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Comparison and evaluation of light field image
coding approaches
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Abstract—The recent advances in light field imaging, sup-
ported among others by the introduction of commercially avail-
able cameras e.g. Lytro or Raytrix, are changing the ways
in which visual content is captured and processed. Efficient
storage and delivery systems for light field images must rely
on compression algorithms. Several methods to compress light
field images have been proposed recently. However, in-depth
evaluations of compression algorithms have rarely been reported.
This paper aims at evaluation of perceived visual quality of
light field images and at comparing the performance of a few
state of the art algorithms for light field image compression.
First, a processing chain for light field image compression and
decompression is defined for two typical use cases, professional
and consumer. Then, five light field compression algorithms are
compared by means of a set of objective and subjective quality
assessments. An interactive methodology recently introduced by
authors, as well as a passive methodology is used to perform these
evaluations. The results provide a useful benchmark for future
development of compression solutions for light field images.

Index Terms—light field, subjective quality evaluation, objec-
tive quality evaluation, image coding, image compression.

I. INTRODUCTION

THE IDEA that light, just as electromagnetism, can be
interpreted as a field was first proposed by Michael

Faraday in 1846. The concept was subsequently formalized
by Andreı̄ Gershun, who coined the term light field (LF) in
his book on radiometric properties of light in 3D space [1].

One way to represent the LF is to describe the radiance
along the light rays in a 3D space with constant illumination.
This can be achieved by using the plenoptic function, which
was first introduced in 1991 by Adelson and Bergen [2]. More
particularly, the plenoptic function L describes the intensity
of the light rays passing through every possible point in space
(Vx, Vy, Vz) at every possible angle (θ, φ), wavelength λ, and
time t, represented as follows:

L = L(θ, φ, λ, t, Vx, Vy, Vz). (1)

Assuming a 3D region free of occlusions at a single time
instance and considering the fact that radiance along rays re-
mains constant in a free space, the above 7D plenoptic function
can be further simplified into a 4D light field function [3].
Such 4D function, representing a set of light rays, can be
parametrized as an intersection of rays with two planes: uv
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describing the rays position in aperture (object) plane and xy
describing the rays position in image plane.

L = L(u, v, x, y). (2)

The parametrized LF function, further referred to as 4D LF,
can be considered as a collection of perspective images of the
xy plane, each observed from a position on the uv plane.

In the past, LF images have been mainly used to navigate
through 3D scenes. Recently, their applications have expanded
thanks to the creation of commercially available devices,
such as Raytrix or Lytro cameras, as well as development
of new visualization devices capable of properly coping with
LF images. However, due to the enhanced features that LF
imaging offers, a vast amount of data is created during the
acquisition step. Therefore, it is necessary to find an efficient
way to compress LF images for transmission and storage.

Currently available techniques to capture and visualize
LF images determine two general approaches for LF im-
age compression. A general diagram of workflow for LF
image acquisition and visualization is depicted in Figure 1.
The first coding approach assumes that the raw sensor data
obtained during the acquisition step is compressed directly
with minimal signal pre-processing such as demosaicing or
devignetting (point A in Figure 1). The actual format of raw
data strongly depends on the exact acquisition device, e.g.
a lenslet based hand-held camera, a multi-camera array, or
a multi-view plus depth acquisition device. Often, extensive
post-processing of the decompressed LF image is necessary
prior to its visualization. Furthermore, additional metadata
about the captured scene and acquisition device, e.g. camera
and color calibration data, is needed to properly process and
visualize the LF image. The second coding approach considers
creation of a 4D LF representation of LF image prior to
compression (point B in Figure 1). As mentioned above, the
4D LF represents a collection of perspective images, which can
be visualized without a need for acquisition related metadata
or post-processing. Process of creation of 4D LF from the
raw sensor data also strongly depends on the exact acquisition
device.

