Abstract:
Alzheimer's disease (AD) and mild cognitive impairment (MCI) have been associated with impaired communication among large-scale brain networks. Given nature that intercon...Show MoreMetadata
Abstract:
Alzheimer's disease (AD) and mild cognitive impairment (MCI) have been associated with impaired communication among large-scale brain networks. Given nature that interconnected subnetworks are responsible for daily behavior than a single pair of functional connectivity, it is valid to use a network-based statistic (NBS) method to exploit the clustering structure of connectivity alterations in AD/MCI. We explored abnormal network components using NBS based on resting-state functional magnetic resonance imaging (fMRI)connectivity in a sample of patients with AD (N = 35), MCI (N = 27) and age-matched healthy subjects (N = 27). The results demonstrated that patients had reduced functional connectivity strength in several components, including the default mode network, sensorimotor network, visual-sensory network, and visual-attention network. In patients with AD, the functional connectivity of these components of interest (COIs) exhibited greater attenuation than that in MCI subjects compared with normal cognition. A greater degree of cognitive impairment was correlated with a greater decrease in functional connectivity in the identified COIs. These results indicate that the neurodegenerative disruption of fMRI connectivity is widely distributed in several networks in AD/MCI. These profiles deepen our understanding of the neural basis of AD/MCI dysfunction and indicate the potential of resting-state fMRI measures as biomarkers or predictors of AD.
Published in: IEEE Journal of Selected Topics in Signal Processing ( Volume: 10, Issue: 7, October 2016)