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Abstract—This paper considers a scenario in which a source- Indeed, there are recent results1[18]+[24] on exploiting CC
destination pair needs to establish a confidential connecth to enhance secrecy. [19]=]22] consider the scenario &f-a
against an external eavesdropper, aided by the interferer& ,qor |EC in which the users wish to establish secure com-
generated by another soqrce-destlnatlon pair Fhat exch_amgs munication against an eavesdropper. Specifically [LG]-[2
public messages. The goal is to compute the maximum achievab . g. pper. sp : ]
secrecy degrees of freedom (S.D.o.F) region of a MIMO two- consider the single-antenna case and examine the actgevabl
user wiretap network. First, a cooperative secrecy transnision secrecy degrees of freedom by applying interference akgrnm
scheme is proposed, whose feasible set is shown to achieve atechniques. The work of[22] considers the multi-antenrsca
S.D.o.F. pairs on the S.D.o.F. region boundary. In this waythe 44 nroposes interference-alignment-based algorithmehéo

determination of the S.D.o.F. region is reduced to a problem . .
of maximizing the S.D.o.F. pair over the proposed transmisen sake of maximizing the achievable secrecy sum ratel. In [23],

scheme. The maximum achievable S.D.o.F. region boundary [24], a two-user wiretap interference network is considgere
points are obtained in closed form, and the construction of in which only one user needs to establish a confidential

the precoding matrices achieving the maximum S.D.o.F. regh  connection against an external eavesdropper, and thecgecre

boundary is provided. The obtained analytical expressionslearly  4:q is increased by exploiting CCI due to the nonconfidentia

show the relation between the maximum achievable S.D.o.F. . . o

region and the number of antennas at each terminal. Connectlon..[[ZB].,[[ZM] maxw_mze th? secrecy tran.smlssmte r
of the confidential connection subject to a quality of sezvic

Index Terms—Physical-layer security, Cooperative communi- constraint for the non-confidential connection.

cations, Multi-input Multi-output, Secrecy Degrees of Freedom. i } . )
In this paper, we consider a two-user wiretap interference

network as in[[28],[[24], except that, unlike [23], ]24], vehi

|. INTRODUCTION assume the single input single-output (SISO) case or nhedtip
g]put single-output (MISO) case, we address the most genera
ﬁraultiple-input multiple-output (MIMO) case, i.e., the eas
in which each terminal is equipped with multiple antennas.
ut network comprises a source destination pair exchanging
nfidential messages, another pair exchanging public mes-
ges, and a passive eavesdropper. Our goal is to exploit
the interference generated by the second source destinatio
gir, in order to enhance the secrecy rate performance of the

work. We should note that, although the eavesdroppetis n

The area of physical (PHY) layer security has been pi
neered by Wynei|1], who introduced the wiretap channel al
and the notion of secrecy capacity, i.e., the rate at whieh t
legitimate receiver can correctly decode the source messa
while an unauthorized user, often referred to as eavesdrpp
obtains no useful information about the source signal. F
the classical source-destination-eavesdropper Gaussgietap
channel, the secrecy capacity is zero when the quality of R
legitimate channel is worse than the eavesdropping chan

[2]. One way to achieve non-zero secrecy rates in the Iat{g}erested in the messages of the second pair, for unifarmit

case is to introduce oné&l[3[X{8] or morgl [S=[15] external’® Wi|! still refer t_o_the rate of the s_econd pa_ir as secrecy
helpers, who transmit artificial noise, thus acting as ja rate. Since determining the exact maximum achievable egcre
' ' rate of a helper-assisted wiretap channel, or of an intenfe

the eavesdropper. More complé&kuser interference channels . e .
(IFC) are considered i [16]E[19], where each user SeCmesqhannel is a very difficult problen [3]=[17], we consider the

communication from the remaining —1 users by transmitting high S|gna: to_ no?: ratio (SNE) behav;ofr ofdthe aé:hlevali:)le
jamming signals along with its message signal. secrecy rate, i.e., the secrecy degrees of freedom (S.Pax

From a system design perspective, introducing non-mess altn%watlg. A[gmlg\r aIter_natweP%S ?Iso been comed;gz
carrying artificial noise into a network is power inefficient=>" |, [25]-[24]. Our main contributions are summ

and lowers the overall network throughput. In dense mudtius elow.

networks there is ubiquitous co-channel interference JCCI 1) We propose a cooperative secrecy transmission scheme,
which, in a cooperative scenario could be designed to effec- * i, \which the message and interference signals lie in

tively act as noise and degrade the eavesdropping channel. ifferent subspaces at the destination of the confidential
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to an S.D.o.F. pair maximization problem over ouvalue of a; I represents an identity matrix with appropriate
proposed transmission scheme. size; CN*M indicates aN x M complex matrix set; A7,

2) We determine in closed form the Single-User point#A?, tr{A}, rank{A}, and |A| stand for the transpose,
U1 and SU2 (see eq.[(40) and_(¥1), respectivelyhermitian transpose, trace, rank and determinant of thexmat
corresponding to when only one user communicates, respectively;A(:, ) indicates thej-th column of A while
information, the strict S.D.o.F. region boundary (seand A(:,i : j) denotes the columns from to j of A;
eq. [48)), and the ending points of the strict S.D.o.Epan(A) and span(A)* are the subspace spanned by the
region boundaryE1l and E2 (see eq.[{49) and_(b8),columns of A and its orthogonal complement, respectively;
respectively). Our analytical results fully describe theull(A) denotes the null space of; span(A)/span(B) £
dependence of the S.D.o.F. region of a MIMO two-us€lx|x € span(A), x ¢ span(B)}; span(A) N span(B) = 0
wiretap interference channel on the number of antennaseans thatspan(A) and span(B) have no intersections;

3) We derive in closed form the general term formuladim{span(A)} represents the number of dimension of the
for the feasible precoding vector pairs corresponding subspace spanned by the columnsAof T'(A) denotes the
the proposed transmission scheme, based on which ar¢honormal basis ofwll(A); A+ denotes the orthonormal
construct precoding matrices achieving S.D.o.F. pairs dnasis ofnull(A7).
the S.D.o.F. region boundary (see Table lIlI).

The corner point of our S.D.o.F. region corresponding Il. MATHEMATICAL BACKGROUND

to zero S._D.o:F for the nonconfi_dential con_nection hgs alsogiven two full rank matricesA c CN*M gnd B ¢

been studied |n|:|25]E|2_7], wherein the maximum gchlevabngxK' The GSVD of (A, B) [32] returns unitary matrices
S.D.o.F. _of a MIMO wiretap chanpel with a multl—antennql, € CM*M g, ¢ CKXK and®, € CV*N, non-negative
cooperative jammer has been studied. Our corner pointtresy gonal matrice®; € CM** andD, € C¥**, and a matrix

is more general because, unlike [25]5[27] it applies to ary € CH*k with rank{€2} = k, such that
number of antennas. It is interesting to note that although w '

derive the achievable S.D.o.F. from a signal processingtpoi A" =¥,D, [Q! 0] vl (1a)
of view, our corner point result matches the S.D.o.F. result BY =w,D, [ @' 0 ]w], (1b)
of [25]-[27], which is derived from an information theoweti
point of view. I. 0 0 0 0 O

The idea of signal subspace alignment is also usedin [28)ith D1 = | 0 A; 0 |,Dy=| 0 A, 0 |, where
[31] in the derivation of the D.o.F. of th& channel and thé - 0o 0 O 0 0 I,

user interference channel. Due to the difference in sigrmal-m the diagonal %ntries 0’3%16 R*** andA, € R*** are greater
els, the motivation and use of subspace alignment is differethan 0, andDy" Dy + D3’ D, = L. It holds that

