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Abstract—In this article, two closed and convex sets for blind
deconvolution problem are proposed. Most blurring functions in
microscopy are symmetric with respect to the origin. Therefore,
they do not modify the phase of the Fourier transform (FT) of
the original image. As a result blurred image and the original
image have the same FT phase. Therefore, the set of images
with a prescribed FT phase can be used as a constraint set in
blind deconvolution problems. Another convex set that can be
used during the image reconstruction process is the epigraph
set of Total Variation (TV) function. This set does not need a
prescribed upper bound on the total variation of the image. The
upper bound is automatically adjusted according to the current
image of the restoration process. Both of these two closed and
convex sets can be used as a part of any blind deconvolution
algorithm. Simulation examples are presented.

Index Terms—Projection onto Convex Sets, Blind Deconvolu-
tion, Inverse Problems, Epigraph Sets

I. INTRODUCTION

A wide range of deconvolution algorithms has been devel-
oped to remove blur in microscopic images in recent years
[1]–[15]. In this article, two new convex sets are introduced for
blind deconvolution algorithms. Both sets can be incorporated
to any iterative deconvolution and/or blind deconvolution
method.

One of the sets is based on the phase of the Fourier trans-
form (FT) of the observed image. Most point spread functions
blurring microscopic images are symmetric with respect to
origin. Therefore, Fourier transform of such functions do not
have any phase. As a result, FT phase of the original image and
the blurred image have the same phase. The set of images with
a prescribed phase is a closed and convex set and projection
onto this convex set is easy to perform in Fourier domain.

The second set in the Epigraph Set of Total Variation
(ESTV) function. Total variation (TV) value of an image
can be limited by an upper-bound to stabilize the restoration
process. In fact, such sets were used by many researchers in
inverse problems [13], [16]–[20]. In this paper, the epigraph
of the TV function will be used to automatically estimate an
upper-bound on the TV value of a given image. This set is also
a closed and convex set. Projection onto ESTV function can
be also implemented effectively. ESTV can be incorporated
into any iterative blind deconvolution algorithm.
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Image reconstruction from Fourier transform phase infor-
mation was first considered in 1980’s [21]–[24] and total
variation based image denoising was introduced in 1990’s [25].
However, FT phase information and ESTV have not been used
in blind deconvolution problem to the best of our knowledge.

The paper is organized as follow. In Section II, we review
image reconstruction problem from th FT phase and describe
the convex set based on phase. In Section III, we describe the
epigraph set of TV function.

II. CONVEX SET BASED ON THE PHASE OF FOURIER
TRANSFORM

In this section, we introduce our notation and describe how
the phase of Fourier transform can be used in deconvolution
problems.

Let xo[n1, n2] be the original image and h[n1, n2] be the
point spread function. The observed image y is obtained by
the convolution of h with x:

y[n1, n2] = h[n1, n2] ∗ xo[n1, n2], (1)

where ∗ represents the two-dimensional convolution operation.
Discrete-time Fourier transform Y of y is, therefore, given by

Y (w1, w2) = H(w1, w2)Xo(w1, w2). (2)

When h[n1, n2] is symmetric with respect to origin
(h[n1, n2] = (0, 0)) phase of H(w1, w2) is zero,
i.e., our assumption is H(w1, w2) = |H(w1, w2)|.
Point spread functions satisfying this assumption
includes uniform Gaussian blurs. Therefore, phase
of Y (w1, w2) = |Y (w1, w2)|exp(j]Y (w1, w2)) and
Xo(w1, w2) = |X0(w1, w2)|exp(j]Xo(w1, w2)) are the
same:

]Y (w1, w2) = ]Xo(w1, w2), (3)

for all (w1, w2) values. Based on the above observation the
following set can be defined:

Cφ = {x[n1, n2] | ]X(w1, w2) = ]Xo(w1, w2)}, (4)

which is the set of images whose FT phase is equal to a given
prescribed phase ]Xo(w1, w2).

It can easily be shown that this set is closed and convex in
RN1 × RN2 , for images of size N1 ×N2.

