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Abstract

Occlusion is one of the most challenging problems in depth esti-
mation. Previous work has modeled the single-occluder occlusion in
light field and get good results, however it is still difficult to obtain
accurate depth for multi-occluder occlusion. In this paper, we ex-
plore the multi-occluder occlusion model in light field, and derive the
occluder-consistency between the spatial and angular space which is
used as a guidance to select the un-occluded views for each candidate
occlusion point. Then an anti-occlusion energy function is built to
regularize depth map. The experimental results on public light field
datasets have demonstrated the advantages of the proposed algorithm
compared with other state-of-the-art light field depth estimation algo-
rithms, especially in multi-occluder areas.

1 Introduction

Depth estimation has been researched for decades. A common and impor-
tant assumption is the photo-consistency assumption, i.e., the colors of a
point observed from different views ought to be similar. This assumption
holds for non-occlusion points. However, it fails for occlusion points as these
points can not be observed from all views.

Many works have been done to handle occlusions. Kolmogorov et al.
[5] encodes the visibility constraint and introduces an occlusion term to
smooth it. Woodford et al. [18] adds an additional second order smoothness
terms and use Quadratic Pseudo-Boolean Optimization to solve it. Then,
Bleyer et al. [11] applies the asymmetric occlusion model to improve depth
estimation. However, due to the wide baseline and the lack of views, these
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works only notice the image of the occlusion, i.e., the occlusion point is
visible in reference view and invisible in other views, and heavy occlusion
can not be well handled.

Light-field cameras from Lytro [7] and Raytrix [10] obtain a 4D light
field by inserting a micro-lens array into the traditional camera [9], which
provides hundreds of views in a single shot. Apart from this, the baseline
between these views is very small, which means no aliasing occurs and the
consistent correspondences still holds in this case [19]. Combining the multi-
view and the micro-baseline, a more detailed and complete representation
of occlusion appears, which renews the method to handle occlusion.

Wanner et al. [15, 16] applies structure tensor to analyze the Epipolar
Plane Image (EPI). This method only takes advantage of angular samples in
one dimension, and the tensor field becomes too random to analyze in heavy
occlusion. Yu et al. [20] encodes the constraints of 3D lines and introduces
Lind Assisted Graph Cuts (LAGC) to improve depth estimation. However,
the 3D lines are partitioned into small and incoherent segments in heavy
occlusion which leads to wrong estimation. Chen et al. [4] proposes to select
the un-occluded views by using a bilateral metric in angular space. However,
this selection lacks the guidance of the physical model and the number of
un-occluded views is also a predefined parameter. Wang et al. [13, 14]
analyzes the formation of occlusion and finds the consistency between the
spatial patch and the angular patch in occlusion boundaries. They select
the un-occluded views according to the edges in spatial patch. However,
their method failed in multi-occluder areas where the local patch can not be
divided into two regions by a straight line, and it leads to over smooth results
in these areas (Fig. 7, 8). Although Wang et al. have a more recent work
[12] for depth estimation, it aims at solving shadings which is not applicable
in our case.

In this paper, we explore the light field occlusion theory for multi-
occluder occlusion, and propose an algorithm to regularize depth map. Our
main contributions are:

1) The light field occlusion theory for multi-occluder occlusions.

2) An algorithm to accurately select the un-occluded views in angular space
with the guidance of the occlusion theory which does not need any pre-
defined parameters.

3) A depth estimation algorithm which is robust to multi-occluder occlusion.

In Section 2, we model the multi-occluder occlusion in light field, and
derive the occlusion-consistency between the spatial and angular space, i.e.,
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the occluded views in angular space are projections of the occluder in spatial
space. With the guidance of occluder-consistency, we select the un-occluded
views for each candidate occlusion point using a partition in spatial patch
in Section 3.1, and obtain an initial depth map using the un-occluded views
in Section 3.2. Then, we detect the occlusion points from the initial depth
map according to the visible constraint in Section 4.1. Finally the occlusion
map and the un-occluded views are used to build an anti-occlusion energy
function to refine depth in Section 4.3. In Section 5, we provide complete
comparisons with other state-of-the-art algorithms, both in quantitative and
in qualitative, showing great advantages compared with previous works [15,
16, 20, 4, 13].

