias.
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Figure 4: The convergence curves of distributed and centralized algorithms with different

constant stepsizes, where the decay factor is fixed β = 0.01.

18



0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
−1

10
0

10
1

Iteration Number

In
−

ba
nd

 E
rr

or

 

 
β=0
β=0.005
β=0.01
β=0.05
β=0.1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−5

10
0

Iteration Number

O
ut

−
of

−
ba

nd
 E

rr
or

 

 

β=0

β=0.005

β=0.01

β=0.05

β=0.1

Figure 5: The in-band and out-of-band errors for different β if the initial value has out-of-

band energy. If β = 0 the out-of-band energy cannot be eliminated as the iteration goes,

and it also leads to a relatively larger in-band error. For β > 0, a larger β will lead to a

faster shrinkage of the out-of-band error, and a larger steady-state in-band error.

5.2.2 In-Band and Out-of-Band Errors

As proved in Corollary 1, both the in-band and out-of-band errors will decrease into a

small bound as the iteration goes for β > 0. In this experiment, we set the initial value

f (0) with about 10% of out-of-band energy and conduct the iteration with different decay

factors β = 0, 0.005, 0.01, 0.05, and 0.1. The stepsize is chosen as µ = 0.2. The in-band

and out-of-band errors are illustrated in Fig. 5. The experiment result shows the necessity

of the decay factor. Although there is no bias for β = 0, the out-of-band energy cannot

be eliminated as the iteration goes. It should be noted that the curve for β = 0 is not

comparable with the others because the out-of-band energy also affects the in-band error

according to Remark 2. Since the out-of-band energy cannot be eliminated, it also leads to

a relatively larger in-band error for β = 0. For β > 0, it can be seen from Fig. 5 that even

though the initial value has out-of-band energy, it will shrink towards zero along with the

iteration. A larger β will lead to a faster shrinkage of the out-of-band error, and a larger

steady-state in-band error.
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Figure 6: Convergence curves for different choices of β and µ. The decay factor β mainly

determines the steady-state error and the stepsize µ mainly determines the convergence

rate.

5.2.3 Constant Parameters β and µ

The convergence curves for different choices of constant β and µ are illustrated in Fig.

6. As analyzed above, the convergence rate is mainly determined by the stepsize µ. The

steady-state error is composed of two parts, the bias and the steady-state error introduced

by the constant stepsize. The latter is relatively small compared with the former, which

is mainly determined by the decay factor β. It is obvious that a smaller β will lead to a

smaller steady-state error.

The steady-state errors and convergence rates for different choices of β and µ are plotted

in Fig. 7. For fixed β, the steady-state error varies little with µ. It shows that the bias, which

is determined by β, is dominant in the total error, while µ influences the total error little.

Since there is bias in the convergence, the convergence rate is approximately calculated as

(‖f (m)− f∗‖/‖f (0)− f∗‖)1/m, where m is the number of iterations when the error reaches 1.2

times the steady-state error. The rate of convergence is smaller for larger µ, which means

it converges faster.

5.2.4 Diminishing Parameters µk and βk

An experiment for diminishing stepsizes and decay factors is conducted and the convergence

curves are shown in Fig. 8. The stepsizes are chosen as µk = µ1/
√
k with µ1 = 0.05 or

0.02. The decay factor are βk = β1/
4
√
k with β1 = 0.1 or 0.01. All the curves decline along
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Figure 7: The steady-state errors and convergence rates for different choices of β and µ.

the iteration. Among the four curves, it can be seen that a larger µ1 and a smaller β1 may

lead to a faster convergence.
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Figure 8: The convergence curves for diminishing stepsizes and decay factors in Proposition

3.

5.3 Experiments with Real Data

The sensor network data of Intel Berkeley Research Lab [44] is used in this experiment. The

data is collected from 54 sensors in the lab and sampled every 30 seconds from February

28th, 2004, including temperature, humidity, light, and voltage. In our experiment, the

graph signal is composed of the temperature of the sensors. We extract the data from

01:06:15 to 17:56:15 on February 28th, 2004, during which time there is less missing data.

21



0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

15

20

25

30

Time Step
T

em
pe

ra
tu

re

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
−1

10
0

Time Step

R
el

at
iv

e 
E

rr
or

Figure 9: The temperature of each node in the sensor network data and the relative error

of DLSR.

