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Parametric Bilinear Generalized Approximate
Message Passing
Jason T. Parker and Philip Schniter

Abstract—We propose a scheme to estimate the parameters
bi and cj of the bilinear form zm =

∑
i,j

biz
(i,j)
m cj from noisy

measurements{ym}Mm=1, where ym and zm are related through
an arbitrary likelihood function and z

(i,j)
m are known. Our

scheme is based on generalized approximate message passing
(G-AMP): it treats bi and cj as random variables andz(i,j)m as
an i.i.d. Gaussian 3-way tensor in order to derive a tractable
simplification of the sum-product algorithm in the large-system
limit. It generalizes previous instances of bilinear G-AMP, such
as those that estimate matricesB and C from a noisy measure-
ment of Z = BC, allowing the application of AMP methods
to problems such as self-calibration, blind deconvolution, and
matrix compressive sensing. Numerical experiments confirmthe
accuracy and computational efficiency of the proposed approach.

Index Terms—Approximate message passing, belief propaga-
tion, bilinear estimation, blind deconvolution, self calibration,
joint channel-symbol estimation, matrix compressive sensing.

I. I NTRODUCTION

A. Motivation

Many problems in engineering, science, and finance can
be formulated as the estimation of a structured matrixZ ∈
RM×L from a noisy (or otherwise corrupted) observation
Y ∈ RM×L. For various types of structure, the problem
reduces to a well-known specialized problem. For example,
when Z has a low-rank structure and only a subset of its
entries are observed (possibly in noise), the estimation ofZ

is known asmatrix completion(MC) [2]. WhenZ = L+ S

for low-rank L and sparseS, the estimation ofL and S

from a (noisy) observation ofZ is known asrobust principal
components analysis(RPCA) [3], [4] or stable principle com-
ponents pursuit(SPCP) [5]. WhenZ = BC with sparseC,
the problem of estimatingB andC from a (noisy) observation
of Z is known asdictionary learning(DL) [6]. WhenZ=BC

and bothB and C are positive, the problem of estimating
B,C from a (noisy) observation ofZ is known asnonnegative
matrix factorization(NMF) [7].

In this paper, we propose an AMP-based approach to a more
general class of structured-matrix estimation problems. Our
work is motivated by problems like the following.
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1) Estimateb andC from a noisy observation of1

Z = Diag(Hb)AC (1)

with knownH andA. This problem manifests, e.g., in

• Self-calibration[8]. Here the columns ofC are measured
through a linear system, represented by the matrixA,
whose outputs are subject to unknown (but structured)
gains of the formHb. The goal is to simultaneously
recover the signalC and the calibration parametersb.

• Blind circular deconvolution: Here the columns ofC are
circularly convolved with the channelb, and the goal is
to simultaneously recoverC andb from a noisy version
of the Fourier-domain convolution outputs.2

2) Consider the more general3 problem of estimating{bi} and
C from a noisy observation of

Z =
∑

i

biA
(i)C (2)

with known {A(i)}. This problem manifests, e.g., in

• Compressive sensing with matrix uncertainty[9]. Here,
Z = AC whereA =

∑
i biA

(i) is an unknown (but
structured) sensing matrix and the columns ofC ∈
RN×L are sparse signals. The goal is to simultaneously
recoverC and the matrix uncertainty parameters{bi}.

• Joint channel-symbol estimation. Say a symbol stream
{ci} is transmitted through a length-Nb convolutive
channel {bi}, where the same length-Ng ≥ Nb −
1 guard interval is repeated everyNp samples in
{ci}. Then the noiseless convolution outputs can
be written as Z =

∑
i biA

(i)C, where A(i) =
[ 0Np×(Ng−i+1) INp 0Np×(i−1) ] and where the first and last
Ng rows inC are guard symbols. The goal is to jointly
estimate the channel{bi} and the (finite-alphabet) data
symbols inC.

3) Consider the yet more general4 problem of estimating low-
rankL and sparseS from noisy observations of

zm = tr{ΦT
m(L+ S)} for m = 1, . . . , Nz (3)

1For clarity, we typeset matrices in bold capital, vectors inbold lowercase,
and scalars in non-bold. Furthermore, we typeset random variables in san-serif
font (e.g.,Z ) and deterministic realizations in serif font (e.g.,Z).

2Recall that circular convolution betweenb and cl can be written as
vl = Circ(b)cl, with circulant matrixCirc(b) = A

H Diag(
√
NAb)A

for unitary discrete Fourier transform (DFT) matrixA. The DFT of the
convolution outputs is thenAvl = Diag(

√
NAb)Acl, matching (1).

3Note (1) is a special case of (2) withA(i) = Diag(hi)A, wherehi

denotes theith column ofH.
4Appendix A shows (2) is a special case of (3) with rank-oneL andS = 0.

http://arxiv.org/abs/1508.07575v2
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with known {Φm}. This problem is sometimes known as
matrix compressive sensing(MCS), which has applications
in, e.g., video surveillance [10], hyperspectral imaging [10],
quantum state tomography [11], multi-task regression [12],
and image processing [13].

4) Another problem of interest is the estimation of matrices
B andC from a noisy observation of

Zl = F lBCGl for l = 0, . . . , Nz, (4)

with known{F l,Gl} This problem arises, e.g., inspatial-
spectral data fusion super-resolution, which aims to the
hyperspectral images captured byNz cameras [14]. In this
case, the matrixBC models the high-resolution spatial-
spectral scene of interest:B is a tall positive matrix
containing material spectra andC is a wide positive
(and often sparse) matrix containing material abundances.
Then Gl and F l represent the spatial and spectral blur-
ring/downsampling operators associated with thelth cam-
era, which have fast implementations.

B. Approach

To solve structured-matrix estimation problems like those
above, we start with a noiseless model of the form

z =

Nb∑

i=0

Nc∑

j=0

biz
(i,j)cj ∈ R

M , (5)

whereb0 = 1/
√
Nb, c0 = 1/

√
Nc, andz(i,j) ∈ RM ∀i, j are

known. Note that the collection{z(i,j)}∀i,j defines a tensor of
sizeM×(Nb+1)×(Nc+1). We then estimate the parameters
b = [b1, . . . , bNb

]T and c = [c1, . . . , cNc ]
T from y, a “noisy”

observation ofz. In doing so, we treatb andc as realizations
of random vectorsb andc with independent components, i.e.,

pb,c(b, c) =

Nb∏

i=1

pbi
(bi)

Nc∏

j=1

pcj (cj), (6)

and we assume that the likelihood function ofz takes the
separable form

py|z(y | z) =
M∏

m=1

pym|zm(ym | zm). (7)

Note that our definition of “noisy” is quite broad due to the
generality ofpym|zm . For example, (7) facilitates both additive
noise and nonlinear measurement models like those arising
with, e.g., quantization [15], Poisson noise [16], and phase
retrieval [17]. Note also that, sinceb0 and c0 are known, the
model (5) includes bilinear, linear, and constant terms, i.e.,

z =

Nb∑

i=1

Nc∑

j=1

biz
(i,j)cj + c0

Nb∑

i=1

biz
(i,0) + b0

Nc∑

j=1

z(0,j)cj

+ c0b0z
(0,0). (8)

In Section IV, we demonstrate how (5)-(7) can be instantiated
to solve various structured-matrix estimation problems.

Our estimation algorithm is based on the AMP framework
[18]. Previously, AMP was applied to thegeneralized linear

problem: “estimate i.i.d.X from y, a noisy realization of
z = AX ,” leading to the G-AMP algorithm [19], and the
generalized bilinearproblem: “estimate i.i.d.A and X from
Y , a noisy realization ofZ = AX ,” leading to the BiG-
AMP algorithm [20]–[22]. In this paper, we apply AMP to
estimateb andc from a noisy measurement of theparametric
bilinear output Z = A(b)X(c), whereA(·) and X(·) are
matrix-valued affine linear functions. We write the relationship
betweenb, c, andz , vec(Z) more concisely as (5) and coin
the resulting algorithm “Parametric BiG-AMP” (P-BiG-AMP).

We also show that, using an expectation-maximization (EM)
[23] approach similar to those used in other AMP-based works
[24]–[26], we can generalize our approach to the case where
the parameters governing the distributionspbi

, pcj , andpym|zm
are unknown.

C. Relation to Previous Work

We now describe related literature, starting with versionsof
compressive sensing (CS) under sensing-matrix uncertainty.

Consider first the problem ofsingle measurement vector
(SMV) CS with unstructuredmatrix uncertainty, i.e., recov-
ering the sparse vectorc from a noisy observation ofz =
(A+B)c, whereA is known and the elements ofB are small
i.i.d. perturbations [27]. AMP based approaches to minimum
mean-squared error (MMSE) estimation were proposed in
[28], [29]. The extension to themultiple measurement vector
(MMV) case,Z = (A+B)C, eliminates the need forB to
be small and yields the DL problem discussed in Section I-A.
For the latter, AMP-based algorithms were proposed in [21],
[22]. The proposed P-BiG-AMP generalizes this line of work.

Next consider MMV multiple measurement vector (MMV)
CS withoutput gainuncertainty, i.e., recoveringC with sparse
columns from a noisy observation ofZ = Diag(b)AC, where
A is known andb is unknown. For the case of positiveb
and no noise, [30] proposed a convex approach based onℓ1
minimization, which was generalized to arbitraryb in [31]. For
MMSE estimation in the noisy case, a G-AMP-based approach
to the MMV version was proposed in [32], and G-AMP
approaches to the single measurement vector (SMV) version
with coded-symbolb and constant-modulusb were proposed
in [33] and [17]. Our proposed P-BiG-AMP approach handles
more general forms of matrix uncertainty than [17], [32], [33].

MMV CS with input gain uncertainty, i.e., recovering
possibly-sparseC from a noisy observation ofZ =
ADiag(b)C, whereA is known andb is unknown, was con-
sidered in [34]. There, G-AMP estimation ofC was alternated
with EM estimation ofb using the EM-AMP framework from
[26]. As such, [34] does not support a prior onb.

A related problem is SMV CS withsubspace-structured
output gain uncertainty, i.e., recovering sparsec from a noisy
observation ofz = Diag(Hb)Ac with known A,H. This
problem is perhaps better known asblind deconvolutionof
sequencesb, c when H,A are DFT matrices andz is the
DFT-domain noiseless measurement vector. Several convex
approaches to blind deconvolution have been proposed using
the “lifting” technique, which transforms the problem to that
of recovering a rank-1 matrix L from a (noisy) observation
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of zm = tr{ΦT
mL} for m = 1, ...,M . For example, [35]

proposed a convex relaxation that applies to linear convolution
with sparsec, [36] proposed a convex relaxation (with guaran-
tees) that applies to circular convolution with non-sparseb, c,
[8] proposed a convex relaxation (with guarantees) that applies
to circular convolution with sparsec, and [37] proposed
alternating and greedy schemes for sparseb, c. Meanwhile,
identifiability conditions were studied in [38]–[41].

For (2), i.e., CS withgeneralmatrix uncertainty, [9] pro-
posed an alternating minimization scheme and [42] showed
that the problem can be convexified via lifting and then used
that insight to study identifiability issues.

Finally, consider thematrix CSproblem given by (3). For
generic5 {Φm}, greedy schemes were proposed in [10] and
[44] and convex ones in [11]–[13], [45].

The P-BiG-AMP approach that we propose in this work
supports all of the above matrix-uncertain CS, blind deconvo-
lution, and low-rank-plus-sparse recovery models. Moreover, it
allows arbitrary priors onbi andcj , allowing the exploitation
of (approximate) sparsity, constant-modulus structure, finite-
alphabet structure, etc. Furthermore, it allows a generic like-
lihood function of the form (7), allowing non-linear measure-
ment models like quantization, Poisson noise, phase-retrieval,
etc. Although it is non-convex and comes with no performance
guarantees, it attacks the MMSE problem directly, and the
empirical results in Section V suggest that it offers betterMSE
recovery performance than recent convex relaxations while
being computationally competitive (if not faster).

D. Organization and Notation

The remainder of this manuscript is organized as follows.
In Section II we present preliminary material on belief propa-
gation and AMP, and in Section III we derive our P-BiG-AMP
algorithm. In Section IV we show how the implementation of
P-BiG-AMP can be simplified for several problems of interest,
and in Section V we present the results of several numerical
experiments. In Section VI, we conclude.

Notation: For random variablex, we usepx(x) for the pdf,
E{x} for the mean, andvar{x} for the variance.N (x; x̂, νx)
denotes the Gaussian pdf with meanx̂ and varianceνx. For a
matrixX, we usexl = [X]:,l to denote thelth column,xnl =
[X]nl to denote the entry in thenth row andlth column,XT

the transpose,X∗ the conjugate,XH the conjugate transpose,
‖X‖F the Frobenius norm, and‖X‖∗ the nuclear norm. For
vectorsx, we usexn = [x]n to denote thenth entry and
‖x‖p = (

∑
n |xn|p)1/p to denote theℓp norm. Diag(x) is

the diagonal matrix with diagonal elementsx, Conv(x) is the
convolution matrix with first columnx, andCirc(x) is the
circular convolution matrix with first columnx.

5For the special case where eachΦm has a single unit-valued entry (i.e.,
noisy elements ofL + S are directly observed), many more schemes have
been proposed (e.g., [3], [4], [43]), including AMP-based schemes [20]–[22].

pym|zm
(

ym
∣

∣ zm(b,c)
)

cj pcj(cj)

bipbi(bi)

Fig. 1. The factor graph for parametric generalized bilinear inference under
Nb = 2, Nc = 3, andM = 4.

II. PRELIMINARIES

A. Bayesian Inference

For the model defined by (5)-(7), the posterior pdf is

pb,c|y (b, c |y) = py|b,c(y | b, c) pb(b) pc(c)/py (y) (9)

∝ py|z(y | z(b, c)) pb(b) pc(c) (10)

=
(∏

m

pym|zm

(
ym
∣∣ zm(b, c)

))(∏

i

pbi
(bi)
)(∏

j

pcj(cj)
)
,

(11)

where (9) used Bayes’ rule and∝ denotes equality up to a
scale factor. This pdf can be represented using the bipartite
factor graph shown in Fig. 1. There, the factors in (11) are
represented by “factor nodes” appearing as black boxes and the
random variables in (11) are represented by “variable nodes”
appearing as white circles. Note that the observed data{ym}
are treated as parameters of thepym|zm(ym|·) factor nodes,
and not as random variables. Although Fig. 1 shows an edge
betweeneverybi andpym|zm node pair, the edge will vanish
whenzm(b, c) does not depend onbi, and similar forcj .

