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Abstract— In the highly competitive world of modern finance, 

new derivatives are continually required to take advantage of 

changes in financial markets, and to hedge businesses against 

new risks. The research described in this paper aims to accelerate 

the development and pricing of new derivatives in two different 

ways.  Firstly, new derivatives can be specified mathematically 

within a general framework, enabling new mathematical 

formulae to be specified rather than just new parameter settings. 

This Generic Pricing Engine (GPE) is expressively powerful 

enough to specify a wide range of standard pricing engines. 

Secondly, the associated price simulation using the Monte Carlo 

method is accelerated using GPU or multicore hardware. The 

parallel implementation (in OpenCL) is automatically derived 

from the mathematical description of the derivative. As a test, for 

a Basket Option Pricing Engine (BOPE) generated using the 

GPE, on the largest problem size, an NVidia GPU runs the 

generated pricing engine at 45 times the speed of a sequential, 

specific hand-coded implementation of the same BOPE.  Thus a 

user can more rapidly devise, simulate and experiment with new 

derivatives without actual programming. 

 
Index Terms—Financial trading, Pricing engines, High 

performance DSP. 

 

I. INTRODUCTION 

erivatives pricing is the preserve of the Quantitative 

Analyst. In the highly competitive world of modern 

finance, new derivatives are continually required to take 

advantage of changes in financial markets, and to hedge 

businesses against new risks [1]. In order to obtain the greatest 

profit, or minimize risk exposure, first mover advantage is 

desired. The faster a company can attain beneficial positions 

through derivatives, the greater the benefit it can obtain in 

market cascades before all profit potential is taken away (or 

risk is increased too greatly) by other market participants 

copying the first movers [2]. Therefore the ability to model 

new market conditions quickly will put a financial company at 

an advantage. 
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There is a range of standard pricing engines which are used 

to model and simulate different scenarios.  Options are a 

common special case of derivative, being based on the value 

of a stock.  While this paper and our environment is applicable 

to other types of derivative (such as futures), most of the 

specific examples used are options. Options can be divided 

into two broad categories. Fixed exercise options (known as 

European options), allow the option holder to buy (for a call 

option) or sell (for a put option) the underlying asset(s) only at 

the expiration date of the option contract. Variable exercise 

options are known as American options when the option can 

be exercised at any time between the purchase time and 

expiry. Variable exercise options are known as Bermudan 

options when the option can be exercised at a fixed set of 

dates given in the option contract. In practice, American 

option prices are usually modelled by assuming a finite 

number of possible exercise dates.  In this work we 

concentrate on fixed exercise options. 

 

A. European Options 

A European Call Option is an option on a single asset, and is 

non-path-dependent, which means that its payoff does not 

depend on values attained by the asset between the starting 

time and the time of expiry, but depends only on the final 

value. The price path is described by the Black-Scholes 

stochastic differential equation [3]: 

  
��������� = ��	 + ����	� (1) 

 

where �	� is the stock price at time 	,  � is the interest rate, � 

is the volatility of the stock price, and � is a standard 

Brownian motion. The term ����	� is known as the 

‘diffusion’ term. This term models how the paths will spread 

over time, and the fact that it is a Brownian motion means that 

the changes in this term over a small time interval Δ	 are 

normally distributed with mean 0 and variance Δ	.   

 The payoff at the time of expiry (�) of the option is: 

 max 	�0, ��� − �� (2) 

for a call option, and, for a put option: 

 max 	�0, � − ����  (3) 

K is the strike price, which is a guaranteed price at which the 

asset can be bought (for a call option) or sold (for a put option) 

at time �. Eq. (2) and Eq. (3) make clear that the option will 
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expire worthless if the option holder would lose money by 

trading in the underlying asset, i.e. buying the asset at the 

strike price and selling it in the market, in the call option case, 

and vice versa in the put option case. 

To obtain the present value of the payoff, the final payoff 

value is discounted at a continuously compounded rate by 

multiplying by the discount factor ����. The price �	� is a 

random variable for all 	 ∈ �0, � , and we wish to calculate its 

expected present value. The expected value !�"  is the 

integral, over the range of possible values of ", of each value # multiplied by the probability density at #, taken with respect 

to #. If $�#� is the probability density at #, then !�" =% #$�#��#&�& , where $�#� may be zero on some of this range. 

The expected present value of the option can be written as 

 !�����ma x 	���� − �, 0�  (4) 

The distribution of the random variable ��� is given by the 

solution of the stochastic differential equation (1), as follows 

 ��� = �0� exp )*� − +, �,- � + �����. (5) 

The random variable ���� is normally distributed, with mean 0 and variance �. Thus the log of the stock price is normally 

distributed and the stock price is lognormally distributed. 

 The expected present value is an integral with respect to the 

lognormal density of ���, and it can be evaluated using the 

Black-Scholes formula in terms of the standard cumulative 

normal distribution function Φ: 

0��0�, �, �, �, �� = 

Φ1234*5�6�7 -8*98:;<;-�
<√� > − �����Φ1234*5�6�? -8*��:;<;-�

<√� > (6) 

B. Asian Options 

Asian options are path-dependent options on one underlying 

asset, and this path-dependence means that Monte Carlo 

methods are a good way to price them. An arithmetic Asian 

option’s price depends on the average price of the underlying 

asset at a preselected number of time points during the lifetime 

of the option. The payoff of an arithmetic Asian option is:: 

 PA = max	 B0,			 +C ∑EF+C �	E� − �G	 (7) 

for fixed times 0 = 	H < 	+ < ⋯ < 	C = �	. The starting time 

is 0, and �	 is the expiry time. The expected discounted 

payoff, i.e. the fair price for the option, is !�����KL .  
 The price at each step in the price path can be calculated 

from the previous one in the same way as the complete single 

step in the European option: 

�	E8+� = �	E� exp )*� − +, �,- �	E8+ − 	E� + �M	E8+ − 	E	NE8+. (8) 

where 0 ≤ 	E < 	E8+ ≤ �, and Zi+1 is a sample from a 

multidimensional standard normal distribution. 