2 The Light Field Occlusion Model

In this section, we will analyze the formation of the occlusion based on the
physical model, and explore the occlusion theory for multi-occluder occlu-
sion.

2.1 Definitions and Notations

Before building the light field occlusion model, we first give some definitions
and notations of the light field model.

Definition 1. Single-occluder occlusion refers to the occlusion that oc-
cluded views and un-occluded views can be divided half-and-half.

Definition 2. Multi-occluder occlusion refers to the occlusion that there
are more occluded views than un-occluded views.

Point (x, y, u, v) in 4D light field describes a ray emitting from the world
point (X,Y, Z), and intersecting with two parallel planes, namely, the uv
camera plane and the xy image plane, which we refer to as angular and
spatial space. Tab. 1 presents a list of terms used throughout this section.

2.2 Occlusion Model

Previous work [13] has proved the occluder-consistency for single-occluder
occlusion, i.e., when refocused to the correct depth, the edge which sepa-
rates the un-occluded and occluded views in the angular patch has the same
orientation as the occlusion edge in spatial patch. This property is useful
for single-occluder occlusions, however it fails in multi-occluder situation as
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Table 1: Notations of the light field occlusion model.

Term Definition

(u, v) angular/camera plane coordinates
(x, y) spatial/image plane coordinates
(X,Y, Z) world coordinates
~eA the vector in angular coordinate system
~eI the vector in spatial coordinate system
~eW the vector in world coordinate system

the un-occluded and occluded pixels in angular patch can not be divided
into two regions by a straight line.

We first consider a simple multi-occluder occlusion (Fig. 1). Considering
a pixel (X0, Y0, F ) on the focal plane (the left image in Fig. 1(a)), and an
occluder intersects at (X0, Y0, Z0) (0 < Z0 < F ). Note that the occluder
has two edges, and the directional vectors of these two edges in the plane
Z = Z0 are,

~e1
W = (kX1 , kY1) = (X1 −X0, Y1 − Y0)

~e2
W = (kX2 , kY2) = (X2 −X0, Y2 − Y0).

(1)

The larger angle between these two vectors denotes occluded areas (the
golden areas in Fig. 1). Without loss of generality, we assume kYj > 0, j =
1, 2.

For any other pixel (Xi, Yi, F ) on the focal plane, it will be observed by
the view (u0, v0) iff it meets the following inequalities,

kY1(Xi −X0)− kX1(Yi − Y0) > 0

kY2(Xi −X0)− kX2(Yi − Y0) < 0.
(2)

We then project these inequalities from world coordinate system to the
image system (the right image in the Fig. 1(a)). The corresponding di-
rectional vectors of the ~e1

W and ~e2
W are ~e1

I = (kx1 , ky1) and ~e2
I = (kx2 , ky2)

respectively. ~e1
I = λ1~e

1
W and ~e2

I = λ1~e
2
W , λ1 is a scale factor to denote the

scaling relationship between the world coordinate system and the image co-
ordinate system. For any other point (xi, yi) on the image, it is a background
point iff,

ky1(xi − x0)− kx1(yi − y0) > 0

ky2(xi − x0)− kx2(yi − y0) < 0.
(3)
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Figure 1: The light field camera model with occlusion. The left image in (a)
denotes the the image captured from the view (u0, v0), and the right image
in (a) is a local patch centered at (x0, y0) from the view (u0, v0). The left
image in (b) denotes the light field is refocused in depth F , and only views
constrained by two green planes can see the point (X0, Y0, F ), the images
formed from other views describe the occluder. The right image in (b) is
the angular patch of the point (x0, y0).

Then considering the main lens plane (the left image in Fig. 1(b). The
light field is refocused to the depth F ). For any other view (ui, vi) on the
main lens plane, it can capture the pixel (X0, Y0, F ) iff

kv1(ui − u0)− ku1(vi − v0) > 0

kv2(ui − u0)− ku2(vi − v0) < 0.
(4)

where ~ejA = (kuj , kvj ), ~e
j
A = λ2~e

j
I , j = 1, 2, λ2 is a scale factor to denote the

scaling relationship between the image coordinate system and the angular
coordinate system.

Revisiting the Eqn. 3 and 4, it is noticed Eqn. 3, 4 have the same
inequalities and (u, v), (x, y) are one-one correspondence, as (u0, v0) and
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x0, y0 are on a same line, the following proposition can be obtained,

Proposition 1. The occluded views in angular space are projection of the
occluder in spatial space.