Taking time and space smoothness into consideration, the missing data is interpolated by

conducting the MATLAB function scatteredInterpolant with all the existing data. Then

the completed data is regarded as the original time-varying graph signal. The graph is

established by the 4-nearest neighbors of the positions of the sensors, and the weights are

inversely proportional to the square of geometric distance. We randomly choose 20 sensors

and reconstruct the temperature of the other sensors. By selecting µ = 0.1 and β = 10−3,

the time-varying graph signal is reconstructed by DLSR. The temperature of each node and

the relative error are illustrated in Fig. 9. The steady-state relative error is around 3%,

which verifies the effectiveness of DLSR.

6 Conclusion

In this paper, the distributed least square reconstruction algorithm (DLSR) is proposed to

estimate and track the unobserved data of a time-varying graph signal adaptively. The low-

frequency and high-frequency components of the recovered signals are theoretically proved

to converge, respectively, to their true values. The out-of-band energy caused by node-to-

node transmission delay can be eliminated by using the decay factor, which introduces a

controllable bias. The expression of the overall error bound is given as a function of the

stepsize and decay factor, and can be made arbitrarily small. Numerical experiments on

both synthetic and real world data verify the performance of the proposed algorithm and

show that DLSR is able to track slowly varying graph signals adaptively.
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7 Appendix

7.1 The Proof of Proposition 1

First, besides the in-band error and out-of-band error defined in (8) and (9), two sequences

of quantities are introduced as

δ(k) =
∥∥∥f (k) − f (k−1)

∥∥∥ , (25)

η(k) =

∥∥∥∥∥∑
u∈S

(
f (k)(u)IN − F(k)

u

)
Pωδu

∥∥∥∥∥ . (26)

Then we will prove the following inequalities, where the proofs are postponed to the end of

this subsection.

e(k+1) ≤(1− µβ − µA)e(k) + µ‖T‖e(k)+ + µη(k) +
(√

N + µ|S|τ
)

∆, (27)

e
(k+1)
+ ≤(1− µβ)e

(k)
+ + µη(k) +

(√
N + µ|S|τ

)
∆, (28)

η(k) ≤
√
|S|

τ−1∑
i=0

δ(k−i), (29)

δ(k) ≤µ
(

(β + ‖T‖)
(
e(k−1) + e

(k−1)
+

)
+ η(k−1)

)
+ µ|S|τ∆, (30)

Plugging (30) into (29), we have

η(k) ≤ µ
(
C + |S|

3
2 τ2∆

)
, (31)

where C is defined as (16).

By plugging (31) into (28) and (27), respectively, we have (12) and (13) readily. As a

consequent, if we could demonstrate that {e(i)}, {e(i)+ }, and
{
η(i)
}

are bounded by some

constants, respectively, the proof of Proposition 1 will be closed. In what follows, we will

prove this by mathematical induction.

For i = 1, these quantities are obviously bounded. We will then prove that if the

preceding k − 1 items of
{
e(i)
}

, {e(i)+ }, and
{
η(i)
}

have respective bounds of Be, Be+ , and

Bη, their kth items are also bounded by the same limits.

1. According to (31), η(k) is bounded by Bη.

2. Plugging e
(k−1)
+ ≤ Be+ in (12), we have

e
(k)
+ ≤ (1− µβ)Be+ + µ2C +M(µ)∆,

where M(µ) is defined in (14). We then have e
(k)
+ ≤ Be+ if(

C + |S|
3
2 τ2∆

)
µ2 +

(
|S|τ∆− βBe+

)
µ+
√
N∆ ≤ 0. (32)
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One may notice that the inequality (32) has solutions for µ, if and only if the following

inequality holds for ∆,(
|S|τ∆− βBe+

)2 − 4
√
N∆

(
C + |S|

3
2 τ2∆

)
≥ 0,

which is equivalent to

|S|
3
2 τ2

(
4N

1
2 − |S|

1
2

)
∆2 +

(
2|S|τβBe+ + 4N

1
2C
)

∆ ≤ β2B2
e+ . (33)

Because its left hand side is an increasing function of ∆, the inequality (33) is satisfied

if ∆ ≤ ∆max, where ∆max can be solved from (33).

Then from (32) the range of µ can be determined as µmin ≤ µ ≤ µmax, where both

µmin and µmax are related to ∆.

3. Plugging e(k−1) ≤ Be and e
(k−1)
+ ≤ Be+ into (27), we have

e(k) ≤ (1− µβ − µA)Be + µ‖T‖Be+ + µ2C +M(µ)∆.

Using (15), we can also obtain that e(k) ≤ Be if (32) is satisfied.

Consequently, {e(k)}, {e(k)+ }, and {η(k)} are bounded, and then Proposition 1 is proved.