Projection of an arbitrary image x onto Cφ is imple-
mented in Fourier domain. Let the FT of x be X(w1, w2) =
|X(w1, w2)|ejφ(w1,w2). The FT Xp of its projection xp is
obtained as follows:

Xp(w1, w2) = |X(w1, w2)|ej]Xo(w1,w2), (5)
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where the magnitude of Xp(w1, w2) is the same as the magni-
tude of X(w1, w2) but its phase is replaced by the prescribed
phase function ]Xo(w1, w2). After this step, xp[n1, n2] is
obtained using the inverse FT. The above operation is im-
plemented using the FFT and implementation details are
described in Section IV.

Obviously, projection of y onto the set Cφ is the same as
itself. Therefore, the iterative blind deconvolution algorithm
should not start with the observed image. Image reconstruction
from phase (IRP) has been extensively studied by Oppenheim
and his coworkers [21]–[24]. IRP problem is a robust inverse
problem. In Figure 1, phase only version of the well-known
Lena image is shown. The phase only image is obtained as
follows:

v = F−1[Ceφ(w1,w2)] (6)

where F−1. represents the inverse Fourier transform, C is a
constant and φ(w1, w2) is the phase of Lena image. Edges
of the original image are clearly observable in the phase
only image. Therefore, the set Cφ contains the crucial edge
information of the original image xo.

When the support of xo is known it is possible to reconstruct
the original image from its phase within a scale factor.
Oppenheim and coworkers developed Papoulis-Gerchberg type
iterative algorithms from a given phase information. In [23]
support and phase information are imposed on iterates in space
and Fourier domains in a successive manner to reconstruct an
image from its phase.

In blind deconvolution problem the support regions of xo
and y are different from each other. Exact support of the
original image is not precisely known; therefore, Cφ is not
sufficient by itself to solve the blind deconvolution problem.
However, it can be used as a part of any iterative blind
deconvolution method.

When there is observation noise, Eq. (1) becomes:

yo = y + ν, (7)

where ν represents the additive noise. In this case, phase of the
observed image is obviously different from the phase of the
original image. Luckily, phase information is robust to noise
as shown in Fig. 1c which is obtained from a noisy version
of Lena image. In spite of noise, edges of Lena are clearly
visible in the phase only image. Gaussian noise with variance
σ = 30 is added to Lena image in Fig. 1a.

FTs of some symmetric point spread function may take
negative values for some (w1, w2) values. In such (w1, w2)
values, phase of the observed image Y (w1, w2) differs from
X(w1, w2) by π. Therefore, phase of Y (w1, w2) should be
corrected as in phase unwrapping algorithms. Or some of the
(w1, w2) values around (w1, w2) = (0, 0) can be used during
the image reconstruction process. It is possible to estimate the
main lobe of the FT of the point spread function from the
observed image. Phase of FT coefficients within the main lobe
are not effected by a shift of π.

In this article, the set Cφ will be used as a part of the
iterative blind deconvolution scheme developed by Dainty et
al and together with the epigraph set of total variation function
which will be introduced in the next section.

(a)

(b)

(c)

Fig. 1: (a) noisy “Lena” image, (b) Phase only version of the
“Lena” image, and (c) phase only version of the noisy “Lena”
image.

III. EPIGRAPH SET OF TOTAL VARIATION FUNCTION

Bounded total variation is widely used in various image
denoising and related applications [16], [17], [26]–[29]. The
set CTV of images whose TV values is bounded by a prescribed
number ε is defined as follows:

CTV = {x : TV(x) ≤ ε}, (8)

where TV of an image is defined, in this paper, as follows:

TV(x) =

M∑
i,j=1

|xi+1,j − xi,j |+
M∑

i,j=1

|xi,j+1 − xi,j |. (9)
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This set is closed and convex set in RN1×N2 . Set CTV can be
used in blind deconvolution problems. But the upper bound ε
has to be determined somehow a priori.

In this article we increase the dimension of the space by
1 and consider the problem in RN1×N2+1. We define the
epigraph set of the TV function:

CESTV = {x = [xT z]T | TV(x) ≤ z}, (10)

where T is the transpose operation and we use bold face letters
for N dimensional vectors and underlined bold face letters for
N + 1 dimensional vectors, respectively.