In [28]-[317], the au'Fhors j_ointly de_sign_ the precoding rf[ais_ k 2rank{[(AT)T (BT)T]T} = min{M + K,N}, (2a)
at the sources, which align multiple interference signats i a - n )

a small subspace at each receiver so that the sum dimensidh =dim{span(A)~ Nspan(B)} = k — min{M, N}, (2b)
of the interference-free subspaces remaining for the etésir r £dim{span(A) Nspan(B)*} = k — min{K, N}, (2c)
signals can be maximized. In our work, we apply_ subspace, 2 dim{span(A) Nspan(B)} =k —p —r
alignment for the sake of degrading the eavesdropping @&ann — (i M. N (K N — N 2d
and our goal is to maximize the dimension difference of the = (min{M, N} + min{K, N} — N)™. (2d)
interference-free subspaces that the legitimate recaivethe Let X = ¥, [ Q-1 o ]H and substitute it intd(Ja) and

eavesdropper can see. ) _([@B). Then,[(Ta) and(1b) can be respectively rewritten as,
The rest of this paper is organized as follows. In Section

II, we introduce a mathematical background, i.e., genszdli A¥, = XD¥, (3a)

singular value decomposition (GSVD), that provides thasas B¥, = XD¥. (3b)

for the derivations to follow. In Section IIl, we describeeth
system model for the MIMO two-user wiretap interferencket ¥11, ¥12 and ¥;5 be the collection of columns : r,
channel and formulate the S.D.o.F. maximization problem. ' +1:7+s, 7+ s+1: M of ¥, respectively, and le¥,,,
Section IV, we propose a secrecy cooperative transmissigizz and ¥»3 be the collection of columns : K — s — p,
scheme, and prove that its feasible set is sufficient to aehieX —s —p+1: K —p, K —p+1: K of ¥,, respectively.
all S.D.o.F. pairs on the S.D.o.F. region boundary. In ®ecy, In addition, letX;, X, and X3 be the collection of columns
we determine the maximum achievable S.D.o.F. region bourld= 7, r + 1 : r + s, 7+ s + 1 : k of X, respectively. We
ary, and uncover its connection to the number of antennas.c@n rewrite [(3a) and(8b) a& ¥, = X, APz = XA,
Section VI, we construct the precoding matrices which aghieA¥13 = 0; B¥3, =0, B¥3 = X5A,, B¥s3 = X,
the S.D.o.F. pair on the boundary. Numerical results arergiv  In the rest of the paper we will denote the GSVD decom-
in Section VIl and conclusions are drawn in Section VIII. position in [3&) and((3b) as

Notgtion: T o~ CN(_O,Z) meansz is a rgnd_om vgriable GSVD(A,B; N, M, K) = (01, ¥, A1, Ao, X, k7, 5, p).
following a complex circular Gaussian distribution with ame
zero and covariancg; (a)* £ max(a,0); |a| denotes the  With the GSVD decomposition, one can decompose the
biggest integer which is less or equaldp|a| is the absolute union of span(A) andspan(B) into three subspaces, i.e., (i)



) CN(0,I) represent noise at thi#h destinationD; and the
eavesdroppeE, respectively;H;; € CNaxN:, 4, j € {1,2},
denotes the channel matrix fro8} to D;; G; € CNexNs,
j € {1,2}, represents the channel matrix frdsp to E.

In this paper, we make the following assumptions:

e 1) The messages; ands, are independent of each other,
- and independent of the noise vectm§§ andn,.
OO 6.0 -0 2) CCI is treated as noise at each receiver. We assume
D, E D, Gaussian signaling foS,. Thus the MIMO wiretap
— > Data channel — — > Interference channel channelS,-D;-E is Gaussian. For this case, a Gaussian
— — » Eavesdropping channel —> Jamming channel inlet Signal a-tSl is the Optimal ChOiCd:BS]EB4]-
3) All channel matrices are full rank. Global channel state
Fig. 1: A MIMO two-user wiretap interference channel information (CSI) is available, including the CSlI for the

eavesdropper. This is possible in situations in which the
eavesdropper is an active member of the network, and
thus its whereabouts and behavior can be monitored.

The achievable secrecy rate for transmitting the message
andsy are respectively given as [35]

span(A) N span(B)+, which is also the same apan(X;)
and has independent vectors, (ipan(A)Nspan(B), which
is also the same apan(X5) and hass independent vectors,
and (iii) span(A)+ N span(B), which is also the same as
span(X3) and hagp independent vectors.

Proposition 1: Consider two full rank matricesA ¢ R! = (R} — R.)T, (7
CN*M andB € CN¥*X| and theGSVD(A,B; N, M, K) = R — R2 ®)

s d-

(‘I’l, \I/Q, Al, AQ, }(7 k, r, S,p).

(i) Av = Bw # 0 holds true if and only if where

_ s R} =loglI + (I1+H,Q,HZL)"'H,,Q,H|, 9a
v = (plysl _ [ ‘1112A1 1 I‘(A) } |: y :| ’ (4a) g Og| ( 12Q ;12)71 11Q }—Il ( )
Y1 Ry =loglT + (I + H21Q,Hy;) "H22Q, Hyyl, (9b)

W= @y = [ UpA;' T(B) | [ v ] @by  Re=logll+(I+GuQ,G)'GiQ.GY|, (%)

with Q, 2 VV# andQ,, £ WW*¥ denoting the transmit
covariance matrices d; andsS,, respectively.
The achievable secrecy rate region is the set of all se-

with y, being any nonzero vectorg,:, ys2, y1 andy, being
any vectors, with appropriate length.
(i) The number of linearly independent vectorsatisfying

ire i A 1 p2 7y
Av = Bw # 0 is s + dim{null(A)}. crecy rate pairs, i.e. R = (V,VL‘J/)GZ(RS’RS)' whereZ =
Proof: See AppendiXA. B (v, W)tr{VVT} = P tr{fWW!} = P}, with P denot-
ing the transmit power budget. Generally, the determimatio
[1l. SYSTEM MODEL AND PROBLEM STATEMENT of the outer boundary oR is a non-convex problem. Next,

We consider a MIMO interference network which consist¥e study a simpler problem, namely tlaehievable secrecy
of a wiretap channe$;-D;-E and a point-to-point chann&h- degrees of freedom region, defined as
D, (see Fig. 1). In a real setting, the former channel would A 1 2

S . - D= U (d,,d3), (20)

correspond to a source-destination pair that needs to aiaint (V,W)eT
secret communications, while the latter would correspand t
a public communication system. While communicating wit
its intended destinatior$, acts as a jammer to the external
passive eavesdroppEr S, andS; are equipped withV!, N2 DA R.
antennas, respectiveld;, D, andE are equipped withV!, s = Ph—r>noo log p’ € {12} (11)
Nj and N, antennas, respectively. Le§f ~ CN(0,I) and

here d’ denotes the high SNR behavior of the achievable
ecrecy rate, i.e.,

As shown in Fig. 2, the outer boundary Bf consists of the
strict S.D.o.F. region boundary (the part betwdehandE2
transmission. The signals received at the legitimate vecei%e[he graph) and the non-strict S.'D'O'F' region boundar (t
) vertical part belowEl and the horizontal part up 62 of the

D; can be expressed as graph). The points marked b§U1l and SU2 correspond to

yg =H,, Vs, + HxWs, + nfi,,' =1,2, (5) single user S.D.o.F, i.e., when only one user communicates
For an arbitrary point on the strict S.D.o.F. region bougdr
is impossible to improve one S.D.o.F., without decreasimgy t
other. On the other hand, for a point on the non-strict SP.o.

ye = G, Vs; + GyWss + .. (6) region boundary, one S_.D.o.F. can be_further improved while
the other S.D.o.F. remains at the maximum value.

