
Northumbria Research Link

Citation: Crookes, Danny, Trainor, Sean and Jiang, Richard (2016) An Environment for
Rapid Derivatives Design and Experimentation. IEEE Journal of Selected Topics in Signal
Processing, 10 (6). pp. 1073-1082. ISSN 1932-4553

Published by: IEEE

URL: http://dx.doi.org/10.1109/JSTSP.2016.2592619
<http://dx.doi.org/10.1109/JSTSP.2016.2592619>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/27653/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

 1

Abstract— In the highly competitive world of modern finance,

new derivatives are continually required to take advantage of

changes in financial markets, and to hedge businesses against

new risks. The research described in this paper aims to accelerate

the development and pricing of new derivatives in two different

ways. Firstly, new derivatives can be specified mathematically

within a general framework, enabling new mathematical

formulae to be specified rather than just new parameter settings.

This Generic Pricing Engine (GPE) is expressively powerful

enough to specify a wide range of standard pricing engines.

Secondly, the associated price simulation using the Monte Carlo

method is accelerated using GPU or multicore hardware. The

parallel implementation (in OpenCL) is automatically derived

from the mathematical description of the derivative. As a test, for

a Basket Option Pricing Engine (BOPE) generated using the

GPE, on the largest problem size, an NVidia GPU runs the

generated pricing engine at 45 times the speed of a sequential,

specific hand-coded implementation of the same BOPE. Thus a

user can more rapidly devise, simulate and experiment with new

derivatives without actual programming.

Index Terms—Financial trading, Pricing engines, High

performance DSP.

I. INTRODUCTION

erivatives pricing is the preserve of the Quantitative

Analyst. In the highly competitive world of modern

finance, new derivatives are continually required to take

advantage of changes in financial markets, and to hedge

businesses against new risks [1]. In order to obtain the greatest

profit, or minimize risk exposure, first mover advantage is

desired. The faster a company can attain beneficial positions

through derivatives, the greater the benefit it can obtain in

market cascades before all profit potential is taken away (or

risk is increased too greatly) by other market participants

copying the first movers [2]. Therefore the ability to model

new market conditions quickly will put a financial company at

an advantage.

Paper submitted on 1 October 2015. This work was supported by the

Capital Markets Collaborative Network, and Citi Belfast.

Danny Crookes is with the School of Electronics, Electrical Engineering

and Computer Science, Queen’s University Belfast, Belfast BT7 1NN, UK

(email: d.crookes@qub.ac.uk).

Sean Trainor completed his PhD at Institute of Electronics,

Communications and Information Technology (ECIT), Queen’s University

Belfast, in July 2015. He is currently working in the City of London.

Richard Jiang is with Computer Science and Digital Technologies,

Northumbria University, Newcastle, UK (richard.jiang@northumbria.ac.uk)

There is a range of standard pricing engines which are used

to model and simulate different scenarios. Options are a

common special case of derivative, being based on the value

of a stock. While this paper and our environment is applicable

to other types of derivative (such as futures), most of the

specific examples used are options. Options can be divided

into two broad categories. Fixed exercise options (known as

European options), allow the option holder to buy (for a call

option) or sell (for a put option) the underlying asset(s) only at

the expiration date of the option contract. Variable exercise

options are known as American options when the option can

be exercised at any time between the purchase time and

expiry. Variable exercise options are known as Bermudan

options when the option can be exercised at a fixed set of

dates given in the option contract. In practice, American

option prices are usually modelled by assuming a finite

number of possible exercise dates. In this work we

concentrate on fixed exercise options.

A. European Options

A European Call Option is an option on a single asset, and is

non-path-dependent, which means that its payoff does not

depend on values attained by the asset between the starting

time and the time of expiry, but depends only on the final

value. The price path is described by the Black-Scholes

stochastic differential equation [3]:

��������� = ��	 + ����	� (1)

where �	� is the stock price at time 	, � is the interest rate, �

is the volatility of the stock price, and � is a standard

Brownian motion. The term ����	� is known as the

‘diffusion’ term. This term models how the paths will spread

over time, and the fact that it is a Brownian motion means that

the changes in this term over a small time interval Δ	 are

normally distributed with mean 0 and variance Δ	.

 The payoff at the time of expiry (�) of the option is:

 max 	�0, ��� − �� (2)

for a call option, and, for a put option:

 max 	�0, � − ���� (3)

K is the strike price, which is a guaranteed price at which the

asset can be bought (for a call option) or sold (for a put option)

at time �. Eq. (2) and Eq. (3) make clear that the option will

An Environment for Rapid Derivatives

Design and Experimentation

Danny Crookes, Senior Member, IEEE, Sean Trainor, Richard Jiang

D

 2

expire worthless if the option holder would lose money by

trading in the underlying asset, i.e. buying the asset at the

strike price and selling it in the market, in the call option case,

and vice versa in the put option case.

To obtain the present value of the payoff, the final payoff

value is discounted at a continuously compounded rate by

multiplying by the discount factor ����. The price �	� is a

random variable for all 	 ∈ �0, � , and we wish to calculate its

expected present value. The expected value !�" is the

integral, over the range of possible values of ", of each value # multiplied by the probability density at #, taken with respect

to #. If $�#� is the probability density at #, then !�" =% #$�#��#&�& , where $�#� may be zero on some of this range.

The expected present value of the option can be written as

 !�����ma x 	���� − �, 0� (4)

The distribution of the random variable ��� is given by the

solution of the stochastic differential equation (1), as follows

 ��� = �0� exp)*� − +, �,- � + �����. (5)

The random variable ���� is normally distributed, with mean 0 and variance �. Thus the log of the stock price is normally

distributed and the stock price is lognormally distributed.

 The expected present value is an integral with respect to the

lognormal density of ���, and it can be evaluated using the

Black-Scholes formula in terms of the standard cumulative

normal distribution function Φ:

0��0�, �, �, �, �� =

Φ1234*5�6�7 -8*98:;<;-�
<√� > − �����Φ1234*5�6�? -8*��:;<;-�

<√� > (6)

B. Asian Options

Asian options are path-dependent options on one underlying

asset, and this path-dependence means that Monte Carlo

methods are a good way to price them. An arithmetic Asian

option’s price depends on the average price of the underlying

asset at a preselected number of time points during the lifetime

of the option. The payoff of an arithmetic Asian option is::

 PA = max	 B0,			 +C ∑EF+C �	E� − �G	 (7)

for fixed times 0 = 	H < 	+ < ⋯ < 	C = �	. The starting time

is 0, and �	 is the expiry time. The expected discounted

payoff, i.e. the fair price for the option, is !�����KL .
 The price at each step in the price path can be calculated

from the previous one in the same way as the complete single

step in the European option:

�	E8+� = �	E� exp)*� − +, �,- �	E8+ − 	E� + �M	E8+ − 	E	NE8+. (8)

where 0 ≤ 	E < 	E8+ ≤ �, and Zi+1 is a sample from a

multidimensional standard normal distribution.