 Asian options have some advantages over European options. 

For example, the averaging reduces the overall volatility, thus 

reducing the risk for the option seller. Asian options are 

therefore cheaper for the option buyer. Asian options also 

reduce the risk of losses due to market manipulation, close to 

the exercise time, when compared with those which depend 

only on the underlying value at the exercise time. Asian option 

pricing equations can be considered a mathematical 

generalisation of the standard European call or put options 

since, if there is only one step, they are equivalent. 

C. Basket Options 

A Basket option is an option whose payoff depends on the 

value of multiple assets. The pricing equations for basket 

options are a generalisation (to multiple dimensions) of those 

for standard European or Asian options. Here we investigate 

basket options, on P assets, described by the equation system: 

 ��Q����Q��� = �E�	 + �E��E�	�   (9) 

where R = 0, … , P − 1	, and �E is the Rth component of a P-

dimensional Brownian motion. We consider the case of 

constant interest rates �E and constant volatilities �E . 
 The price path for each asset can be calculated 

independently, using the same formula above (Eq. (8)). Now, 

however, the random deviates (NE,U8+) are taken from a multi-

normal distribution; more correctly, the (j+1)
th

 time step of the 

i
th

 asset. The elements in these vectors are correlated (unless 

the distribution is standard multi-normal), and in order to 

perform the necessary correlation quickly, a parallel 

correlation function must be implemented.  

 The payoff could depend on a weighted average of the final 

asset price estimates, or on the maximum or minimum asset 

price estimate (which is the case for e.g. lookback options). In 

the case of the weighted average, the weighting used for an 

asset can depend on, for example, the performance of that 

asset, or on the quantity of each underlying asset in the basket. 

With fixed parameter values and a fixed number of 

parameters, it is not possible to model many useful market 

scenarios. For example it has been shown that the volatility for 

Equity Index Options should be non-constant, and it depends 

on current price and time to expiry [4]. The payoff of some 

derivatives is based on interest rates, and many interest rate 

models have been developed for the pricing of these, with 

interest rates being modelled with stochastic differential 

equations (SDEs), which for interest rate r take the form: 

 dr = g(r) dt + f(r) dW(t) (10) 

where g and f are deterministic functions of r. Examples of 

this are the Vasicek Model [5], or the CIR Model [6]. These 

models are used for the pricing of derivatives such as Callable 

Bonds [7] (bonds that can be bought back by the issuer for a 

predetermined price at predetermined times). In some cases 

these interest rate models may be used to simulate the interest 

rate in other derivatives with more complex price path models, 

and simulations of this type are possible with the generic 

pricer presented later in this paper. 

Derivative specifications presented to (or possibly by) the 

option buyer will usually only affect the payoff of the 

derivative, and not the model used to simulate the market 
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conditions. However, the payoff specification will determine 

whether information about the values taken at particular points 

in the price path need to be recorded for later use, or if those 

values should be used on-the-fly. For example, an option with 

Asian payoff characteristics (i.e. the payoff depends on the 

average value of the assets during the derivative’s lifetime) 

will require the specification of time points, and will require 

on-the-fly summation (for Arithmetic Asian Options) or 

multiplication (for Geometric Asian Options) of the prices at 

those points for the purpose of calculating the average value 

taken on each price path. If Lookback characteristics are 

specified, the maximum or minimum value taken along the 

price paths will need to be recorded. The payoff specification 

and an appropriate model of market conditions will allow the 

derivative seller to determine an estimate of the correct price 

of the derivative. How good the price estimate is will depend 

on the quality of the model used for the underlying asset price 

dynamics, and not on the payoff specification. Therefore we 

concentrate on the generalisation of the asset price path model 

to allow for better fitting to the conditions in the market. 

In this paper we present a system in which the user can 

interactively specify a derivative by entering the price path 

model (within the constraints of a general model), specifying 

any required new parameters, and the time-discretised formula 

for each of the parameters. The generalised system (the 

Generic Pricing Engine, GPE) can estimate the solution of any 

stochastic differential equation whose solution can be 

simulated using an Euler Scheme. The equations’ parameters 

may also follow a stochastic process, or be time or state 

dependent, as long as they can be discretised in the time 

dimension. This allows for the simulation of many of the 

stochastic models used in financial engineering. It should also 

enable the system to be used for non-financial applications, 

such as simulating the movement of small particles. 

The paper is structured as follows.  Section II presents the 

basis for our generic model and the schemes for its 

(approximate) simulation. Section III then presents our GPE 

and the various inputs (user-defined formulae, etc.) which the 

user can specify to define a new derivative. Section IV 

discusses a range of stochastic processes where our GPE can 

give an exact simulation.  Section V begins by reviewing 

existing work on parallelization of financial simulations. It 

then presents an outline (sequential) implementation of the 

simpler, and specific, BOPE, leaving Section VI to present the 

parallel GPE implementation approach.  Section VII gives 

performance results for a range of problem sizes, architectures 

and coding languages.  The main conclusions are summarized 

in Section VIII. 

II. THE GENERIC MODEL AND ITS SIMULATION 

Glasserman [8] investigated a more general derivatives 

pricing model which encompasses all the previously described 

models, and more.  He states that most models in financial 

engineering can be described by a stochastic differential 

equation of the following form: 

 �"�	� = VW"�	�X�	 + YW"�	�X���	� (11) 

Typically, "�	� is the price at time 	, �"�	� is the predicted 

change in price of the subsequent time period �	, so that "�	 + �	� = "�	� + �"�	�.  a is called the drift term (in the 

simple case, the interest rate), and b is the diffusion term (in 

the simple case, the volatility).  The function a is typically 

applied to a set of P asset prices plus the time 	, and produces 

a new set of P values; the function b likewise takes a set of P 

asset prices plus the time 	, and produces a new set of P × [ 

values. � is a [-dimensional Brownian motion (actually it can 

be a more general Levy process). Over a time period, dW(t) is 

essentially a set of normally distributed random numbers.  We 

use Eq. (11) as the basis of our GPE. 