In the context of general LF image manipulation, one
can think of two specific use cases related to either of the
two coding approaches defined above. On the one hand,
professional photographers, operators, and artists may benefit
from LF image acquisition technologies, since they allow for
greater flexibility in terms of optimal parameters selection after
capture. For example, an erroneous selection of focal plane
in a scene may lead to several retakes and thus to greater
costs. Other features, such as change of point of view or
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Fig. 1: General acquisition and display pipeline for LF images.

zoom, may dramatically impact the way scenes are captured.
In this case, it is of paramount importance that key factors in
the acquisition, such as white balance, color, and exposition,
are not altered in the compression step, and that acquisition
metadata is stored to be used during post-processing.

Consumers, on the other hand, may turn to LF imaging
when looking for an enhanced experience to capture a special
moment. Ability to change zoom, perspective, and focus in a
simple and intuitive way without the need for expensive post-
processing software, is in line with the interactivity already
seen in applications like Instagram, in which users can modify
the appearance of the captured scenes with predefined filters.
In this case, the fidelity to the acquisition parameters is less
important. However, the resulting image should not be too
large and ready to be visualized and shared in devices with
limited resources.

In this paper, we compare two main coding approaches
to compress LF images through a set of objective and sub-
jective quality evaluations. More specifically, five different
compression algorithms suitable to either of predefined use
cases are described, investigated, and evaluated. A standard
PSNR metric, adjusted to the properties of LF images, is used
as objective quality metric.

In the past, the authors have used single viewpoint image
visualization to assess the visual quality of LF contents [4].
However, this type of assessment is suboptimal for two main
reasons. The first concerns the number of stimuli needed to
perform the tests, which increases significantly once multiple
viewpoints and refocusing points are selected (in case of the
test conducted in this paper, 720 stimuli were tested). The
increased number of stimuli leads to strain and fatigue for the
subjects and is generally not recommended. Secondly, analysis
of variance performed on the results obtained from different
viewpoints showed that no significant difference can be found
between scores, meaning that subjects would rate different
viewpoints from the same content in a similar way. Thus,
evaluating different viewpoints leads to a lengthy, more costly
and less efficient test, with no visible gain. For the reasons
mentioned above, two methodologies have been selected to
subjectively assess the visual quality of LF image contents.
The first methodology was recently introduced by the authors
and allows for interaction with the displayed content [5]. The
second methodology passively shows the different viewpoints
composing the LF content, in order to ensure that all users see
and rate the exact same content. The two methodologies have
been analysed by the authors and were found to be highly
correlated [6]. The two methodologies are described in details
and applied to the problem of assessing the visual quality of
the five compression algorithms.

The remainder of the paper is organized as follows. Section
II presents the state of the art in related areas of LF imaging,
specifically LF image acquisition, compression, and quality
evaluation. Section III discusses in details the two approaches
examined in the paper. Section IV presents our experiments in
details, whereas section V exposes and comments the results.
Section VI concludes the paper.

II. STATE OF THE ART

This section briefly reviews the state of the art in LF imag-
ing. First, a quick overview of LF image acquisition techniques
is presented. Then, existing algorithms to compress LF images
are discussed in relation to the requirements of previously
defined use cases. Finally, currently available objective and
subjective evaluation methodologies to assess the quality of
LF images are presented.

A. Light field image acquisition
A digital 4D LF, which is a collection of perspective

images, can be obtained by sampling the 4D LF function
defined in Equation 2. The density of the sampling depends
on the acquisition technology used to capture the LF image. In
general, depending on the requirements for baseline, different
acquisition techniques can be used to capture LF images. More
specifically, for baseline in a range of meters, one way of
acquiring LF images is by means of a moving camera. The
idea behind is that by moving a single camera throughout
the scene, we can acquire the different perspective images
that form our 4D LF. In this case, the sampling in xy
plane depends on the camera resolution, and sampling in uv
plane depends on the position of the capturing device and
its shutter speed. Examples of such acquisition devices are
the Stanford Spherical Gantry, a motorized gantry with four
degrees of freedom that can be used to capture 4D LF [7] and
Apple’s setup to construct 360-degree cylindrical panoramic
images [8]. 4D LF can also be acquired by using hand-held
cameras, as long as their position on the uv plane can be
precisely estimated [9].