To end this subsection, we will prove (27), (28), (29), and (30). To simplify the ex-

pression, we introduce two vectors to denote the misalignment of estimated signal and the

increment of true signal by

d(k) = f (k) − f̃
(k)
∗ , (34)

c(k) = f̃
(k)
∗ − f̃

(k−1)
∗ , (35)

and two diagonal matrices to denote the errors at node u caused by delayed true signal and

estimated signal by

E
(k)
∗u = f

(k)
∗ (u)IN − F

(k)
∗u , (36)

E(k)
u = f (k)(u)IN − F(k)

u , (37)

7.1.1 The Proof of (27) and (28)

According to (4), (5), and (7), we have

d(k+1) =(1− µβ)d(k) − c(k+1) − µβ f̃
(k)
∗ + µ

∑
u∈S

(F
(k)
∗u − F(k)

u )Pωδu

=(1− µβ)d(k) − c(k+1) − µTd(k) + µT(f (k) − f
(k)
∗ ) + µ

∑
u∈S

(F
(k)
∗u − F(k)

u )Pωδu

=Q
(
Pωd(k) + Pω+d(k)

)
− c(k+1) + µ

∑
u∈S

E(k)
u Pωδu − µ

∑
u∈S

E
(k)
∗u Pωδu, (38)
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where

Q = (1− µβ)IN − µT.

Considering the definition of T in (5), for any f , we have

PωQPωf = QPωf , (39)

PωQPω+f = −µTPω+f , (40)

Pω+QPωf = 0, (41)

Pω+QPω+f = (1− µβ)Pω+f . (42)

Therefore, according to (39) and (40), the low-frequency part of (38) is

Pωd(k+1) = QPωd(k) − µTPω+d(k) − Pωc(k+1) + µPω
∑
u∈S

E(k)
u Pωδu − µPω

∑
u∈S

E
(k)
∗u Pωδu.

(43)

Since the frame bound of {Pωδu}u∈S satisfies A ≤ B ≤ 1, if we choose a stepsize µ

satisfying µ < 1/(β + A), the assumption AIN � T � BIN implies, note that Pωd(k) ∈
PWω(G),

‖Q‖ ≤ 1− µβ − µA.

According to (10), ∥∥∥Pωc(k+1)
∥∥∥ ≤ ∥∥∥c(k+1)

∥∥∥ ≤ √N∆.

The definition of F
(k)
∗u implies

−τ∆IN � E
(k)
∗u � τ∆IN ,

and then the last term of (43) is bounded by∥∥∥∥∥Pω
(∑
u∈S

E
(k)
∗u Pωδu

)∥∥∥∥∥ ≤ |S|τ∆.

Taking the norm of (43) and combining the above inequalities, the inequality (27) is

obtained.

According to (41) and (42), the high-frequency part of (38) is

Pω+d(k+1) =(1− µβ)Pω+d(k) − Pω+c(k+1) + µPω+

∑
u∈S

E(k)
u Pωδu − µPω+

∑
u∈S

E
(k)
∗u Pωδu.

Following the samilar approach of proving (27), the inequality (28) is proved.
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7.1.2 The Proof of (29)

By the definition of F
(k)
u ,∥∥∥E(k)

u Pωδu
∥∥∥2 =

∑
v

(∣∣∣f (k)(u)− f (k−τ(u,v))(u)
∣∣∣2 |(Pωδu)(v)|2

)

≤
∑
v

|(Pωδu)(v)|2
(
τ−1∑
i=0

∣∣∣f (k−i)(u)− f (k−i−1)(u)
∣∣∣)2

≤

(
τ−1∑
i=0

∣∣∣f (k−i)(u)− f (k−i−1)(u)
∣∣∣)2

,

where ∑
v

|(Pωδu)(v)|2 = ‖Pωδu‖2 ≤ 1.

Therefore,

η(k) ≤
∑
u∈S

∥∥∥E(k)
u Pωδu

∥∥∥
≤
∑
u∈S

τ−1∑
i=0

∣∣∣f (k−i)(u)− f (k−i−1)(u)
∣∣∣

≤
τ−1∑
i=0

√
|S|

(∑
u∈S

∣∣∣f (k−i)(u)− f (k−i−1)(u)
∣∣∣2) 1

2

≤
√
|S|

τ−1∑
i=0

∥∥∥f (k−i) − f (k−i−1)
∥∥∥ ,

which is (29).