 Asian options have some advantages over European options.

For example, the averaging reduces the overall volatility, thus

reducing the risk for the option seller. Asian options are

therefore cheaper for the option buyer. Asian options also

reduce the risk of losses due to market manipulation, close to

the exercise time, when compared with those which depend

only on the underlying value at the exercise time. Asian option

pricing equations can be considered a mathematical

generalisation of the standard European call or put options

since, if there is only one step, they are equivalent.

C. Basket Options

A Basket option is an option whose payoff depends on the

value of multiple assets. The pricing equations for basket

options are a generalisation (to multiple dimensions) of those

for standard European or Asian options. Here we investigate

basket options, on P assets, described by the equation system:

 ��Q����Q��� = �E�	 + �E��E�	� (9)

where R = 0, … , P − 1	, and �E is the Rth component of a P-

dimensional Brownian motion. We consider the case of

constant interest rates �E and constant volatilities �E .
 The price path for each asset can be calculated

independently, using the same formula above (Eq. (8)). Now,

however, the random deviates (NE,U8+) are taken from a multi-

normal distribution; more correctly, the (j+1)
th

 time step of the

i
th

 asset. The elements in these vectors are correlated (unless

the distribution is standard multi-normal), and in order to

perform the necessary correlation quickly, a parallel

correlation function must be implemented.

 The payoff could depend on a weighted average of the final

asset price estimates, or on the maximum or minimum asset

price estimate (which is the case for e.g. lookback options). In

the case of the weighted average, the weighting used for an

asset can depend on, for example, the performance of that

asset, or on the quantity of each underlying asset in the basket.

With fixed parameter values and a fixed number of

parameters, it is not possible to model many useful market

scenarios. For example it has been shown that the volatility for

Equity Index Options should be non-constant, and it depends

on current price and time to expiry [4]. The payoff of some

derivatives is based on interest rates, and many interest rate

models have been developed for the pricing of these, with

interest rates being modelled with stochastic differential

equations (SDEs), which for interest rate r take the form:

 dr = g(r) dt + f(r) dW(t) (10)

where g and f are deterministic functions of r. Examples of

this are the Vasicek Model [5], or the CIR Model [6]. These

models are used for the pricing of derivatives such as Callable

Bonds [7] (bonds that can be bought back by the issuer for a

predetermined price at predetermined times). In some cases

these interest rate models may be used to simulate the interest

rate in other derivatives with more complex price path models,

and simulations of this type are possible with the generic

pricer presented later in this paper.

Derivative specifications presented to (or possibly by) the

option buyer will usually only affect the payoff of the

derivative, and not the model used to simulate the market

 3

conditions. However, the payoff specification will determine

whether information about the values taken at particular points

in the price path need to be recorded for later use, or if those

values should be used on-the-fly. For example, an option with

Asian payoff characteristics (i.e. the payoff depends on the

average value of the assets during the derivative’s lifetime)

will require the specification of time points, and will require

on-the-fly summation (for Arithmetic Asian Options) or

multiplication (for Geometric Asian Options) of the prices at

those points for the purpose of calculating the average value

taken on each price path. If Lookback characteristics are

specified, the maximum or minimum value taken along the

price paths will need to be recorded. The payoff specification

and an appropriate model of market conditions will allow the

derivative seller to determine an estimate of the correct price

of the derivative. How good the price estimate is will depend

on the quality of the model used for the underlying asset price

dynamics, and not on the payoff specification. Therefore we

concentrate on the generalisation of the asset price path model

to allow for better fitting to the conditions in the market.

In this paper we present a system in which the user can

interactively specify a derivative by entering the price path

model (within the constraints of a general model), specifying

any required new parameters, and the time-discretised formula

for each of the parameters. The generalised system (the

Generic Pricing Engine, GPE) can estimate the solution of any

stochastic differential equation whose solution can be

simulated using an Euler Scheme. The equations’ parameters

may also follow a stochastic process, or be time or state

dependent, as long as they can be discretised in the time

dimension. This allows for the simulation of many of the

stochastic models used in financial engineering. It should also

enable the system to be used for non-financial applications,

such as simulating the movement of small particles.

The paper is structured as follows. Section II presents the

basis for our generic model and the schemes for its

(approximate) simulation. Section III then presents our GPE

and the various inputs (user-defined formulae, etc.) which the

user can specify to define a new derivative. Section IV

discusses a range of stochastic processes where our GPE can

give an exact simulation. Section V begins by reviewing

existing work on parallelization of financial simulations. It

then presents an outline (sequential) implementation of the

simpler, and specific, BOPE, leaving Section VI to present the

parallel GPE implementation approach. Section VII gives

performance results for a range of problem sizes, architectures

and coding languages. The main conclusions are summarized

in Section VIII.

II. THE GENERIC MODEL AND ITS SIMULATION

Glasserman [8] investigated a more general derivatives

pricing model which encompasses all the previously described

models, and more. He states that most models in financial

engineering can be described by a stochastic differential

equation of the following form:

 �"�	� = VW"�	�X�	 + YW"�	�X���	� (11)

Typically, "�	� is the price at time 	, �"�	� is the predicted

change in price of the subsequent time period �	, so that "�	 + �	� = "�	� + �"�	�. a is called the drift term (in the

simple case, the interest rate), and b is the diffusion term (in

the simple case, the volatility). The function a is typically

applied to a set of P asset prices plus the time 	, and produces

a new set of P values; the function b likewise takes a set of P

asset prices plus the time 	, and produces a new set of P × [

values. � is a [-dimensional Brownian motion (actually it can

be a more general Levy process). Over a time period, dW(t) is

essentially a set of normally distributed random numbers. We

use Eq. (11) as the basis of our GPE.

 In the general case, it is not possible to simulate the solution

to Eq. (11) (which is a stochastic process) exactly (see Section

IV for some exceptions). Hence all these methods usually

entail some discretisation error, and there is usually a trade-off

between the rate of convergence and the level of

computational complexity: more steps in the price paths will

mean more accuracy and a faster error convergence rate.

 Here we review two common schemes – the Euler and

Milstein Schemes – and explain the choice of Euler.

 The solution to Eq. (11) (with certain technical restrictions)

can be simulated approximately by using an Euler scheme. An

Euler scheme is the simplest method to simulate SDEs and,

apart from its simplicity, one of its benefits is almost universal

applicability. The idea is to divide the whole time interval of

interest into a discrete time grid and then to simulate a discrete

process to approximate the original continuous-time SDE on

the time grid according to its finite-difference counterparts.