Another approach is to construct an array of cameras with
synchronized shutter speed capturing the 4D LF at once. In
this case, the uv sampling depends on baseline parameter of
the camera array grid. Using a camera array, a full 4D LF
is formed and new views corresponding to narrower baseline
parameter must be further synthesized if needed. An example
of such acquisition technology is the Stanford Multi-Camera
Array [10].

LF images can also be acquired from multi-view plus depth
data [11]. In this case, the baseline can be wide or narrow,
depending on how the data was created [12].
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For LF image acquisition with narrow baseline a hand-held
plenoptic camera capturing so called “single lens stereo” can
be achieved [13]. It exploits an array of micro lenses placed in
front of the sensor plane [14]. The aperture size of the main
lens limits the possible viewpoints. The spatial resolution (xy
plane) depends on the number of micro lenses, whereas the
angular resolution (uv plane) depends on the number of pixels
behind each micro lens. Hand-held cameras implementing this
model were presented in [15] and are already widely available
to consumers1,2. The raw image obtained with this type of
cameras closely resembles the honeycomb array of lenses that
has been used for the acquisition, and will be from now on
referred to as a lenslet image. It is possible to convert the
lenslet image to a 4D LF that effectively constitutes a sampling
of Equation 2.

B. Light field image compression

Acquiring or synthesizing LF images creates a vast amount
of data (around 150 MB for lenslet images with 15 × 15
viewpoints of resolution of 635 × 434, around 6.8 GB for
15×15 4K images acquired with a multi-camera array). Thus,
a lot of research has been recently focused on finding efficient
compression algorithms to effectively store and transmit LF
images. Depending on the acquisition process, several ap-
proaches have been proposed. Early work focused on com-
pressing synthetic 4D LF using disparity compensation [16],
[17], [18] and geometry estimation [19], and enabling random
access coding [3].

More recently, the effort has been focused on compression
of LF images acquired through hand-held devices. Several
compression algorithms have been proposed to directly com-
press lenslet images through intra coding, exploiting redundan-
cies in its structure. For example, Perra proposed a lossless
compression scheme based on adaptive prediction [20]. Li
et al. incorporated a full inter prediction scheme in HEVC
intra prediction, explicitly exploiting the redundancy in lenslet
images [21], as well as using the disparity compensation
and impainting to efficiently code lenslet images [22]. More
recently, five proposals for lenslet image compression have
been collected within the ICME 2016 Grand Challenge. Three
proposals relied on improving HEVC intra compression effi-
ciency by exploiting the redundancies in the lenslet image [23],
[24], [25], whereas the rest used pseudo-temporal sequences
to code the lenslet images [26], [27].

Another approach is based on compression of 4D LF, which
can be created from raw lenslet image data using specific
transformations. A precursor of the approach is proposed by
Olsson et al. [28]. They propose the creation of sub-images
from integral images. Such sub-images are then encoded
through a pseudo-sequence using H.264. Choudhury et al.
proposed to adapt the method of coded snapshots to LF
image compression through random codes [29]. Dai et al.
coded sub-aperture images using different scanning methods,
including line and rotating scanning [30]. Helin et al. proposed

1https://www.raytrix.de/
2https://www.lytro.com/

predictive coding for sub-aperture views to achieve lossless
compression [31].

No standard approach has been agreed on to compress LF
images. Nevertheless, to help finding a standard representation
for LF images, the JPEG standardization committee launched
in 2014 a new activity called JPEG Pleno. Its goal is to create
a standard framework for efficient storage and transmission
of not only LF images, but also point-cloud, holographic
and other plenoptic content. In particular, JPEG Pleno aims
at finding an efficient way to represent plenoptic content,
while, where needed, also offering compatibility with existing
solutions, such as JPEG and JPEG 2000. In such a framework,
it is essential to analyse and compare different approaches for
compression of LF images as one of the plenoptic content
variations, especially in relation to different use cases, in order
to provide a solid guideline towards the creation of a standard
method. Additionally, a call for proposals for both lenslet and
high density camera array for 4D LF compression, aiming
at the definition of a standard for compression of plenoptic
content, has been issued during the 73rd JPEG Meeting [32].