The concept of the epigraph set is graphically illustrated in
Fig. 2. Since TV(x) is a convex function in RN1×N2 set the
CESTV is closed and convex in RN1×N2+1. In Eq. (10) one
does not need to specify a prescribed upper bound on TV of an
image. An orthogonal projection onto the set CESTV reduces
the total variation value of the image as graphically illustrated
in Fig. 2 because of the convex nature of the TV function. Let
v be an N = N1×N2 dimensional image to be projected onto
the set CESTV . In orthogonal projection operation, we select
the nearest vector x? on the set CESTV to w. The projection
vector x? of an image v is defined as:

w? = arg min
w∈CESTV

‖v −w‖2, (11)

where v = [vT 0]. The projection operation described in (11)
is equivalent to:

w? =

[
wp

TV(wp)

]
= arg min

w∈Cf

‖
[

v
0

]
−
[

w
TV(w)

]
‖, (12)

where w? = [wTp ,TV(wp)] is the projection of (v, 0) onto the
epigraph set. The projection w? must be on the boundary of
the epigraph set. Therefore, the projection must be on the form
[wTp ,TV(wp)]. Equation (12) becomes:

w? =

[
wp

TV(wp)

]
= arg min

w∈Cf

‖v− w‖22 + TV(w)2. (13)

It is also possible to use λTV(.) as a the convex cost function
and Eq. 13 becomes:

w? =

[
wp

TV(wp)

]
= arg min

w∈Cf

‖v− w‖22 + λ2TV(w)2. (14)

The solution of (11) can be obtained using the method that we
discussed in [28], [30]. The solution is obtained in an iterative
manner and the key step in each iteration is an orthogonal
projection onto a supporting hyperplane of the set CESTV .

In current TV based denoising methods [17], [27] the
following cost function is used:

min‖v −w‖22 + λTV(w). (15)

However, we were not able to prove that 15 corresponds to a
non-expensive map or not. On the other hand, minimization
problem in Eq. (13) and (14) are the results of projection
onto convex sets, as a result they correspond to non-expensive
maps [5], [16], [26], [31], [31]–[37]. Therefore, they can be
incorporated into any iterative deblurring algorithm without
effecting the convergence of the algorithm.

Fig. 2: Graphical representation of the orthogonal projection
onto the set CESTV defined in (11). The observation vector
v = [vT 0]T is projected onto the set CESTV, which is the
epigraph set of TV function

IV. HOW TO INCORPORATE CESTV AND Cφ INTO A
DEBLURRING METHOD

One of the earliest blind deconvolution methods is the
iterative space-Fourier domain method developed by Ayers
and Dainty [38]. In this approach, iterations start with a
xo[n] = xo[n1, n2], where we introduce a new notation to
specify equations [n] = [n1, n2]. For example, we rewrite Eq.
(1) as follows:

y[n] = h[n] ∗ xo[n], (16)

The method successively updates h[n] and x[n] in a Wiener
filter-like equation. Here is the ith step of the algorithm:

1) Compute X̂i(w) = F{xi[n]}, where F represents the
FT operation and w = (w1, w2), with some abuse of
notation.

2) Estimate the point-spread filter response using the fol-
lowing equation

H̃i(w) =
Y (w)X̂∗i (w)

|X̂i(w)|2 + α/|Ĥi(w)|2
, (17)

where α is a small real number.
3) Compute h̃i[n] = F−1{H̃i(w)}
4) Impose the positivity constraint and finite support con-

straints on h̃i[n]. Let the output of this step be ĥi[n].
5) Compute Ĥi(w) = F{ĥi[n]}
6) Update the image

X̃i(w) =
Y (w)Ĥ∗i (w)

|Ĥi(w)|2 + α/|X̂i(w)|2
, (18)

7) Compute x̂i[n] = F−1{X̂i(w)}
8) Impose spatial domain positivity and finite support con-

straint on x̂i[n] to produce the next iterate x̂i+1[n].
Iterations are stopped when there is no significant change

between successive iterates. We can easily modify this algo-
rithm using the convex sets defined in Section II and III. We
introduce step 6-a as follows:

6-a) Impose the phase information

X̄i(w) = |X̃i(w)|ej]Y (w), (19)
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where ]Y (w) is the phase of Y (w). This step is the pro-
jection onto the set Cφ. As a result step 7 becomes x̃i[n] =
F−1{X̄i(w)}. We also introduce a new step to Ayers and
Dainty’s algorithm as follows: Project x̃i[n] onto the set CESTV
to obtain x̂i+1[n]. The flowchart of the proposed algorithm is
shown in Fig. 3.