The Euler Scheme to solve this equation takes the form:

 "�	E8+� = "�	E� + VW"�	E�X�	E8+ − 	E� + YW"�	R�X���	R�							 (12)

where ���	E� = \]�	��	�NE8+ ≈ M	E8+ − 	ENE8+, with NE
being a sample from a multi-dimensional standard Normal

distribution for every R.
 The Euler Scheme method is actually derived from the

Taylor Expansion of the SDE (Eq. (11)), by keeping just the

first three terms in the Taylor expansion, giving Eq. (12).

 The alternative Milstein scheme, which in some cases may

give better convergence than the Euler Scheme, is obtained by

keeping the first four terms of the Taylor expansion. This

scheme is of order one in both the drift and diffusion

components. A problem with the Milstein Scheme is that it

requires the calculation of the derivative of the function Y,

which may be computationally expensive.

III. A GENERIC PRICING ENGINE (GPE)

We use Glasserman’s equation, Eq. (11), as the basis for our

GPE. "�	� is the value, at time 	, of something whose price is

being modelled (e.g. an underlying asset). Thus �"�	� is the

infinitesimal change in the value " over time �	. To model

the constrained randomness of ", we assume "�	� depends on

a random process ��	�, whose ‘steps’, ��	E8+� − ��	E�, are

normally-distributed. Thus �"�	� will depend on ���	�.

More generally, Eq. (11) enables us to extend the model to

enable the price paths to depend on some function of " and/or 	. Thus in Eq. (11), V and Y are functions which model the

non-random and random processes respectively. The user can

 4

define formulae for these functions, for each of the d assets.

This generic model can not only describe the stochastic price

path of the underlying assets of a derivative, but it can also

describe the path of a stochastic variable representing, for

example, interest rates or volatilities, which may be required

in cases of assets with very complex price path dynamics.

 In defining our Generic Pricing Engine, we provide

essentially the Euler scheme in Section II above, but

generalised a little to allow the option of multiplying the

factors instead of always simply adding them. Also, we allow

the option of exponentiating the final factor. Thus the GPE

allows anything that can be written in the form:

"�	E8+� = "�	E� ⊕ V�"�	E�, 	E� ⊕ ����Y�"�	E�, 	E�NE8+� (13)

where V is a vector of functions (defining the drift, as

described above), and Y is a matrix of functions (defining the

diffusion). The functions can be any functions of "�	E� and 	E ,
provided they can be computed by equivalent functions in the

implementation environment. ⊕ can be either the

multiplication or addition operator, and ��� symbolises that

this last part of the equation can optionally be chosen to be

exponentiated. Each function can also have random factors

using normally distributed random values, and can use the size

of the time interval 	E8+ − 	E. NE8+ is a vector sample from a

multidimensional standard normal distribution.

 The main part of the GPE is the path simulation. However,

the definition of the derivative price itself is:

 price = discount factor × payoff (14)

where the payoff depends on the path simulation results. The

GPE implements general path simulation capabilities.

A. Using the GPE: the User Interface

 Our system has a user interface which enables the user to

specify a derivative interactively, by typing all the parameters,

asset starting values, options and functions required for Eq.

(13). Functions are typed as text, selected from a wide set of

predefined functions which can be used. To model a

derivative, the user enters the following:

• The initial values for the state (price) vector ".

• If using strike values, these must be specified, plus

whether the derivative is a ‘put’ or a ‘call’.

• Whether to use additive or multiplicative steps.

• A vector of functions (a) defining the drift (one per asset)

• Whether to exponentiate the diffusion component.

• A [× [matrix of functions (b) defining the diffusion.

• Whether to use final, average, max or min path values.

Examples which use final path values are European

options on a stock or basket of stocks. Asian options use

average path values, and lookback options use maximum

or minimum path values.

• Whether to use a sum, max or min reduction across paths.

The sum would normally be used to calculate the average

(expected) payoff of a derivative, whereas the maximum

or minimum would be used to check the extreme values -

possibly for error checking.

• Whether to use average, max or min across final asset

prices. Some basket options use a weighted average of the

values for each underlying asset. A derivative whose

payoff depends on the best or worst performing asset

would use maximum or minimum here.

For convenience, it is possible to specify that all the drift or

diffusion functions are the same for all assets (with the matrix Y being diagonal) – in which case only one function needs to

be specified for drift or for diffusion.

 When entering a more complex function, if at any point a

new working variable or function is needed, the user enters the

keyword ‘NEW’, and is then prompted each time to type in

the variable or function to be used at this point. Later, these

formulae will be integrated and converted to code.

IV. GPE FOR METHODS WITH EXACT SIMULATION

The Euler Scheme and its refinements and extensions, detailed

above, can be used to simulate a wide variety of stochastic

processes. However, these methods entail some discretisation

error. In certain situations, though, it is possible to simulate

exactly, without discretisation error. To demonstrate the power

and flexibility of our GPE, we now give three examples of

exactly simulable processes which can be specified in our

GPE, and show the settings necessary to obtain these.

A. Brownian Motion

A multi-dimensional stochastic process ���	�, 0 ≤ 	 ≤ �� is

called a standard Brownian motion on ℝa if:

• ��0� = 0

• The mapping 	 ↦ ��	� is continuous on �0, �
• The increments ��	H�,��	+� − ��	H�, … , ��	c� −��	c�+� are independent for all 0 ≤ 	H < 	+ < ⋯ < 	c ≤ �

• ��	� − ��\�~e�0, �	 − \�fa� for all 0 ≤ \ < 	 ≤ �,

and fa is the P × P identity matrix.

The paths of standard Brownian motion can be simulated by

setting ��0� = 0, sampling N+, N,, … , NC independently from e�0, fa� and using the following algorithm:

 ��	E8+� = ��	E� + M	E8+ − 	ENE8+	 (15)

A general Brownian motion "�	�, which is different from

standard in that its increments follow a general multi-Normal

distribution, can be simulated as follows:

 Let g ∈ ℝa be the mean of the multi-Normal distribution,

and let Σ be its covariance matrix (it must be symmetric and

positive semi-definite, and we consider only the positive

definite case). Find, by Cholesky factorisation (to obtain a

lower-triangular matrix and thereby reduce the number of

multiplications and additions needed), a matrix i such that ii� = Σ. If i is P × [, let N+, … , Na be independent standard

Normal random vectors in ℝc, and use the algorithm:

 "�	E8+� = "�	E� + �	E8+ − 	E�g	 + M	E8+ − 	EiNE8+ (16)

For greater generality, the parameters can be time-dependent: g�	� and i�	�. This can be modelled in the GPE as follows:

• Set the "�	H� values

• Select additive steps

 5

• Set each ‘V’ function to be ‘constant’× j (j stands for Δ	E = 	E8+ − 	E)
• Set each ‘Y’ function to be ‘constant’× √j.