C. Light field image quality evaluation

Evaluation of visual quality is essential to design and
improvement of coding solutions for LF images. Several
publications have been devoted to comparison and evaluation
of state of the art standard solutions. Alves et al. assessed the
performance of existing still image coding solutions, such as
JPEG 2000 and AVC, on lenslet images [33]. The objective
evaluation was carried out using PSNR as a full reference
metric. Similarly, Vieira et al. compared five different HEVC
compatible coding of lenslet images with different data for-
mats [34], again using PSNR as a full reference metric.
Rizkallah et al. reported the impact of compression of LF
images on refocusing and extended focus images through
objective metrics [35].

A Grand Challenge was organized at ICME 2016 under
a collaboration between Qualinet and JPEG standardization
committee. The goal was to collect new compression solutions
for LF images, and to evaluate them using both objective and
subjective quality assessment methodologies [4]. The Grand
Challenge, however, had some limitations. For starters, it
required to have lenslet images in YUV 420 format as input
of the compression, as well as output for the decompression.
Moreover, the reference was obtained by performing the trans-
formation to 4D LF after chroma subsampling was applied
on the raw lenslet image, rather than transforming directly
the lenslet image in RGB 444. The subjective assessments
were carried out on five discrete views from each content,
which were evaluated separately. Since the assessment was
conducted separately on predefined views, it did not address
the issue of evaluating global quality of experience offered by
a compressed LF image.

Recently, we proposed a new methodology to evaluate a
plenoptic content in an interactive way [5] allowing users
to interact with LF images, visualize different views, apply
refocusing, and globally evaluate the quality of LF images.
To best of our knowledge, no extensive analysis has been
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Fig. 2: Processing chain for lenslet image compression used for two compression algorithms (anchor P01, proponent P02).

Fig. 3: Processing chain for 4D LF compression used for two compression algorithms (anchors P04 and P05).

Fig. 4: Processing chain for hybrid compression of lenslet using intermediate 4D LF transformation (proponent P03). The green
and blue blocks highlight how the compression step involves intermediate transformation to 4D LF, and the decompression
step involves the inverse transformation to lenslet image.

carried out to assess which coding approach for LF image
compression yields better results in terms of visual quality.

III. LIGHT FIELD CODING STRATEGIES

This section describes in details the coding approaches
investigated in the evaluation process, including a thorough
description of five selected algorithms to compress LF images.

Two main coding approaches can be considered for com-
pression of LF images. Referring to the general diagram of
workflow presented in Figure 1, we can compress the data at
two different stages. Compression can be performed on the raw
sensor data that has been captured with the selected acquisition
technology, after minimal processing, such as demosaicing
and devignetting (point A in Figure 1). The 4D LF can be
recovered from the decompressed bitstream through extensive
post-processing, involving camera and color calibration meta-
data which needs to be sent along with the bitstream. The
second coding approach performs compression on the 4D LF
obtained from the raw data (point B in Figure 1). The 4D LF
is a collection of perspective views which can be visualized
as they are, or combined to create new interpolated views,
synthetic aperture, refocusing, and extended focus. Since the
transformation of raw sensor image data to 4D LF is performed
before the compression step, no metadata is required for
visualization. The compression solutions used to code the raw
sensor data, as well as the transformation to 4D LF from the
raw sensor data, strongly depend on the acquisition technology
used to capture LF images. If compression is applied at point
A, the selected scheme will profoundly differ based on the
acquisition technology. On the other hand, a compression

scheme operating at point B can compress 4D LF image
information captured with any acquisition technology.

In order to compare the two coding approaches on a com-
mon ground, we decided to focus our attention on evaluating
coding strategies for lenslet-based acquisition. Lenslet-based
acquisition allows to compare the two approaches on the same
image content captured within the same conditions. In this
case, the raw sensor data is minimally pre-processed to obtain
a lenslet image. From the lenslet image, the 4D LF can be
recovered through rectification, calibration and extraction of
perspective images, using camera and color calibration data.
The extraction of perspective images from the lenslet image
generates N × M views, depending on the uv resolution.
However, the most external views contain too many distortions
to be properly visualized. The 4D LF coding approach can take
advantage of this fact by not coding the most distorted views,
which will likely not be used in the visualization process, thus
further reducing the size of the bitstream.