7.1.3 The Proof of (30)

According to (4), (5), and (7),

f (k) − f (k−1) =− µβf (k−1) + µ
∑
u∈S

(
F
(k−1)
∗u − F(k−1)

u

)
Pωδu

=− µβd(k−1) − µTd(k−1) + µ
∑
u∈S

F
(k−1)
∗u Pωδu − µ

∑
u∈S

F(k−1)
u Pωδu

=− µ(βIN + T)d(k−1) + µ
∑
u∈S

E(k−1)
u Pωδu − µ

∑
u∈S

E
(k−1)
∗u Pωδu. (44)

Taking the norm of (44), the inequality (30) is obtained.
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7.2 The Proof of Proposition 3

According to the proof of Proposition 1, setting ∆ = 0 and using ‖T‖ ≤ 1 and βk ≤ β1, the

inequalities (27)-(30) for variant {µk} and {βk} becomes

e(k) ≤(1− µkβk − µkA)e(k−1) + µke
(k−1)
+ + µkη

(k−1) (45)

e
(k)
+ ≤(1− µkβk)e

(k−1)
+ + µkη

(k−1) (46)

η(k) ≤
√
|S|

τ−1∑
i=0

δ(k−i) (47)

δ(k) ≤µk
(

(β1 + 1)(e(k−1) + e
(k−1)
+ ) + η(k−1)

)
. (48)

Similar to the proof of Proposition 1, it is easy to see that {e(i)}, {e(i)+ } and {η(i)} are

bounded by constants Be, Be+ and Bη for µk = µ1/
√
k. Plugging (47) and (48) into (46),

we have

e
(k)
+ ≤ (1− µkβk)e

(k−1)
+ + C ′µkµk−τ , (49)

where C ′ = τ
√
|S|
(
2(Be +Be+) +Bη

)
. For µk = µ1/

√
k and βk = β1/

4
√
k, if e

(k−1)
+ ≤

L+/
4
√
k − 1 is satisfied for a constant L+, according to (49), e

(k)
+ ≤ L+/

4
√
k as long as the

following inequality is satisfied,(
1− µ1β1√

k 4
√
k

)
L+

4
√
k − 1

+ C ′
µ21√

k
√
k − τ

≤ L+
4
√
k
.

The inequality above is equivalent to

µ21C
′

L+

4
√
k 4
√
k − 1√

k − τ
+

√
k

( 4
√
k + 4
√
k − 1)(

√
k +
√
k − 1)

≤ µ1β1. (50)

Because the first term of the left side approaches µ21C
′/L+ and the second term approaches

0 when k is large enough, by selecting a constant L+ appropriately, (50) is established and

then we have e
(k)
+ ≤ L+/

4
√
k.

Plugging (47) and (48) into (45), we have

e(k) ≤ (1− µkβk − µkA)e(k−1) + µke
(k−1)
+ + C ′µkµk−τ .

If e(k−1) ≤ L/ 4
√
k − 1 is satisfied for a constant L, e(k) ≤ L/ 4

√
k as long as the following

inequality is satisfied,(
1− µ1√

k

(
β1
4
√
k

+A

))
L

4
√
k − 1

+
µ1√
k

L+
4
√
k − 1

+ C ′
µ21√

k
√
k − τ

≤ L
4
√
k
,

which is equivalent to

µ1L+

L
+
µ21C

′

L

4
√
k − 1√
k − τ

+
4
√
k

( 4
√
k + 4
√
k − 1)(

√
k +
√
k − 1)

≤ µ1
(
A+

β1
4
√
k

)
. (51)
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Both the second and third terms of (51) approach 0 when k is large enough. By selecting

a constant L appropriately, (51) is established and then we have e(k) ≤ L/ 4
√
k.

Based on the analysis above, we have

‖f (k) − f∗‖ ≤
βk

βk +A
‖f∗‖+ e

(k)
+ + e(k)

≤
(
β1
A
‖f∗‖+ L+ + L

)
1
4
√
k
, (52)

when k is large, and Proposition 3 is proved.

References

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of

signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular

domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, 2013.

[2] A. Sandryhaila, and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Trans. Signal Process.,

vol. 61, no. 7, pp. 1644-1656, 2013.

[3] X. Zhu and M. Rabbat, “Graph spectral compressed sensing for sensor networks,” in Proc. 37th IEEE

Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2012, pp. 2865-2868.

[4] S. K. Narang, Y. H. Chao, and A. Ortega, “Graph-wavelet filterbanks for edge-aware image processing,”

in Proc. IEEE Stat. Signal Process. Workshop (SSP’12), 2012, pp. 141-144.

[5] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques for interpolation in graph struc-

tured data,” in Proc. 38th IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2013, pp. 5445-

5449.

[6] S. K. Narang, A. Gadde, E. Sanou, and A. Ortega, “Localized iterative methods for interpolation in

graph structured data,” in Proc. 1st IEEE Global Conf. Signal and Inform. Process. (GlobalSIP), 2013,

pp. 491-494.

[7] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals on arbitrary graphs,” in

Proc. 39th IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2014, pp. 3892-3896.