B. Gaussian Short-Rate Models

In some cases, instead of being constant or deterministically

time varying, it is beneficial to model the interest rate with a

stochastic process. Some of the most commonly used

stochastic processes for this are Gaussian processes.

A general class of Gaussian process models, in ℝa, used for

short rates is described by

 �"�	� = kWY − "�	�X�	 + j���	� (17)

where k and j are P × P matrices, and Y, W(t), "�	� ∈ ℝa,

and where the coefficients can also be deterministically time-

varying. The short rate ��	� can then be specified by ��	� =V�"�	�, where V is constant or deterministically time-varying.

When k is non-singular and diagonalisable, a multi-

dimensional simulation can be reduced to multiple

independent scalar simulations, linked only through the

correlation matrix from the ���	� term. It can also be

reduced to scalar simulations when k is not diagonalisable, but

all coefficients are deterministically time-varying.

 This model encompasses other Gaussian short-rate models

such as the Vasicek, Ho-Lee and Hull-White models. This can

be modelled in the GPE as follows:

• Set the "�	H� values

• Select additive steps

• Set each ‘V’ function to be: �e!� × "�0 + e!� × "�1 + ⋯+ e!� × "�P − 1 + e!�� × j

• Set the constant (or time dependent) values for the

‘e!�’ variables when prompted by the UI.

• Set each ‘Y’ function to be ‘e!� × √j’ (and set the

constant or time dependent values (or functions) for the

‘e!�’ variables when prompted).

C. Square-Root Diffusions

A one dimensional stochastic process "�	� described by:

 �"�	� = VWY − "�	�X�	 + �M"�	����	� (18)

is known as a square-root diffusion. Models of this kind have

been proposed by Heston [9] as a model of the stochastic

volatility of an asset, and also by Cox, Ingersoll and Ross [6]

as a model of the short rate.

 Models of this kind can be simulated exactly by drawing

samples from an appropriate non-central chi-squared

distribution and a Poisson distribution, as well as the standard

normal distribution. This exact simulation procedure,

however, is difficult to parallelise, and the resulting code will

most likely be slow; it would also require a large amount of

memory to store pre-calculated random values. The exact

simulation procedure is therefore not implemented in our

pricer, and an Euler approximation is used instead:

 "�	E8+� = "�	E� + V�Y − "�	E��	E8+ − 	E� +

																																												�M"�	E�8M	E8+ − 	ENE8+															(19)

The multi-dimensional case, including when the underlying

1D processes are correlated, has been studied in [10]. They

study processes of the form:

 �"� = g�"���	 + ��"����� (20)

on a suitable state-space j ⊆ ℝa (for some functions �, j will

be a strict subset), with g: j → ℝa and ���: j → o� affine

(linear in "�), where o� is the space of real symmetric P × P

matrices. It is shown that Eq. (24) can be expressed as:

 �"� = �V"� + Y��	 +

											Σ
p
qr

Mv+�"��	 	0	 	… 	0		0	 	Mv,�"��	 	… 	0		 	 	⋱ 		0	 	… 	0	 	Mvu�"��	v
wx���		 (21)

where V ∈ ℝa×a, Y ∈ ℝa, Σ ∈ ℝa×a, and vy�"�� = zE + {E ∙X~ such that ∀R, zE ∈ ℝ and {E ∈ ℝa. (Any affine map can be

represented by a matrix multiplication followed by a vector

addition.) This model unifies and strictly extends previous

affine models to the maximum possible degree. Subject to

some technical regularity conditions, the coefficients in Eq.

(21) can also be made to be time dependent.

These models, although very general, and probably suitable

for the vast majority of models required in financial

engineering, do not cover all possible Ito processes (and, if the

matrix V is non-diagonalisable, are not themselves Ito

processes). In the general case, Ito integrands, represented by � in Eq. (24) are not required to be linear in "� (see [11]). The

pricer allows more general formulae than this to be used,

closely matching the general specification Eq. (11).

This can be modelled in the GPE as follows:

• Set the "�	H� values

• Select additive steps

• Set each ‘V’ function to be: �e!� × "�0 + e!� × "�1 + ⋯+ e!� × "�P − 1 + e!�� × j

and enter the values for the ‘e!�’ variables

• Set each ‘Y’ function (the diffusion term) to be either e!�× Me!� × "�0 + e!� × "�1 + ⋯+ e!� × "�P − 1 + e!�× √j
 or zero (if not on the diagonal). Again, the values or

functions for the ‘e!�’ variables should be entered.

In addition to these three cases above, we have also demon-

strated that the GPE can be used to obtain exact simulations of

Geometric Brownian Motion, and for simulations using

forward price data [27].

D. Including the Discount Factor in our GPE

To estimate the current price of a derivative, we need to

discount the estimated payoff for some future time, using Eq.

(14). The discount factor used for this can be calculated from

the interest rate process used in the derivative model. If the

interest rate process is ��	�, then the discount factor is: �� % �������6

 6

We can estimate the above integral by using an Euler scheme: ΣEFHa�+��	E�Δ	E
where 	H = 0, 	a = � (the final time), and Δ	E = 	E8+ − 	E.
The payoff of the derivative is multiplied by the discount

factor to obtain the current value of the derivative.

The user will be asked to specify whether they wish to

simulate the discount factor as part of the calculation. When

specifying the ‘a’ functions, any ‘NEW’ variables will be

labelled as ‘A_i_j’, with ‘i’ being the row in the vector ‘a’ (of

functions), and ‘j’ being the position of the function in that

row (‘j’ is zero for the first ‘NEW’ variable, one for the

second, and so on). After specifying the formula for each ‘a’

function, if that formula contains any ‘NEW’ variables, then

each will be displayed by its label, and the user will be asked

to enter the value or function (which can depend on time, the

current state vector and/or have a random element) for that

variable. If the user has said they wish to calculate the

discount factor, then once they have specified all the ‘NEW’

variables in an ‘a’ function, these ‘NEW’ variables will be

listed by their new label and specified value/function, and the

user will then be asked to enter the label of the ‘NEW’

variable they wish to use as the interest rate.

V. IMPLEMENTATION OF A CORE PRICING ENGINE

Before considering the acceleration of pricing simulations (in

Section VI), in this section we outline just the method for

simulating the simpler Basket Option Pricing Engine (BOPE).

This will later be extended to give the parallel GPE.

 At the heart of the Monte Carlo method is the generation of

a large number of paths, which are then reduced to a single

value (the price estimate) by taking the average. For

simulating Brownian Motion, this requires a large set of

normalised random numbers, and several reduction operations.