 In the general case, it is not possible to simulate the solution 

to Eq. (11) (which is a stochastic process) exactly (see Section 

IV for some exceptions). Hence all these methods usually 

entail some discretisation error, and there is usually a trade-off 

between the rate of convergence and the level of 

computational complexity: more steps in the price paths will 

mean more accuracy and a faster error convergence rate.   

 Here we review two common schemes – the Euler and 

Milstein Schemes – and explain the choice of Euler. 

 The solution to Eq. (11) (with certain technical restrictions) 

can be simulated approximately by using an Euler scheme. An 

Euler scheme is the simplest method to simulate SDEs and, 

apart from its simplicity, one of its benefits is almost universal 

applicability.  The idea is to divide the whole time interval of 

interest into a discrete time grid and then to simulate a discrete 

process to approximate the original continuous-time SDE on 

the time grid according to its finite-difference counterparts. 

The Euler Scheme to solve this equation takes the form: 

  "�	E8+� = "�	E� + VW"�	E�X�	E8+ − 	E� + YW"�	R�X���	R�							 (12) 

where ���	E� = \]�	��	�NE8+ ≈ M	E8+ − 	ENE8+, with NE 
being a sample from a multi-dimensional standard Normal 

distribution for every R.  
 The Euler Scheme method is actually derived from the 

Taylor Expansion of the SDE (Eq. (11)), by keeping just the 

first three terms in the Taylor expansion, giving Eq. (12). 

 The alternative Milstein scheme, which in some cases may 

give better convergence than the Euler Scheme, is obtained by 

keeping the first four terms of the Taylor expansion. This 

scheme is of order one in both the drift and diffusion 

components. A problem with the Milstein Scheme is that it 

requires the calculation of the derivative of the function Y, 

which may be computationally expensive. 

III. A GENERIC PRICING ENGINE (GPE) 

We use Glasserman’s equation, Eq. (11), as the basis for our 

GPE. "�	� is the value, at time 	, of something whose price is 

being modelled (e.g. an underlying asset). Thus �"�	� is the 

infinitesimal change in the value " over time �	.  To model 

the constrained randomness of ", we assume "�	� depends on 

a random process ��	�, whose ‘steps’, ��	E8+� − ��	E�, are 

normally-distributed. Thus �"�	� will depend on ���	�.  

More generally, Eq. (11) enables us to extend the model to 

enable the price paths to depend on some function of " and/or 	.  Thus in Eq. (11), V and Y are functions which model the 

non-random and random processes respectively.  The user can 
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define formulae for these functions, for each of the d assets. 

This generic model can not only describe the stochastic price 

path of the underlying assets of a derivative, but it can also 

describe the path of a stochastic variable representing, for 

example, interest rates or volatilities, which may be required 

in cases of assets with very complex price path dynamics. 

 In defining our Generic Pricing Engine, we provide 

essentially the Euler scheme in Section II above, but 

generalised a little to allow the option of multiplying the 

factors instead of always simply adding them.  Also, we allow 

the option of exponentiating the final factor.  Thus the GPE 

allows anything that can be written in the form: 

"�	E8+� = "�	E� ⊕ V�"�	E�, 	E� ⊕ ����Y�"�	E�, 	E�NE8+� (13) 

where V is a vector of functions (defining the drift, as 

described above), and Y is a matrix of functions (defining the 

diffusion). The functions can be any functions of "�	E� and 	E  , 
provided they can be computed by equivalent functions in the 

implementation environment.  ⊕ can be either the 

multiplication or addition operator, and ��� symbolises that 

this last part of the equation can optionally be chosen to be 

exponentiated. Each function can also have random factors 

using normally distributed random values, and can use the size 

of the time interval 	E8+ − 	E. NE8+ is a vector sample from a 

multidimensional standard normal distribution.  

 The main part of the GPE is the path simulation. However, 

the definition of the derivative price itself is: 

   price  =  discount factor  ×  payoff       (14) 

where the payoff depends on the path simulation results. The 

GPE implements general path simulation capabilities. 

A. Using the GPE: the User Interface 

 Our system has a user interface which enables the user to 

specify a derivative interactively, by typing all the parameters, 

asset starting values, options and functions required for Eq. 

(13). Functions are typed as text, selected from a wide set of 

predefined functions which can be used.  To model a 

derivative, the user enters the following: 

• The initial values for the state (price) vector ". 

• If using strike values, these must be specified, plus 

whether the derivative is a ‘put’ or a ‘call’. 

• Whether to use additive or multiplicative steps. 

• A vector of functions (a) defining the drift (one per asset) 

• Whether to exponentiate the diffusion component. 

• A [ × [ matrix of functions (b) defining the diffusion. 

• Whether to use final, average, max or min path values. 

Examples which use final path values are European 

options on a stock or basket of stocks. Asian options use 

average path values, and lookback options use maximum 

or minimum path values. 

• Whether to use a sum, max or min reduction across paths. 

The sum would normally be used to calculate the average 

(expected) payoff of a derivative, whereas the maximum 

or minimum would be used to check the extreme values - 

possibly for error checking. 

• Whether to use average, max or min across final asset 

prices. Some basket options use a weighted average of the 

values for each underlying asset. A derivative whose 

payoff depends on the best or worst performing asset 

would use maximum or minimum here. 

For convenience, it is possible to specify that all the drift or 

diffusion functions are the same for all assets (with the matrix Y being diagonal) – in which case only one function needs to 

be specified for drift or for diffusion. 

 When entering a more complex function, if at any point a 

new working variable or function is needed, the user enters the 

keyword ‘NEW’, and is then prompted each time to type in 

the variable or function to be used at this point. Later, these 

formulae will be integrated and converted to code.  

IV. GPE FOR METHODS WITH EXACT SIMULATION 

The Euler Scheme and its refinements and extensions, detailed 

above, can be used to simulate a wide variety of stochastic 

processes. However, these methods entail some discretisation 

error. In certain situations, though, it is possible to simulate 

exactly, without discretisation error. To demonstrate the power 

and flexibility of our GPE, we now give three examples of 

exactly simulable processes which can be specified in our 

GPE, and show the settings necessary to obtain these. 