B. Loopy Belief Propagation

Our goal is to compute minimum mean-squared error
(MMSE) estimates ofb andc, i.e., the means of the marginal
posteriorspbi|y(· |y) andpcj |y (· |y). Since exact computation
is intractable in our problem (see below), we consider approx-
imate computation using loopy belief propagation (LBP).

In LBP, beliefs about the random variables (in the form of
pdfs or log pdfs) are propagated among the nodes of the factor
graph until they converge. The standard way to compute these
beliefs, known as thesum-product algorithm(SPA) [46], [47],
says that the belief emitted by a variable node along a given
edge of the graph is computed as the product of the incoming
beliefs from all other edges, whereas the belief emitted by a
factor node along a given edge is computed as the integral
of the product of the factor associated with that node and
the incoming beliefs on all other edges. The product of all
beliefs impinging on a given variable node yields the posterior
pdf for that variable. In cases where the factor graph has no
loops, exact marginal posteriors result from two (i.e., forward
and backward) passes of the SPA [46], [47]. For loopy factor
graphs like ours, exact inference is in general NP hard [48]
and so LBP does not guarantee correct posteriors. However,
it often gives good approximations [49].
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C. Sum-Product Algorithm

We formulate the SPA using the messages and log-posteriors
specified in Table I. All take the form of log-pdfs with
arbitrary constant offsets, which can be converted to pdfs
via exponentiation and scaling. For example, the message
∆b

m→i(t, .)) corresponds to the pdf1C exp(∆b
m→i(t, .)) with

C =
∫
bi
exp(∆b

m→i(t, bi)).
Applying the SPA to the factor graph in Fig. 1, we arrive

at the following update rules for the four messages in Table I:

∆b
m→i(t, bi) = log

∫

{br}r 6=i,{ck}
Nc
k=1

pym|zm

(
ym
∣∣ zm(b, c)

)

×
∏

r 6=i

exp
(
∆b

m←r(t, br)
) Nc∏

k=1

exp
(
∆c

m←k(t, ck)
)

+ const (12)

∆c
m→j(t, cj) = log

∫

{br}
Nb
r=1,{ck}k 6=j

pym|zm

(
ym
∣∣ zm(b, c)

)

×
Nb∏

r=1

exp
(
∆b

m←r(t, br)
)∏

k 6=j

exp
(
∆c

m←k(t, ck)
)

+ const (13)

∆b
m←i(t+1, bi) = log pbi

(bi) +
∑

r 6=m

∆b
r→i(t, bi) + const

(14)

∆c
m←j(t+1, cj) = log pcj (cj) +

∑

r 6=m

∆c
r→j(t, cj) + const,

(15)

where const denotes a constant (w.r.tbi in (12) and (14)
and w.r.t cj in (13) and (15)). In the sequel, we denote the
mean and variance of the pdf1C exp(∆b

m←i(t, .) by b̂m,i(t)
andνbm,i(t), respectively, and we denote the mean and variance
of 1

C exp(∆c
m←j(t, .)) by ĉm,j(t) andνcm,j(t). We refer to the

vectors of these statistics for a givenm asb̂m(t),νb
m(t) ∈ RNb

and ĉm(t),νc
m(t) ∈ RNc . For the log-posteriors, the SPA

implies

∆b
i (t+1, bi) = log pbi

(bi) +
∑

m

∆b
m→i(t, bi) + const (16)

∆c
j(t+1, cj) = log pcj(cj) +

∑

m

∆c
m→j(t, cj) + const (17)

and we denote the mean and variance of1
C exp(∆b

i (t, .)) by
b̂i(t) andνbi (t), and the mean and variance of1

C exp(∆c
j(t, .))

by ĉj(t) and νcj (t). Finally, we denote the vectors of these
statistics aŝb(t),νb(t) ∈ RNb and ĉ(t),νc(t) ∈ RNc .

D. Approximate Message Passing

When the priors and/or likelihood are generic, as in our
case, exact representation of the SPA messages becomes diffi-
cult, motivating SPA approximations. One such approximation
technique, known asapproximate message passing(AMP)
[18], becomes applicable when the statistical model involves
multiplication of the unknown vectors with large random
matrices. In this case, central-limit-theorem (CLT) and Taylor-
series arguments can be used to arrive at a tractable SPA

∆b
m→i(t, .) SPA message from nodepym|zm to nodebi

∆b
m←i

(t, .) SPA message from nodebi to nodepym|zm

∆c
m→j(t, .) SPA message from nodepym|zm to nodecj

∆c
m←j

(t, .) SPA message from nodecj to nodepym|zm

∆b
i (t, .) SPA-approximated log posterior pdf ofbi

∆c
j(t, .) SPA-approximated log posterior pdf ofcj

b̂m,i(t) andνbm,i(t) mean and variance of1
C

exp(∆b
m←i(t, .))

ĉm,j(t) andνcm,j(t) mean and variance of1
C

exp(∆c
m←j(t, .))

b̂i(t) andνbi (t) mean and variance of1
C

exp(∆b
i (t, .))

ĉj(t) andνcj (t) mean and variance of1
C

exp(∆c
j(t, .))

TABLE I
SPAMESSAGE DEFINITIONS AT ITERATIONt ∈ Z.

approximation that can be rigorously analyzed [50]. In the
sequel, we propose an AMP-based approximation of the SPA
in Section II-C.

III. PARAMETRIC BIG-AMP

We now derive the proposed AMP-based approximation of
the SPA algorithm from Section II-C, which we refer to as
parametric bilinear generalized AMP(P-BiG-AMP).

A. Randomization and Large-System Limit

For the derivation of P-BiG-AMP, we treatz(i,j)m as re-
alizations of i.i.d. zero-mean unit-variance Gaussian random
variablesz(i,j)m , and we treatz(i,j)m , bi, cj as independent for all
m, i, j. Furthermore, we consider a large-system limit (LSL)
whereM,Nb, Nc → ∞ such thatNb/M andNc/M converge
to fixed positive constants. Without loss of generality (w.l.o.g.)
we will assume thatE{b2

i } and E{c2j} scale asO(1/M).
Given these assumptions, it is straightforward to show from
(5) thatE{z2m} scales asO(1) (see Appendix B)

To derive P-BiG-AMP, we will examine the SPA updates
(12)-(17) and drop those terms that vanish in the LSL, i.e., as
M → ∞. In doing so, we will assume that the previously
assumed scalings onzm, bi, cj hold whether the random
variables are distributed according to the priors, the SPA
message pdfs (12)-(15), or the SPA-approximated posterior
pdfs (16)-(17). These assumptions lead straightforwardlyto the
scalings of̂zm(t), νzm(t), b̂m,i(t), νbm,i(t), ĉm,j(t), andνcm,j(t)
specified in Table II. Furthermore, we will assume that both
b̂m,i(t)− b̂i(t) andĉm,j(t)− ĉj(t) areO(1/M), which leads to
the assumed scalings on the variance differences in Table II.
Notice that, sincêbi(t) = O(1/

√
M) and ĉj(t) = O(1/

√
M),

the difference quantities(̂bm,i(t)− b̂i(t)) and(ĉm,j(t)− ĉj(t))

scale as1/
√
M times the reference quantitiesb̂i(t) and ĉj(t),

as in previous AMP derivations (e.g., [18]–[20]). Other entries
in Table II will be explained in the sequel.

B. SPA message from nodepym|zm to nodebi

We begin by approximating the message defined in (12).
First, we invoke the LSL to apply the central limit theorem
(CLT) to zm , zm(b, c), where b and c are distributed
according to the pdfs in (12). (Details on the application
of the CLT are given in Appendix C.) With the CLT, we



NOVEMBER 7, 2018 5

b̂m,i(t) O( 1
M1/2 ) νbm,i(t) O( 1

M
) b̂m,i(t) − b̂i(t) O( 1

M
)

ĉm,j(t) O( 1
M1/2 ) νcm,j(t) O( 1

M
) ĉm,j(t) − ĉj(t) O( 1

M
)

p̂m(t) O(1) νpm(t) O(1) νbm,i(t) − νbi (t) O( 1
M3/2 )

ẑm(t) O(1) νzm(t) O(1) νcm,j(t) − νcj (t) O( 1
M3/2 )

ŝm(t) O(1) νsm(t) O(1) νqm,i(t) − νqi (t) O( 1
M2 )

νrm,j(t) − νrj (t) O( 1
M2 )

ẑ
(i,j)
→m (t) O(1) ẑ

(∗,j)
→m (t) O(1) ẑ

(∗,j)
→m (t) − ẑ

(∗,j)
m (t) O( 1

M1/2 )

ẑ
(∗,∗)
m (t) O(1) ẑ

(i,∗)
→m (t) O(1) ẑ

(i,∗)
→m (t) − ẑ

(i,∗)
m (t) O( 1

M1/2 )

r̂m,j(t) O( 1
M1/2 ) νrm,j(t) O( 1

M
) r̂m,j(t) − r̂j(t) O( 1

M
)

q̂m,i(t) O( 1
M1/2 ) νqm,i(t) O( 1

M
) q̂m,i(t) − q̂i(t) O( 1

M
)

TABLE II
P-BIG-AMP VARIABLE SCALINGS IN THE LARGE-SYSTEM LIMIT.

can treat zm conditioned onbi = bi as Gaussian and
thus completely characterize it by a (conditional) mean and
variance. In particular, the conditional mean is

E{zm | bi = bi}

= E




∑

k,j

bkcjz(k,j)m +
(
bi − bi

)∑

j

cjz(i,j)m



 (18)

=
∑

k,j

b̂m,k(t)ĉm,j(t)z
(k,j)
m

︸ ︷︷ ︸
, ẑ(∗,∗)→m (t)

+
(
bi − b̂m,i(t)

)∑

j

ĉm,j(t)z
(i,j)
m

︸ ︷︷ ︸
, ẑ(i,∗)→m (t)

(19)

= ẑ(∗,∗)→m (t) − b̂m,i(t)ẑ
(i,∗)
→m (t)︸ ︷︷ ︸

, p̂i,m(t)

+biẑ
(i,∗)
→m (t), (20)

and it can be shown (see Appendix D) that the conditional
variance is

var{zm | bi = bi} = νpi,m(t) + b2i

Nc∑

j=1

νcm,j(t)z
(i,j)2
m (21)

+ 2bi

Nc∑

j=1

νcm,j(t)
(
ẑ(∗,j)→m (t)z(i,j)m − b̂m,i(t)z

(i,j)2
m

)
,

for ẑ(∗,j)→m (t) ,
∑

k b̂m,k(t)z
(k,j)
m and

νpi,m(t) ,
∑

k 6=i

νbm,k(t)


ẑ(k,∗)→m (t)2 +

Nc∑

j=1

νcm,j(t)z
(k,j)2
m




+

Nc∑

j=1

νcm,j(t)
(
ẑ(∗,j)→m (t)2 + b̂m,i(t)

2z(i,j)2m

− 2b̂m,i(t)ẑ
(∗,j)
→m (t)z(i,j)m

)
. (22)

We note that̂pi,m(t) andνpi,m(t) are analogous to the similarly
named terms in G-AMP [19] and BiG-AMP [20]. Since they
pertain to estimates ofzm, they scale asO(1).

The Gaussian approximation ofzm|bi=bi (with mean and
variance above) can now be used to simplify the representation
of the SPA message (12) from an(Nb +Nc − 1)-dimensional

integral to a one-dimensional integral:

∆b
m→i(t, bi) ≈ log

∫

zm

pym|zm

(
ym
∣∣ zm

)

×N
(
zm; E{zm | bi = bi}, var{zm | bi = bi}

)
(23)

= Hm


p̂i,m(t) + biẑ

(i,∗)
→m (t), νpi,m(t) + b2i

∑

j

νcm,j(t)z
(i,j)2
m

+2bi

Nc∑

j=1

νcm,j(t)
[
ẑ(∗,j)→m (t)z(i,j)m − b̂m,i(t)z

(i,j)2
m

]



+ const, (24)

where we have introduced the shorthand notation

Hm

(
q̂, νq

)
, log

∫

z

pym|zm(ym | z)N (z; q̂, νq). (25)

We now further approximate (24). For this, we first intro-
ducei-invariant versions of̂pi,m(t) andνpi,m(t):

p̂m(t) , ẑ(∗,∗)→m (t) (26)

νpm(t) ,
Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
→m (t)2 +

Nb∑

k=1

νbm,k(t)


ẑ(k,∗)→m (t)2

+

Nc∑

j=1

νcm,j(t)z
(k,j)2
m


 , (27)

noting that

p̂m,i(t) = p̂m(t)− b̂m,i(t)ẑ
(i,∗)
→m (t) (28)

νpi,m(t) = νpm(t)− νbm,i(t)


ẑ(i,∗)→m (t)2 +

Nc∑

j=1

νcm,j(t)z
(i,j)2
m




+

Nc∑

j=1

νcm,j(t)
[
b̂m,i(t)

2z(i,j)2m − 2b̂m,i(t)ẑ
(∗,j)
→m (t)z(i,j)m

]
.

(29)

As with p̂i,m(t) and νpi,m(t), the quantitieŝpm(t) andνpm(t)
areO(1). Next, we define

ẑ(i,∗)m (t) ,
∑

j

ĉj(t)z
(i,j)
m (30)

ẑ(∗,j)m (t) ,
∑

i

b̂i(t)z
(i,j)
m (31)

ẑ(∗,∗)m (t) ,
∑

i,j

b̂i(t)ĉj(t)z
(i,j)
m , (32)

which are versions of̂z(i,∗)→m (t), ẑ
(∗,j)
→m (t), ẑ

(∗,∗)
→m (t) evaluated at

b̂(t) and ĉ(t), the means of the SPA-approximated posteriors,
rather than atb̂m(t) and ĉm(t), the means of the SPA
messages. As such, the quantities in (30)-(32) are alsoO(1).
Note that ẑ(i,∗)m (t), ẑ

(∗,j)
m (t), z

(i,j)
m can also be interpreted as
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as partial derivatives:

ẑ(i,∗)m (t) =
∂

∂bi
zm(b, c)

∣∣∣∣
b = b̂(t), c = ĉ(t)

(33)

ẑ(∗,j)m (t) =
∂

∂cj
zm(b, c)

∣∣∣∣
b = b̂(t), c = ĉ(t)

(34)

z(i,j)m =
∂2

∂bi∂cj
zm(b, c)

∣∣∣∣
b = b̂(t), c = ĉ(t)

. (35)

Comparing (30) to (19) and invoking the independence of
{cj}, it follows that

(
ẑ
(i,∗)
→m (t)−ẑ

(i,∗)
m (t)

)
isO(1/M1/2). Simi-

larly it can be shown that
(
ẑ
(∗,j)
→m (t)−ẑ

(∗,j)
m (t)

)
is O(1/M1/2).