Thus the pricing core implements the expression:

						$RPV�K�R��	 = 	�3�V��	V, �2�V��	�,	 �1�V��	\, �V����V	�_��R����, V, \ ���
where a is an asset, p is the path index, s is a step, and F1, F2

and F3 are reduction operators (such as Sum, Average, Max).

 In the pseudocode in Figure 1, the reduction operation �1�V��	\, ��R����, V, \ � means ‘reduce the set of values ��R����, V, V��	�V���\	�$	\ , for a fixed � and V, to a single

value’. Similarly for the reduction operations �2�V��	�, �V	ℎ��\��	��, V � and �3�V��	V, V\\�	��\��	�V �.

Generate set of normalised �VP���e��Y����, V, \ ;
For every path �

 For every asset V

 /* Calculate series of prices for path �, one for each step */

 For every step \

 Calculate ��R����, V, \ using �VP���e��Y����, V, \ ;
 �V	ℎ��\��		��, V 	= 	�1	�V��	\, ��R����, V, \ �;

For every asset V V\\�	��\��	�V 	= 	�2	�V��	�, �V	ℎ��\��	��, V �; $RPV�K�R��	 = 	�3	�V��	V, V\\�	��\��	�V �;

Figure 1 Pseudo-code for the sequential BOPE

For example, to obtain any of the European, Asian or Basket

Option Pricing Engines, we set the parameters and reduction

operators as shown in Table I.

TABLE I

Settings to obtain a range of standard deriviatives

Option Assets Steps F1 F2 F3

Euro 1 1 Final value Average Single

member

Asian 1 Number

of steps

Average Average Single

member

Basket Number

of assets

Number

of steps

Final value

or Average

Average Weighted

Average *

(*If the payoff of the basket depends on the best performing asset, then �3 is

Maximum instead of the weighted average.)

Memory constraints mean that it is not possible to store the

complete arrays �VP���e��Y����, V, \ and ��R����, V, \
in Figure 1. We therefore split the computation into

appropriately sized batches and accumulate the results. Figure

2 gives a simplified description of the batched version, where

the 3D arrays labelled by path, asset and step, become, for

conceptual purposes, 4D arrays labelled by batch, path, asset,

and step. The path dimension is broken into smaller batches.

The results of each batch calculation are combined (reduced)

on-the-fly, and a final calculation over the asset results is

performed to obtain the final price estimate. Performing a

reduction on a set of batches relies on the property:

	 F*�sequence�	=	F’�all	subsequences,	F�subsequence��	
where for �∗ = oV# or Σ (sum), �’ = � = oV# or Σ; and for �∗ = average, �	 = Σ and �’	 = Σ followed by a final division.

For every batch Y

 Generate new set of normalised �VP���e��Y���Y, �, V, \ ;
 For every path � in 1…K /* K = 	�	V�_�V	ℎ\	/		�	V�_YV	�ℎ�\ */

 For every asset V

 /* Calculate series of prices, one for each step */

 For every step \

 Calculate ��R���Y, �, V, \ using 																																																																										�VP���e��Y���Y, �, V, \ ;
 �V	ℎ��\��	�Y, �, V 	= 	�1	�V��	\, ��R���Y, �, V, \ �;

 For every asset V

 YV	�ℎ��\��	�Y, V 	= 	�2_�V�	1	�V��	�, �V	ℎ��\��	�Y, �, V �;

For every asset V 					V\\�	��\��	�V 	= 	�2_�V�	2	�V��	Y, YV	�ℎ��\��	�Y, V �; $RPV�K�R��	 = 	�3	�V��	V, V\\�	��\��	�V �;
Figure 2 Simplified pseudo-code for the BOPE

VI. PARALLEL IMPLEMENTATION OF GPE

In this section we firstly review existing work on acceleration

of financial simulations using GPUs, multicores and FPGAs.

Then we present our parallel implementation environment,

and finally discuss the parallel implementation of the GPE,

extending the simple BOPE simulation method above.

A. Previous work on acceleration of Pricing Engines

Some work has been done in the acceleration of American

options pricing on GPUs using Monte Carlo simulations, with

 7

Abbas-Turki and Lapeyre [12] reporting speedups of 4.8x to

8.7x on one GPU over a sequential CPU implementation for

single asset American option, with GPU speedup increasing

with the number of steps in the simulation paths. Joshi [13], on

the pricing of Asian options, achieves a GPU speedup of 150x

over a CPU using quasi-Monte Carlo simulation (which uses

low discrepancy sequences instead of random numbers to

increase speedup, but is dimension dependent). Tree methods

for pricing options have also been implemented on GPUs; for

example Solomon et al [14] implement a trinomial option

pricer for single asset American lookback options. They

report speedups of up to 100x for large numbers of time steps;

however their method will not work for more than one

underlying asset. Several authors have implemented finite

difference methods on GPUs; for example Egloff [15]

implements a finite difference solver for options on one

underlying asset (using CUDA). This system allows multiple

single asset options to be priced, one on each multiprocessor

on the GPU, and it is necessary to have many individual

options in order to maintain high GPU occupancy. An average

speed-up of around 24x is achieved over a sequential CPU

implementation. It is suggested that finite difference methods

for more underlying assets would achieve even greater

speedups over the equivalent CPU implementation because

more independent matrix equations would need to be solved.

In a later paper [16] the author goes on to implement a two

asset option pricer, which has enough necessary computation

to occupy the GPU without needing to price more than one.

Speedups of 70x are achieved over a single core CPU, and 30x

over a multithreaded 4 core CPU. The author concludes that,

for single asset pricing problems, 300 or more options are

needed to sufficiently occupy the GPU, but for two asset

problems, one option is sufficient. This illustrates the

extremely rapid growth in size of finite difference

computations with increasing numbers of underlying assets.

Monte Carlo methods for option pricing have been

implemented on GPUs, mostly for European type options;

however, some studies in parallel Monte Carlo simulation on

GPUs have shown that good results can be achieved even for

American options, with NVidia researchers using a least

squares method to estimate the optimum exercise time [17].

Option pricing has been accelerated using an FPGA. De

Shryver et al [18] found a Xilinx Virtex-5 FPGA accelerated

system to be slower, but 2.5 times more energy efficient, than

a Tesla C2050 GPU accelerated system for a one dimensional

Heston (stochastic volatility) option pricing model. The

authors predict that 3 such FPGAs would give similar speeds

to the GPU while consuming only 3% of the energy, if the full

calculation were performed on the FPGAs. Woods et al [19]

used an FPGA to simulate Brownian Motion using Quasi-

Monte Carlo methods, giving a 50 times speedup over a single

thread CPU version, even though recursive algorithms and

double precision are used (which, as the authors note, are “not

normally associated with successful FPGA computing”).