[8] A. Agaskar, and Y. M. Lu, “A spectral graph uncertainty principle,” IEEE Trans. Inform. Theory, vol.

59, no. 7, pp. 4338-4356, 2013.

[9] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevic, “Adaptive graph filtering: Multiresolution

classification on graphs,” in Proc. 1st IEEE Global Conf. Signal and Inform. Process. (GlobalSIP), pp.

427-430, 2013.

[10] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph theory,”

Appl. Comput. Harmonic Anal., vol. 30, no. 2, pp. 129-150, 2011.

[11] S. K. Narang and A. Ortega, “Perfect reconstruction two-channel wavelet filter-banks for graph struc-

tured data,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2786-2799, 2012.

[12] X. Zhu and M. Rabbat, “Approximating signals supported on graphs,” in Proc. 37th IEEE Int. Conf.

Acoust., Speech, Signal Process. (ICASSP), 2012, pp. 3921-3924.

[13] D. I. Shuman, M. J. Faraji, and P. Vandergheynst, “A framework for multiscale transforms on graphs,”

arXiv preprint arXiv:1308.4942, 2013.

[14] V. N. Ekambaram, G. C. Fanti, B. Ayazifar, and K. Ramchandran, “Multiresolution graph signal

processing via circulant structures,” in Proc. IEEE Digital Signal Process., Signal Process. Educ. Meeting

(DSP/SPE), 2013, pp. 112-117.

28



[15] D. Thanou, D. I. Shuman, and P. Frossard, “Parametric dictionary learning for graph signals,” in Proc.

1st IEEE Global Conf. Signal and Inform. Process. (GlobalSIP), 2013, pp. 487-490.

[16] P. Liu, X. Wang and Y. Gu, “Coarsening graph signal with spectral invariance,” in Proc. 39th IEEE

Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2014, pp. 1075-1079.

[17] P. Liu, X. Wang, and Y. Gu, “Graph signal coarsening: Dimensionality reduction in irregular domain,”

in Proc. 2nd IEEE Global Conf. Signal and Inform. Process. (GlobalSIP), 2014, pp. 966-970.

[18] I. Pesenson, “Sampling in Paley-Wiener spaces on combinatorial graphs,” Trans. Amer. Math. Soc.,

vol. 360, no. 10, pp. 5603-5627, 2008.

[19] I. Pesenson, “Variational splines and Paley-Wiener spaces on combinatorial graphs,” Constructive Ap-

proximation, vol. 29, pp. 1-21, 2009.

[20] I. Z. Pesenson, and M. Z. Pesenson, “Sampling, filtering and sparse approximations on combinatorial

graphs,” J. Fourier Anal. and Applicat., vol. 16, no. 6, pp. 921-942, 2010.

[21] X. Wang, P. Liu, and Y. Gu, “Iterative reconstruction of graph signal in low-frequency subspace,” in

Proc. 2nd IEEE Global Conf. Signal and Inform. Process. (GlobalSIP), 2014, pp. 611-615.

[22] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph signal reconstruction,” arXiv preprint

arXiv:1410.3944, 2014.

[23] Y. Bar-Shalom and X. R. Li, Multitarget-Multisensor Tracking: Principles and Techniques, Storrs, CT:

University of Connecticut, 1995.

[24] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S Madden, “Distributed regression: An efficient

framework for modeling sensor network data,” in Proc. 3rd Int. Symp. Inform. Process. in Sensor Net-

works (IPSN), 2004, pp. 1-10.

[25] M. Paskin, C. Guestrin, and J. McFadden, “A robust architecture for distributed inference in sensor

networks,” in Proc. 4th Int. Symp. Inform. Process. in Sensor Networks (IPSN), 2005, pp. 55-62.

[26] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consen-

sus,” in Proc. 4th Int. Symp. Inform. Process. in Sensor Networks (IPSN), 2005, pp. 63-70.

[27] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc WSNs with noisy links-Part I:

Distributed estimation of deterministic signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350-364,

2008.

[28] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in Proc. 46th IEEE Conf. Decision

and Control, 2007, pp. 5492-5498.

[29] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-squares for distributed esti-

mation over adaptive networks,” IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1865-1877, 2008.

[30] F. S. Cattivelli, and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE Trans.

Signal Process., vol. 58, no. 3, pp. 1035-1048, 2010.

[31] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial approximation for dis-

tributed signal processing,” in Proc. 7th Int. Conf. Distributed Computing in Sensor Syst. and Workshops

(DCOSS), 2011, pp. 1-8.

[32] F. R. K. Chung, Spectral Graph Theory, Amer. Math. Soc., 1997.
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