Here,V € CN:*Kv and W e CN:*Kw are the precoding In the following, we will determine the outer boundary of
matrices atS; andS;, respectively;nfi ~CN(0,I) andn. ~ D, and find its connection to the number of antennas. Towards

while the signal received at the eavesdroppecan be ex-
pressed as



d; By restricting (V, W) to lie in Z, we exclude a large

& __SLU_Z___O_______/_,,\ Strict S.D.0.F. number of precoding matrix pairs if, which have no contri-
E2 \\‘\/ region boundary bution to the outer boundary, and thus reduce the number of
AN precoding matrices we need to investigate in determinieg th
3 /\7 outer boundary of the S.D.o.F. region. It turns out that we ca
El : reduce the set even further without changing the achievable
2t + S.D.o.F. region; this is discussed in the following conglla
: where we introduce a new s&t which is a subset of .
n 5 Corollary 1: Let
| DL U (d,d?), (15)
. . L U vwyer o7
0 1 2 3 d!

Fig. 2: Achievable S.D.o.F. region boundary where the set of is defined as follows,

o _ o T2 {(V,W)|GV =GyW(;,1:K,),(V,W) €1}
that goal, we first introduce a cooperative transmissiopisch (16)
Then, by studying that scheme we determine in closed form
the outer boundary 0P and also we construct the precodingrhen,D = D.

matrices which achieve the outer boundaryZof Proof: See AppendiXD. m
Corollary 2: For any given precoding matrix pair
IV. COOPERATIVE SECRECY TRANSMISSION SCHEME (V, W) € Z, the achieved S.D.o.F. over the wiretap channel

S,-D-E is di = I'aIlk(HuV).
Proof: Since (V, W) € Z, it holds thatspan(G1V) C

span(G2 W), which indicatespli_r}noo @ = 0. In addition,

Proposition 2: For the precoding matrix paifV, W), the
achieved S.D.o.F. equals

d}(V,W) =rank{H;; V} —m(V,W) —n(V, W), (12a) )

d?(V, W) = dim{span(HW)/span(Hy V)}, (12b) span(H;; V) N span(H;2W) = 0, thus Plim Ry _

—00 10g(P)
in which m(V, W) £ dim{span(G;V)/span(GyW)} and rank(Hi; V). So,
n(V, W) £ dim{span(H;2 W) Nspan(H;; V)}. 1 R
Proof: See AppendiXB. m dl= lim —%<— — lim —%— = rank(H;; V).
According to Proposition 2, the achievable S.D.o.F. of Poo log(P)  Poo log(P)
S;-D; depends only on the dimension difference of th&his completes the proof. [ |

interference-free subspaces whighandE can see. Motivated

by this observation, we propose a transmission scheme in
which the subspace spanned by the message signal has no
intersection with the subspace spanned by the interferencehe key idea for computing the S.D.o.F. boundary is to
signal atD,, and belongs to the subspace spanned by the intgfaximize the value of? for a fixed value ofi!, sayd! = d.
ference signal €. In this way,D; can see an interference-freeBased orCorollary 1, in order to determine the outer boundary
message signal, such th&}, scales withog(P), while E can of D, we only need to focus on the s@t (see eq.[(16)).
only see a distorted version of the message signal, such thatther,Corollary 2 shows that fof'V, W) € Z the achieved
R. converges to a constant @ approaches to infinity. In S.D.o.F. isd} = rank{H;; V}. The problem of interest now
other words, the precoding matrix pairs belongs to theZset s to construct precoding matrices which sati§W, W) € Z,
which is defined as follows: K, =d!, and also leave a maximum dimension interference-

= a - = free subspace fdDs.
T2V WV, W) e hnL: N1}, For ease of exposition, letv, wf] denote the precoding

V. COMPUTATION OF THES.D.O.F. BOUNDARY

where vector pair. Some observations are in order. First, one can
. see that when the source message sentSpylies in the
Iy = {(V, W)span(G1 V) C span(G2 W)}, (13a) i space of the eavesdropping channel, even if the pair
A

I, £ {(V,W)|span(H;; V) Nspan(H12W) = 0}. (13b) $S;-D; communicates, their interference cannot degrade any
) further the eavesdropping channel because the eavesdroppe
Next, we show that the proposed scheme can achieve all H?F‘eady receives nothing; in those cases we may take 0.

boundary points of the S.D.o.F. region. Second, according t€orollary 2, for any precoding matrix
Proposition 3. Let pairs(V, W) e 7, the achieved S.D.0.H! = rank{H,, V}.
pE | (d!, d2) (14) Thus, a greater value of! can be achieved by including
vwyez o more linear independent precoding vector pairs(¥i, W).
Then, the outer boundary @ is the same as that d. 1The precoding vector pairév, w) we consider in the construction of

Proof: See AppendiXx L. B (V, W) are linear independent of each other.



Third, the maximum number of linear precoding vector paiB(H.;T'(G1))y, with y being any vectors with appropriate
is determined by[(13b), which requires that length. Therefore, the formula af in Sub; is

dim{span(H;;V)} + dim{span(H;o, W)} < Ni.  (17) v =I(G1)T(H21T(G1))z, (19)

Fourth, the maximum dimension of the interference-free sulyith z being any nonzero vectors with appropriate length. In
space aD, depends on whethdd, experiences interferenceaddition, since all the channel matrices are assumed tolbe fu
from S;. So, in the following subsections, we will divide therank, it holds that

set satisfyingG;v = Gaow into six subsets, according to .

whether the source message fr@n lies in the null space di < dim{null(Hn T(G))} = (N; = Ne = Nj)™. (20)
of the eavesdropping channel, whether the source messagg) The message signal sent by S; spreads within the null
from S, has interference oD,, and whether the sourcegyace of the eavesdropping channel, but does interfere with
message fronS; has interference o,. Accordingly, we p, That is, the vectors iSuby; should satisfy
characterize the precoding vector pairs in each subset with

the signal dimension tripleta, b, ¢), wherea and b denote Giv=0, (21a)
the number of signal dimensions we respectively neeDat Hy v #0. (21b)
andS;, andc denotes the signal dimension penaltybat for

obtaining one S.D.o.F. over the wiretap chan8eD;-E. In Here again, we will considew = 0 for simplicity. On
particular,a £ rank{H;;v} + rank{How}; b £ rank{w}; combining [18R){I8b) with(21a)-(2lLb), it holds that

a
¢ = rank{Hzv}. Then, N Suby U Subr = {(v,w)|G1v = 0,w = 0}.  (22)
1) if the message signal sent By spreads within the null

space of the eavesdropping channel, the message sigh@l the linear independent vectors we can choose fsai
sent fromS, is secure even without the help 8f, thus andSwby; should be no greater thatim{null(G1)}. That is,
b =0, a = 1; otherwise,b = 1.

2) if the message signal sent By interferes withD,, we
need at least two signal dimensionsi in order to
tell the message signal sent By apart from that sent
by S;, which means that = 2; otherwise,a = 1.