FPGAs have also been used for Credit Derivatives pricing

[20], which involves simulating many scenarios (Monte Carlo

simulation) and calculating the loss in each for a set of assets

(debt obligations); then the average of these losses gives the

overall expected loss. Other work employing FPGAs for

option pricing include Tse et al [21, 22], where the FPGA

implementation is compared with a GPU implementation and

is found to be faster (more than 2 times) and more energy

efficient (more than 10 times). However the difficulty in

programming FPGAs, and the skills and time required to do

so, means that adoption of this technology by financial

companies is difficult. FPGA pricing programs will usually

have to be fixed, in order to be easy to use without expert

knowledge, limiting their usefulness. Additionally, FPGAs do

not use standard floating point, and usually use fixed precision

arithmetic, which could make accuracy a concern, as well as

giving less impressive speedups than GPUs for floating point

intensive programs. Some progress has been made towards

simplifying FPGA programming for high productivity [23],

and, conveniently, OpenCL can also be used on some FPGAs

[24], meaning that, in cases where they are most suitable, it is

possible to port existing code to FPGAs.

In a study of the applicability of the newer Intel MIC

architecture to the problem of pricing American options, it

was found that the MIC chip gives a speedup of 28 times over

a single CPU core, while the 32 core server gives a speedup of

21 [25].

B. Parallel implementation environment

We selected two parallel acceleration architectures: GPUs and

multicores. For portability across these platforms, we coded

the GPE in OpenCL. For benchmarking purposes, we also

coded the specific BOPE in CUDA (for a GPU) and in C (for

multicore). OpenCL was chosen because of the availability of

compilers for NVidia GPUs, Intel multicores and, in the

longer term, for FPGAs. The Intel OpenCL compiler not only

distributes the computation over the cores, but also

automatically exploits the vector processing capability of the

Intel architecture. One negative aspect of using OpenCL is the

lack of optimised libraries for operations such as parallel

random number generation (RNG). NVidia’s libraries are

available only in CUDA and not in OpenCL. This required us

to develop our own parallel algorithm for RNG in OpenCL.

 A key advantage of using OpenCL is the fact that the

OpenCL program is compiled at runtime. The OpenCL

program is held as a string (the program source string).

Because this string can be generated by the program at

runtime before compilation, this facilitates the automatic

generation of code to implement the user-supplied formulae in

the user’s derivative specification. The user can specify any

function for which there is an OpenCL function.

C. Parallel implementation of the GPE

Implementation of the pricing engine has three distinct

parts: random number generation, correlating the random

numbers, and the pricing core. The first two parts are fully

parallelisable, as they require no communication between

individual threads, and the threads will be fully utilised. In the

third part, the reduction operators generally mean that not all

threads will be active during the reduction computation.

The first part, random number generation, can be

parallelised in several ways. Each thread could be given its

own copy of the random number generator, and be seeded

with a simple random generator. Another option is to give

each group of threads, that have access to a shared memory, a

 8

copy of the generator, or to divide this memory up and have

multiple generators sharing one of these blocks of memory.

Manssen et al [26], using CUDA, survey a number of RNG

types, and the authors implement a version of a XorShift

generator, and to use the skip-ahead method to avoid sequence

overlap. The skip-ahead method in their paper involves

multiplying the original state vector by a bit-shifting matrix,

with the number of multiplications by this matrix equal to the

block number of the thread block generating that part of the

sequence. In order to speed up processing, the matrix is pre-

computed. The necessity of this matrix multiplication is a

drawback of using this method of parallelisation. Therefore, in

order to make our parallel RNG portable, and to avoid the

necessity of costly matrix computations, our RNG is

implemented by giving each thread its own copy of a

sequential generator, and seeding the threads using a simple

random number generator.

The second part of the program, the correlation of the

random numbers to produce samples from the required

multivariate Normal distribution, is parallelised by having

each thread work on its own section of the random number

array in a coalesced manner. In order to obtain the correlated

samples, batches of random numbers, each batch equal in size

to the number of underlying assets, are taken to be the

elements of a random vector. Each random vector needs to be

multiplied by a correlation matrix. The correlation matrix is

the same for all random vectors, and so is pre-computed on the

host and transferred to the device. This matrix will be accessed

many times, and by all threads, so a copy is stored in the

shared memory of each multiprocessor.

The third part of the program, the pricing core, uses the

previously generated and correlated random numbers. It

carries out the actual price path generation, using a pricing

formula and the initial input values for asset prices, interest

rates, volatilities, time to expiry, etc. Monte Carlo-based

simulation is embarrassingly parallel, so we allocate one

thread to each path in the current batch. This corresponds to

parallelizing the for loop in Figure 2:

 for every path p in 1..P …

The paths are independent, so the pricing core is easily

parallelized in this way. When all the threads for a batch have

produced their result, these results need to be reduced. We use

a standard binary tree reduction approach, which ensures some

parallelism, and also enhances the accuracy of the floating

point reduction.

 Our implementation of the GPE can be run on either a GPU

or a multicore processor, with only the number of threads and

blocks needing to change to migrate between architectures.

 In order to implement the GPE, it was necessary to change

the order of the loops encountered by each thread. Previously

it was possible to travel along the complete path (iterating

through all the steps) for each asset and then move on to the

next asset until all assets had been valued. In the generalised

version the full state information from the current (vector)

point, i.e. the state vector, may be used in the calculation of

the next point, depending on the formulae entered by the user

for the ‘a’ and ‘b’ components. In fact, because each variable

may be used in the calculation of the next point, it is necessary

to add an extra loop (within the ‘steps’ loop) over the

underlying assets in order to update the state vector.

Instead of having loops in the OpenCL code to iterate over

the assets to calculate the values for the ‘a’ component

functions and ‘b’ component functions, a kind of loop

unrolling is used. Figure 3 gives the pseudocode for the

parallel GPE. For clarity, it does not show the outer loop

iteration over batches.

For each path � in parallel /* One thread per path */

 For every step \ /* Note reordering of step & asset loops */

 For every asset V /* Extra loop over the assets */

 Update the state vector using the user specified functions;

 /* Calculate prices, one for each asset, possibly using all or part

 of the last state vector for each asset price calculation */

 For every asset V

 Calculate ��R����, V, \ ;
 For every asset V

 �V	ℎ��\��	��, V 	= 	�1	�V��	\, ��R����, V, \ �; 										Y���[��\��	\���, V =																															�2_�V�	1�V��	�V	ℎ\K��0���[, �V	ℎ��\��	��, V �;

For every asset V 	V\\�	��\��	�V 	= 	�2_�V�	2	�V��	Y���[\, Y���[��\��		���, V �; $RPV�K�R��	 = 	�3	�V��	V, V\\�	��\��	�V �;
Figure 3 Simplified pseudocode for the parallel GPE

Within the hardware constraints and library constraints, etc.,

any instance of the general, Euler discretised formula, Eq.