In other words, in a local spatial patch, the corresponding views of
the occluder are the occluded views, and the corresponding views of the
background are the un-occluded views. This proposition is called occluder-
consistency later.

Note that, the proposition mentioned above is obtained under a simple
multi-occluder assumption. For a more complex multi-occluder, the bound-
aries of the occluder can be divided into more small straight lines by following
the idea of the Calculus, and the Eqn. 3, 4 will contain more inequalities.
No matter how many inequalities, the numbers of inequalities in Eqn. 3,
4 are equal and inequalities are one-one correspondence, and the Prop. 1
always holds.

2.3 Projection Radius

For occluded points, the occluded views in angular space are projection of
the occluder in spatial space in a local patch. We derive the radius of the
patch in a 2D light field. In Fig. 2, the purple lines denote the background
at depth α0, the orange lines denote the occluder at depth α1, blue lines
denote the camera plane, x denotes a pixel in the background, and u0 − u4

denote different views in light field.
Firstly, the light field is refocused to the background at depth α0 (Fig.

2(a))[8],

LFα0(x, u) = LF0(x+ (u− u2)(1− 1

α0
), u), (5)

where LF0 is the input light field, LFα0 is the refocused light field at depth
α0, u2 is the central view of the light field. It is noticed the light from views
u0, u1, u2 converge to the point x2, and the light from u3, u4 are blocked by
the occluder. u3, u4 are the occluded views in angular space, and the images
of these two views come from points x3, x4. In other words, the horizontal
distance d between x4 and x is the projection radius.

Then, the light field is refocused to the foreground at depth α1 (Fig.
2(b))

LFα1(x, u) = LF0(x+ (u− u2)(1− 1

α1
), u), (6)

where LFα1 is the refocused light field at depth α1. It can be seen the light
from all views converge to the point x′. As the horizontal distance between
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Figure 2: Projection radius. In (a), the light field is refocused to the back-
ground in depth α0, where the light from u0, u1, u2 converge to point x and
the light from u3, u4 are blocked by the occluder. In (b), the light field is
refocused to the foreground in depth α1, and light from all views converge
to point x′.

x′ and x2 is 0, the projection radius d is obtained

d = |x+ (u4 − u2)(1− 1

α1
)− x− (u4 − u2)(1− 1

α0
)|

= |(u4 − u2)(
1

α0
− 1

α1
)|.

(7)

3 Depth Initialization

In this section, we will show how to use the occluder-consistency between
the spatial and angular space to select the un-occluded views, and how to
obtain an initial depth estimation using these un-occluded views.

3.1 Un-Occluded Views Selection

We first give an important assumption about occlusion of the proposed al-
gorithm. The occluder has a different color of the occluded point. For the
situation that the occluder is similar to occluded point, as far as we know,
no work can handle it. Based on this assumption, the following proposition
holds,

Proposition 2. An occlusion point is an edge point but an edge point may
not be an occlusion point.
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Figure 3: The occlusion in different views. (a) demonstrates the model of
occlusion in central view and in other views respectively. Point x is occluded
in central view and point x1 is occluded in other views. (b) demonstrates
the image of occlusion in central view and in other views respectively. It is
noticed x is an edge point, and there are many occluded views in its angular
patch when refocused to its true depth. The point x1 is not an edge point,
however as it near the edges, there are many occluded views in its angular
patch too.

With Prop. 2, the canny edge detector is firstly applied to find the
candidate occlusion points Socc. Then the K-means clustering [1] is applied
for the local image patch1 centered at each occlusion point p from Socc (the
feature is the RGB color, and the number of labels is 2). For each patch,
the pixels which share the same label with the center pixel are labeled as
background or un-occluded points. According to the occluder-consistency
mentioned in Prop. 1, the corresponding views in angular patch of the center
pixel p are labeled as un-occluded views Ωuocc

p . These pixels are candidate
occlusion pixels in the central view (Fig. 3). For pixels occluded in other
views, the un-occluded views are voted from its neighborhood system (Fig.
4).

3.2 Depth Estimation

With the un-occluded views selection, a robust initial depth estimation is
obtained based on the classical photo-consistency in un-occluded views.