3) if the message signal sent 8§ interferes withD,
the signal dimension penalty &% is one, thuse = 1;
otherwise,c = 0.

dir +dp < (N} — Ne)*. (23)

II1) The message signal sent by S; does not spread within
the null space of the eavesdropping channel. The message
signals sent by S, and S, do not interfere with Dy and
D1, respectively. That is, the precoding vector pairs Huby;
should satisfy

Please refer to Table | for the triplét, b, ¢) of the precoding Hppw =0, (24a)

vector pair from each subset. Based on this trigleth, ¢), H, v =0, (24b)

in this section, we will analyze the Single-User poiig1l Giv = Gow #0. (24c)

and SU2, the strict S.D.o.F. region boundary, and the ending

points of strict S.D.o.F. region boundaBl andE2. Substitutingv = I'(Hs; )x andw = I'(H;»)y into (248), we
arrive at

A. Aligned signal subspace decomposition GiT'(Hy )x = GoI'(Hy2)y # 0. (25)

In this subsection, we divide the set satisfyl@gv = Gow  Consider the decomposition
into six subsets, i.eSuby,..., Subyi, and determine the num- o
ber of linear independent precoding vector pairs that shoul GSVD(G1I'(H21), GoT'(His); N, N}, N2)
be considered in e_ach subset, i@&,,..dvi, respe_ctlvely. _ (‘i,l’ \1,27[&1’11275(’ ;;7727§ )
I) The message signal sent by S; spreads within the null
space of the eavesdropping channel, and does not interfere where N! 2 (N! — N?)* and N2 £ (N2 — NH)t.
with D,. That is, the precoding vector pairs $wb; should Applying Proposition 1, we can obtain the number of linearly

satisfy independent vectors satisfying [25), i.e.,
Giv=0, (18a) drt 2 § + dim{null(G,T'(Ha1))}.
Hav = 0. (18b)  since null(G;T'(Hy;)) = null(Hy:T'(Gq)), the basis of

Further, it holds thaiGow — Giv — 0. The case where null(G1T'(Hs,)) also spans the solution spacevofn Subs.

G1v = Gow = 0 andw # 0 is not considered here, becaus us,

even if the pailS;-D, communicates, their interference cannot ;o _ g 1 _oA2\+

degrade any further the eavesdropping channel. So we will o dp < dunn = 8 (N, = Ne = Na)™ (26)
considerw = 0 for simplicity. Substitutingv = T'(G1)x IV) The message signal sent by S, does not spread within
into (I8B), withx being any vectors with appropriate lengththe null space of the eavesdropping channel. The message
we arrive atH.,I'(G1)x = 0, which is equivalent tax = signal sent by S, does not interfere with D4, but the message



TABLE I: The triplet(a, b, ¢) corresponding to the precoding vector pair from each swdrsthe number of linear independent
precoding vector pairs that should be considered in eacbesub

subsets| (a,b,c) | maximum number of linear independent precoding vector pais (v, w)
Suby | (1,0,0) di = (N} = Ne — N3)*

Subrr | (1,0,1) dir = min{N?, (N} — N.)*}

Subnr | (1,1,0) dinn = (min{(NJ — N7)", Ne} + min{(NZ — Nj)*, Ne} — Ne)*
Subry | (1,1,1) dry = (min{N}, No} + min{(N2 — N}))¥ N} — No)T —diny
Suby | (2,1,0) dy = (min{(N! = N2)* ,N.} + min{N2, N} — No)T — dint
Subyt | (2,1,1) dy1 = (min{N}, Ne} + min{N2, N} — Ne)t — (di1 + drv + dv)

signal sent by S; interferes with D,. That is, the precoding On combining[(24a)E(24c) witH (3D&)-(30c), it holds that
vector pairs inSubry should satisfy Subi U Suby = {(v, w)[Ha1v = 0,G1v = Gaw % 0}

H12W = O, (27a) . .

b In addition, the basis ofull(G,IT'(Hs;)) also spans the
Ha1v # 0, (27b) solution space ofr in Sub;. Therefore,
G1v = Gaow # 0. (27¢)

dy +dm+di <dy =35+ (N =N, - N)*. (32
Substitutingw = I'(H;» )y into (27¢), we get . o

VI) The message signal sent by S; does not spread within

G1v = GoI'(Hyp)y # 0. (28)  the null space of the eavesdropping channel. The message sig-

Consider the decomposition nals sent by S, and S; interfere with D; and Do, respectively.
. That is, the precoding vector pairs Bubyr should satisfy
GSVD(G1, GoI'(Hy2); Ne, NI, N2)

= (@11@211_&17[&215(71%1?7 5713) H12W # 0’ (33a)
. . . . H21V 75 0, (33b)
Applying Proposition 1 we can obtain the number of linearly B 33
independent vectore satisfying [28), i.e., G1v =Gaw #0. (33¢)
div 25+ dim{null(G1)}. Consider the decomposition

On combining [(Z4a)iZ3¢) Wit (2Vd)=(37c), it holds that ~ GSVD(G1, Go; Ne, N, N7) = (W1, o, Ay, Ao, X, &, 7, 3,).

Subp U Subry = {(v, w)|Hiow = 0,Gyv = Gow #£ 0} According to Proposition 1, we can obtain the number of

linearly independent vectors satisfying [(33L), i.e.,
In addition, the basis afull(G) also spans the solution space Y P fying )

of v in Suby U Suby. Therefore, ds £ 5+ dim{null(G1)}.

div +din +di +di < dy =5+ (N2 = No)*. (29) On combining [33a)K(33c) with (2h&)-(24c].(27R)-(P7cHan
M)-m.'?), it holds thabubir U Subry U Suby U Subyr =
{(v,w)|G1v = Gaw # 0}. In addition, the basis of
null(G) also spans the solution spacevofn Sub; U Suby;.

V) The message signal sent by S, does not spread within the
null space of the eavesdropping channel. The message signal
sent by S, interferes with Dy, but the message signal sent by

S, does not interfere with Dy. That is, the precoding vectorThus’
pairs in Suby should satisfy dvy1 + dy + drv + dyip + dip + di < ds. (34)
Hipow # 0, (30a)  We should note that with all three variables smaller than
H, v =0, (30b) the corresponding variables of other triplets, the prewpdi
_ vector pair fromSubr has the potential to achieve a greater
Giv = Gaw 7 0. (30¢) S.D.o.F. than the others, and so it has the highest priority
Substitutingv = I'(Hy; )x into (30¢), we obtain in the construction of V, W). Similarly, the precoding vec-
GiT(Hai)x = Gow # 0. (31) tor pair from Subry has lower priority than th_at one from
Suby U Subyp U Subpyr; the precoding vector pair froruby
Consider the decomposition has lower priority than that one fromiub; U Subyr; and the
GSVD(Gll“(Hzl),Gz;Ne,Nj,Nf) precoding vector pair fromSuby; has the lowest priority.

e o s o Therefore, all the equalities if_(PO)._(23]._126). 1(29). )32
= (W1, Wo, Ay, Ag, X, K, 7, 5, ). and [34) hold true. As a conclusion, the number of linear
Applying Proposition 1, we can obtain the number of linearlyindependent precoding vector pairs that should be coresider

independent vectore satisfying [31), i.e., in each subset is given in Table I.
Correspondingly, in what follows, we give the formulas of

dy = 5 + dim{null(GT'(Hz1))}. v andw we consider in each subset. Combining the formula



of v in Suby, i.e., [19), and that one ifub; USubr, i.e., [22), Subip U Subry; otherwise, we first select all the precoding
we obtain the one irbuby, i.e., vector pairs inSuby U Subrp U Subpp U Subry, and then we

N} —(di+du +din +d
v =T(G1)T" (Ho1T'(G1))z + T(G1)T(Ha1 T(Gh))y. pick | —2 (di + du + din + drv)

. . . . from Suby U Subyr.
with z being any nonzero vectors with appropriate length. Example 1: Consider the caséN’, N1, N,) — (6,3,6),