With these new quantities, it can be shown (see Appendix E)
that (24) can be expressed as

∆b
m→i(t, bi) = const

+Hm

(
p̂m(t) +

(
bi − b̂i(t)

)
ẑ(i,∗)→m (t) +O(1/M), (36)

νpm(t) +
(
bi − b̂i(t)

)2 Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2
(
bi − b̂i(t)

) Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m +O(1/M)

)
.

The next step is to perform a Taylor series expansion of
(36) in bi about b̂i(t). By carefully analyzing the scaling of
all terms in the expansion, and neglecting those that vanishas
M → ∞, it can be shown (see Appendix F) that

∆b
m→i(t, bi) (37)

≈ const +

[
ŝm(t)ẑ(i,∗)→m (t) + νsm(t)̂bi(t)ẑ

(i,∗)
m (t)2

+
(
ŝ2m(t)− νsm(t)

)∑

j

νcj (t)z
(i,j)
m

(
ẑ(∗,j)m (t) − b̂i(t)z

(i,j)
m

)

 bi

− 1

2


νsm(t)ẑ(i,∗)m (t)2 −

(
ŝ2m(t)− νsm(t)

)∑

j

νcj (t)z
(i,j)2
m


 b2i ,

using the definitions

ŝm(t) , H ′
m

(
p̂m(t), νpm(t)

)
(38)

νsm(t) , −H ′′
m

(
p̂m(t), νpm(t)

)
, (39)

whereH ′
m(·, ·) andH ′′

m(·, ·) respectively denote the first and
second derivative w.r.t. the first argument ofHm(·, ·). Note
that, since (37) is quadratic, the (exponentiated) messagefrom
pym|zm to bi is Gaussian in the LSL. Finally, since the
functionHm(·, ·) and its partials areO(1), we conclude that
ŝm(t) andνsm(t) areO(1) as well.

Furthermore, the derivation in [20, App. A] shows that (38)-
(39) can be rewritten as

ŝm(t) =
(
ẑm(t)− p̂m(t)

)
/νpm(t) (40)

νsm(t) = (1− νzm(t)/νpm(t)) /νpm(t), (41)

using the conditional mean and variance

ẑm(t) , E{zm | pm= p̂m(t); νpm(t)} (42)

νzm(t) , var{zm | pm= p̂m(t); νpm(t)}, . (43)

Note (42)-(43) are computed according to the pdf

pzm|pm

(
zm | p̂m(t); νpm(t)

)

,
1

C
pym|zm(ym | zm)N

(
zm; p̂m(t), νpm(t)

)
, (44)

with C =
∫
z
pym|zm(ym | z)N

(
z; p̂m(t), νpm(t)

)
, which is P-

BiG-AMP’s iteration-t approximation to the true marginal
posteriorpzm|y(zm|y). We note that (44) can also be inter-
preted as the (exact) posterior pdf forzm given the likelihood
pym|zm(ym|·) from (7) and the priorzm ∼ N

(
p̂m(t), νpm(t)

)

that is implicitly adopted by iteration-t P-BiG-AMP.

C. SPA message from nodepym|zm to nodecj

Since zm =
∑Nb

i=0

∑Nc

j=0 biz
(i,j)
m cj implies a symmetry

betweenbi andcj , the procedure to approximate∆c
m→j(t, ·)

is essentially the same as that to approximate∆b
m→i(t, ·) from

Section III-B. The end result is

∆c
m→j(t, cj) (45)

≈ const +

[
ŝm(t)ẑ(∗,j)→m (t) + νsm(t)ĉj(t)ẑ

(∗,j)
m (t)2

+
(
ŝ2m(t)− νsm(t)

)∑

i

νbi (t)z
(i,j)
m

(
ẑ(i,∗)m (t) − ĉj(t)z

(i,j)
m

)]
cj

− 1

2

[
νsm(t)ẑ(∗,j)m (t)2 −

(
ŝ2m(t)− νsm(t)

)∑

i

νbi (t)z
(i,j)2
m

]
c2j .

D. SPA message from nodecj to pym|zm

We now turn our attention to approximating the messages
flowing out of the variable nodes. To start, we plug the
approximation of∆c

m→j(t, cj) from (45) into (15) and find

∆c
m←j(t+1, cj)

≈ const + log
(
pcj(cj)N (cj ; r̂m,j(t), ν

r
m,j(t))

)
(46)

where

νrm,j(t) ,



∑

r 6=m

(
νsr (t)ẑ

(∗,j)
r (t)2 (47)

−
(
ŝ2r(t)− νsr(t)

) Nb∑

i=1

νbi (t)z
(i,j)2
r

)]−1

r̂m,j(t) , ĉj(t) + νrm,j(t)
∑

r 6=m

(
(
ŝ2r(t)− νsr (t)

)
(48)

×
Nb∑

i=1

νbi (t)z
(i,j)
r ẑ(i,∗)r (t) + ŝr(t)ẑ

(∗,j)
→r (t)

)
.

Since νrm,j(t) is the reciprocal of a sum ofM terms of
O(1), we conclude that it isO(1/M). Given this and the
scalings from Table II, we see that̂rm,j(t) is O(1/M1/2).
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Since r̂m,j(t) can be interpreted as an estimate ofcj , this
scaling is anticipated.

The mean and variance of the pdf associated with the
∆c

m←j(t+1, cj) message approximation from (46) are

ĉm,j(t+1) ,
1

K

∫

c

c pcj(c)N
(
c; r̂m,j(t), ν

r
m,j(t)

)

︸ ︷︷ ︸
, gcj(r̂m,j(t), ν

r
m,j(t))

(49)

νcm,j(t+1)

,
1

K

∫

c

∣∣c− ĉm,j(t+1)
∣∣2pcj(c)N

(
c; r̂m,j(t), ν

r
m,j(t)

)

︸ ︷︷ ︸
νrm,j(t) g

′
cj(r̂m,j(t), ν

r
m,j(t)) (50)

with K =
∫
c
pcj(c)N

(
c; r̂m,j(t), ν

r
m,j(t)

)
and whereg′cj

denotes the derivative ofgcj with respect to its first argument.
The fact that (49) and (50) are related through a derivative
was shown in [19].

Next we develop mean and variance approximations that do
not depend on the destination nodem. For this, we introduce
m-invariant versions of̂rm,j(t) andνrm,j(t):

νrj (t) ,

[
∑

m

(
νsm(t)ẑ(∗,j)m (t)2 (51)

−
(
ŝ2m(t)− νsm(t)

) Nb∑

i=1

νbi (t)z
(i,j)2
m

)]−1

r̂j(t) , ĉj(t) + νrj (t)
∑

m

(
(
ŝ2m(t)− νsm(t)

)
(52)

×
Nb∑

i=1

νbi (t)z
(i,j)
m ẑ(i,∗)m (t) + ŝm(t)ẑ(∗,j)→m (t)

)
.

Comparing (47)-(48) to (51)-(52) reveals that
(
νrm,j(t) −

νrj (t)
)

scales asO(1/M2) and that r̂m,j(t) = r̂j(t) −
νrj (t)ŝm(t)ẑ

(∗,j)
m (t) +O(1/M3/2), and thus (49) implies

ĉm,j(t+1)

= gcj

(
r̂j(t)− νrj (t)ŝm(t)ẑ(∗,j)m (t) +O(1/M3/2),

νrj (t) +O(1/M2)
)

(53)

= gcj

(
r̂j(t)− νrj (t)ŝm(t)ẑ(∗,j)m (t), νrj (t)

)
+O(1/M3/2)

(54)

= gcj

(
r̂j(t), ν

r
j (t)

)
(55)

− νrj (t)g
′
cj

(
r̂j(t), ν

r
j (t)

)
ŝm(t)ẑ(∗,j)m (t) +O(1/M3/2)

= ĉj(t+1)− ŝm(t)ẑ(∗,j)m (t)νcj (t+1) +O(1/M3/2), (56)

where (54) follows by taking Taylor series expansions of (53)
about the perturbations to the arguments; (55) follows by
taking a Taylor series expansion of (54) in the first argument
about the point̂rj(t); and (56) follows from the definitions

ĉj(t+1) , gcj

(
r̂j(t), ν

r
j (t)

)
(57)

νcj (t+1) , νrj (t)g
′
cj

(
r̂j(t), ν

r
j (t)

)
. (58)

E. SPA message from nodebi to pym|zm

Once again, due to symmetry, the derivation for∆b
m←i(t+

1, bi) closely parallels that for∆c
m←j(t+ 1, cj). Plugging

approximation (37) into (14), we obtain

∆b
m←i(t+1, bi) ≈ log

(
pci(bi)N (bi; q̂m,i(t), ν

q
m,i(t))

)

+ const (59)

νqm,i(t) ,


∑

r 6=m

(
νsr (t)ẑ

(i,∗)
r (t)2 (60)

−
(
ŝ2r(t)− νsr (t)

) Nc∑

j=1

νcj (t)z
(i,j)2
r





−1

q̂m,i(t) , b̂i(t) + νqm,i(t)
∑

r 6=m

(
(
ŝ2r(t)− νsr (t)

)
(61)

×
Nc∑

j=1

νcj (t)z
(i,j)
r ẑ(∗,j)r (t) + ŝr(t)ẑ

(i,∗)
→r (t)


 .

The mean and variance of the pdf associated with the
∆b

m←i(t+1, bi) approximation from (59) are then

b̂m,i(t+1) ,
1

K

∫

b

b pbi
(b)N

(
b; q̂m,i(t), ν

q
m,i(t)

)

︸ ︷︷ ︸
, gbi

(q̂m,i(t), ν
q
m,i(t))

(62)

νbm,i(t+1)

,
1

K

∫

b

∣∣b− b̂m,i(t+1)
∣∣2pbi

(b)N
(
b; q̂m,i(t), ν

q
m,i(t)

)

︸ ︷︷ ︸
νqm,i(t) g

′
bi
(q̂m,i(t), ν

q
m,i(t)) (63)

where K =
∫
b
pbi

(b)N
(
b; q̂m,i(t), ν

q
m,i(t)

)
and whereg′bi

denotes the derivative ofgbi
with respect to the first argument.

As before, we define them-invariant quantities

νqi (t) ,

[
∑

m

(
νsm(t)ẑ(i,∗)m (t)2 (64)

−
(
ŝ2m(t)− νsm(t)

) Nc∑

j=1

νcj (t)z
(i,j)2
m





−1

q̂i(t) , b̂i(t) + νqi (t)
∑

m

((
ŝ2m(t)− νsm(t)

)
(65)

×
Nc∑

j=1

νcj (t)z
(i,j)
m ẑ(∗,j)m (t) + ŝm(t)ẑ(i,∗)→m (t)




and perform several Taylor series expansions, finally dropping
terms that vanish in the LSL, to obtain

b̂m,i(t+1) = b̂i(t+1)− ŝm(t)ẑ(i,∗)m (t)νbi (t+1)

+O(1/M3/2), (66)

b̂i(t+1) , gbi

(
q̂i(t), ν

q
i (t)

)
(67)

νbi (t+1) , νqi (t)g
′
bi

(
q̂i(t), ν

q
i (t)

)
. (68)

F. Closing the loop

To complete the derivation of P-BiG-AMP, we use (56)
and (66) to eliminate the dependence onm in the bi and cj
estimates and oni andj in thezm estimates. By plugging (56)
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and (66) into the expression (26) forp̂m(t) and dropping terms
that vanish in the LSL, it can be shown (see Appendix G) that

p̂m(t) ≈ ẑ(∗,∗)m (t) − ŝm(t−1)

(
Nb∑

i=1

ẑ(i,∗)m (t−1)ẑ(i,∗)m (t)νbi (t)

+

Nc∑

j=1

ẑ(∗,j)m (t−1)ẑ(∗,j)m (t)νcj (t)


 . (69)

Although not justified by the LSL, we also approximate

Nb∑

i=1

ẑ(i,∗)m (t−1)ẑ(i,∗)m (t)νbi (t) ≈
Nb∑

i=1

ẑ(i,∗)m (t)2νbi (t) (70)

Nc∑

j=1

ẑ(∗,j)m (t−1)ẑ(∗,j)m (t)νcj (t) ≈
Nc∑

j=1

ẑ(∗,j)m (t)2νcj (t) (71)

for the sake of algorithmic simplicity, yielding

p̂m(t) ≈ ẑ(∗,∗)m (t) − ŝm(t−1) (72)

×




Nb∑

i=1

ẑ(i,∗)m (t)2νbi (t) +

Nc∑

j=1

ẑ(∗,j)m (t)2νcj (t)




︸ ︷︷ ︸
, νp

m(t)

,

noting that similar approximations were made for BiG-AMP
[20], where empirical tests showed little effect. Of course, a
more complicated variant of P-BiG-AMP could be stated using
(69) instead of (72).

Equations (56) and (66) can also be used to simplifyνpm(t).
For this, we first use the factsνcm,j(t) = νcj (t) + O(1/M3/2)

andνbm,i(t) = νbi (t) +O(1/M3/2) to write (27) as

νpm(t) =

Nc∑

j=1

νcj (t)ẑ
(∗,j)
→m (t)2 +

Nb∑

i=1

νbi (t)ẑ
(i,∗)
→m (t)2 (73)

+

Nb∑

i=1

Nc∑

j=1

νbi (t)ν
c
j (t)z

(i,j)2
m +O(1/M1/2).