A.  Brownian Motion 

A multi-dimensional stochastic process ���	�, 0 ≤ 	 ≤ �� is 

called a standard Brownian motion on ℝa if: 

• ��0� = 0 

• The mapping 	 ↦ ��	� is continuous on �0, �  
• The increments ��	H�,��	+� − ��	H�, … , ��	c� −��	c�+� are independent for all 0 ≤ 	H < 	+ < ⋯ < 	c ≤ � 

• ��	� − ��\�~e�0, �	 − \�fa� for all 0 ≤ \ < 	 ≤ �, 

and fa is the P × P identity matrix. 

The paths of standard Brownian motion can be simulated by 

setting ��0� = 0, sampling N+, N,, … , NC independently from e�0, fa� and using the following algorithm: 

 ��	E8+� = ��	E� + M	E8+ − 	ENE8+	                          (15) 

A general Brownian motion "�	�, which is different from 

standard in that its increments follow a general multi-Normal 

distribution, can be simulated as follows: 

 Let g ∈ ℝa be the mean of the multi-Normal distribution, 

and let Σ be its covariance matrix (it must be symmetric and 

positive semi-definite, and we consider only the positive 

definite case). Find, by Cholesky factorisation (to obtain a 

lower-triangular matrix and thereby reduce the number of 

multiplications and additions needed), a matrix i such that ii� = Σ. If i is P × [, let N+, … , Na be independent standard 

Normal random vectors in ℝc, and use the algorithm: 

 "�	E8+� = "�	E� + �	E8+ − 	E�g	 + M	E8+ − 	EiNE8+   (16) 

For greater generality, the parameters can be time-dependent: g�	� and i�	�. This can be modelled in the GPE as follows: 

• Set the "�	H� values 

• Select additive steps 
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• Set each ‘V’ function to be ‘constant’× j (j stands for Δ	E = 	E8+ − 	E) 
• Set each ‘Y’ function to be ‘constant’× √j. 

 

B.  Gaussian Short-Rate Models 

In some cases, instead of being constant or deterministically 

time varying, it is beneficial to model the interest rate with a 

stochastic process. Some of the most commonly used 

stochastic processes for this are Gaussian processes. 

A general class of Gaussian process models, in ℝa, used for 

short rates is described by 

 �"�	� = kWY − "�	�X�	 + j���	� (17) 

where k and j are P × P matrices, and Y, W(t), "�	� ∈ ℝa, 

and where the coefficients can also be deterministically time-

varying. The short rate ��	� can then be specified by ��	� =V�"�	�, where V is constant or deterministically time-varying. 

When k is non-singular and diagonalisable, a multi-

dimensional simulation can be reduced to multiple 

independent scalar simulations, linked only through the 

correlation matrix from the ���	� term. It can also be 

reduced to scalar simulations when k is not diagonalisable, but 

all coefficients are deterministically time-varying. 

 This model encompasses other Gaussian short-rate models 

such as the Vasicek, Ho-Lee and Hull-White models. This can 

be modelled in the GPE as follows: 

• Set the "�	H� values 

• Select additive steps 

• Set each ‘V’ function to be: �e!� × "�0 + e!� × "�1 + ⋯+ e!� × "�P − 1 + e!�� × j 

• Set the constant (or time dependent) values for the 

‘e!�’ variables when prompted by the UI. 

• Set each ‘Y’ function to be ‘e!� × √j’ (and set the 

constant or time dependent values (or functions) for the 

‘e!�’ variables when prompted). 

 

C.  Square-Root Diffusions 

A one dimensional stochastic process "�	� described by: 

 �"�	� = VWY − "�	�X�	 + �M"�	����	� (18) 

is known as a square-root diffusion. Models of this kind have 

been proposed by Heston [9] as a model of the stochastic 

volatility of an asset, and also by Cox, Ingersoll and Ross [6] 

as a model of the short rate. 

 Models of this kind can be simulated exactly by drawing 

samples from an appropriate non-central chi-squared 

distribution and a Poisson distribution, as well as the standard 

normal distribution. This exact simulation procedure, 

however, is difficult to parallelise, and the resulting code will 

most likely be slow; it would also require a large amount of 

memory to store pre-calculated random values. The exact 

simulation procedure is therefore not implemented in our 

pricer, and an Euler approximation is used instead: 

 "�	E8+� = "�	E� + V�Y − "�	E��	E8+ − 	E� + 

																																												�M"�	E�8M	E8+ − 	ENE8+															(19) 

The multi-dimensional case, including when the underlying 

1D processes are correlated, has been studied in [10]. They 

study processes of the form: 

 �"� = g�"���	 + ��"�����  (20) 

on a suitable state-space j ⊆ ℝa (for some functions �, j will 

be a strict subset), with g: j → ℝa and ���: j → o� affine 

(linear in  "�), where o� is the space of real symmetric P × P 

matrices. It is shown that Eq. (24) can be expressed as: 

 �"� = �V"� + Y��	 + 

											Σ
p
qr

Mv+�"��	 	0	 	… 	0		0	 	Mv,�"��	 	… 	0		 	 	⋱ 		0	 	… 	0	 	Mvu�"��	v
wx���		  (21) 

where V ∈ ℝa×a, Y ∈ ℝa, Σ ∈ ℝa×a, and vy�"�� = zE + {E ∙X~ such that ∀R, zE ∈ ℝ and {E ∈ ℝa. (Any affine map can be 

represented by a matrix multiplication followed by a vector 

addition.) This model unifies and strictly extends previous 

affine models to the maximum possible degree. Subject to 

some technical regularity conditions, the coefficients in Eq. 

(21) can also be made to be time dependent. 

These models, although very general, and probably suitable 

for the vast majority of models required in financial 

engineering, do not cover all possible Ito processes (and, if the 

matrix V is non-diagonalisable, are not themselves Ito 

processes). In the general case, Ito integrands, represented by � in Eq. (24) are not required to be linear in "�  (see [11]). The 

pricer allows more general formulae than this to be used, 

closely matching the general specification Eq. (11). 