1The patch size is set as half of the angular resolution of light field initially since we
do not have depth map here.
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Figure 4: The voting strategy of obtaining un-occluded views for pixels
occluded in other views. The first col shows that points p1, p2 are occluded
in central view and p3 is occluded in other views. The second row shows the
un-occluded views of p1, p2 (the areas labeled with white are un-occluded
views). The third col is the un-occluded views of p3 after voting.

We refocus the light field to different depth α,

LFα(x, y, u, v) = LF0(x+ u(1− 1

α
), y + v(1− 1

α
), u, v), (8)

where LF0 is the input 4D light field, LFα is the refocused light field in depth
α, (x, y) are the spatial coordinates, and (u, v) are the angular coordinates.
Then, the matching cost of each pixel p is defined as,

Cuoccα (p) =
1

|Ωuocc
p |

∑
(u,v)∈Ωuoccp

|Apα(u, v)−Apα(0, 0)| , (9)

where Ωuocc
p is the un-occluded views set of the point p (Sec. 3.1), and | · |

denotes the size of the set ·, and Apα(u, v) denotes the angular image of pixel
p at depth α (In other words, Apα(u, v) = LFα(xp, yp, u, v), (xp, yp) are the
spatial coordinates of pixel p), and Apα(0, 0) is the color of pixel p in central
view.

Then, the initial depth estimation of each pixel p is obtained,

αini(p) = arg min
α

Cuoccα (p). (10)

4 Depth Regularization

In this section, we will show how to find the occlusion and regularize it with
a global energy function.
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4.1 Occlusion Detection

We find the occlusion point using the visible constraint, i.e., the occlusion
point is visible in reference view and invisible in other views. In other words,
if the difference of disparities of two neighboring pixels is larger than 1 pixel,
there is an occlusion point here. In light field, this constraint can only find
the occlusion point in the central view due to the multiple views, and the
threshold value εocc of the difference of the disparities ought to be relaxed
to find the occlusion in other views,

εocc =
1

bNuv/2c
, (11)

where Nuv is the angular resolution 2.
As the initial depth estimation in occluded points is unreliable, and

sometimes it is too smooth and random to distinguish the occlusion point
accurately from only two neighboring pixels. We select a disparity patch
centered at each candidate occlusion point (the detected points by the Canny
operator), and use the K-means clustering to divide the patch into 2 classes,
then the difference of disparities of each class ∆dis is determined by the
subtraction of two centers,

∆dis = |dis1 − dis2|, (12)

where disi is the center of the i-th class.
Finally the candidate occlusion point p is determined by comparing the

εocc and ∆dis(p),

Occ(p) =

{
1 ∆dis(p) > εocc

0 ∆dis(p) < εocc.
(13)

4.2 Un-occluded Views Re-Selection

For each occlusion point p, we apply the K-means clustering for its local
depth patch to find the background depth α0 and occluder depth α1, and
the projection radius d is determined using Eqn. 7. Then, each patch is
resized to the angular resolution of light field. The following procedure is
the same as Sec. 3.1.

Since the occlusion points can not be fully detected in Sec. 4.1, we retain
the un-occluded views selection for other candidate points obtained in Sec.
3.1.

2The angular resolution of the light field that we use in the experiment is 9 × 9.
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4.3 Final Depth Regularization

Finally, given the occlusion cues, we regularize with Markov Random Field
(MRF) for a final depth map.

E =
∑
p

Euocc(p, αp) + λs
∑
p,q

Esmooth(p, q, αp, αq) (14)

where αp is the depth of pixel p, and p, q are neighboring pixels, and λs(=0.35
in our experiment) is to control the smooth term.

The data term Euocc measures the photo-consistency in un-occluded
views,

Euocc(p, αp) = 1− e−
Cuoccαp

(p)2

2σ2uocc , (15)

where σuocc(=3 in our experiment) controls the sensitivity of the function
to large distance, and the definition of Cuoccαp (p) can be found in Eqn. 9.

The smooth term Esmooth encodes the smoothness constraint between
two neighboring pixels,

Esmooth(p, q, αp, αq) = ωpq|αp − αq|,

ωpq = e
− (Occ(p)−Occ(q))2

2γ2occ
− (Ie(p)−Ie(q))2

2γ2e
− (I(p)−I(q))2

2γ2c ,
(16)

where Ie is the edge map of the central view image I, and (γocc, γe, γc) are
three weighting factors. Comparing with previous works, we introduce the
occlusion term and the edge term into the weighting function ωpq to preserve
occlusion boundaries and keep the depth of occlusion boundaries similar.