Since we want linear independent precoding vectors, t?&
0

| precoding vector pairs

2 PARS i
beamforming direction already considered in the set wi Isir’u]a\gr)ir;jéﬁé?dei?sgic%%il—zb\lleeclt’otrhp?a?;)i(rzrgl;lqhnsuuﬁggtr
higher priority, e.g.,Sub;, should not be under con3|derat|0ndI — 0, dy = 0, d = 0, dyy = 3, dy = 0, dyy = 3. Since
NC} = di+dp+din+dry, we first select three precoding vector
v =T(G) I (HyT(G1))z. (35) pairs in Subry. We cannot pick any more precoding vector
pairs without violating[(T]7) since in that case the the revimaj
signal dimension aD; is N} — dry = 0. Concluding, we

in other subsets. Thus, the formulawfin Subrr is

Similarly, the formulas ot andw in Subyy; are, respectively,

v = liIIQAl_lz’w = \1122A2—1z_ (36) can select a total of 3 precoding vector pairs, and based on
, , Corollary 2, d} = 3.
The formulas ofv andw in Subry are, respectively, Example 2: Consider the caséN!, N}, N.) = (6,5,5),
v=UpAT 2, w=UynA; 'z (37) (N2,N3) = (6,4). Based on Table | we get tha = 0,

dit = 1,diit =0, diyv = 1, dy = 2, dy1 = 2. SinceN(} >
di+di+di+dry, we first select all the precoding vector pairs
vV = ‘i’ul‘flz, W = i]QQAEIZ. (38) in Subn andSubIV, i.e., (Vl, Wl), (VQ, WQ), with H12W1 =0
. . and H;owo = 0. From the remaining setSuby and Subvyr,
And the formulas ofv andw in Suby; are, respectively, e can at most pick one pair, i.¢vs, ws). For eitherSuby or
v — \illgf&flz,w _ \1,2211512_ (39) Subvyr, it holds thatHux_v?, # 0. Thus, forV = [v; vy v3]
and W = [w; wy ws] it holds thatdim{span(H;; V)} +
We should note that sindd,; is independent of the channelsdim{span(ﬂmw)} = 3+ 1 = 4. If we picked another pair,
G1, Go andH,;, for precoding vector pairs il (BF21v # 0 ([I7) would be violated. Concluding, we can select a total of
holds true with probability one. Similar argument also &l 3 precoding vector pairs, and based @orollary 2, dl =3.

SubVI.

The formulas ofv andw in Suby are, respectively,

d min{d,=1 + d;_,, Ndl}’ (40)

B. Single-User points SU1(d!, 0) and SU2(0, d?
: . ° oo whered,—, = di + dit + dm + drv, and

A single-user point corresponds to a scenario in which only
one source-destination communicates. étand d? denote ¥y = min{dy + dvr, | (N3 — da—1)"/2]}.
the maximum achievable value df andd?, respectively.

1) The single-user point SU1(d!, 0): In this case, the pair Remark 1: To gain more insight intal!, we give Table Il
S,-D, does not communicate, b8 still transmits, acting as a which shows the dependencedifon the number of antennas.
cooperative jammer targeting at degrading the eavesdigppi 2) The single-user point of SU2(0, d2): In this case, the
channel. In this case, the system model reduces to a wiretgipetap channeB;-D,-E does not work. For a point-to-point
channel with a cooperative jammer. Based @orollary 1 MIMO user, the maximum achievable degrees of freedom
and Corollary 2, we see that our problem for maximizingequalsmin{/N?2, N3}. That is,

d}! is including as more precoding vector pairs as possible

in (V,W). In Table |, we divide the set which satisfies d? = min{ N7, Nj}. (41)

G v = Gyw into six subsets. Due to the requirementlin] (17),

it holds that more precoding vector pairs can be included in ] ) ]

(V, W) by choosing precoding vector pairs from the subsets Computation of the strict SD.o.F. region boundary

with smallera. For examplea = 1 for Subry while a = 2 The key idea for computing the strict S.D.o.F. boundary is
for Subyr. We can select at mosY; precoding vector pairs to maximize the value ofi2 for a fixed value ofd!.

from Subry, in which a = 1, while we can select only  Assume thatV consists ofd! columns, among which:

| N;/2] precoding vector pairs fromfubyy, in whicha = 2. columns come from a subset for which the message signal
In addition, since the achieved S.D.o.Fdis= rank{H1,1V}, sent byS, interferes withD,. Then, D, can at most see a

a greater value ofi can be achieved with precoding vecto[ N2 — 2)*-dimension interference-free subspace. Thus,

pairs fromSubry. Therefore, in the construction ¢V, W),

the precoding vector pairs from the first four subsets hage th d?(z) < (N2 = 2)*. (42)
same priority, and the precoding vector pairs from the \ast t .

subsets have the same priority. Moreover, a precoding veckd addition, it holds thatl} + dim{span(H;, W)} < N due

pair from the first four subsets has higher priority than th& (17). So,

one from the last two subsets.Né < dj + di1 + dyi1 + dyv,

2 1 71
we just selectV! precoding vector pairs fromiuby U Suby; U rank{W} < (max{N;, Ng} —d,)*. (43)



TABLE Il: Summary of the closed-form results eh

Inequalities on the number of antennas at terminals dt
N! > N+ N}
N2> N.+ N} min{N}, N}}

2N} + Ne — N2 < N! < Ne + N}
N} < N2 < Ne+ N}

N!+ N, — N2 < N! < 2N} + N, — N? N!+ N2 — (N} + Neo) + min{s, | 2NatNe_Ne —NG |3y
N} < N2 < Ne+ N s =min{NJ} + Ne — N2, No} + min{N2, N.} — Nc
Ne < N! < Ne + N}, N2 < N} N! — N. + min{s, LMJ} s = min{N2, N}
N! <N} +N.- N2 N} <N?<N.+ N} min{s, LTJ}
Ng < Ne, Nf < Né s = min{N;},Ne} +min{N§,Ne} — min{N;} + NE,NE}

Combining [41), [(4R) and (43), we get the maximum achieBubstituting [(4l7) into[(44), we obtain the maximum value of

able value ofd?, i.e., d?, i.e.,
d?(z) = min{ N2, (max{N2 N1} — d))*, (N2 - 2)*}. d? = min{ N2, (max{N2, N} —d")", (N2 — zin(d}))"}.
(44) (48)
Thus, in order to maximize the value df, we only need to ~ Remark 2: For any given values ofi;, we can derive a
minimize the value of. maximum achievable value @ based on[(48). Finally, the

According to Table I, the minimum value af without the  Strict S.D.o.F. region boundary can be computed based on the
constraintd! = d! equals(d} — (dy + di + di))*. Due to following iteration:
the constramd1 = d! and the fact that: = 2 in Suby, we 1) Initialize d! = d};
have Ilmltatlons on the number of pairs that can be selected?) Computed2 Wlth “3);
from Suby. For example, consider the cade+ dip = 2, 3) Comparei? with d2. If d2 < d2, letd! = d! — 1 and go
dy = 2, N} = 3 andd! = 3. The minimum value of: to 2); otherwise, stop and output all the paﬂn%,dﬁ)

without the constraintl} = d! = 3 equals0, in which case  Example 3: Let us revisitExample 2, for which we obtained
we need at least choose one pair frémby . Noting that [AV) d! = 3 andd? = 4, respectively. In|t|aI|zed1 with d} =
should be satisfied fafV, W) € Z anda = 2 in Suby, if we Substltutmgdé = 3 into (48), we obtaini? = 3. S|nced§
have picked one pair fronSuby, we can then at most pick 42, we continue the iteration. Lettingf = 2 and substituting it
one more pair from the first four subsets. Thus, the maximunto (48), we obtain/> = 4, which equalsi?. So, we stop the
achievable value of} equals 2, which violates the constraintteration and output all the S.D.o.F. pairs on the strict.8.R
d} = 3. Due to the constrainf! = 3 and the fact that = 2 region boundary, i.e(d!, d2) = (3,3) and (d}, d2) = (2,4).
in Suby, we cannot select any pairs froSuby, and so the
minimum value ofz equals to 1.