This can be modelled in the GPE as follows: 

• Set the "�	H� values 

• Select additive steps 

• Set each ‘V’ function to be: �e!� × "�0 + e!� × "�1 + ⋯+ e!� × "�P − 1 + e!�� × j 

and enter the values for the ‘e!�’ variables 

• Set each ‘Y’ function (the diffusion term) to be either e!�× Me!� × "�0 + e!� × "�1 + ⋯+ e!� × "�P − 1 + e!�× √j 
 or zero (if not on the diagonal).  Again, the values or 

functions for the ‘e!�’ variables should be entered. 

 

In addition to these three cases above, we have also demon-

strated that the GPE can be used to obtain exact simulations of 

Geometric Brownian Motion, and for simulations using 

forward price data [27]. 

 

D.  Including the Discount Factor in our GPE 

To estimate the current price of a derivative, we need to 

discount the estimated payoff for some future time, using Eq. 

(14).  The discount factor used for this can be calculated from 

the interest rate process used in the derivative model. If the 

interest rate process is ��	�, then the discount factor is: �� % �������6  
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We can estimate the above integral by using an Euler scheme:  ΣEFHa�+��	E�Δ	E 
where 	H = 0, 	a = � (the final time), and Δ	E = 	E8+ − 	E. 
The payoff of the derivative is multiplied by the discount 

factor to obtain the current value of the derivative. 

The user will be asked to specify whether they wish to 

simulate the discount factor as part of the calculation. When 

specifying the ‘a’ functions, any ‘NEW’ variables will be 

labelled as ‘A_i_j’, with ‘i’ being the row in the vector ‘a’ (of 

functions), and ‘j’ being the position of the function in that 

row (‘j’ is zero for the first ‘NEW’ variable, one for the 

second, and so on). After specifying the formula for each ‘a’ 

function, if that formula contains any ‘NEW’ variables, then 

each will be displayed by its label, and the user will be asked 

to enter the value or function (which can depend on time, the 

current state vector and/or have a random element) for that 

variable. If the user has said they wish to calculate the 

discount factor, then once they have specified all the ‘NEW’ 

variables in an ‘a’ function, these ‘NEW’ variables will be 

listed by their new label and specified value/function, and the 

user will then be asked to enter the label of the ‘NEW’ 

variable they wish to use as the interest rate. 

V. IMPLEMENTATION OF A CORE PRICING ENGINE 

Before considering the acceleration of pricing simulations (in 

Section VI), in this section we outline just the method for 

simulating the simpler Basket Option Pricing Engine (BOPE). 

This will later be extended to give the parallel GPE. 

 At the heart of the Monte Carlo method is the generation of 

a large number of paths, which are then reduced to a single 

value (the price estimate) by taking the average. For 

simulating Brownian Motion, this requires a large set of 

normalised random numbers, and several reduction operations.   

Thus the pricing core implements the expression:  

						$RPV�K�R��	 = 	�3�V��	V, �2�V��	�,	 �1�V��	\, �V����V	�_��R����, V, \ ���   
where a is an asset, p is the path index, s is a step, and F1, F2 

and F3 are reduction operators (such as Sum, Average, Max). 

 In the pseudocode in Figure 1, the reduction operation �1�V��	\, ��R����, V, \ � means ‘reduce the set of values ��R����, V, V��	�V���\	�$	\ , for a fixed � and V, to a single 

value’. Similarly for the reduction operations �2�V��	�, �V	ℎ��\��	��, V � and �3�V��	V, V\\�	��\��	�V �.  

Generate set of normalised �VP���e��Y����, V, \ ; 
For every path � 

 For every asset V 

  /* Calculate series of prices for path �, one for each step */ 

  For every step \ 

   Calculate ��R����, V, \  using �VP���e��Y����, V, \ ; 
  �V	ℎ��\��		��, V 	= 	�1	�V��	\, ��R����, V, \ �; 

For every asset V V\\�	��\��	�V 	= 	�2	�V��	�, �V	ℎ��\��	��, V �; $RPV�K�R��	 = 	�3	�V��	V, V\\�	��\��	�V �; 

 

Figure 1 Pseudo-code for the sequential BOPE 

For example, to obtain any of the European, Asian or Basket 

Option Pricing Engines, we set the parameters and reduction 

operators as shown in Table I. 

TABLE I 

Settings to obtain a range of standard deriviatives 

Option Assets Steps F1 F2 F3 

Euro 1 1 Final value Average Single 

member 

Asian 1 Number 

of steps 

Average Average Single 

member 

Basket Number 

of assets 

Number 

of steps 

Final value 

or Average 

Average Weighted 

Average * 

(*If the payoff of the basket depends on the best performing asset, then �3 is 

Maximum instead of the weighted average.) 

Memory constraints mean that it is not possible to store the 

complete arrays �VP���e��Y����, V, \  and ��R����, V, \  
in Figure 1. We therefore split the computation into 

appropriately sized batches and accumulate the results. Figure 

2 gives a simplified description of the batched version, where 

the 3D arrays labelled by path, asset and step, become, for 

conceptual purposes, 4D arrays labelled by batch, path, asset, 

and step. The path dimension is broken into smaller batches. 

The results of each batch calculation are combined (reduced) 

on-the-fly, and a final calculation over the asset results is 

performed to obtain the final price estimate.  Performing a 

reduction on a set of batches relies on the property: 

	 F*�sequence�	=	F’�all	subsequences,	F�subsequence��	
where for �∗ = oV# or Σ (sum), �’ = � = oV# or Σ; and for �∗ = average, �	 = Σ and �’	 = Σ followed by a final division. 