The final depth map is obtained by minimizing the Eqn. 14[2, 3, 6],

α∗ = arg min
α

E. (17)

The full description of the proposed algorithm is given in Algo. 1. First,
edge detection is applied on central view image I to find all possible occlusion
point Ie. Then, the un-occluded views Ωuocc of each candidate occlusion
point are selected based on a K-means clustering. After that, an initial
depth map αini is estimated by using the un-occluded views. Moreover, the
occlusion map Occ is detected by using the initial estimation. Finally, based
on the un-occluded views and the occlusion map, the depth map αfinal is
regularized with a MRF energy function.

11



Algorithm 1 The proposed algorithm

Input:
4D light field LF
Output:
Final depth map αfinal
Process:
Ie = canny(I) . Sec. 3.1
Ωuocc = kmeans(Ie, I) . Sec. 3.1
αini = InitialDepthEst(LF, Ie,Ω

uocc) . Sec. 3.2
Occ = OccDetection(αini, Ie) . Sec. 4.1
E = Euocc(LF,Ω

uocc) + Esmooth(I, Ie, Occ) . Sec. 4.3
α∗ = arg minαE . Sec. 4.3

5 Experimental Results

We compare our results with the globally consistent depth labeling (GCDL)
by Wanner et al. [15], the line-assigned graph-cut(LAGC) by Yu et al. [20],
the Bilateral Consistency Metric (BCM) by Chen et al. [4] and the occlusion-
aware depth estimation (OADE) by Wang et al. [13]. Note that, the results
of GCDL come from their published papers [17], the results of LAGC and
OADE are obtained by running their published codes or executable files,
and the results of BCM are provided by the authors.

The performance of the proposed algorithm is evaluated by using the
most popular light field datasets [17]. This datasets are synthesized by the
Blender, and each data includes a 9 × 9 light field and its ground truth
depth. For runtime, on a 3.4 GHz Intel i7 machine with 16 GB RAM, our
MATLAB implementation takes about 1 hour on a 9× 9× 768× 768 color
light field. Considering the precise results and the low-speed of MATLAB,
this time cost is acceptable.

5.1 Un-occluded views selection

A consensus on depth estimation in computer vision is that more effec-
tive views lead to more accurate depth estimation. So, the precision and
the recall of the selected un-occluded views are important. We count the
F-measure (the harmonic mean of precision and recall compared with the
ground truth) of the un-occluded views in occlusion using our algorithm,
and compare it with previous work [13]. The quantitative comparisons are
listed in Tab. 2, and the qualitative comparisons are shown in Fig. 5. It
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Table 2: The F-measure of un-occluded views selection

Buddha Buddha2 Horses Medieval Mona Papillon StillLife

OADE[13] 0.71 0.73 0.66 0.58 0.69 0.59 0.59
Our method 0.71 0.74 0.62 0.60 0.79 0.79 0.72

can be seen that our selection method outperforms previous work in the
un-occluded views selection. And this advantage is more obvious especially
in multi-occluder areas. In Fig. 5, our method can always select accurate
un-occluded views, however, Wang’s et al. [13] method always selects more
occluded views and these selections will lead to over smooth results in occlu-
sion areas (Fig. 7, 8). It is noticed our method performs not good in Horses.
The reason is that there are many textures near the occlusion boundaries in
background, and the K-means clustering based on color can not divide the
background and occluder accurately in the complex texture areas.

5.2 Occlusion Boundaries

For each data, we detect its occlusion boundaries using the depth map, and
compute its F-measure. Then, we compare it with other state-of-the-art
algorithms. The quantitative comparisons are listed in Tab. 3, and the
qualitative comparisons are shown in Fig. 6. Our algorithm outperforms
the previous works. Note that the results of GCDL [15] and BCM [4] are not
contained as it is difficult to run their codes in our experimental environment.
However, as previous works [20, 13] have demonstrated their advantages
to [15] and [4], these comparisons are convincing. Our method performs
not good in StillLife (the third row in Fig. 6). That is because there are
many weak occlusions (the difference of disparities is small) in StillLife. The
difference of disparities in the boundaries of the bee is small, the occlusion
detection method in Sec. 4.1 can not handle these occlusions well.