The rest of the section is organized as follows. The first
coding approach, which deals with compression of lenslet
images, is described. Then, the second coding approach, which
focuses on compression of 4D LF obtained from lenslet
images, is presented. Finally, one hybrid approach to compress
lenslet images through transformation to 4D LF, introduced in
ICME 2016 Grand Challenge, is detailed. Authors are aware
of practical drawbacks and flaws in this solution. However, it
was decided to include it in the evaluation process because
of its optimal performance within the Grand Challenge, and
because it represents a transition point between the two coding
approaches. A summary of the compression schemes can be
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found in Table I.

A. Lenslet image compression

The lenslet coding approach performs compression on the
lenslet image, obtained from the raw sensor data after demo-
saicing and devignetting. Figure 2 depicts the workflow for
the coding approach. The workflow was adopted following the
definition of the ICME 2016 Grand Challenge, which required
to perform compression on YUV 420 lenslet images in 8-bit
precision.

The raw sensor data is first demosaiced, devignetted and
clipped to 8 bits to obtain a lenslet image. The lenslet image
is subsequently converted to YUV 420 format, and compressed
and decompressed using the selected compression scheme.
The output of the decompression step is then upsampled and
converted to RGB 444. Conversion to RGB 444 format is
required to perform the transformation from lenslet image to
4D LF. The 4D LF is created from the decompressed lenslet
image using camera metadata. Color and gamma corrections
are applied separately on each view. The perspective views
forming the 4D LF can subsequentially be visualized on
commercially available displays, or combined to create new
interpolated views, synthetic aperture or refocusing effect.

Two compression algorithms (P01 and P02) compliant
with the workflow depicted in Figure 2 were evaluated. One
compression scheme was selected among the best perform-
ing submitted to ICME 2016 Grand Challenge, and it was
compared to an HEVC anchor. The anchor P01 exploits
HEVC intra profile with default settings to compress the
YUV 420 lenslet image. To perform the compression, the
software x265 was used3. The second algorithm P02 uses
a modified version of HEVC intra profile, which integrates
Locally Linear Embedding (LLE) and Self Similarity (SS)
to exploit the redundancies in the lenslet structure [25]. The
image is partitioned into blocks using HEVC intra prediction
scheme. LLE estimates the current block by selecting the best
linear combination of k nearest neighbors through a least-
square optimization problem. SS predicts the current block
using the best among two blocks, one given by best block
matching in the search window, the other chosen by searching
for best linear combination between the first selected block
and another block in the search window. The codec performs
both LLE and SS, and then choses the prediction method that
gives the smallest rate distortion cost.

B. 4D light field compression

The 4D LF coding approach performs the compression on
the 4D LF, obtained from the lenslet image, after color and
gamma corrections. Figure 3 depicts the workflow for this
coding approach. Two anchors were created to assess the
visual quality of this coding approach. The first anchor P04
assumes the same input as the compression schemes using the
lenslet coding approach (YUV 420 lenslet images). The color
space is then upsampled and converted again to RGB 444,
to be used in the transformation process. To assess the effect

3https://www.videolan.org/developers/x265.html

of chroma subsampling of the lenslet image on the resulting
quality of the final 4D LF, the second anchor P05 performs
the compression on the 4D LF, obtained from lenslet in RGB
444 format, after color and gamma corrections (Figure 3).
In this case, the lenslet image is not transformed to YUV
from RGB, and the color space is not subsampled before the
transformation.

For both anchors, the 4D LF is created from the uncom-
pressed lenslet image using camera metadata, and color and
gamma corrections are applied separately on each view, prior
to compression. Each view is converted from RGB 444 to
YUV 420. The views are arranged in a pseudo-temporal
sequence in spiral order, as depicted in Figure 6. Due to the
geometrical distortions present in the most external views, only
a subset of the views is coded. Specifically, only the 13× 13
internal views out of 15× 15 views are encoded. The pseudo-
temporal sequence is coded with HEVC software x265. In the
decompression step, the views which have not been coded are
replaced with copies of neighboring views, to reconstruct the
15×15 images that compose the 4D LF. After decompression,
the views are upsampled and converted to RGB 444 and
rearranged in the 4D LF. The perspective images composing
the 4D LF can then be visualized on commercially available
displays, or combined to create synthetic aperture, refocusing
and new interpolated views.