 

For every batch Y 

 Generate new set of normalised �VP���e��Y���Y, �, V, \ ; 
 For every path � in 1…K  /* K = 	�	V�_�V	ℎ\	/		�	V�_YV	�ℎ�\ */ 

  For every asset V 

   /* Calculate series of prices, one for each step */ 

   For every step \ 

    Calculate ��R���Y, �, V, \  using                 																																																																										�VP���e��Y���Y, �, V, \ ; 
   �V	ℎ��\��	�Y, �, V 	= 	�1	�V��	\, ��R���Y, �, V, \ �; 

 For every asset V 

  YV	�ℎ��\��	�Y, V 	= 	�2_�V�	1	�V��	�, �V	ℎ��\��	�Y, �, V �; 

 

For every asset V 					V\\�	��\��	�V 	= 	�2_�V�	2	�V��	Y, YV	�ℎ��\��	�Y, V �; $RPV�K�R��	 = 	�3	�V��	V, V\\�	��\��	�V �; 
Figure 2 Simplified pseudo-code for the BOPE 

VI. PARALLEL IMPLEMENTATION OF GPE 

In this section we firstly review existing work on acceleration 

of financial simulations using GPUs, multicores and FPGAs. 

Then we present our parallel implementation environment, 

and finally discuss the parallel implementation of the GPE, 

extending the simple BOPE simulation method above. 

A.  Previous work on acceleration of Pricing Engines 

Some work has been done in the acceleration of American 

options pricing on GPUs using Monte Carlo simulations, with 
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Abbas-Turki and Lapeyre [12] reporting speedups of 4.8x to 

8.7x on one GPU over a sequential CPU implementation for 

single asset American option, with GPU speedup increasing 

with the number of steps in the simulation paths. Joshi [13], on 

the pricing of Asian options, achieves a GPU speedup of 150x 

over a CPU using quasi-Monte Carlo simulation (which uses 

low discrepancy sequences instead of random numbers to 

increase speedup, but is dimension dependent). Tree methods 

for pricing options have also been implemented on GPUs; for 

example Solomon et al [14] implement a trinomial option 

pricer for single asset American lookback options.  They 

report speedups of up to 100x for large numbers of time steps; 

however their method will not work for more than one 

underlying asset. Several authors have implemented finite 

difference methods on GPUs; for example Egloff [15] 

implements a finite difference solver for options on one 

underlying asset (using CUDA). This system allows multiple 

single asset options to be priced, one on each multiprocessor 

on the GPU, and it is necessary to have many individual 

options in order to maintain high GPU occupancy. An average 

speed-up of around 24x is achieved over a sequential CPU 

implementation. It is suggested that finite difference methods 

for more underlying assets would achieve even greater 

speedups over the equivalent CPU implementation because 

more independent matrix equations would need to be solved. 

In a later paper [16] the author goes on to implement a two 

asset option pricer, which has enough necessary computation 

to occupy the GPU without needing to price more than one. 

Speedups of 70x are achieved over a single core CPU, and 30x 

over a multithreaded 4 core CPU. The author concludes that, 

for single asset pricing problems, 300 or more options are 

needed to sufficiently occupy the GPU, but for two asset 

problems, one option is sufficient. This illustrates the 

extremely rapid growth in size of finite difference 

computations with increasing numbers of underlying assets. 

Monte Carlo methods for option pricing have been 

implemented on GPUs, mostly for European type options; 

however, some studies in parallel Monte Carlo simulation on 

GPUs have shown that good results can be achieved even for 

American options, with NVidia researchers using a least 

squares method to estimate the optimum exercise time [17]. 

Option pricing has been accelerated using an FPGA. De 

Shryver et al [18] found a Xilinx Virtex-5 FPGA accelerated 

system to be slower, but 2.5 times more energy efficient, than 

a Tesla C2050 GPU accelerated system for a one dimensional 

Heston (stochastic volatility) option pricing model. The 

authors predict that 3 such FPGAs would give similar speeds 

to the GPU while consuming only 3% of the energy, if the full 

calculation were performed on the FPGAs. Woods et al [19] 

used an FPGA to simulate Brownian Motion using Quasi-

Monte Carlo methods, giving a 50 times speedup over a single 

thread CPU version, even though recursive algorithms and 

double precision are used (which, as the authors note, are “not 

normally associated with successful FPGA computing”). 

FPGAs have also been used for Credit Derivatives pricing 

[20], which involves simulating many scenarios (Monte Carlo 

simulation) and calculating the loss in each for a set of assets 

(debt obligations); then the average of these losses gives the 

overall expected loss. Other work employing FPGAs for 

option pricing include Tse et al [21, 22], where the FPGA 

implementation is compared with a GPU implementation and 

is found to be faster (more than 2 times) and more energy 

efficient (more than 10 times). However the difficulty in 

programming FPGAs, and the skills and time required to do 

so, means that adoption of this technology by financial 

companies is difficult. FPGA pricing programs will usually 

have to be fixed, in order to be easy to use without expert 

knowledge, limiting their usefulness. Additionally, FPGAs do 

not use standard floating point, and usually use fixed precision 

arithmetic, which could make accuracy a concern, as well as 

giving less impressive speedups than GPUs for floating point 

intensive programs. Some progress has been made towards 

simplifying FPGA programming for high productivity [23], 

and, conveniently, OpenCL can also be used on some FPGAs 

[24], meaning that, in cases where they are most suitable, it is 

possible to port existing code to FPGAs. 

In a study of the applicability of the newer Intel MIC 

architecture to the problem of pricing American options, it 

was found that the MIC chip gives a speedup of 28 times over 

a single CPU core, while the 32 core server gives a speedup of 

21 [25]. 

 

B.   Parallel implementation environment 

We selected two parallel acceleration architectures: GPUs and 

multicores.  For portability across these platforms, we coded 

the GPE in OpenCL.  For benchmarking purposes, we also 

coded the specific BOPE in CUDA (for a GPU) and in C (for 

multicore).  OpenCL was chosen because of the availability of 

compilers for NVidia GPUs, Intel multicores and, in the 

longer term, for FPGAs.  The Intel OpenCL compiler not only 

distributes the computation over the cores, but also 

automatically exploits the vector processing capability of the 

Intel architecture.  One negative aspect of using OpenCL is the 

lack of optimised libraries for operations such as parallel 

random number generation (RNG).  NVidia’s libraries are 

available only in CUDA and not in OpenCL.  This required us 

to develop our own parallel algorithm for RNG in OpenCL. 