Then we use (56) with (19) and (30) to write

ẑ(i,∗)→m (t) = ẑ(i,∗)m (t) − ŝm(t−1)

Nc∑

j=1

ẑ(∗,j)m (t−1)z(i,j)m νcj (t)

+O(1/M), (74)

and similarly we use (66) to write

ẑ(∗,j)→m (t) = ẑ(∗,j)m (t) − ŝm(t−1)

Nb∑

i=1

ẑ(i,∗)m (t−1)z(i,j)m νbi (t)

+O(1/M). (75)

Plugging (74)-(75) into (73) and dropping the terms that vanish
in the LSL yields (see Appendix H)

νpm(t) ≈ νpm(t) +

Nb∑

i=1

Nc∑

j=1

νbi (t)ν
c
j (t)z

(i,j)2
m . (76)

Next, we eliminate the dependence onẑ
(∗,j)
→m (t) from r̂j(t).

Plugging (75) into (52) and dropping the terms that vanish in
the LSL yields

r̂j(t) ≈ ĉj(t) + νrj (t)
∑

m

(
ŝ2m(t)− νsm(t)

)
(77)

×
Nb∑

i=1

νbi (t)z
(i,j)
m ẑ(i,∗)m (t) + νrj (t)

∑

m

ŝm(t)

×
(
ẑ(∗,j)m (t) − ŝm(t−1)

Nb∑

i=1

ẑ(i,∗)m (t−1)z(i,j)m νbi (t)

)
,

Although not justified by the LSL, we also approximate

∑

m

ŝm(t)ŝm(t−1)

Nb∑

i=1

νbi (t)z
(i,j)
m ẑ(i,∗)m (t−1)

≈
∑

m

ŝ2m(t)

Nb∑

i=1

νbi (t)z
(i,j)
m ẑ(i,∗)m (t) (78)

for the sake of algorithmic simplicity, yielding

r̂j(t) ≈ ĉj(t) + νrj (t)
∑

m

(
ŝm(t)ẑ(∗,j)m (t)

−νsm(t)

Nb∑

i=1

νbi (t)z
(i,j)
m ẑ(i,∗)m (t)

)
, (79)

noting that a similar approximation was made for BiG-
AMP [20]. The expression (79) then simplifies. Using (30)
to expandẑ(i,∗)m (t), the last term in (79) can be written as

νrj (t)
∑

m

νsm(t)

Nb∑

i=1

νbi (t)z
(i,j)
m ẑ(i,∗)m (t)

= νrj (t)ĉj(t)

Nb∑

i=1

νbi (t)
∑

m

νsm(t)z(i,j)2m (80)

+ νrj (t)

Nb∑

i=1

νbi (t)
∑

k 6=j

ĉk(t)
∑

m

νsm(t)z(i,j)m z(i,k)m

≈ νrj (t)ĉj(t)

Nb∑

i=1

νbi (t)
∑

m

νsm(t)z(i,j)2m , (81)

where (81) holds in the LSL (see Appendix I). Thus, (79)
reduces to

r̂j(t) ≈ ĉj(t) + νrj (t)
∑

m

ŝm(t)ẑ(∗,j)m (t)

− νrj (t)ĉj(t)
∑

m

νsm(t)

Nb∑

i=1

νbi (t)z
(i,j)2
m . (82)

Similarly, we substitute (74) into (65) and make analogous
approximations to obtain

q̂i(t) ≈ b̂i(t) + νqi (t)
∑

m

ŝm(t)ẑ(i,∗)m (t)

− νqi (t)̂bi(t)
∑

m

νsm(t)

Nc∑

j=1

νcj (t)z
(i,j)2
m . (83)

Next, we simplify expressions for the variancesνrj (t) and
νqi (t). First, it can be shown (see Appendix J) that (40) and
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(41) can be used to rewrite the second half ofνrj (t) from (51)
as

∑

m

(
ŝ2m(t)− νsm(t)

) Nb∑

i=1

νbi (t)z
(i,j)2
m (84)

=
∑

m

(
E

{(
zm − p̂m(t)

)2

νpm(t)

}
− 1

) ∑Nb

i=1 ν
b
i (t)z

(i,j)2
m

νpm(t)
,

where the random variablezm above is distributed according
to the pdf in (44). For the G-AMP algorithm, [19, Sec. VI.D]
clarifies that, under i.i.d priors and scalar variances, in the
LSL, the truezm and the G-AMP iterateŝpm(t) converge
empirically to a pair of random variables(z, p) that satisfy
pz|p(z|p̂(t)) = N (z; p̂(t), νp(t)). This suggests that (84) is
negligible in the LSL, in which case (51) implies

νrj (t) ≈
(
∑

m

νsm(t)ẑ(∗,j)m (t)2

)−1

. (85)

A similar argument yields

νqi (t) ≈
(
∑

m

νsm(t)ẑ(i,∗)m (t)2

)−1

. (86)

The final step in the derivation of P-BiG-AMP is to approx-
imate the SPA posterior log-pdfs in (16) and (17). Plugging
(37) and (45) into these expressions, we get

∆b
i (t+1, bi) ≈ const + log

(
pbi

(bi)N (bi; q̂i(t), ν
q
i (t))

)
(87)

∆c
j(t+1, cj) ≈ const + log

(
pcj(cj)N (cj ; r̂j(t), ν

r
j (t))

)
(88)

using steps similar to those used for (46). The corresponding
pdfs are given as (D2) and (D3) in Table III and represent
P-BiG-AMP’s iteration-t approximations to the true marginal
posteriorspbi|y(bi |y) andpcj |y (cj |y). The quantitieŝbi(t+1)
andνbi (t+1) are then respectively defined as the mean and vari-
ance of the pdf associated with (87), andĉj(t+1) andνcj (t+1)
are the mean and variance of the pdf associated with (88). As
such,b̂i(t+1) represents P-BiG-AMP’s approximation to the
MMSE estimate ofbi andνbi (t+1) represents its approximation
of the corresponding MSE. Likewise,̂cj(t+1) represents P-
BiG-AMP’s approximation to the MMSE estimate ofcj and
νcj (t+1) represents its approximation of the corresponding
MSE. This completes the derivation of P-BiG-AMP.

G. Algorithm Summary

The P-BiG-AMP algorithm is summarized in Table III. The
version in Table III includes a maximum number of iterations
Tmax, as well as a stopping condition (R19) that terminates
the iterations when the change in̂z(∗,∗)m (t) falls below a
user-defined parameterτstop. Noting the complex conjugates
in (R12) and (R14), the algorithm also allows the use of
complex-valuedquantities, in which caseN in (D1)-(D3)
would denote a circular complex Gaussian pdf. However, for
ease of interpretation, Table III does not include the important
damping steps that will be detailed in Section III-I.

The complexity scaling of each line in Table III is tabu-
lated in Table IV assuming that allMNbNc entries in the
tensorz(i,j)m are nonzero. In practice,z(i,j)m is often sparse or

definitions:
pzm|pm

(
z | p̂; νp

)
,

pym|zm
(ym | z)N(z;p̂,νp)

∫
z′ pym|zm

(ym | z′)N(z′;p̂,νp)
(D1)

pcj |rj
(c | r̂; νr),

pcj(c)N(c;r̂,νr)
∫
c′ pcj(c

′)N(c′;r̂,νr)
(D2)

pbi|qi
(b | q̂; νq),

pbi
(b)N(b;q̂,νq)

∫
b′ pbi

(b′)N(b′ ;q̂,νq)
(D3)

initialization:
∀m : ŝm(0)= 0 (I1)

∀i, j : choose b̂i(1), ν
b
i (1), ĉj(1), ν

c
j (1) (I2)

for t = 1, . . . Tmax

∀m, i : ẑ(i,∗)
m (t) =

∑Nc
j=0 z(i,j)

m ĉj(t) (R1)

∀m, j : ẑ(∗,j)
m (t) =

∑Nb
i=0 b̂i(t)z

(i,j)
m (R2)

∀m : ẑ(∗,∗)
m (t) =

∑Nb
i=0 b̂i(t)ẑ

(i,∗)
m (t) or

∑Nc
j=0 ĉj(t)ẑ

(∗,j)
m (t) (R3)

∀m : νp
m(t)=

∑Nb
i=1 νb

i (t)|ẑ
(i,∗)
m (t)|2 +

∑Nc
j=1 νc

j (t)|ẑ
(∗,j)
m (t)|2 (R4)

∀m : νp
m(t)= νp

m(t) +
∑Nb

i=1 νb
i (t)

∑Nc
j=1 νc

j (t)|z
(i,j)
m |2 (R5)

∀m : p̂m(t)= ẑ(∗,∗)
m (t) − ŝm(t−1)νp

m(t) (R6)
∀m : νz

m(t)= var{zm | pm= p̂m(t); νp
m(t)} (R7)

∀m : ẑm(t)=E{zm | pm= p̂m(t); νp
m(t)} (R8)

∀m : νs
m(t)= (1 − νz

m(t)/νp
m(t))/νp

m(t) (R9)
∀m : ŝm(t)= (ẑm(t) − p̂m(t))/νp

m(t) (R10)

∀j : νr
j (t)=

(∑M
m=1 νs

m(t)|ẑ(∗,j)
m (t)|2

)−1
(R11)

∀j : r̂j(t)= ĉj(t) + νr
j (t)

∑M
m=1 ŝm(t)ẑ(∗,j)

m (t)∗

− νr
j (t)ĉj(t)

∑M
m=1 νs

m(t)
∑Nb

i=1 νb
i (t)|z

(i,j)
m |2 (R12)

∀i : νq
i (t)=

(∑M
m=1 νs

m(t)|ẑ(i,∗)
m (t)|2

)−1
(R13)

∀i : q̂i(t)= b̂i(t) + νq
i (t)

∑M
m=1 ŝm(t)ẑ(i,∗)

m (t)∗

− νq
i (t)̂bi(t)

∑M
m=1 νs

m(t)
∑Nc

j=1 νc
j (t)|z

(i,j)
m |2 (R14)

∀j : νc
j (t+1)=var{cj | rj = r̂j(t); ν

r
j (t)} (R15)

∀j : ĉj(t+1)=E{cj | rj = r̂j(t); ν
r
j (t)} (R16)

∀i : νb
i (t+1)=var{bi | qi= q̂i(t); ν

q
i (t)} (R17)

∀i : b̂i(t+1)=E{bi | qi= q̂i(t); ν
q
i (t)} (R18)

if
∑M

m=1 |ẑ(∗,∗)
m (t) − ẑ(∗,∗)

m (t−1)|2 ≤ τstop
∑M

m=1 |ẑ(∗,∗)
m (t)|2, stop (R19)

end

TABLE III
THE P-BIG-AMP ALGORITHM

(R1) O(MNbNc) (R2) O(MNbNc) (R3) O(M(Nb∧Nc))
(R4) O(MNb +MNc) (R5) O(MNcNb) (R6) O(M)
(R7) O(M) (R8) O(M) (R9) O(M)
(R10) O(M) (R11) O(MNc) (R12) O(MNbNc)
(R13) O(MNb) (R14) O(MNbNc) (R15) O(Nc)
(R16) O(Nc) (R17) O(Nb) (R18) O(Nb)

TABLE IV
WORST-CASE COMPLEXITY OFP-BIG-AMP FROM TABLE III.

implementable using a fast transformation, allowing drastic re-
duction in complexity, as shown in Section IV. Thus, Table IV
should be interpreted as “worst-case” complexity.

H. Scalar-Variance Approximation

The P-BiG-AMP algorithm from Table III stores and pro-
cesses variance termsνpm, νpm, νzm, νsm, νrj , ν

q
i , ν

c
j , ν

b
i that de-

pend on the indicesm, j, i. The use of scalar (i.e., index-
invariant) variances significantly reduces its complexity.

To derive scalar-variance P-BiG-AMP, we first assume∀i :
νbi (t) ≈ νb(t) , 1

Nb

∑Nb

i=1 ν
b
i (t) and ∀j : νcj (t) ≈ νc(t) ,
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1
Nc

∑Nc

j=1 ν
c
j (t). Then we approximateνpm(t) as

νp
m(t) ≈ νb(t)

Nb∑

i=1

|ẑ(i,∗)m (t)|2 + νc(t)

Nc∑

j=1

|ẑ(∗,j)m (t)|2 (89)

≈ νb(t)

M

Nb∑

i=1

‖ẑ(i,∗)(t)‖2 + νc(t)

M

Nc∑

j=1

‖ẑ(∗,j)(t)‖2 , νp(t).

(90)

Similarly, νpm(t) is approximated as

νpm(t) ≈ νp(t) + νb(t)νc(t)

Nb∑

i=1

Nc∑

j=1

|z(i,j)m |2 (91)

≈ νp(t) +
νb(t)νc(t)

M

Nb∑

i=1

Nc∑

j=1

‖z(i,j)‖2 , νp(t), (92)

where 1
M

∑Nb

i=1

∑Nc

j=1 ‖z(i,j)‖2 can be pre-computed. Even
with the above scalar-variance approximations,νsm(t) is not
guaranteed to bem-invariant. Still, it can be approximated as
such usingνs(t) , 1

M

∑M
m=1 ν

s
m(t), in which case

νrj (t) ≈
(
νs(t)‖ẑ(∗,j)(t)‖2

)−1
(93)

≈


νs(t)

1

Nc

Nc∑

j=1

‖ẑ(∗,j)(t)‖2



−1

, νr(t) (94)

r̂j(t) = ĉj(t) + νr(t)

M∑

m=1

ŝm(t)ẑ(∗,j)m (t)∗

− νr(t)νs(t)νb(t)ĉj(t)

Nb∑

i=1

‖z(i,j)‖2, (95)

where
∑Nb

i=1 ‖z(i,j)‖2 can be pre-computed. Similarly,

νqi (t) ≈
(
νs(t)‖ẑ(i,∗)(t)‖2

)−1
(96)

≈
(
νs(t)

1

Nb

Nb∑

i=1

‖ẑ(i,∗)(t)‖2
)−1

, νq(t) (97)

q̂i(t) = b̂i(t) + νq(t)

M∑

m=1

ŝm(t)ẑ(i,∗)m (t)∗

− νq(t)νs(t)νc(t)̂bi(t)

Nc∑

j=1

‖z(i,j)‖2. (98)

The scalar-variance P-BiG-AMP algorithm is summarized
in Table V. The complexity scaling of each line in Table V
is tabulated in Table VI. Like with Table IV, the values in
Table VI should be interpreted as “worst-case.”