(12), can be generated with the use of prototype functions for

the ‘a’ and ‘b’ components. The user specifies one function for

the ‘a’ component for each asset, and one for the ‘b’

component for each asset. The formulae for the component

functions can be time dependent, stochastic, or dependent on

the current state vector (in keeping with the general formula).

The prototype functions are modified accordingly and inserted

into the OpenCL prototype state vector calculation string,

which, in turn, will be inserted into the program source string.

Function calls for the newly created functions are created from

prototype function call strings. These are inserted into the

main price path calculation string, which is in turn inserted

into the program source string. The completed source string is

then passed, as usual, to the OpenCL runtime.

 The constraints are as follows:

• The number of simulations must be a power of two.

• The allowable mathematical operators within each

function are those available in the C/OpenCL libraries.

• The allowable mathematical reduction operations across

steps are: average, maximum, minimum.

• The allowable binary reductions across simulations

(paths) are: sum, maximum, minimum.

• The allowable mathematical operations across assets are:

sum, average, maximum, minimum.

• The pricer currently only allows Normally distributed

random values to be selected.

• The intermediate values generated along each path are not

stored. It may be desirable in some cases to store these

values for future use, for example if the engine was used

to simulate a complex model of the interest rate, the

values of which were to be used for pricing simulations.

 9

VII. TIMINGS AND PERFORMANCE

In the tests below, the GPU was an NVidia GTX670, with

2GB RAM. Using the maximum allowable number of threads

per block is optimal for this type of program. Therefore, the

number of threads per block is fixed at 1024. For the multicore

version, a 4-core Intel Xeon E31245, 3.3GHz with 16GB

RAM running 64-bit Windows 7, was used. The number of

threads per block is 8, and the number of blocks is 1024.

For comparison purposes, we used the GPE to create the

standard BOPE, by supplying the appropriate functions and

settings. We also separately coded the BOPE in C, CUDA and

OpenCL, to give us benchmark performance for comparison.

Table II shows the execution time for the specific, hand-coded

BOPE, for nine problem sizes: three different numbers of

assets (8, 16 and 32), and three different numbers of paths for

improving the accuracy of the Monte Carlo simulation (2
20

,

2
25

, 2
30

 – from one million to one billion). There are four

implementations: a 1-core, sequential implementation in C; a

4-core implementation in OpenCL; and two GPU

implementations: one in CUDA and one in OpenCL. The

final column shows the speedup obtained for BOPE by the

GPU relative to the sequential implementation (the two GPU

implementations are practically identical in speed).

TABLE II

Timing results for the Basket Option Pricing Engine (BOPE) on 1-

core (C), 4-core (OpenCL), GPU (CUDA) and GPU (OpenCL) for

varying numbers of assets and total paths.

Num.

Assets

Total

Paths

1-core

C

(s)

4-core

OpenCL

(s)

GPU

CUDA

(s)

GPU

OpenCL

(s)

Speedup

(GPU

 vs C)

8 2,H 5.3 0.5 0.04 0.04 133

8 2,� 171 14.6 1.2 1.2 143

8 2�H 5,462 470 37 38 144

16 2,H 11 1 0.1 0.1 110

16 2,� 351 32 3.2 3.2 110

16 2�H 11,214 1055 103 102 110

32 2,H 23 2.5 0.3 0.3 77

32 2,� 730 79 9.3 9.4 78

32 2�H 23,359 2519 298 303 77

Table II shows that, for the maximum problem size, the GPU

gives a speedup of around 77 (about 5 minutes as opposed to

six and a half hours). A single chip with four cores gives a

speedup of between 11 and 9. The latter shows the

effectiveness of the Intel compiler in exploiting the

vectorisation capabilities of the Intel core (which could give a

theoretical speedup of 4x per core). A further conclusion we

can draw is that, for the hand-coded BOPE, there is little

difference between the performance of CUDA and OpenCL.

For our second test, Table III gives results for the GPE-

generated version of BOPE, for the same range of problem

sizes, and compares with the BOPE timings from Table II.

 From Table III one slightly surprising observation is that,

while going to the GPE (with user-input functions at runtime)

from BOPE on a multicore incurs only a small extra cost, on

the GPU the speed is reduced by a factor of up to 1.9. This

has to do with the way functions are handled by the respective

compilers, and the inability of the NVidia OpenCL compiler

to handle functions as first class objects efficiently. This was

not an issue with BOPE, where every function was hard

coded. Nevertheless, on the largest problem size, the GPE on

the GPU still gives a speedup of 45, while a 4-core processor

achieves a speedup of approximately 9.

TABLE III

Timing results for the OpenCL Generic Pricing Engine (GPE) and

BOPE on GPU and selected 4-core settings.

Num.

Assets

Total

Paths

GPU

GPE

(s)

GPU

BOPE

(s)

4-core

GPE

(s)

4-core

BOPE

(s)

8 2,H 0.1 0.04

8 2,� 2.7 1.2

8 2�H 84 38 510 470

16 2,H 0.2 0.1

16 2,� 6.4 3.2

16 2�H 204 102 1080 1055

32 2,H 0.54 0.3

32 2,� 16.3 9.4

32 2�H 522 303 2610 2519

VIII. CONCLUSIONS

In this paper we present an environment to support the rapid

design of, and experimentation with, new financial

derivatives. Two complementary approaches to supporting

this task are presented. Rather than making available a wide

range of standard pricing models, we have developed a much

more general pricing engine – a Generic Pricing Engine

(GPE), which accepts mathematical formulae from the user.

The paper shows that the GPE is expressively powerful

enough to specify a wide range of pricing models, including

many of the standard models. Having specified a new

financial product, the environment exploits the power of

parallel processing to enable the user to experiment with the

new product more rapidly by accelerating the simulation. The

GPE implementation is coded in OpenCL, and is completely

portable across multicore and GPU architectures (apart from

the architecture-dependent parameters defining the number of

threads and blocks). Experiments on the largest problem size

show that the GPE, when used to model a specific Basket

Option Pricing Engine (BOPE), can be accelerated by a factor

of 45x on an NVidia GTX670 GPU compared with a single

core, sequential coding in C. On a 4-core processor, exactly

the same code runs about 9x faster than the single core

implementation. The GPU implementation of the GPE suffers

from a slow-down of about 1.9 because of a limitation of the

NVidia OpenCL compiler when handling functions as objects.