 A key advantage of using OpenCL is the fact that the 

OpenCL program is compiled at runtime.  The OpenCL 

program is held as a string (the program source string).  

Because this string can be generated by the program at 

runtime before compilation, this facilitates the automatic 

generation of code to implement the user-supplied formulae in 

the user’s derivative specification.  The user can specify any 

function for which there is an OpenCL function. 

 

C.   Parallel implementation of the GPE 

Implementation of the pricing engine has three distinct 

parts: random number generation, correlating the random 

numbers, and the pricing core. The first two parts are fully 

parallelisable, as they require no communication between 

individual threads, and the threads will be fully utilised. In the 

third part, the reduction operators generally mean that not all 

threads will be active during the reduction computation. 

The first part, random number generation, can be 

parallelised in several ways. Each thread could be given its 

own copy of the random number generator, and be seeded 

with a simple random generator. Another option is to give 

each group of threads, that have access to a shared memory, a 
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copy of the generator, or to divide this memory up and have 

multiple generators sharing one of these blocks of memory. 

Manssen et al [26], using CUDA, survey a number of RNG 

types, and the authors implement a version of a XorShift 

generator, and to use the skip-ahead method to avoid sequence 

overlap. The skip-ahead method in their paper involves 

multiplying the original state vector by a bit-shifting matrix, 

with the number of multiplications by this matrix equal to the 

block number of the thread block generating that part of the 

sequence. In order to speed up processing, the matrix is pre-

computed. The necessity of this matrix multiplication is a 

drawback of using this method of parallelisation. Therefore, in 

order to make our parallel RNG portable, and to avoid the 

necessity of costly matrix computations, our RNG is 

implemented by giving each thread its own copy of a 

sequential generator, and seeding the threads using a simple 

random number generator. 

The second part of the program, the correlation of the 

random numbers to produce samples from the required 

multivariate Normal distribution, is parallelised  by having 

each thread work on its own section of the random number 

array in a coalesced manner. In order to obtain the correlated 

samples, batches of random numbers, each batch equal in size 

to the number of underlying assets, are taken to be the 

elements of a random vector. Each random vector needs to be 

multiplied by a correlation matrix. The correlation matrix is 

the same for all random vectors, and so is pre-computed on the 

host and transferred to the device. This matrix will be accessed 

many times, and by all threads, so a copy is stored in the 

shared memory of each multiprocessor.  

The third part of the program, the pricing core, uses the 

previously generated and correlated random numbers. It 

carries out the actual price path generation, using a pricing 

formula and the initial input values for asset prices, interest 

rates, volatilities, time to expiry, etc. Monte Carlo-based 

simulation is embarrassingly parallel, so we allocate one 

thread to each path in the current batch. This corresponds to 

parallelizing the for loop in Figure 2: 

   for every path p in 1..P … 

The paths are independent, so the pricing core is easily 

parallelized in this way. When all the threads for a batch have 

produced their result, these results need to be reduced.  We use 

a standard binary tree reduction approach, which ensures some 

parallelism, and also enhances the accuracy of the floating 

point reduction.  

 Our implementation of the GPE can be run on either a GPU 

or a multicore processor, with only the number of threads and 

blocks needing to change to migrate between architectures. 

   In order to implement the GPE, it was necessary to change 

the order of the loops encountered by each thread. Previously 

it was possible to travel along the complete path (iterating 

through all the steps) for each asset and then move on to the 

next asset until all assets had been valued. In the generalised 

version the full state information from the current (vector) 

point, i.e. the state vector, may be used in the calculation of 

the next point, depending on the formulae entered by the user 

for the ‘a’ and ‘b’ components. In fact, because each variable 

may be used in the calculation of the next point, it is necessary 

to add an extra loop (within the ‘steps’ loop) over the 

underlying assets in order to update the state vector. 

Instead of having loops in the OpenCL code to iterate over 

the assets to calculate the values for the ‘a’ component 

functions and ‘b’ component functions, a kind of loop 

unrolling is used. Figure 3 gives the pseudocode for the 

parallel GPE. For clarity, it does not show the outer loop 

iteration over batches. 

 

For each path � in parallel    /* One thread per path */ 

 For every step \   /* Note reordering of step & asset loops */ 

  For every asset V   /* Extra loop over the assets */ 

   Update the state vector using the user specified functions; 

  /* Calculate prices, one for each asset, possibly using all or part 

      of the last state vector for each asset price calculation */ 

  For every asset V 

   Calculate ��R����, V, \ ; 
  For every asset V 

   �V	ℎ��\��	��, V 	= 	�1	�V��	\, ��R����, V, \ �; 										Y���[��\��	\���, V =																															�2_�V�	1�V��	�V	ℎ\K��0���[, �V	ℎ��\��	��, V �; 

 

For every asset V 	V\\�	��\��	�V 	= 	�2_�V�	2	�V��	Y���[\, Y���[��\��		���, V �; $RPV�K�R��	 = 	�3	�V��	V, V\\�	��\��	�V �; 
Figure 3  Simplified pseudocode for the parallel GPE 

Within the hardware constraints and library constraints, etc., 

any instance of the general, Euler discretised formula, Eq. 

(12), can be generated with the use of prototype functions for 

the ‘a’ and ‘b’ components. The user specifies one function for 

the ‘a’ component for each asset, and one for the ‘b’ 

component for each asset. The formulae for the component 

functions can be time dependent, stochastic, or dependent on 

the current state vector (in keeping with the general formula). 

The prototype functions are modified accordingly and inserted 

into the OpenCL prototype state vector calculation string, 

which, in turn, will be inserted into the program source string.  

Function calls for the newly created functions are created from 

prototype function call strings. These are inserted into the 

main price path calculation string, which is in turn inserted 

into the program source string. The completed source string is 

then passed, as usual, to the OpenCL runtime.  

 The constraints are as follows: 

• The number of simulations must be a power of two. 