Letz andy denote the number of columns which come fron&z) IZEI rllzgz(FiOI nz;)of strict SD.oF: region boundary E1(d;,
the first four subsets and the last two subsets, respecti

maximum allowable value of under the constraintaft = 4 AS shown in Fig. 2E1 andE2 denote the ending points of

the strict S.D.o.F. region boundary. In particul@i, denotes

is
the maximum achievable value @f under the constraini, =
Ymax =MaAX Y d!, andd; denotes the maximum achievable valuelplunder
R the constrainti? = d2. )
st. x+y=d., (453) 1) The ending point E1(d!, d?). According to [4D), we
x+2y < Ny, (45b) obtain d} which denotes the maximum achievable value of
0<a<d+d+ d + drv, (45c) ds- Substitutingd; = d; into (48)-(48), we arrive at
0<y<dy+dyr (45d) &7 = min{NZ, (max{NZ, Ny} — d0)", (NG — zmin(dy)) "}
- 5 . , - (49)
Substitutingr = d! — y into (45B), we arrive ayy < N} —d., -
which combined with[{48c) and (4bd) gives 2) The ending point E2(d., d2). According to the previous
) L a - analysis on the single-user point 8J2(0, d2), we obtain
Ymax = min{ Ny — d, dv + dv1,d,}. (46) @2 — min{N2, N2}, which, combined withIZZl4) gives
Thus, we can select at mostin{ym.x, dv} precoding vector min{ N2, N2} < max{N2 N}} —d!, (50a)
pairs fromSuby. Therefore, the minimum value af is, min{N2 Ng} < Nd2 . (50b)

71\ g1 : . . ..
Zmin(dy) = (dg = (min{ymax, dv} +di +dim)) ™. (47) | the following, we consider two distinct cases.



(i) For the case ofV2 > N2, (50a) becomes
dy < max{NZ?, Nj} — Nj. (51)

Besides,[(50b) indicates that= 0, and thus all of the signal
steams sent bg, should not interfere witlD,. That is, Suby,

Subry and Suby are not under consideration. Applyirfg140),

we obtain
d! <min{d + di1 + B*, N}}, (52)

where3* min{dy, (N} —di — di1)™/2]}. Combining
(51) and [(BR), we arrive at

d! = min{d + dii1 + B, max{N2 N} — N2 Ni}. (53)
(i) For the case ofVZ < NZ, (50a) becomes
di < maX{staNé} - sta

(54)

which indicates thai: = 0 whenN? > N}. So, in the follow-
ing, we only consider the case 8 < N}, where it holds that
dinn = dry = 0. In addition, [50b) indicates that< N? —NZ.

TABLE llI: An algorithm for constructing(V, W) which
achieve(d?, d?) on the S.D.o.F. region boundary

S) 78

1. Initialize u = min{d}, min{ymax, dv } + d + di1}, t = d} — u;

2. (Vo, Wy) <« selectu precoding vector pairs fronubo;
3. (Ve, We) « selectt precoding vector pairs fronSube;
4.V « [V, Vl;

5. Wi + [Wo W|;

6. Letd? = d2 — rank(W,);

7. d2 >0

8. Letd? =min{d2, (N2 - N})*};

9. Wz A(:,1:d2), where A = T'(Hy2);

10. Do the singular value decomposition (SVH), = USR¥;
11. W« [W; Wy R(;,1:d2 —d?)];

12. else

13. W+ Wy,

14.end

15. Output: (V, W).

Therefore,¢ = min{dyr, (N2 — N2 — dy1)*} + dv, where¢ precoding matrix without violating any constraints BHfand
denotes the maximum number of precoding vector pairs t#lg0 achieves an S.D.o.F. @f. In particular, by adding the

can be chosen fromuby and Subyr. Applying (40), we get

d' < min{d; + dy; + £, N} }, (55)
whered;; = min{N? — N2 dy}, and
¢ =min{¢, (N — di — du) /2] }.
Combining [G#%) and{35), we arrive at
d! = min{d; + di; + £, max{N2, N}} — N2}.  (57)

first > = min{d?, (N2 — N})*} columns ofT'(H,,) and the
first d2 — d? columns ofR as the other beamforming vectors
at S;, we complete the construction of the precoding matrices
(V, W). In this caseK,, = d2. HereR is obtained with the
singular value decomposition (SVI¥,; = USR'. By this
SVD the channeH,; is decomposed into several parallel sub-
channels, and the first2 — d> columns ofR correspond the
ones which are of better channel quality than the others.

Example 4: Let us revisitExample 3, in which we obtained

We should note that this expression also applies to the dasé8 S.D.0.F. paifd}, d?) = (2,4) on the strict S.D.o.F. region

N2> NI, whered! = 0.
Summarizing the above two cases, we arrive at
min{dI + dir + 8, n — Ndz,Ndl},if N32 > Ng
min{dl +din+&,n— N?},if st < Nd2
(58)

dl =

1

wheren = max{ N2, N}.

VI. CONSTRUCTION OFPRECODING MATRICES WHICH
ACHIEVE THE POINT ON THE S.D.0.F. REGION BOUNDARY

According to Section V. C, by carefully choosifig, w) we
are able to construct precoding matrix pafé, W) which
achieve the S.D.o.F. pairs on the S.D.o.F. region bound
In particular, by selectingr = min{d}, min{ymax, dv} +
di + dmn} pairs from Sub, = Suby U Subip U Suby and
t = d' —u pairs fromSube = Suby; U Subpy U Subyr, subject
to the number of pairs selected froRuby U Suby: being

boundary. According to Section V. C, at this boundary point,
Ymax = 2 and zpi;, = 0. Sinceuw = 2, df = dip = 0 and
dv = 2, we first select two precoding vector pairs $fuby,
i.e., (Vl,Wl) and (VQ,WQ), with Hy vy = 0, Hyyvo = 0,
Hiow; # 0 andHiowsy # 0. From the remaining sets we do
not pick any pairs sincé = 0. So far, we have finished the
construction ofV andW (:,1: K,)), i.e.,[vy v2] and[w; wa].
Sinced? = d2 —rank(W(:,1: K,,)) = 2 > 0, we further add
d? = min{d?, (N2 — N})*} = 1 column of I'(H,2), i.e., w3,
with Hows = 0, andd? —d2 = 1 column ofR, i.e., w., with
Hsow, # 0, as the other beamforming vectors &t Since
Hiiv; # 0, Hoow; # 0 andH ow, # 0 hold true with proba-
bility one, forV = [vy vo] andW = [w; wo w3 wy] it holds

Aat dim{span(H1; V)} + dim{span(H;2 W)} =2+3 =5

anddim{span(Hzo W)} + dim{span(H2, V)} =4 + 0 = 4.
Therefore, the S.D.o.F. pajti}, d?) = (2,4) is achieved.
Concluding, an algorithm for constructifyy, W) is given

ERE-]

no greater tham.., we have completed the construction of?t TABLE lil. Note that the formulas of; andw; in Sub;,
precoding matrice§V, W(:, 1 : K,)) € Z. This construction ¢ = LI ---, VI, are given in[(1P),[(35)[(36)[(B7). (88) and

satisfiesd}

d! and also leaves a maximum dimensior39), respectively.

ie., d> = d2 (see eq.[(d8)), interference-free subspace for Remark 3: In light of (I2a) and[[I2b) derived iRroposition

D,. Further, ifd? < rank(W(:,1 : K,)), S does not need
to add any beamforming vectors, and the S.D.o.Fdofis

2, whenever we find a solutiofV, W) achieving the S.D.o.F.
pair (d!, d?) on the S.D.o.F. region boundary, we actually find

s§17s

achieved. In this casek’,, equals the number of nonzerothe solution spacegpan(V) andspan(W), i.e., the precoding

columns of W(:,1 : K,). If d2 > rank(W(:,1

: Kv)),
S, can addd? = d? — rank(W(;, 1 :

K,)) columns to its

matrices(VA, WB) also achieve the S.D.o.F. p&it!, d2) on

Rt

the S.D.o.F. region boundary as long/asndB are invertible.
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VII. NUMERICAL RESULTS