I. Damping

Damping has been applied to both G-AMP [51] and BiG-
AMP [20] to prevent divergence. Essentially, damping (or
“relaxation” in the optimization literature) slows the evolution
of the algorithm’s state variables. For G-AMP, damping yields
provable local-convergence guarantees with arbitrary matri-
ces [51] while, for BiG-AMP, damping has been shown to
be very effective through an extensive empirical study [21].

definitions:
pzm|pm

(
z | p̂; νp

)
,

pym|zm
(ym | z)N(z;p̂,νp)

∫
z′ pym|zm

(ym | z′)N(z′;p̂,νp)
(D1)

pcj |rj
(c | r̂; νr),

pcj(c)N(c;r̂,νr)
∫
c′ pcj(c

′)N(c′;r̂,νr)
(D2)

pbi|qi
(b | q̂; νq),

pbi
(b)N(b;q̂,νq)

∫
b′ pbi

(b′)N(b′ ;q̂,νq)
(D3)

initialization:
∀m : ŝm(0) = 0 (I1)

∀i, j : choose b̂i(1), ν
b(1), ĉj(1), ν

c(1) (I2)
for t = 1, . . . Tmax

∀i : ẑ(i,∗)(t) =
∑Nc

j=0 z(i,j) ĉj(t) (R1)

∀j : ẑ(∗,j)(t) =
∑Nb

i=0 b̂i(t)z
(i,j) (R2)

ẑ(∗,∗)(t) =
∑Nb

i=0 b̂i(t)ẑ
(i,∗)(t) or

∑Nc
j=0 ĉj(t)ẑ

(∗,j)(t) (R3)

νp(t) =
(
νb(t)

∑Nb
i=1 ‖ẑ(i,∗)(t)‖2

+ νc(t)
∑Nc

j=1 ‖ẑ(∗,j)(t)|2
)
/M (R4)

νp(t) = νp(t) + νb(t)νc(t)
∑Nb

i=1

∑Nc
j=1 ‖z(i,j)‖2/M (R5)

p̂(t) = ẑ(∗,∗)(t) − ŝ(t−1)νp(t) (R6)

νz(t) =
∑M

m=1 var{zm | pm= p̂m(t); νp(t)}/M (R7)
∀m : ẑm(t) =E{zm | pm= p̂m(t); νp(t)} (R8)

νs(t) = (1 − νz(t)/νp(t))/νp(t) (R9)
ŝ(t) = (ẑ(t) − p̂(t))/νp(t) (R10)

νr(t) =
(
νs(t)

∑Nc
j=1 ‖ẑ(∗,j)(t)‖2/Nc

)−1
(R11)

∀j : r̂j(t) =
(
1 − νr(t)νs(t)νb(t)

∑Nb
i=1 ‖z(i,j)‖2

)
ĉj(t)

+ νr(t)ẑ(∗,j)H(t)ŝ(t) (R12)

νq(t) =
(
νs(t)

∑Nb
i=1 ‖ẑ(i,∗)(t)‖2/Nb

)−1
(R13)

∀i : q̂i(t) =
(
1 − νq(t)νs(t)νc(t)

∑Nc
j=1 ‖z(i,j)‖2

)
b̂i(t)

+ νq(t)ẑ(i,∗)H(t)ŝ(t) (R14)

νc(t+1)=
∑Nc

j=1 var{cj | rj = r̂j(t); ν
r
j (t)}/Nc (R15)

∀j : ĉj(t+1)=E{cj | rj = r̂j(t); ν
r
j (t)} (R16)

νb(t+1)=
∑Nb

i=1 var{bi | qi= q̂i(t); ν
q
i (t)}/Nb (R17)

∀i : b̂i(t+1)=E{bi | qi= q̂i(t); ν
q
i (t)} (R18)

if ‖ẑ(∗,∗)(t) − ẑ(∗,∗)(t−1)‖2 ≤ τstop‖ẑ
(∗,∗)(t)‖2, stop (R19)

end

TABLE V
THE SCALAR-VARIANCE P-BIG-AMP ALGORITHM

(R1) O(MNbNc) (R2) O(MNbNc) (R3) O(M(Nb∧Nc))
(R4) O(1) (R5) O(1) (R6) O(M)
(R7) O(M) (R8) O(M) (R9) O(M)
(R10) O(M) (R11) O(1) (R12) O(MNc)
(R13) O(1) (R14) O(MNb) (R15) O(Nc)
(R16) O(Nc) (R17) O(Nb) (R18) O(Nb)

TABLE VI
WORST-CASE COMPLEXITY OF SCALAR-VARIANCE P-BIG-AMP.

Motivated by these successes, we adopt a similar damping
scheme for P-BiG-AMP. In particular, we use the iteration-t
damping factorβ(t) ∈ [0, 1] to slow the evolution of certain
variables, namely,νpm, νpm, νsm, ŝm, b̂i, andĉj . To do this, we
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replace steps (R4), (R5), (R4), and (R10) in Table III with

νpm(t) = β(t)

( Nb∑

i=1

|ẑ(i,∗)m (t)|2νbi (t) +
Nc∑

j=1

|ẑ(∗,j)m (t)|2νcj (t)
)

+ (1− β(t))νp
m(t− 1) (99)

νpm(t) = β(t)

(
νp
m(t) +

Nb∑

i=1

Nc∑

j=1

νbi (t)ν
c
j (t)|ẑ(i,j)m (t)|2

)

+ (1− β(t))νpm(t− 1) (100)

νsm(t) = β(t)
(
(1− νzm(t)/νpm(t))/νpm(t)

)

+ (1− β(t))νsm(t−1) (101)

ŝm(t) = β(t)
(
ẑm(t)− p̂m(t))/νpm(t)

)

+ (1− β(t))ŝm(t−1), (102)

and we insert the following lines between (R10) and (R11):

bi(t) = β(t)̂bi(t) + (1− β(t))bi(t− 1) (103)

cj(t) = β(t)ĉj(t) + (1− β(t))cj(t− 1) (104)

z(i,∗)m (t) =

Nc∑

j=0

z(i,j)m cj(t) (105)

z(∗,j)m (t) =

Nb∑

i=0

bi(t)z
(i,j)
m . (106)

The quantitiesz(i,∗)m (t) and z
(∗,j)
m (t) are then used in steps

(R11)-(R14), but not in (R4)-(R6), in place of the versions
computed in steps (R1)-(R2). Similarly, the newly created state
variablesbi(t) andcj(t) are used only to computez(i,∗)m (t) and
z
(∗,j)
m (t). Note that, whenβ(t)=1, the damping has no effect,

whereas whenβ(t) = 0, all quantities become frozen int.
Although these modifications pertain to the full P-BiG-AMP
algorithm from Table III, similar damping steps can be applied
to the scalar-variance version from Table V.

1) Adaptive Damping:Because damping slows the conver-
gence of the algorithm, we would like to damp only as much
as needed to prevent divergence, i.e., toadapt the damping.
An adaptivedamping scheme for G-AMP was described in
[52] and a similar one was described for BiG-AMP in [20].
Both are based on monitoring an appropriate costJ(t) and
applying more damping when the cost increases or less when
the cost is decreasing. The same approach can be used for
P-BiG-AMP. For example, extending the approach used for
BiG-AMP [20] would lead to the cost

Ĵ(t) =
∑

j

D
(
pcj |rj

(
·
∣∣ r̂j(t); νrj (t)

)∥∥∥ pcj (·)
)

(107)

+
∑

i

D
(
pbi|qi

(
·
∣∣ q̂i(t); νqi (t)

)∥∥∥ pbi
(·)
)

−
∑

m

Ezm∼N (ẑ
(∗,∗)
m (t);νp

m(t))

{
log pym|zm(ym | zm)

}
.

Meanwhile, the Bethe-free-energy approach used in [22], [52]
offers a more principled, yet more complex, alternative. Intu-
itively, the first term in (107) penalizes the deviation between
the (P-BiG-AMP approximated) posterior and the assumed
prior on c, the second penalizes the deviation between the

(P-BiG-AMP approximated) posterior and the assumed prior
on b, and the third term rewards highly likely estimatesz .

For adaptive damping, we adopt the approach used for both
G-AMP and BiG-AMP in the public domain GAMPmatlab im-
plementation [53]. In particular, if the current costJ(t) is not
smaller than the largest cost in the most recentstepWindow

iterations, then the “step” is declared unsuccessful, the damp-
ing factor β(t) is reduced by the factorstepDec, and the
step is attempted again. These attempts continue until either
the cost criterion decreases or the damping factor reaches
stepMin, at which point the step is considered successful,
or the iteration count exceedsTmax or the damping factor
reachesstepTol, at which point the algorithm terminates.
Otherwise, the step is declared successful, and the damping
factor is increased by the factorstepInc up to a maximum
allowed valuestepMax.

J. Tuning of the Prior and Likelihood

To run P-BiG-AMP, one must specify the priors and like-
lihood in lines (D1)-(D3) of Table III and Table V. Although
a reasonable family of distributions may be dictated by the
application, the specific parameters of the distributions must
often be tuned in practice. Building on the approach de-
veloped to address this challenge for G-AMP [25], which
was extended successfully to BiG-AMP in [20], we outline
a methodology that takes a given set of P-BiG-AMP pri-
ors {pbi

(·; θ), pcj (·; θ), pym|zm(ym|·; θ)}∀m,n,l and tunes the
vectorθ using an expectation-maximization (EM) [23] based
approach, with the goal of maximizing its likelihood, i.e.,
finding θ̂ , argmaxθ py (y; θ).

Taking b, c, and z to be the hidden variables, the EM
recursion can be written as [23]

θ̂
k+1

= argmax
θ

E
{
log pb,c,z,y (b, c, z , y ; θ)

∣∣∣y; θ̂
k
}

= argmax
θ

{∑

i

E
{
log pbi

(bi; θ)
∣∣∣y; θ̂

k
}

(108)

+
∑

j

E
{
log pcj (cj ; θ)

∣∣∣y; θ̂
k
}

+
∑

m

E
{
log pym|zm(ym | zm; θ)

∣∣∣y; θ̂
k
}}

where for (108) we used the factpb,c,z,y (b, c, z, y ; θ) =
pb(b; θ)pc(c; θ)py|z(y |z; θ)1z−z(b,c) and the separability of
pb, pc, and py|z . As can be seen from (108), knowledge of
the marginal posteriors{pbi|y , pcj |y , pzm|y}∀i,j,m is sufficient
to compute the EM update. Since the exact marginal poste-
riors are too difficult to compute, we employ the iteration-t
approximations produced by P-BiG-AMP, i.e.,

pbi|y(bi |y) ≈ pbi|qi

(
bi | q̂i(t); νqi (t)

)
(109)

pcj |y (cj |y) ≈ pcj |rj

(
cj | r̂j(t); νrj (t)

)
(110)

pzm|y (zm |y) ≈ pzm|pm

(
zm | p̂m(t); νpm(t)

)
, (111)

for suitably larget, where the distributions above are defined in
(D1)-(D3) of Table III. In addition, we adopt the “incremental”
update strategy from [54], where the maximization overθ is
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performed one element at a time while holding the others fixed.
The remaining details are analogous to the G-AMP case, for
which we refer the interested reader to [25].

IV. EXAMPLE PARAMETERIZATIONS

P-BiG-AMP was summarized and derived in Section III
for generic parameterizationsz(i,j) in (5). A naive imple-
mentation, which treats everyz(i,j)m as nonzero, would lead
to the worst-case complexities stated in Table IV (or Ta-
ble VI under the scalar-variance approximation). In prac-
tice, however,{z(i,j)m } is often sparse or implementable us-
ing a fast transformation, in which case the implementa-
tion can be dramatically simplified. We now describe sev-
eral examples of structuredz(i,j), detailing the computa-
tions needed for the essential scalar-variance P-BiG-AMP
quantities ẑ

(∗,∗)(t),
∑Nb

i=1 ‖ẑ
(i,∗)(t)‖2,

∑Nc

j=1 ‖ẑ
(∗,j)(t)‖2,

{ẑ(i,∗)H(t)ŝ(t)}Nb

i=1 and{ẑ(∗,j)H(t)ŝ(t)}Nc

j=1.

A. Multi-snapshot Structure

With multi-snapshot structure, the noiseless outputs become

Z =

Nb∑

i=0

biA
(i)C with known {A(i)}, (112)

whereZ ∈ C
K×L and C ∈ C

N×L for6 L > 1. Thus we
haveA(i) ∈ CK×N , M = KL, and Nc = NL. Defining
z , vec(Z) andc , vec(C), we find

z =

Nb∑

i=0

bi
(
IL ⊗A(i)

)
c, (113)

which implies that

z(i,j) =
[
IL ⊗A(i)

]
:,j

(114)

ẑ
(i,∗)(t) = vec

(
A(i)Ĉ(t)

)
(115)

ẑ
(∗,j)(t) =

[
IL ⊗ Â(t)

]
:,j

(116)

ẑ
(∗,∗)(t) =

Nb∑

i=0

b̂i(t) vec
(
A(i)Ĉ(t)

)
= vec

(
Â(t)Ĉ(t)

)

(117)

Â(t) ,
Nb∑

i=0

b̂i(t)A
(i), (118)

where[X ]:,j denotes thejth column ofX andĈ(t) ∈ CN×L

is a reshaping of̂c(t). Note that (114)-(116) follow directly
from (113) via the derivative interpretations (33)-(35).

From the above expressions, it can be readily shown that

Nb∑

i=1

‖ẑ(i,∗)(t)‖2 =

Nb∑

i=1

∥∥A(i)Ĉ(t)
∥∥2
F
= tr

(
ΓĈ(t)Ĉ(t)H)

(119)
Nc∑

j=1

‖ẑ(∗,j)(t)‖2 = L‖Â(t)‖2F (120)

6WhenL = 1, (112) reduces to the general parameterization (5).

with pre-computed

Γ ,
Nb∑

i=1

A(i)HA(i). (121)

The following quantities can also be pre-computed:

Nb∑

i=1

‖z(i,j)‖2 =
Nb∑

i=1

‖a(i)
〈j−1〉N+1‖2 (122)

Nc∑

j=1

‖z(i,j)‖2 = L‖A(i)‖2F (123)

Nb∑

i=1

Nc∑

j=1

‖z(i,j)‖2 = L tr(Γ). (124)

Furthermore, under the scalar variance approximation,

R̂(t) =
(
1− νr(t)νs(t)νb(t)Dr

)
Ĉ(t)

+ νr(t)Â
H
(t)Ŝ(t) (125)

q̂(t) =
(
1− νq(t)νs(t)νc(t)Dq

)
b̂(t)

+ νq(t)



vec
(
A(1)Ĉ(t)

)H

...

vec
(
A(Nb)Ĉ(t)

)H


 ŝ(t), (126)

with the following pre-computed usinga(i)
n , [A(i)]:,n:

Dr , diag
{∑Nb

i=1 ‖a
(i)
1 ‖2, . . . ,∑Nb

i=1 ‖a
(i)
N ‖2

}
(127)

Dq , L diag
{
‖A(1)‖2F , . . . , ‖A(Nb)‖2F } (128)

Note that (117)-(128) specify the essential quantities needed
for the implementation of scalar-variance P-BiG-AMP. We
discuss the complexity of these steps for two cases below.