Since the filter is a zero-phase filter in microscompic
image analysis h[n1, n2] = h[−n1,−n2] = h[−n1, n2] =
h[n1,−n2] this condition is also imposed on the current iterate
in Step 4.

Global convergence of Ayers-Dainty method has not been
proved. In fact, we experimentally observed that it may diverge
in some FL microscopy images. Projections onto convex sets
are non-expansive maps [37], [39], [40], therefore, they do not
cause any divergence problems in an iterative image debluring
algorithm.

Impose phase
constraint

Impose Fourier
constraint

FFT

PES-TV

Impose image 
constraint

Impose 
spatial domain

constraint

IFFT

Impose phase
constraint

Impose Fourier
constraint

FFT

Impose blur 
constraint

FFT

  𝐹𝑘

 𝐻𝑘

 𝑓𝑘

 ℎ𝑘

 ℎ𝑘

 𝐻𝑘

 𝐹𝑘

 𝐹𝑘

 𝑓𝑘

 𝑓𝑘

 ℎ𝑘

 𝑓0𝑘

 𝐹𝑘

PES-TV

Fig. 3: Flow chart of the proposed algorithm. PES-TV stands
for Projection onto the Epigraph Set of TV function.

V. EXPERIMENTAL RESULTS

The proposed algorithm is evaluated using different flores-
cence (FL) microscopy images obtained at Bilkent University.
Gaussian and uniform filters are used to blur the images.
These images are blurred by Gaussian filter with disc sizes
d = 5, 10, and 15 and σ = 1, 2, and 3. The blind deconvolu-
tion results are presented for σ = 1, 2, and 3 in Tables I, II,
and III, respectively.

In Tables I, II, and III bold font is used for the highest
PSNR. Clearly, the modified deblurring method using Cφ and
CESTV produces better PSNR values in almost all cases.

Four sample of images used in this set of experiments are
shown in Fig. 4. As an example, the Im-11 shown in Fig. 5a
in is blurred using Gaussian filter with d = 5 and σ = 3.
The blurred image is shown in Fig. 5b. The deblurred image
obtained using the proposed algorithm and Ayers and Dainty’s
algorithm are shown in Fig. 5c and 5d, respectively.

In another set of experiments, we used the FL image shown
in Fig. 6a which is blurred by an unknown filter or captured
with a focus blur [41]. This image is deblurred using the
blind deconvolution by phase information and its output is
compared with Ayers and Dainty’s and Xu et al’s algorithm
[7]. The deblurred image using the blind deconvolution by
phase information and CESTV , Ayers and Dainty’s algorithm,
and the Xu et al’s algorithm are shown in Fig. 6b, 6c, and 6d,
respectively.

Ayers and Dainty’s method does not converge as shown in
Fig. 6c. Xu et al’s algorithm also diverges when we select
“default” option. It does not diverge when we select “small”
kernel option but the result is far from perfect as shown in
Fig. 6. Sets Cφ and CESTV can be also incorporated into Xu
et al’s method for symmetric kernels but we do not have an
access to the source code. We get the best results when we
use Cφ and CESTV in a successive manner as shown in Fig.
5c and 6b.

Iterations are stopped after 300 rounds in all cases. In
the following web-page you may find the MATLAB code
of projections onto Cφ and CESTV and the example FL
images which four of them are shown in Fig. 4. Web-page:
http://signal.ee.bilkent.edu.tr/BlindDeconvolution.html.

(a) (b)

(c) (d)

Fig. 4: Sample florescence microscopic images used in exper-
iments (a) Im-5, (b) Im-7 (c) Im-10, and (d) Im-11.

VI. CONCLUSION

FT phase and the epigraph of the TV function are closed
and convex sets. They can be used as a part of iterative micro-
scopic image deblurring algorithms. Both sets not only provide
additional information about the desired solution but they
also stabilize the deconvolution algorithms. We experimentally
observed that they significantly improved the deblurring results
of Ayers and Dainty’s method.

http://signal.ee.bilkent.edu.tr/BlindDeconvolution.html
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TABLE I: Deconvolution results for florescence microscopic images blurred by Gaussian filter with disc size d and σ = 1.
PSNR (dB) values are presented for the proposed algorithm and Ayers and Dainty’s algorithm.