In this section, we give numerical results to validate our , ‘ ; ; ‘ ; ; : ; ;
theoretical findings. For simplicity, we consider a simple 0 002 004 006 008 01 012 004 016 018 02
semi-symmetric system model, as illustrated in Fig. 3. In, ) i )
particular, the antenna numbef§! = N! = N, 2 N, Fig. 6: Achievable secrecy rate Sf:Dl versus the uncertainty
and N2 = N2 £ N,. We assume thaD; or E is uniformly of the eavesdropper’s channels
distributed on a ring of radius < R < 10 (unit: meters) and
center located a§;. The source-destination distances or thshows that the achievable secrecy transmission rag -af;
source-eavesdropper distance are no greater than theesourgreases monotonically & moves close t&,. In contrast,
source distance. To highlight the effects of distances, tiige achievable transmission rate $fD, decreases with the
channel between any transmit-receiver antenna pair is lddedecreasing of the source-source distance. As compared with
by a simple line-of-sight channel model including the patthe decrease in the transmission rate&spDs,, the increase in
loss effect and a random phase, ik, = dl_Qc/er" where the secrecy transmission rate®fD; is drastic. Therefore, the
dy2 denotes the distance between tBeand Dy, ¢ = 3.5 network performance benefits when the two users get closer.
is the path loss exponemt, is the random phase uniformly Fig. 5 illustrates the achievable secrecy degrees of freedo
distributed within[0, 27). The distances between transmit oregion versus different values df,. Here, we setV; = 4
receiver antennas at each terminal are assumed to be maetl let N, vary from 1 to 8. We compute the achievable
smaller than the source-destination distance or the seursecrecy degrees of freedom region according[id (48). As
eavesdropper distance, so the path losses of differersiniian  expected, the secrecy degrees of freedom region expantls wit
receiver antenna pairs from the same transmit-receivér lian increasingV,. Note that previous work [36] shows that for
are approximately the sam&, is located at a fixed two- the classic wiretap channel with no cooperative helpers the
dimensional coordinates (0,0) (unit: meters), wilemoves condition to achieve a nonzero S.D.0.FN$ > N, + 1. Here
from (350,0) to (10,0). The transmitting power of each seuralthoughN! = N., by exploiting the co-channel interference
is P = 0dBm. Results are averaged over one hundred thousandS.D.o.F. ofN! can be achieved.
independent channel trials. In practice, while one may have a good estimate of the

Fig. 4 illustrates the achievable secrecy transmissioa ragtosition of the eavesdropper, an estimate of the phase of
of the userS;-Dy, and also the achievable transmission rathe eavesdropper’s channels is more difficult to obtainc&in
of the userS,-D, for Ny = 4 and N, = 2. The noise the proposed precoding matrix design highly depends on the
power 02 = —60dBm ando? = —40dBm are considered, eavesdropper’s channels, we next examine the secrecy rate
respectively. According td_(48), we see that with our praabs performance degradation in the presence of imperfect @éann
cooperative transmission scheme, the S.D.o.F. pair (afipe estimate. In Fig. 6, we plot the achievable secrecy rate with
achieved. We compute the precoding vecto@ndw accord- imperfect CSI of the eavesdropper’s channels. Here, we set
ing to TABLE lll, and compute the achievable transmissioiV; = 4 and letN, vary from 2 to 6.5; and.S; are located at
rate of each user according tb] (7) aid (8), respectively. (0,0) and (0,0), respectively. The noise powér= —60dBm.
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The channel frong; (i = 1,2) to E is natural extension. According to the GSVD decomposition,
i — AU AT = BUyAy' = Xo. Thus, Av = Bw holds
G, = de_f/Q < G+ —AGZ-) , (59) true if v andw are given by[(da) and(#b), respectively. Next,
vita 1+a we prove by contradiction thaAv = Bw holds true only
where o denotes the channel uncertain, represents the if v € span(®;); the argument forw is similar. Assume
estimated channel part &. The entries ofG; aree’? with that there exists a nonzero vector¢ span(®,) satisfying
6 be a random phase uniformly distributed withie, 27r). Av = Bw. Then,Av ¢ span(A®;); otherwise, it holds that
AG; ~ CN(0,1) represents the Gaussian error channel mav = A®;x which impliesv — ®;x = I'(A)y;, and so
trices.d.; denotes the distance fro8. According to[48), we v € span(®;) which contradicts with the assumption. How-
see that the S.D.o.F. pairs (1,1), (2,1) and (3,3) can bewetii ever,Av € span(X,) due toAv = Bw. In addition, by the
for the case ofN, = 2, N, = 3 and N, = 6, respectively. GSVD, span(Xz) = span(A®,). Thus, Av € span(A®P,)
For these S.D.o.F. pairs, we construct the precoding nestri@nd soAv ¢ span(A®,) is contradicted. This completes the
V and W according to TABLE llI, subject to power beingproof of the first conclusion ifProposition 1.
equally allocated between different signal streams. Théeesse ~ According to the GSVDA W3 = 0. Thus,span(¥;3) C
able secrecy transmission rate is computed accordirg tdt (7)span(I'(A)). In addition, rank(¥,3) = M — 7 — s =
can be observed that the achievable secrecy rate dropshgith#/ — min{M,N} = (M — N)*, which indicates that the
increase of channel uncertainties when the channel umugrtalinear independent vectors kpan(¥13) is the same as that
« is small. Fortunately, when the number of antendés in span(I'(A)). So,span(¥;3) = span(I'(A)). Since ¥, is
increases, this secrecy rate performance degradatioraiéesm an unitary matrix, it holds thatpan(¥,2) Nspan(¥;3) = 0.
On the other hand, on comparing the secrecy transmissien raberefore,span(¥;,) N span(I'(A)) = 0, which, combined
of S;-D; for the caseN, = 2 with that in Fig. 4, one can seewith (@d), indicates that the number of linearly indeperiden
that the secrecy rate achieved for the case whete(0.1 and vectorsv satisfyingAv = Bw # 0 is s + dim{null(A)}.
S-S, distance of 10 meters, is almost equal to the secrecy rdieis completes the proof.
achieved for the case where= 0 andS;-S; distance of 150
meters. This suggests that in wiretap interference netsyork APPENDIXB
the secrecy rate degradation due to CSI estimation error can PROOF OFProposition 2
be counteracted by bringing the two users closer together. Given an arbitrary poinfV, W), with tr{Q,} = P and
tr{Q.,} = P. We can respectively rewrit€, and Q,, as
VIIl. CONCLUSION Q, = PQ, andQu = PQu, with tr{Q,} = tr{Q.} = 1.
We have examined the maximum achievable secrecy degrggérespondmgly,@a) can be rewritten as
of freedoms (S.D.o.F.) region of a MIMO two-user wiretap R} = log|I + (I + PH;,Q,HL)"'H,;Q,HZ P|. (60)
mterfere_nce ch_annel, where one user requires conﬂd_enﬂal_et @ - Hy,QH. Denoting HypQ HI -
connection against an external passive eavesdroppeg tileil l > 0 uH

other uses a public connection. We have addressed andiyticlU; U] 0 0 uk | @s the singular value decom-
the S.D.o.F. pair maximization _(component—wse)._Sp_milﬁrc position (SVD), ard substituting it int@(50), we obtain

we have proposed a cooperative secrecy transmission scheme1 Ceen .