First, suppose w.l.o.g. that eachA(i) has Na ≤ KN
nonzero elements, with possibly different supports among
{A(i)}. This implies thatÂ(t) has at mostmin(NbNa,KN)
nonzero elements. It then follows that (117) consumes
min(NbNa,KN)L multiplies, (118) consumesNbNa, (119)
consumesLmin(Nb(Na + K), N2) and (120) consumes
min(NbNa,KN) multiplies. Furthermore, (125) consumes
≈ min(NbNa,KN)L multiplies and (126) consumes≈
NbL(Na + K). In total, O(min(NbNa,KN)L + NbNaL +
NbKL+Lmin(Nb(Na +K), N2)) multiplies are consumed.
For illustration, suppose thatNbNa < KN andNbNa < N2.
ThenO(NL + NbL(Na + K)) multiplies are consumed, in
contrast toO(MNbNc) = O(KNL2Nb) for the general case.

Now suppose w.l.o.g. that, for a givenb, the multiplication
of A(b) by a vectorx can be accomplished implicitly using
Na multiplies. For example,Na = O(N logN) in the case of
an FFT. Then (117) consumesNaL multiplies, (119) consumes
KL (using {A(i)Ĉ(t)} computed forq̂(t)), and (120) can
be approximated usingO(Na) multiplies. Furthermore, (125)
consumes≈ (N + Na)L multiplies and (126) consumes≈
NbL(Na +K). In total,O(L(N +NbNa +NbK)) multiplies
are consumed, in contrast toO(MNbNc) = O(KNL2Nb) for
the general case.
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B. Low-Rank Structure

With low-rank signal structure, the noiseless outputs become

zm = tr
(
Φ

H
mBTC

)
, m = 1, . . . ,M, (129)

with known{Φm}, whereB ∈ CN×K , C ∈ CN×L for7 N >
1. Thus we haveΦm ∈ CK×L, Nb = NK, andNc = NL.
Definingφm , vec(Φm), b , vec(B), andc , vec(C),

zm = φH
m vec(BTC) = bT(

Φ
∗
m ⊗ IN

)
c (130)

= vec
(
BΦ

∗
m

)T
c (131)

= vec
(
CΦ

H
m

)T
b (132)

from which the derivative interpretations (33)-(35) imply

z(i,j)=



[Φ1 ⊗ IN ]i,j...
[ΦM ⊗ IN ]i,j


, ẑ

(∗,∗)(t)=



tr
(
Φ

H
1 B̂(t)TĈ(t)

)
...

tr
(
Φ

H
MB̂(t)TĈ(t)

)




(133)

ẑ
(i,∗)(t)=



vec
(
Ĉ(t)ΦH

1

)T

...

vec
(
Ĉ(t)ΦH

M

)T



:,i

, ẑ
(∗,j)(t)=



vec
(
B̂(t)Φ∗

1

)T

...

vec
(
B̂(t)Φ∗

M

)T



:,j

.

(134)
From the above expressions, it can be readily shown that

Nb∑

i=1

‖ẑ(i,∗)(t)‖2 =
M∑

m=1

‖ΦmĈ(t)H‖2F (135a)

= tr
(
Γ1Ĉ(t)HĈ(t)

)
(135b)

Nc∑

j=1

‖ẑ(∗,j)(t)‖2 =

M∑

m=1

‖B̂(t)∗Φm‖2F (136a)

= tr
(
Γ2B̂(t)TB̂(t)∗

)
(136b)

with pre-computed

Γ1 ,
M∑

m=1

Φ
H
mΦm, Γ2 ,

M∑

m=1

ΦmΦ
H
m. (137)

The following quantities can also be pre-computed:

Nb∑

i=1

‖z(i,j)‖2 = [Γ1 ⊗ IN ]jj (138)

Nc∑

j=1

‖z(i,j)‖2 = [Γ2 ⊗ IN ]ii (139)

Nb∑

i=1

Nc∑

j=1

‖z(i,j)‖2 = N tr(Γ1) = N tr(Γ2). (140)

Furthermore, under the scalar variance approximation,

r̂(t) =
(
1− νr(t)νs(t)νb(t)[DiagΓ1 ⊗ IN ]

)
ĉ(t) (141)

+ νr(t)
[
vec
(
B̂(t)∗Φ1

)
, . . . , vec

(
B̂(t)∗ΦM

)]
ŝ(t)

q̂(t) =
(
1− νq(t)νs(t)νc(t)[DiagΓ2 ⊗ IN ]

)
b̂(t) (142)

+ νq(t)
[
vec
(
Ĉ(t)∗ΦT

1

)
, . . . , vec

(
Ĉ(t)∗ΦT

M

)]
ŝ(t)

7WhenN = 1, (129) reduces to the general parameterization (5).

and so

R̂(t) = Ĉ(t)
(
IL − νr(t)νs(t)νb(t)DiagΓ1

)

+ νr(t)B̂(t)∗

(
M∑

m=1

ŝm(t)Φm

)
(143)

Q̂(t) = B̂(t)
(
IK − νq(t)νs(t)νc(t)DiagΓ2

)

+ νq(t)Ĉ(t)∗

(
M∑

m=1

ŝm(t)ΦT
m

)
. (144)

Note that (133)-(144) specify the essential quantities needed
for the implementation of scalar-variance P-BiG-AMP. We
discuss the complexity of these steps below.

Suppose w.l.o.g. thatΦm has Nφ ≤ KL nonzero en-
tries, with possibly different supports among{Φm}. This
implies that

∑
m ŝm(t)Φm has at mostmin(KL,MNφ)

nonzero elements. It then follows that̂z(∗,∗)(t) from
(133) consumesNKL + MNφ multiplies, (135) con-
sumes≈ N min{L2,M(Nφ + K)}, and (136) consumes≈
N min{K2,M(Nφ+L)}. Furthermore, (143) consumesNL+
N min(KL,MNφ) + MNφ multiplies and (144) consumes
NK + N min(KL,MNφ). In total, O(N min(L2,M(Nφ +
K)) +N min(K2,M(Nφ +L)) +NKL+MNφ) multiplies
are consumed. For illustration, suppose thatNφ < K,L and
M < K,L. Then O(NKL) multiplies are consumed, in
contrast toO(MNbNc) = O(MN2KL) in the general case.

C. Matrix-product Structure

A special case of (112) and (129) is when

Z = BC (145)

which occurs, e.g., in applications such as MC, RPCA, DL,
and NMF, as discussed in Section I-A. In particular, (112)
reduces to (145) whenNb = KN andvec(A(i)) = [I]:,i, and
(129) reduces to (145) whenM = KL andvec(Φm) = [I]:,m.
It can be verified [1] that, under (145), P-BiG-AMP reduces
to BiG-AMP from [20].

D. Low-Rank plus Sparse Structure

Recall (3), the problem of recovering a “low-rank plus
sparse” matrix. Writing the low-rank component asL =
BTC1 with B ∈ C

N×K , C1 ∈ C
N×L, andN < min{K,L},

we can invoke (130) to get

zm = bT(
Φ

∗
m ⊗ IN

)
c1 + φH

mc2, m = 1, . . . ,M, (146)

with b0 , 1 (recall Section I-B),b , vec(B), c1 , vec(C),
c2 , vec(S) (recall S was the sparse matrix from (3)), and
c = [cT

1, c
T
2 ]

T.
Note that the structure of the first term of (146) can be

exploited through (133)-(134), as discussed in Section IV-B.
Meanwhile, straightforward computational simplifications of
the second term in (146) result whenφH

m is sparse. But care
must be taken in applying the scalar-variance approximation
in this case: it may be advantageous to use different scalar
variances forc1 andc2 (e.g.,νr1 , ν

c
1 andνr2 , ν

c
2).
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Fig. 2. Empirical success rate for noiseless sparse signal recovery under
the i.i.d. parametric bilinear model (5) as a function of thenumber of
measurementsM and the signal sparsityK. Success rates were averaged
over 50 independent realizations. Points above the red curve are infeasible
due to counting bound, as described in the text.

V. NUMERICAL EXPERIMENTS

We now present the results of several numerical experiments
that test the performance of P-BiG-AMP and EM-P-BiG-
AMP in various applications. In most cases, we quantify
recovery performance using NMSE(b̂) , ‖b− b̂‖22/‖b‖22 and
NMSE(ĉ) , ‖c−ĉ‖22/‖c‖22. Matlab code for P-BiG-AMP and
EM-P-BiG-AMP can be found in [53].

A. I.i.d. Gaussian Model

First, we examine the performance of P-BiG-AMP in the
case of i.i.d. Gaussianz(i,j)m , as assumed for its deriva-
tion. In particular,{z(i,j)m } were drawn i.i.d.CN (0, 1), b =
[b1, . . . , bNb

]T were drawn Bernoulli-CN (0, 1) with sparsity
rate ξb, and c = [c1, . . . , cNc ]

T were drawn Bernoulli-
CN (0, νc) with sparsity rateξc. We then attempted to recover
b and c from M noiseless measurements of the form (5)
under b0 = 0 and c0 = 0. For our experiment, we used
Nb = Nc = 100 andνc = 1, and we varied both the sparsity
rateξb = ξc = K/100 and the number of measurementsM .

We tested the performance of both P-BiG-AMP, which
assumed oracle knowledge of all distributional parameters,
and EM-P-BiG-AMP, which estimated the parametersθ ,
[νc, ξb, ξc]T as well as the additive white Gaussian noise
(AWGN) variance.8 Figure 2 shows the empirical success rate
for both algorithms, averaged over50 independent problem
realizations, as a function of the sparsityK and the number
of measurementsM . Here, we declare a “success” when both
NMSE(b̂) < −60 dB and NMSE(ĉ) < −60 dB. The figure
shows that both P-BiG-AMP and EM-P-BiG-AMP gave sharp
phase transitions. Moreover, their phase transitions are very
close to the counting bound “M ≥ 2K,” shown by the red
line in Fig. 2.

B. Self Calibration

We now consider the self calibration problem described in
Section I-A. In particular, we consider the noiseless single
measurement vector (SMV) version, where the goal is to
jointly recover theK-sparse signalc ∈ RNc and calibration
parametersb ∈ R

Nb from M noiseless measurements of the
form z = Diag(Hb)Ac, whereH andA are known. For our

8EM-P-BiG-AMP was not told that the measurements were noiseless.
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Fig. 3. Empirical success rate fornoiseless self-calibrationas a function of
the number of calibration parametersNb and the signal sparsityK. Results
are averaged over10 independent realizations.

experiment, we mimic the setup used for [8, Figure 1]. Thus,
we setNc = 256 andM = 128, we choseH as the firstNb

columns of aM -point unitary DFT matrix, and we drew the
entries ofA as i.i.d.N (0, 1). Furthermore, we drewK-sparse
c with i.i.d. N (0, νc) non-zero elements chosen uniformly at
random, and we drewb as i.i.d.N (0, 1).

We compared the performance of EM-P-BiG-AMP to
SparseLift [8], a recently proposed convex relaxation, using
CVX for the implementation. EM-P-BiG-AMP modeledc
as Bernoulli-N (0, νc) and learnedνc, the sparsity rateξ,
and the AWGN variance.9 Figure 3 shows empirical success
rate as a function of signal sparsityK and number of cal-
ibration parametersNb. As in [8], we considered NMSE,
‖bcT − b̂ĉ

T‖2F /‖bcT‖2F , and we declared “success” when
NMSE < −60 dB. Figure 3 shows that EM-P-BiG-AMP’s
success region was much larger than SparseLift’s,10 although it
was not close to the counting boundM ≥ Nb+K, which lives
just outside the boundaries of the figure. Still, the shape ofEM-
P-BiG-AMP’s empirical phase-transition suggests successful
recovery whenM & α1(Nb+K) for someα1, in contrast with
SparseLift’s empirical and theoretical [8] success condition of
M & α2NbK for someα2.

C. Noisy CS with Parametric Matrix Uncertainty

Next we consider noisy compressive sensing with para-
metric matrix uncertainty, as described in Section I-A. Our
goal is to recover a single,K-sparse,Nc-length signalc from
measurementsy = (A(0)+

∑Nb

i=1 biA
(i))c+w ∈ RM , where

b = [b1, ..., bNb
]T are unknown calibration parameters and

w is AWGN. For our experiment,Nc = 256, K = 10, c

had i.i.d. N (0, νc) non-zero elements chosen uniformly at
random with νc = 1, b was i.i.d. N (0, νb) with νb = 1,
A(0) was i.i.d.N (0, 10), and {A(i)}10i=1 was i.i.d.N (0, 1).
The noise varianceνw was adjusted to achieve an SNR
, ‖y −w‖22/‖w‖22 of 40 dB.

We compared P-BiG-AMP and EM-P-BiG-AMP to i) the
MMSE oracle that knowsc, ii) the MMSE oracle that knows
b and support(c), and iii) the WSS-TLS approach from [9],

9See footnote 8.
10The SparseLift results in Fig. 3 agree with those in [8, Figure 1].
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Fig. 4. Parameter estimation NMSE (left) and signal estimation NMSE
(right) versus sampling ratioM/N for CS with parametric matrix uncertainty.
Results are averaged over10 independent realizations.

which aims to solve the non-convex optimization problem

(b̂, ĉ) = argmin
b,c

∥∥∥∥∥
(
A(0) +

Nb∑

i=1

biA
(i)
)
c− y

∥∥∥∥∥

2

2

+ νw‖b‖22 + λ‖c‖1 (147)

via alternating minimization. For WSS-TLS, we used oracle
knowledge ofνw, oracle tuning of the regularization parameter
λ, and code from the authors’ website (with a trivial modifica-
tion to facilitate arbitraryA(i)). P-BiG-AMP used a Bernoulli-
Gaussian prior with sparsity rateξ = K/Nc and perfect
knowledge ofνc and νw, whereas EM-P-BiG-AMP learned
the statistics[ξ, νc, νw]T , θ from the observed data. Figure 4
shows that, for estimation of bothb andc, P-BiG-AMP gave
near-oracle NMSE performance forM/N ≥ 0.2. Meanwhile,
EM-P-BiG-AMP performed only slightly worse than P-BiG-
AMP. In contrast, the NMSE performance of WSS-TLS was
about10 dB worse than P-BiG-AMP, and its “phase transition”
occurred later, atM/N = 0.3.