Method Filter radius Im-1 Im-2 Im-3 Im-4 Im-5 Im-6 Im-7 Im-8 Im-9 Im-10 Im-11 Im-12 Im-13 Im-14
Ayers d = 5 5.39 17.98 6.13 9.20 8.22 5.52 12.31 7.52 6.79 5.67 6.53 13.34 14.49 8.13

Modified d = 5 9.16 11.00 10.36 11.80 9.85 10.37 16.49 8.90 10.86 8.47 10.34 16.72 17.48 10.68
Ayers d = 10 4.57 5.25 5.12 8.70 7.61 10.93 13.51 6.52 7.70 5.96 6.44 10.17 16.80 7.53

Modified d = 10 11.14 9.41 9.81 11.61 9.96 12.80 16.04 9.45 11.45 16.43 11.71 15.42 18.14 11.37
Ayers d = 15 4.94 5.30 5.90 7.81 6.33 7.76 11.49 8.47 5.56 4.01 6.38 10.23 18.67 7.22

Modified d = 15 9.00 10.60 11.51 12.04 10.31 10.49 14.16 10.72 10.99 7.83 9.49 15.65 17.69 10.71

TABLE II: Deconvolution results for florescence microscopic images blurred by Gaussian filter with disc size d and σ = 2.
PSNR (dB) values are presented for the proposed algorithm and Ayers and Dainty’s algorithm.

Method Filter radius Im-1 Im-2 Im-3 Im-4 Im-5 Im-6 Im-7 Im-8 Im-9 Im-10 Im-11 Im-12 Im-13 Im-14
Ayers d = 5 6.37 6.92 7.03 8.10 9.08 8.69 15.64 8.44 10.17 14.19 10.98 16.28 22.95 11.41

Modified d = 5 17.24 12.61 11.79 12.08 12.82 10.36 18.81 12.36 9.38 13.20 8.40 16.66 17.07 13.27
Ayers d = 10 16.36 7.04 8.04 9.63 24.20 10.58 19.26 9.58 16.78 8.07 6.57 18.63 22.35 15.21

Modified d = 10 15.30 13.01 12.58 11.86 16.86 16.33 20.44 11.61 10.47 14.18 11.74 22.17 21.66 18.39
Ayers d = 15 10.52 13.85 12.71 14.85 13.49 15.64 18.38 9.01 7.20 7.10 6.35 22.07 19.60 13.48

Modified d = 15 20.96 11.70 16.14 12.99 20.76 19.80 21.23 15.08 11.42 13.84 12.32 21.91 23.05 18.12

TABLE III: Deconvolution results for florescence microscopic images blurred by Gaussian filter with disc size d and σ = 3.
PSNR (dB) values are presented for the proposed algorithm and Ayers and Dainty’s algorithm.

Method Filter radius Im-1 Im-2 Im-3 Im-4 Im-5 Im-6 Im-7 Im-8 Im-9 Im-10 Im-11 Im-12 Im-13 Im-14
Ayers d = 5 7.40 6.33 6.39 7.43 6.51 9.39 15.92 7.20 6.35 6.71 6.62 17.47 22.19 8.88

Modified d = 5 8.08 23.06 17.18 22.16 11.66 23.18 21.75 23.83 20.26 23.20 30.91 17.77 23.59 8.91
Ayers d = 10 8.80 20.03 14.95 16.08 22.06 22.57 21.18 22.97 17.39 22.03 32.26 21.55 24.74 20.89

Modified d = 10 8.02 25.66 24.74 26.44 24.15 29.61 23.99 24.44 20.67 26.04 39.92 24.03 27.05 27.30
Ayers d = 15 18.29 28.88 14.36 18.77 27.50 27.54 24.15 24.91 21.64 26.09 34.00 22.60 23.69 26.76

Modified d = 15 23.86 28.62 32.23 28.55 36.93 27.80 24.31 24.33 21.34 29.63 40.84 23.16 27.44 35.31
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Fig. 6: The deconvolution results for FL image downloaded from [http://bigwww.epfl.ch/algorithms/mltldeconvolution/] (a)
blurred image, (b) deblurred by the blind deconvolution using phase information, (c) deblurred by Ayers and Dainty’s algorithm
(PSNR = 34.00 dB), and (d) Deblurred by Xu et al’s algorithm [7].
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