and proven that its feasible set is sufficient to achieve all 2a =log|I+ Ui(I+ PX,)” Uy ©2P + UgUy O P|

the points on the S.D.o.F. region boundary. For the proposed I g H H

cooperative secrecy transmission scheme, we have obtained =log|L + Ul(P +31) U102 + UoUp ©,P.
analytically the maximum achievable S.D.o.F. region b@ugd Therefore,

points. We have also constructed the precoding matriceshwhi

: 1
achieve the S.D.o.F. region boundary. Our results revehked Plinoo Ry /log(P)
connection between the maximum achievable S.D.o.F. region Jog|I 4+ U, (2;) "' U¥©, + U U O, P
and the number of antennas, thus shedding light on how the= 1}51;0 log(P)
secrecy rate region behaves for different number of antenna 1 I H
Numerical results show that the network performance benefit = lim logll + (U1 (%)UY + UoUy )©-P|
when the two users get closer. This is interesting. It tedlthat Prroo . 1Og(P21 "
in wiretap interference networks, the secrecy rate degiada _ .~ 1og/l + UoUy Hu VVTHT)
due to CSI estimation error can be counteracted by bringing P—oc log(P)
the two users closer together. =rank{Uo U} H,; VV7TH} (61)
=dim{span(H1,V)/span(H12 W)} (62)
APPENDIXA —rank{H,, V} — dim{span(H,1 V) N span(Hs W)}.
PROOF OFProposition 1 63)
In what follows, we prove thahv = Bw holds true if
and only ifv andw are given in[(4k) and_(4b), wit,, y.1, where [g]) comes from the l;act that
i i i . loglI + AP . log(1+ NP
ys2, y1 and y2 being any vectors with appropriate length i og|lI+ AP| — lim Yoo log(14 A\ P) ~ rank{A},

With this result, the first conclusion iRroposition 1 is a pP—x  log(P) P00 log(P)



with A; andt being the nonzero eigenvalue and the ranlof
(62) comes from the fact thaf, U2 is the projection matrix
of the subspacepan(H;o W)=,
Applying similar derivations from[{80) td_(62) yields
lim R‘Qi
P—oo log(P)
oy Be
P log(P)
Substituting [(6B)E(@5) intd(11), we arrive &t (12a) aphd@L2

This completes the proof.

= dim{span(H22W)/span(H2, V)}, (64)

dim{span(G1V)/span(G2W)}. (65)

APPENDIXC
PROOF OFProposition 3

By definition, we haveD c D. Thus, the boundary oD
is included by that ofD. In the following, we show that for
any given precoding matriceV, W) € Z, we can always
find another precoding matricé®¥’, W') € 7, which satisfy
d}(V,W) < d{(V',W’) andd?(V, W) < d>(V',W'). So,
the boundary ofD is included by that ofD. Concluding, the
outer boundary oD is the same as that @p.

Before proceeding, we first introduce two critical propesti
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Let ‘i’%u: L‘i’gl,v‘i’QQ]. Since \illvandvlflg are invertible,
W) = W3, Wy, U] and W), = [Py, Wl are also invert-
ible. Applying (66) and[{G7), we have

rank{H;; V¥)} — m(VE), W)

= rank{H;; VUIW,} — m(VEIW, W, W) (71a)
= rank{H; V¥W,} — rank{ ¥y} (71b)
< rank{H,; V®¥l}. (71c)

Here, since span(G;V®JW¥})/span(Gy W, ¥/)
span(GVWIW,y3) = rank{¥,3}, we see that [{71b)
holds true. Sincerank{H;;V¥JW¥,3} < rank{®¥ys}
and rank{H;,V¥¥,} < rank{H;;V¥I¥L} +
rank{H1; V¥J¥,3}, we see thaf{71c) holds true.

Combining [69R)E(69c) with (71a)-(7lc), we arrive at
d}(V,W) < rank{H;; V&J¥1}. (72)

On the other hand, according t¢_[70), it holds that
m(VEIWL WP ¥/) = 0, which indicates

span(G, V®IWL) C span(Go WP/ W), (73)

on matrix that will be used in the following analyses. That issccording to [EB),span(HuW\i{’l) n span(HHV\i,g) -0,

for any given matriceqA andB, if B is invertible, then
span(A) = span(AB), (66)
rank{A} = rank{AB}. (67)
In what follows, based on the GSVD decompositio

which together withspan(H;o W) ) = span(H o W, &)
andspan(H;; V¥9) D span(H;; VEIW1), implies

of (H12W,AH1A1V) we first construct a precoding ma-

trix pair (V, W), which excludes the intersection sub
space ofspan(H;2 W) andspan(H;; V) without decreasing

the achieved S.D.o.F. pair. Further, based on the Gsvplet V’ 1202 <
decomposition of (GaW, G, V) we construct a precod- 0 Corollary 2, d,(V', W’)

span(Hio W/ W) Nspan(H, VT = 0. (74)
®ombining [78) and{24), we arrive at
- (VOB W' &) e 7. (75)

V¥IW¥! and W = W&, ¥,. According
2%2 101
= rank{HHV\Ilg\Il%}, which

ing matrix pair (V/,W’), which excludes the subspacdogether with IIZI?), givesd; (V. W) < di(V’,W’)./Be-
span(Ga1 V) /span(Gao W) without decreasing the achievedsides, span(Hz V )2C SP&H(H212V) Ia”dlspan(.HMW ) =
S.D.o.F. pair. In this way, we finish the construction of thaPan(Hz22W). Sod (V, W) < d (V', W’). This completes

wanted precoding matrix pair.
Consider the decomposition

GSVD(H12W, H11V; Nl}, Kw, KU)
- (‘j:llv‘j?QaAlvAQaXvI%afaéaﬁ)' (68)
Let ¥ = [Wy, Wys). Since ¥; and ¥, are invertible,
W) = [Wyy, W3, ¥po] and W), = [, Wyy] are also invert-
ible. Applying (66) and[{G7), we have

dy(V,W) = dy(V¥, W) (69a)
= rank{H;; V¥J} — m(V¥, W¥/) (69b)
< rank{H,; VI¥y} — m(VE, W¥)), (69c)

in which (63b) can be justified withspan(H;o W) N
span(Hy; V%) = span(H;; V¥,,). Besides, [[69c) comes
from the fact thatm(V ¥, W¥/) > m(VE¥S, W/ ). Here
(V¥ W) is the precoding matrix paifV, W) we men-
tioned in the above text.

Consider the decomposition

GSVD(GoWW! G, VI N, K, K, — 3)

= (‘illa‘i’2aA17A2aX7];aru7§7ﬁ)' (70)

the proof.

APPENDIXD
PROOF oFCorollary 1

Since by definitionZ c Z, it holds thatD c D. In the
sequel, we will show that for any givefV,W) € 7, we
can always construct another feasible paikt, W*) € Z,
which satisfyd}(V*, W*) = d}(V, W) andd?(V*, W*) =
d?(V, W), thus giving the proof ofD > D. Concluding, it
holds thatD = D.

For any givenV, W) € Z, V € CN: xKv W ¢ CN2xKu,
we should havgV, W) € Z; and (V,W) € Z,. Since all

channel matrices are assumed to be full rank, it holds that

rank{GoW} = min{K,,, N.}.
In the following, we consider two distinct cases.
() For the case of<,, > N, it holds thatrank{ Goa W} =
N.. Denote GoW = [U; U] 2(:)1 8 %}{
0
SVD of G, W. Then, the matrixGoWT; is invertible. Let
B=T, (GQWT1)_1G1V. Then,

as the

G,V = GoWT,(G,WT,;) G,V = G,WB.  (76)



(ii) For the case ofK,, < N., GoaW is full column rank.
Let P be the projection matrix oGGo W, i.e.,

P = GoW((GoW)ZGyW) 1 (GyaW)E (77)
Due to(V, W) € 73, it holds that
GV =PG,V. (78)
Substituting [[7l7) into [(48) and letting B =
(GaW)HGoW)~1H(GoW)H GV, we arrive at
GV =G, WB. (79)

Let V¥ = V and W*

W[B B+']. Summarizing the

above two cases, for both cases it holds that

le* = GQW*(:, 1: Kv),

which, combined wit{V, W) € T, implies that V*, W*) ¢
Z. On the other hand, since the matf® B+] is invertible,

it holds thatd!(V*, W*) = dL(V, W) and d2(V*, W*)

d%(V, W). This completes the proof.
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