• The allowable mathematical operators within each 

function are those available in the C/OpenCL libraries. 

• The allowable mathematical reduction operations across 

steps are: average, maximum, minimum. 

• The allowable binary reductions across simulations 

(paths) are: sum, maximum, minimum. 

• The allowable mathematical operations across assets are: 

sum, average, maximum, minimum. 

• The pricer currently only allows Normally distributed 

random values to be selected. 

• The intermediate values generated along each path are not 

stored. It may be desirable in some cases to store these 

values for future use, for example if the engine was used 

to simulate a complex model of the interest rate, the 

values of which were to be used for pricing simulations. 
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VII. TIMINGS AND PERFORMANCE 

In the tests below, the GPU was an NVidia GTX670, with 

2GB RAM. Using the maximum allowable number of threads 

per block is optimal for this type of program. Therefore, the 

number of threads per block is fixed at 1024. For the multicore 

version, a 4-core Intel Xeon E31245, 3.3GHz with 16GB 

RAM running 64-bit Windows 7, was used. The number of 

threads per block is 8, and the number of blocks is 1024. 

For comparison purposes, we used the GPE to create the 

standard BOPE, by supplying the appropriate functions and 

settings. We also separately coded the BOPE in C, CUDA and 

OpenCL, to give us benchmark performance for comparison.   

Table II shows the execution time for the specific, hand-coded 

BOPE, for nine problem sizes: three different numbers of 

assets (8, 16 and 32), and three different numbers of paths for 

improving the accuracy of the Monte Carlo simulation (2
20

, 

2
25

, 2
30

 – from one million to one billion).  There are four 

implementations: a 1-core, sequential implementation in C; a 

4-core implementation in OpenCL; and two GPU 

implementations: one in CUDA and one in OpenCL.  The 

final column shows the speedup obtained for BOPE by the 

GPU relative to the sequential implementation (the two GPU 

implementations are practically identical in speed). 

TABLE II 

Timing results for the Basket Option Pricing Engine (BOPE) on 1-

core (C), 4-core (OpenCL), GPU (CUDA) and GPU (OpenCL) for 

varying numbers of assets and total paths. 

Num. 

Assets 

Total 

Paths 

1-core 

C 

(s) 

4-core 

OpenCL 

(s) 

GPU 

CUDA 

(s) 

GPU 

OpenCL 

(s) 

Speedup 

(GPU 

 vs C) 

8 2,H 5.3 0.5 0.04 0.04 133 

8 2,� 171 14.6 1.2 1.2 143 

8 2�H 5,462 470 37 38 144 

16 2,H 11 1 0.1 0.1 110 

16 2,� 351 32 3.2 3.2 110 

16 2�H 11,214 1055 103 102 110 

32 2,H 23 2.5 0.3 0.3 77 

32 2,� 730 79 9.3 9.4 78 

32 2�H 23,359 2519 298 303 77 

 

Table II shows that, for the maximum problem size, the GPU 

gives a speedup of around 77 (about 5 minutes as opposed to 

six and a half hours).  A single chip with four cores gives a 

speedup of between 11 and 9. The latter shows the 

effectiveness of the Intel compiler in exploiting the 

vectorisation capabilities of the Intel core (which could give a 

theoretical speedup of 4x per core). A further conclusion we 

can draw is that, for the hand-coded BOPE, there is little 

difference between the performance of CUDA and OpenCL. 

For our second test, Table III gives results for the GPE-

generated version of BOPE, for the same range of problem 

sizes, and compares with the BOPE timings from Table II. 

 From Table III one slightly surprising observation is that, 

while going to the GPE (with user-input functions at runtime) 

from BOPE on a multicore incurs only a small extra cost, on 

the GPU the speed is reduced by a factor of up to 1.9.  This 

has to do with the way functions are handled by the respective 

compilers, and the inability of the NVidia OpenCL compiler 

to handle functions as first class objects efficiently.  This was 

not an issue with BOPE, where every function was hard 

coded.  Nevertheless, on the largest problem size, the GPE on 

the GPU still gives a speedup of 45, while a 4-core processor 

achieves a speedup of approximately 9. 

TABLE III 

Timing results for the OpenCL Generic Pricing Engine (GPE) and 

BOPE on GPU and selected 4-core settings. 

Num. 

Assets 

Total 

Paths 

GPU 

GPE 

(s) 

GPU 

BOPE 

(s) 

4-core 

GPE 

(s) 

4-core 

BOPE 

(s) 

8 2,H 0.1 0.04   

8 2,� 2.7 1.2   

8 2�H 84 38 510 470 

16 2,H 0.2 0.1   

16 2,� 6.4 3.2   

16 2�H 204 102 1080 1055 

32 2,H 0.54 0.3   

32 2,� 16.3 9.4   

32 2�H 522 303 2610 2519 

      

VIII. CONCLUSIONS 

In this paper we present an environment to support the rapid 

design of, and experimentation with, new financial 

derivatives.  Two complementary approaches to supporting 

this task are presented.  Rather than making available a wide 

range of standard pricing models, we have developed a much 

more general pricing engine – a Generic Pricing Engine 

(GPE), which accepts mathematical formulae from the user.  

The paper shows that the GPE is expressively powerful 

enough to specify a wide range of pricing models, including 

many of the standard models.  Having specified a new 

financial product, the environment exploits the power of 

parallel processing to enable the user to experiment with the 

new product more rapidly by accelerating the simulation.  The 

GPE implementation is coded in OpenCL, and is completely 

portable across multicore and GPU architectures (apart from 

the architecture-dependent parameters defining the number of 

threads and blocks).  Experiments on the largest problem size 

show that the GPE, when used to model a specific Basket 

Option Pricing Engine (BOPE), can be accelerated by a factor 

of 45x on an NVidia GTX670 GPU compared with a single 

core, sequential coding in C.  On a 4-core processor, exactly 

the same code runs about 9x faster than the single core 

implementation.  The GPU implementation of the GPE suffers 

from a slow-down of about 1.9 because of a limitation of the 

NVidia OpenCL compiler when handling functions as objects.   
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