D. Totally Blind Deconvolution

We now consider recovering an unknown signalci and
channelbi from noisy observationsyi = zi+wi of their linear
convolution{zi} = {bi} ∗ {ci}, wherewi ∼ i.i.d. N (0, νw).
In particular, we consider the case of “totally blind deconvolu-
tion” from [55], where the signal contains zero-valued guard
intervals of durationNg ≥ Nb − 1 and periodNp > Ng,
guaranteeing identifiability. Recalling the discussion ofjoint
channel-symbol estimationin Section I-A, we see that a zero-
valued guard allows the convolution outputs to be organized
asZ = Conv(b)C, whereConv(b) ∈ RNp×(Np−Ng) is the
linear convolution matrix with first columnb. For our exper-
iment, we used an i.i.d.CN (0, 1) channelb, and two cases
of i.i.d. signalc: Gaussiancj ∼ CN (0, 1) and equiprobable
QPSK (i.e.,cj ∈ {1, j,−1,−j}). Also, we used guard period
Np = 256, guard durationNg = 64, channel lengthNb = 63,
andL = 3 signal periods.

We compared P-BiG-AMP to i) the known-symbol and
known-channel MMSE oracles and ii) the cross-relation (CR)
method [56], which is known to perform close to the
Cramer-Rao lower bound [56]. In particular, we used CR
for blind symbol estimation, then (in the QPSK case) de-
rotated and quantized the blind symbol estimates, and finally
performed maximum-likelihood channel estimation assuming
perfect (quantized) symbols. Figure 5 shows that, with both
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Gaussian and QPSK symbols, P-BiG-AMP outperformed the
CR method by about5 dB in the SNR domain. Moreover, by
exploiting the QPSK constellation, both methods were able to
achieve oracle-grade NMSE(b̂) at high SNR.

E. Matrix Compressive Sensing

Finally, we consider the problem ofmatrix compressive
sensing, as described in Section I-A and further discussed
in Section IV-D. Our goal was to jointly recover a low rank
matrix L = BTC1 ∈ C100×100 and a sparse outlier matrix
S = C2 ∈ C100×100 from M noiseless linear measurements
of their sum, i.e.,{zm}Mm=1 in (3). For our experiment,
the sparse outliers were drawn with amplitudes uniformly
distributed on[−10, 10] and uniform random phases, similar to
[13, Figure 2]. But unlike [13, Figure 2], the sensing matrices
{Φm} were sparse, withK = 50 i.i.d. CN (0, 1) non-zero
entries drawn uniformly at random.

We compare the recovery performance of EM-P-BiG-AMP
to the convex formulation known ascompressive principal
components pursuit(CPCP) [13], i.e.,

argmin
L,S

‖L‖∗ + λ‖S‖1 s.t. zm = tr{ΦT
m(L+ S)} ∀m,

(148)

which we solved with TFOCS using a continuation scheme.
In accordance with [13, Theorem 2.1], we usedλ = 1/10
in (148). EM-P-BiG-AMP learned the variance of the entries
in C1, the sparsity and non-zero variance ofC2, and the
additive AWGN variance.11 Although EM-P-BiG-AMP was
given knowledge of the true rankR, we note that an unknown
rank could be accurately estimated using the scheme proposed
for BiG-AMP in [20, Sec. V-B2] and tested for the RPCA
application in [21, Sec. III-F2].

11See footnote 8.
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Fig. 6. Empirical success rate for noiselessmatrix compressive sensingas a
function of rankR and outlier sparsity rateξ for M = 5000 (top),M = 8000
(middle), andM = 10000 (bottom) measurements. The left column shows
EM-P-BiG-AMP and the right column shows CPCP solved using TFOCS. All
results are averaged over10 independent realizations. Points above the red
curve are infeasible due to the counting bound, as describedin the text.

Figure 6 shows the empirical success rate of EM-P-BiG-
AMP and CPCP versusR (i.e., the rank ofL) andξ = K/1002

(i.e., the sparsity rate ofS) for three fixed values ofM (i.e.,
the number of measurements). Each point is the average of10
independent trials, with success defined as‖L−L̂‖2F /‖L‖2F <
−60 dB. Figure 6 shows that, for the three tested values of
M , EM-P-BiG-AMP exhibited a sharp phase-transition that
was significantly better than that of CPCP.12 In fact, EM-P-
BiG-AMP’s phase transition is not far from the counting bound
M ≥ R(200−R)+ ξ1002, shown by the red curves in Fig. 6.

Figure 7 shows the correspondinglog10(average runtime)
versus rankR and sparsity rateξ at M = 10000 mea-
surements. Runtimes were averaged over10 successfultri-
als; locations(R, ξ) with any unsuccessful trials are shown
in white. The figure shows that EM-P-BiG-AMP’s average
runtimes were faster TFOCS’s throughout the region that both
algorithms were successful. The runtimes for other values of
M (not shown) were similar.

VI. CONCLUSION

We proposed P-BiG-AMP, a scheme to estimate the pa-
rametersb = [b1, . . . , bNb

]T and c = [c1, . . . , cNc ]
T of the

12The CPCP results in Fig. 6 are in close agreement with those in[13,
Figure 2], even though the latter correspond to real-valuedand denseΦm.
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Fig. 7. log10(average runtime), in seconds, for noiselessmatrix compressive
sensingas a function of rankR and outlier sparsity rateξ for M = 10000
measurements. Runtimes were averaged over10 successful trials; locations
(R, ξ) with any unsuccessful trials are shown in white.

parametric bilinear formzm =
∑Nb

i=0

∑Nc

j=0 biz
(i,j)
m cj from

noisy measurements{ym}Mm=1, whereym andzm are related
through an arbitrary likelihood function andz(i,j)m , b0, c0 are
known. Our approach treatsbi and cj as random variables
and z

(i,j)
m as an i.i.d. Gaussian tensor in order to derive a

tractable simplification of the sum-product algorithm in the
large-system limit, generalizing the bilinear AMP algorithms
in [20], [22]. We also proposed an EM extension that learns
the statistical parameters of the priors onbi, cj , andym|zm.
Numerical experiments suggest that our schemes yield signif-
icantly better phase transitions than several recently proposed
convex and non-convex approaches to self-calibration, blind
deconvolution, CS under matrix uncertainty, and matrix CS,
while being competitive (or faster) in runtime.
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APPENDIX A
ON THE RELATION BETWEEN (2) AND (3)

Here we show that (2) is a special case of (3). From (2),

zml =

Nb∑

i=1

bia
(i)T
m cl = [b1, . . . , bNb

]︸ ︷︷ ︸
, bT




a
(1)T
m

...

a
(Nb)T
m




︸ ︷︷ ︸
, Am

cl (149)

= tr
{
Amclb

T}, (150)

wherea(i)T
m denotes themth row of A(i) andcl denotes the

lth column ofC∈ RN×L. Then definingel as thelth column
of IL andc , vec(C), we can write

Amcl = (eT
l ⊗Am)︸ ︷︷ ︸
, Φ

T
ml

c. (151)

Plugging (151) into (150) yields

zml = tr
{
Φ

T
mlL

}
(152)

with L , cb
T, a rank-one matrix. Thus (2) is equivalent to

(3) with rank-oneL andS = 0.
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APPENDIX B
SCALING OF E{Z2

m}
From (5) we have

E
{

z2m
}
= E








Nb∑

i=0

Nc∑

j=0

biz(i,j)m cj



2




(153)

=

Nb∑

i=0

Nc∑

j=0

Nb∑

i′=0

Nc∑

j′=0

E
{

bibi′cjcj′z(i,j)m z(i
′,j′)

m

}
(154)

=

Nb∑

i=0

Nc∑

j=0

E{b2
i }E{c2j}E{z(i,j)2m } (155)

= O(1) (156)

since it was assumed thatE{z(i,j)2m } = 1, that bothE{b2
i }

andE{c2j} scale asO(1/M), and that bothNc/M andNb/M
scale asO(1).

APPENDIX C
CENTRAL L IMIT THEOREM

To apply the CLT, we first expand

zm =

Nb∑

i=0

Nc∑

j=0

bicjz(i,j)m = bT
Zmc (157)

= −b̂m(t)TZmĉm(t) + b̂m(t)TZmc + bT
Zmĉm(t)

+
(
b − b̂m(t)

)T
Zm

(
c − ĉm(t)

)
, (158)

where the matrixZm is constructed elementwise as[Zm]ij =

z
(i,j)
m and for (158) we recall that̂bm(t) is the mean of random

vectorb andĉm(t) is the mean of random vectorc under the
distributions in (12). Examining the terms in (158), we see
that the first is anO(1) constant, while the second and third
are dense linear combinations of independent random variables
that also scale asO(1). As such, the second and third terms
obey the CLT, each converging in distribution to a Gaussian as
M → ∞. The last term in (158) can be written as a quadratic
form in independent zero-mean random variables:

(
b − b̂m(t)

)T
Zm

(
c − ĉm(t)

)

=

[
b − b̂m(t)
c − ĉm(t)

]T [ 1
2Zm

1
2Z

T
m

] [
b − b̂m(t)
c − ĉm(t)

]
. (159)

It is shown in [57] that, for sufficiently denseZm, the
quadratic form in (158) converges in distribution to a zero-
mean Gaussian asM → ∞. Thus, in the LSL,zm equals a
constant plus three Gaussian random variables, and thuszm
is Gaussian.

APPENDIX D
DERIVATION OF CONDITIONAL VARIANCE

In this appendix, we derive the variance expression (22). For
ease of presentation, we supress the subscriptm and iteration
count t. We begin by writing

var{z | bi = bi} = E
{

z2 | bi = bi
}
− E {z | bi = bi}2 .

(160)

The first term in (160) can be expanded as

E
{

z2 | bi = bi
}

(161)

= E

{[
∑

k 6=i

∑

j

bkcjz(k,j) + bi
∑

j

cjz(i,j)
]2}

(162)

= E

{[
∑

k 6=i

∑

j

bkcjz(k,j)
]2}

+ 2bi E

{
∑

k 6=i

∑

j

bkcjz(k,j)
∑

j′

c′jz
(i,j′)

}

+ b2i E

{[
∑

j

cjz(i,j)
]2}

. (163)

We now analyze the three terms in (163).

The first term in (163) can be evaluated as follows.

E

{[
∑

k 6=i

∑

j

bkcjz(k,j)
]2}

= E

{[
∑

k 6=i

∑

j

(
(bk − b̂k)(cj − ĉj) + b̂k(cj − ĉj)

+ (bk − b̂k)ĉj + b̂k ĉj

)
z(k,j)

]2}
(164)

=
∑

k 6=i

∑

j

νbkν
c
jz

(k,j)2 +
∑

j

νcj

[
∑

k 6=i

b̂kz
(k,j)

]2

+
∑

k 6=i

νbk

[
∑

j

ĉjz
(k,j)

]2
+

[
∑

k 6=i

∑

j

b̂k ĉjz
(k,j)

]2
(165)

=
∑

k 6=i

∑

j

νbkν
c
jz

(k,j)2 +
∑

j

νcj

[
ẑ(∗,j) − b̂iz

(i,j)
]2

+
∑

k 6=i

νbkẑ
(k,∗)2 +

[
∑

k 6=i

b̂kẑ
(k,∗)

]2
. (166)
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The second term in (163) then becomes

2bi E

{
∑

k 6=i

∑

j

bkcjz(k,j)
∑

j′

c′jz
(i,j′)

}

= 2biE

{
∑

k 6=i

∑

j

[
(bk − b̂k)(cj − ĉj) + b̂k(cj − ĉj)

+ (bk − b̂k)ĉj + b̂k ĉj

]
z(k,j)

∑

j′

[
(cj′ − ĉj′) + ĉj′

]
z(i,j

′)

}

(167)

= 2biE

{
∑

k 6=i

∑

j

[
(bk − b̂k)(cj − ĉj) + b̂k(cj − ĉj)

+ (bk − b̂k)ĉj + b̂k ĉj

]
z(k,j)

∑

j′

(cj′ − ĉj′)z
(i,j′)

}

+ 2bi E

{
∑

k 6=i

∑

j

[
(bk − b̂k)(cj − ĉj) + b̂k(cj − ĉj)

+ (bk − b̂k)ĉj + b̂k ĉj

]
z(k,j)

∑

j′

ĉj′z
(i,j′)

}
. (168)

Continuing,

2bi E

{
∑

k 6=i

∑

j

bkcjz(k,j)
∑

j′

c′jz
(i,j′)

}

= 2bi
∑

k 6=i

∑

j

b̂kν
c
jz

(k,j)z(i,j)

+ 2bi
∑

k 6=i

∑

j

b̂kĉjz
(k,j)

∑

j′

ĉj′z
(i,j′) (169)

= 2bi
∑

j

(
∑

k

b̂kz
(k,j) − b̂iz

(i,j)

)
z(i,j)νcj

+ 2bi

(
∑

k

∑

j

b̂k ĉjz
(k,j) − b̂i

∑

j

ĉjz
(i,j)

)
∑

j′

ĉj′z
(i,j′)

(170)

= 2bi
∑

j

(
ẑ(∗,j) − b̂iz

(i,j)
)
z(i,j)νcj

+ 2bi

(
ẑ(∗,∗) − b̂iẑ

(i,∗)
)
ẑ(i,∗). (171)

Finally, the third term in (163) becomes

b2i E

{[
∑

j

cjz(i,j)
]2}

(172)

= b2i E

{[
∑

j

[
(cj − ĉj) + ĉj

]
z(i,j)

]2}
(173)

= b2i
∑

j

νcj z
(i,j)2 + b2i

[
∑

j

ĉjz
(i,j)

]2
(174)

= b2i

(
∑

j

νcjz
(i,j)2 + ẑ(i,∗)2

)
. (175)

Next, we analyze the second term in (160). Using the
expression forE {z | bi = bi} from (20), we have

−E {z | bi = bi}2 = −
[(
ẑ(∗,∗) − b̂iẑ

(i,∗)
)
+ biẑ

(i,∗)
]2

(176)

= −
[
ẑ(∗,∗) − b̂iẑ

(i,∗)
]2

− 2biẑ
(i,∗)

(
ẑ(∗,∗) − b̂iẑ

(i,∗)
)

− b2i ẑ
(i,∗)2 (177)

= −
[
∑

k 6=i

b̂kẑ
(k,∗)

]2
− 2biẑ

(i,∗)
(
ẑ(∗,∗) − b̂iẑ

(i,∗)
)
− b2i ẑ

(i,∗)2.