REFERENCES

[1] S. M. Bartram, G. W. Brown and F. R. Fehle, “International Evidence

on Financial Derivatives Usage,” Funancial Management, vol. 38, no. 1,

pp. 185-206, 2009.

 10

[2] A. Devenow and I. Welch, “Rational Herding in Financial Economics,”

European Economic Review, vol. 40, pp. 603-615, 1996.

[3] F. Black and M. Scholes, “The Pricing of Options and Corporate

Liabilities,” The Journal of Political Economy, pp. 637-654, 1973.

[4] L. H. Ederington and W. Guan, “Why are those Options Smiling?” The

Journal of Derivatives, vol. 10, no. 2, pp. 9-34, 2002.

[5] O. A. Vasicek, “An Equilibrium Characterization of the Term

Structure,” Journal of Financial Economics, vol. 5, pp. 177-188, 1977.

[6] J. C. Cox, J. E. Ingersoll and S. A. Ross, “A Theory of the Term

Structure of Interest Rates,” Econometrica, vol. 53, pp. 129-151, 1985.

[7] J. C. Hull, “Options, Futures and Other Derivatives”, 8th ed., Boston:

Prentice Hall, 2012.

[8] P. Glasserman, “Monte Carlo Methods in Financial Engineering”, New

York: Springer, 2004, p. 548.

[9] S. I. Heston, “A Closed-form Solution for Options with Stochastic

Volatility with Applications to Bond and Currency Options,” Review of

Financial Studies, vol. 6, pp. 327-343, 1993.

[10] D. Duffie and R. Kan, “A Yield-factor Model of Interest Rates,”

Mathematical Finance, vol. 6, no. 4, pp. 379-406, 1996.

[11] B. Oksendal, “The Ito Formula and the Martingale Representation

Theorem,” in Stochastic Differential Equations, Springer, 2005, pp. 43-

49.

[12] L. A. Abbas-Turki and B. Lapeyre, “American Options Pricing on

Multi-Core Graphic Cards,” Beijing, 2009.

[13] M. S. Joshi, “Graphical Asian Options,” Wilmott Journal, vol. 2, no. 2,

pp. 97-107, 2010.

[14] S. Solomon, R. K. Thulasiram and P. Thulasiraman, “Option Pricing on

the GPU,” Proc. ICHPCC, Australia, 2010.

[15] D. Egloff, “High Performance Finite Difference PDE Solvers on GPUs,”

Zurich, 2010.

[16] D. Egloff, “Pricing Financial Derivatives with High Performance Finite

difference Solvers on GPUs,” Zurich, 2011.

[17] M. Fatica and E. Phillips, “Pricing American Options with Least Squares

Monte Carlo on GPUs,” Proc. 6th Workshop on High Performance

Computational Finance, Denver, 2013.

[18] C. de Schryver, I. Shcerbakov, F. Kienle, N. Wehn, H. Marxen, A.

Kostiuk and R. Korn, “An Energy Efficient FPGA Accelerator for

Monte Carlo Option Pricing with the Heston Model,” in 2011

International Conference on Reconfigurable Computing and FPGAs,

Cancun, 2011.

[19] N. A. Woods and T. VanCourt, “FPGA Acceleration of Quasi-Monte

Carlo in Finance,” in Field Programmable Logic and Applications 2008,

Heidelberg, 2008.

[20] A. Kaganov, P. Chow and A. Lakhany, “FPGA Acceleration of Monte-

Carlo Based Credit Derivative Pricing,” in Field Programmable Logic

and Applications 2008, Heidelberg, 2008.

[21] A. H. T. Tse, D. B. Thomas, K. H. Tsoi and W. Luk, “Reconfigurable

Control Variate Monte-Carlo Designs for Pricing Exotic Options,” in

2010 International Conference on Field Programmable Logic and

Applications, Milano, 2010.

[22] A. H. T. Tse, D. B. Thomas, K. H. Tsoi and W. Luk, “Efficient

Reconfigurable Design for Pricing Asian Options,” ACM SCIGARCH

Computer Architecture News, vol. 38, no. 4, pp. 14-20, 2011.

[23] B. Betkaoui, D. B. Thomas and W. Luk, “Comparing Performance and

Energy Efficiency of FPGAs and GPUs for High Productivity

Computing,” in 2010 International Conference on Field-Programmable

Technology, Beijing, 2010.

[24] D. Manners, “Altera Goes for the Data Centre,” Electronics Weekly, 8

October 2014. [Online]. Available: http://www.electronicsweekly.com/

 news/business/altera-goes-data-centre-2014-10/. [Accessed 14 October

2014].

[25] Y. Hu, Q. Li, Z. Cao and J. Wang, “Parallel Simulation of High-

dimensional American Option Pricing Based on CPU versus MIC,”

Concurrency and Computation: Practice and Experience, 2014.

[26] M. Manssen, M. Weigel and A. K. Hartmann, “Random Number

Generators for Massively Parallel Simulations on GPU,” The European

Physical Journal Special Topics, vol. 210, pp. 53-72, 2012.

[27] S. Trainor, “Towards a Portable Accelerated Asset Path Simulator for

Derivatives Pricing”, PhD Thesis, Queen’s University Belfast, 2015.

Danny Crookes became Professor of

Computer Engineering in 1993 at Queens

University Belfast, and was Head of

Computer Science from 1993 to 2002. He

is Director of Research for Speech, Image

and Vision Systems at the Institute for

Electronics, Communications and

Information Technology (ECIT) at QUB. His current research

interests include the use of novel architectures (especially

GPUs) for high-performance image and speech processing. He

is currently involved in projects in acceleration of financial

simulations, speech enhancement, face recognition, and image

processing for cancer diagnosis. He has published over 230

scientific papers in journals and international conferences, and

has presented tutorials on parallel image processing at several

international conferences.

Sean Trainor obtained an MSci in Pure

Mathematics in 2008 from Queen’s

University Belfast. He obtained his PhD in

Financial Simulation at (ECIT) at QUB in

2015. He has worked in developing

financial products in several financial

markets companies in the City of London.

Richard Jiang is currently a Lecturer in

the department of Computer Science and

Digital Technologies, Northumbria

University, Newcastle upon Tyne, UK. He

received his PhD in Computer Science

from Queen’s University Belfast in 2008.

After his PhD study, he worked in

Brunel University, Loughborough University, Swansea

University, University of Bath and University of Sheffield. He

joined Northumbria University in May 2013. His research

interests mainly reside in the fields of Artificial Intelligence,

Man-Machine Interaction, Hardware Acceleration, Visual

Forensics, and Biomedical Image Analysis. His research has

been funded by EPSRC, BBSRC, TSB, EU FP, and industry,

and he has authored some 50 publications.