5.3 Depth maps

The quantitative comparisons of the RMS errors of recovered disparity maps
are listed in Tab. 4. Note that all results are obtained in a same parameters
setting. Our algorithm outperforms previous state-of-the-art algorithms in
almost all datasets.
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Ground Truth Ours OADE

Figure 5: The comparisons of the un-occluded views selection. The areas
labeled with white are the selected un-occluded views.

Table 3: The F-measure of occlusion boundaries.

Buddha Buddha2 Horses Medieval Mona Papillon StillLife

LAGC[20] 0.54 0.41 0.55 0.32 0.64 0.53 0.49
OADE[13] 0.71 0.70 0.75 0.47 0.75 0.65 0.82

Our method 0.75 0.85 0.80 0.56 0.81 0.76 0.71

The qualitative comparisons of the recovered disparity map are shown
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OursGround Truth

LAGC OADE

OursGround Truth

LAGC OADE

OursGround Truth LAGC OADE

Figure 6: The detected occlusion boundaries.

in Fig. 7, 8. It can be seen that, our algorithm yields sharper occlusion
boundaries. As our selection method for un-occluded views can always find
them accurately (Fig. 5, Tab. 2), and do not select any other occluded

Table 4: RMS errors of recovered disparity for all pixels.

Buddha Buddha2 Horses Medieval Mona Papillon StillLife

GCDL[15] 0.079 0.094 0.163 0.111 0.096 0.158 0.184
LAGC[20] 0.134 0.179 0.188 0.144 0.119 0.406 0.150
BCM[4] 0.057 0.139 0.122 0.129 0.077 0.108 0.113

OADE[13] 0.095 0.107 0.140 0.115 0.089 0.125 0.212
Our method 0.069 0.051 0.074 0.101 0.071 0.148 0.110
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views, our results are sharp in the multi-occluder areas.
It is noticed the proposed algorithm performs not as good as OADE in

the un-occluded views selection for Horses, however we get better results
in depth map. This is because our energy function can preserve occlusion
boundaries better. Moreover, we get the best results in the depth estimation
for StillLife, however the F-measure of detected boundaries is not the best.
The reason is that our algorithm performs much better than OADE in multi-
occluder boundaries which have a larger difference of disparities.

Apart from the heavy occlusion, the proposed algorithm also performs
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(b) Buddha2

Figure 7: The disparity maps on the Buddha and Buddha2.
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well for shadings (Fig. 7(b)), although it is not taken into account in our
model. Comparing with the Buddha (Fig. 7(a)), there are more shadings
in the buddha2 (Fig. 7(b)). Although all algorithms perform good in the
Buddha, only our algorithm maintains the same level in the Buddha2. The
reason for this phenomenon worth further study.

However, our algorithm can not handle the situation where the back-
ground has a similar texture or color to the occlusion. In the Fig. 8(b) (the
green box), as the color of cloth in background is similar to the foreground,
it is difficult to recover the true depth. Apart from this, our algorithm can
not handle textureless areas just like all previous methods.

6 Conclusion and Future works

In this paper, we propose a new anti-occlusion depth estimation algorithm by
modeling the formulation of the occlusion. The model reveals an important
property, the occluders are consistent between the spatial and angular space.
Utilizing this information, we improve the depth estimation in occlusion
areas in two ways. Firstly, the un-occluded views are accurately selected by
a clustering in spatial space, and the classical photo-consistency is enforced
in these views. Secondly, the occlusion map is detected using the edges and
the initial depth map, and then combined into the smooth term in the MRF
function to keep the occlusion boundaries sharp. We have demonstrated the
advantages of the proposed algorithm compared with other state-of-the-art
algorithms in synthetic datasets.

Just as we mentioned in Sec. 5.3, our algorithm produces unexpected
good results in shading situations although the shading is not considered in
our model. It is worthy for us to investigate the phenomenon. Furthermore,
as the light fields captured by real light field cameras have more noise com-
pared with the synthetic datasets, it is essential to do more experiments on
real data to better evaluate the performance of the proposed algorithm.
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Figure 8: The disparity maps on the Mona, StillLife and Horses.
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