(178)

Finally, from (160) and (163), we know thatvar{z | bi = bi}
equals the sum of (166), (171), (175), and (178). Adding them
together and dropping the terms that cancel, we find that

var{z | bi = bi}

=
∑

k 6=i

∑

j

νbkν
c
jz

(k,j)2 +
∑

j

νcj

[
ẑ(∗,j) − b̂iz

(k,j)
]2

+
∑

k 6=i

νbkẑ
(k,∗)2 + 2bi

∑

j

(
ẑ(∗,j) − b̂iz

(i,j)
)
z(i,j)νcj

+ b2i
∑

j

νcjz
(i,j)2. (179)

The sum of the first three terms in (179) can then be rearranged
to form

νp ,
∑

k 6=i

νbk

[
∑

j

νcjz
(k,j)2 + ẑ(k,∗)2

]

+
∑

j

νcj

[
ẑ(∗,j)2 − 2b̂iẑ

(∗,j)z(k,j) + b̂2i z
(k,j)2

]
. (180)
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APPENDIX E
DERIVATION OF (36)

In this appendix we derive equation (36). Using (26) and
(27), we write theHm(·) term in (24) as

Hm

(
p̂i,m(t) + biẑ

(i,∗)
→m (t), νpi,m(t) + b2i

Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2bi

Nc∑

j=1

νcm,j(t)
[
ẑ(∗,j)→m (t)z(i,j)m − b̂m,i(t)z

(i,j)2
m

])

= Hm

(
p̂m(t) +

(
bi − b̂m,i(t)

)
ẑ(i,∗)→m (t), (181)

νpm(t) +
(
bi − b̂m,i(t)

)2 Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2
(
bi − b̂m,i(t)

) Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
→m (t)z(i,j)m

− νbm,i(t)

[
ẑ(i,∗)→m (t)2 +

Nc∑

j=1

νcm,j(t)z
(i,j)2
m

])

= Hm

(
p̂m(t) +

(
bi − b̂i(t)

)
ẑ(i,∗)→m (t) +O(1/M), (182)

νpm(t) +
(
bi − b̂i(t)

)2 Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2
(
bi − b̂i(t)

) Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m +O(1/M)

)
.

APPENDIX F
TAYLOR SERIESEXPANSION

In this appendix, we perform a Taylor series expansion of
(36) and analyze the result in the LSL to obtain (37).

We start by calculating the first two derivatives of theHm(·)
term from (36) w.r.t.bi. From (36), we find that

∂Hm

∂bi
= ẑ(i,∗)→m (t)H ′

m +

(
2
(
bi − b̂i(t)

) Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)
Ḣm, (183)

whereH ′
m denotes the derivative ofHm(·, ·) w.r.t. the first

argument andḢm denotes the derivative w.r.t. the second
argument, supressing their arguments for brevity. Equation
(183) then implies

∂Hm

∂bi

∣∣∣∣∣
bi=b̂i(t)

= ẑ(i,∗)→m (t)H ′
m (184)

+

(
2

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)
Ḣm,

and

∂2Hm

∂b2i
= ẑ(i,∗)→m (t)2H ′′

m +

(
2
(
bi − b̂i(t)

) Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)
ẑ(i,∗)→m (t)Ḣ ′

m

+

(
2

Nc∑

j=1

νcm,j(t)z
(i,j)2
m

)
Ḣm

+

[
2
(
bi − b̂i(t)

) Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

]

×
[
ẑ(i,∗)→m (t)Ḣ ′

m +

(
2
(
bi − b̂i(t)

) Nc∑

j=1

νcm,j(t)z
(i,j)2
m

+ 2

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)
Ḧm

]
(185)

which implies

∂2Hm

∂b2i

∣∣∣∣∣
bi=b̂i(t)

= ẑ(i,∗)→m (t)2H ′′
m +

(
4

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)
ẑ(i,∗)→m (t)Ḣ ′

m

+

(
2

Nc∑

j=1

νcm,j(t)z
(i,j)2
m

)
Ḣm

+

(
2

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)2

Ḧm, . (186)
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The Taylor series expansion of (24) can then be stated as

∆b
m→i(t, bi)

≈ const +Hm

(
p̂m(t) +O(1/M), νpm(t) +O(1/M)

)

+
(
bi − b̂i(t)

)
[
ẑ(i,∗)→m (t)

×H ′
m

(
p̂m(t) +O(1/M), νpm(t) +O(1/M)

)

+ 2

(
Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)

× Ḣm

(
p̂m(t) +O(1/M), νpm(t) +O(1/M)

)
]

+
1

2

(
bi − b̂i(t)

)2
[
ẑ(i,∗)→m (t)2

×H ′′
m

(
p̂m(t) +O(1/M), νpm(t) +O(1/M)

)

+

(
2

Nc∑

j=1

νcm,j(t)z
(i,j)2
m

)

× Ḣm

(
p̂m(t) +O(1/M), νpm(t) +O(1/M)

)
]

+O(1/M3/2), (187)

where the second and fourth terms in (186) were absorbed
into theO(1/M3/2) term in (187) using the facts that

(
4

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)
ẑ(i,∗)→m (t) = O(1/M1/2) (188)

(
2

Nc∑

j=1

νcm,j(t)z
(i,j)2
m

)
= O(1) (189)

(
2

Nc∑

j=1

νcm,j(t)ẑ
(∗,j)
m (t)z(i,j)m

)2

= O(1/M). (190)

which follow from theO(1/M) scaling ofνcm,j(t), as well as

from the facts that
(
bi − b̂i(t)

)2
is O(1/M) and the function

Hm and its partials areO(1).

Note that the second-order expansion term in (187) is
O(1/M). We will now approximate (187) by dropping terms
that vanish relative to the latter asM → ∞. First, we replace
ẑ
(i,∗)
→m (t) with ẑ

(i,∗)
m (t) in the quadratic term in (187), since(

ẑ
(i,∗)
→m (t) − ẑ

(i,∗)
m (t)

)
is O(1/M1/2), which gets reduced to

O(1/M3/2) via scaling by
(
bi − b̂i(t)

)2
. Note that we cannot

make a similar replacement in the linear term in (187), because
the
(
bi − b̂i(t)

)
scaling is not enough to render the difference

negligible. Next, we replaceνcm,j(t) with νcj (t) throughout
(187), since the difference isO(1/M3/2). Finally, as es-
tablished in [20], theO(1/M) perturbations inside theHm

derivatives can be dropped because they have anO(1/M3/2)
effect on the overall message. With these approximations, and

absorbingbi-invariant terms into theconst, we obtain (37):

∆b
m→i(t, bi)

≈ const +

[
ŝm(t)ẑ(i,∗)→m (t) + νsm(t)̂bi(t)ẑ

(i,∗)
m (t)2

+
(
ŝ2m(t)− νsm(t)

) Nc∑

j=1

νcj (t)z
(i,j)
m

(
ẑ(∗,j)m (t) − b̂i(t)z

(i,j)
m

)]
bi

− 1

2

[
νsm(t)ẑ(i,∗)m (t)2 −

(
ŝ2m(t)− νsm(t)

) Nc∑

j=1

νcj (t)z
(i,j)2
m

]
b2i ,

via the definitions of̂sm(t) andνsm(t) from (38)-(39) and the
following relationship established in [20]:

Ḣm

(
q, νq

)
=

1

2

[
H ′

m

(
q, νq

)2
+H ′′

m

(
q, νq

)]
. (191)

APPENDIX G
DERIVATION OF (69)

In this appendix, we show how (69) results in the LSL.
From (26) and (19), we have

p̂m(t) =
∑

k,j

b̂m,k(t)ĉm,j(t)z
(k,j)
m . (192)

Plugging (56) and (66) into the previous equation gives

p̂m(t)

=
∑

i,j

(
b̂i(t)− ŝm(t−1)ẑ(i,∗)m (t−1)νbi (t) +O(1/M3/2)

)

(
ĉj(t)− ŝm(t−1)ẑ(∗,j)m (t−1)νcj (t) +O(1/M3/2)

)
z(i,j)m

(193)

=
∑

i,j

b̂i(t)ĉj(t)z
(i,j)
m

− ŝm(t−1)
∑

i

νbi (t)ẑ
(i,∗)
m (t−1)

∑

j

ĉj(t)z
(i,j)
m

− ŝm(t−1)
∑

j

νcj (t)ẑ
(∗,j)
m (t−1)

∑

i

b̂i(t)z
(i,j)
m

+ ŝm(t−1)2
∑

i,j

ẑ(i,∗)m (t−1)ẑ(∗,j)m (t−1)νbi (t)ν
c
j (t)z

(i,j)
m

+O(1/M) (194)

= ẑ(∗,∗)(t)− ŝm(t−1)

(
∑

i

νbi (t)ẑ
(i,∗)
m (t−1)ẑ(i,∗)(t)

+
∑

j

νcj (t)ẑ
(∗,j)
m (t−1)ẑ(∗,j)(t)

)
+O(1/M). (195)

since the second-to-last term in (194) isO(1/M). Because the
first two terms in (195) areO(1), theO(1/M) term in (195)
vanishes in the LSL, resulting in (69).
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APPENDIX H
DERIVATION OF (76)

In this appendix, we derive (76). Plugging (74) and (75)
into (73) gives

νpm(t)

=

Nc∑

j=1

νcj (t)

(
ẑ(∗,j)m (t) − ŝm(t−1)

Nb∑

i=1

ẑ(i,∗)m (t−1)z(i,j)m νbi (t)

)2

+

Nb∑

i=1

νbi (t)

(
ẑ(i,∗)m (t) − ŝm(t−1)

Nc∑

j=1

ẑ(∗,j)m (t−1)z(i,j)m νcj (t)

)2

+

Nb∑

i=1

Nc∑

j=1

νbi (t)ν
c
j (t)z

(i,j)2
m +O(1/M1/2). (196)

Using the definition ofνp
m(t) from (72),

νpm(t)

= νpm(t) +

Nb∑

i=1

Nc∑

j=1

νbi (t)ν
c
j (t)z

(i,j)2
m

− 2ŝm(t−1)

[
Nc∑

j=1

νcj (t)ẑ
(∗,j)
m (t)

Nb∑

i=1

ẑ(i,∗)m (t−1)z(i,j)m νbi (t)

+

Nb∑

i=1

νbi (t)ẑ
(i,∗)
m (t)

Nc∑

j=1

ẑ(∗,j)m (t−1)z(i,j)m νcj (t)

]

+ ŝ2m(t−1)

[
Nc∑

j=1

νcj (t)

(
Nb∑

i=1

ẑ(i,∗)m (t−1)z(i,j)m νbi (t)

)2

+

Nb∑

i=1

νbi (t)

(
Nc∑

j=1

ẑ(∗,j)m (t−1)z(i,j)m νcj (t)

)2]

+O(1/M1/2) (197)

≈ νpm(t) +

Nb∑

i=1

Nc∑

j=1

νbi (t)ν
c
j (t)z

(i,j)2
m , (198)

where in the last step we retained only theO(1) terms, since
the others vanish in the LSL.

APPENDIX I
DERIVATION OF (81)

In this appendix, we derive (81). Treatingz(i,j)m as i.i.d.
zero-mean unit-variance Gaussian, the mean-squared valueof
the first term in (80) is (suppressing the SPA iterationt for
brevity)

E

{∣∣∣∣∣ν
r
j ĉj

Nb∑

i=1

νbi

M∑

m=1

νsmz(i,j)2m

∣∣∣∣∣

2}
(199)

= ĉ2j(ν
r
j )

2
∑

i

∑

i′

∑

m

∑

m′

(νbi )
2(νsm)2 E

{
z(i,j)2m z(i

′,j)2
m′

}

(200)

= O(1/M)

since(νrj )
2 = O(1/M2), ĉ2j = O(1/M), (νbi )

2 = O(1/M2),
(νsm)2 = O(1) and

E
{

z(i,j)2m z(i
′,j)2

m′

}
(201)

=

{
E
{

z(i,j)4m

}
= 3
[
E
{

z(i,j)2m

}]2
if (i,m) = (i′,m′)[

E
{

z(i,j)2m

}]2
if (i,m) 6= (i′,m′)

= O(1), (202)

where in (201) we used the fact thatE{z4} = 3[E{z2}]2 for
Gaussianz. Meanwhile, the mean-squared value of the second
term in (80) can be shown to be

E

{∣∣∣∣∣ν
r
j

∑

k 6=j

ĉk

Nb∑

i=1

νbi

M∑

m=1

νsmz(i,j)m z(i,k)m

∣∣∣∣∣

2}

= (νrj )
2
∑

k 6=j

∑

i

∑

m

ĉ2k(ν
b
i )

2(νsm)2 E
{

z(i,j)2m }E
{

z(i,k)2m

}

(203)

= O(1/M2). (204)

Thus, we see that the second term in (80) vanishes relative to
the first asM → ∞.

APPENDIX J
DERIVATION OF (84)

In this appendix, we derive (84). Plugging (40) and (41)
into the second half ofνrj (t) from (51), we find

∑

m

(
ŝ2m(t)− νsm(t)

) Nb∑

i=1

νbi (t)z
(i,j)2
m (205)

=
∑

m

[(
ẑm(t)− p̂m(t)

νpm(t)

)2

− 1

νpm(t)

(
1− νzm(t)

νpm(t)

)]

×
Nb∑

i=1

νbi (t)z
(i,j)2
m (206)

=
∑

m

((
ẑm(t)− p̂m(t)

)2
+ νzm(t)

νpm(t)
− 1

)∑Nb

i=1 ν
b
i (t)z

(i,j)2
m

νpm(t)

(207)

=
∑

m

(
E

{(
zm − p̂m(t)

)2

νpm(t)

}
− 1

)∑Nb

i=1 ν
b
i (t)z

(i,j)2
m

νpm(t)
,

(208)

where the random variablezm above is distributed according
to the pdf in (44).
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