C. Hybrid compression of lenslet images

Among the participants to the ICME 2016 Grand Challenge,
which required to have YUV 420 lenslet image as input
and output of the compression and decompression step, one
algorithm performed compression on lenslet images using
intermediate transformation to 4D LF [26]. Figure 4 depicts
the workflow for this algorithm.

The algorithm P03 proposes a compression of 4D LF
images based on pseudo-sequences of perspective views. Due
to the constraints of the Grand Challenge, the YUV 420 lenslet
image is first converted to RGB 444 color space, to be used in
the transformation step. Then the lenslet is processed to obtain
the perspective views that compose the 4D LF. The views are
color and gamma corrected and then converted back to YUV
420. A subset of them is then rearranged in a specific coding
order, that accounts for similarities between adjacent views,
and coded using the JEM encoder4. In the decompression
step, the views are rearranged in the 4D LF. Inverse color
and gamma corrections are applied and the lenslet image is
formed following the inverse process of the transformation to
4D LF.

The conversion from lenslet to 4D LF and back was needed
to be compliant with the requirements of the grand challenge.
However, it can be clearly seen that the proposed approach
is hybrid, in the sense that it compresses lenslet images
through transformation to 4D LF. The tranformation from
lenslet images to 4D LF and back is lossless, as it is defined
in [26].

4https://jvet.hhi.fraunhofer.de/svn/svn HMJEMSoftware/tags/HM-16.6-
JEM-2.0rc1/
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TABLE I: Summary of compression schemes.

Proponents Description

P01 Anchor: Lenslet image compressed using HEVC intra (default settings of x265 software implementation).
P02 Lenslet image compressed using HEVC intra with LLE and SS (software HM-14.0) [25].
P03 Hybrid approach: lenslet image compressed using intermediate transformation to 4D LF and HEVC (software JEM 2.0) [26].
P04 Anchor: 4D LF, obtained after chroma subsampling, compressed using HEVC (default settings of x265 software implementation).
P05 Anchor: 4D LF compressed using HEVC (default settings of x265 software implementation).

(a) Bikes (b) Stone Pillars Outside (c) Fountain & Vincent 2 (d) Friends 1

Fig. 5: Central viewpoint image from each content used in our experiment.

IV. LIGHT FIELD QUALITY ASSESSMENT EXPERIMENT

This section describes the evaluation process in details.
First, the data preparation process is presented, along with the
coding conditions. Methodologies and metrics for objective
and subjective evaluation are then presented in details.

A. Dataset preparation and coding conditions

Four LF images, acquired by a Lytro Illum camera,
were selected from the publicly available EPFL LF image
dataset [36]. More specifically, Bikes, Stone Pillars Outside,
Fountain & Vincent 2 and Friends 1 contents were selected
for our experiments. The central view of each content used is
depicted in Figure 5. The images were carefully selected from
those used in the ICME 2016 Grand Challenge [4] in order
to provide a wide range of scenarios, containing details that
would prove challenging for the compression algorithms. To
obtain the 4D LF, the lenslet images were processed using the
LF MATLAB toolbox [37][38].

The compression algorithms were evaluated on four bitrates
(corresponding to four compression ratios), namely R1 = 1
bpp (10 : 1), R2 = 0.5 bpp (20 : 1), R3 = 0.25 bpp (40 : 1),
R4 = 0.1 bpp (100 : 1). The compression ratios are computed
as ratios between the size of the uncompressed raw images in
10bit precision (5368×7728×10 bits = 414839040 bits) and
the size of the compressed bitstreams.

The uncompressed reference was obtained by demosaicing,
devignetting and clipping to 8 bits the raw sensor data,
transforming it to 4D LF and applying color and gamma
corrections. Unlike the reference used in ICME 2016 Grand
Challenge, which used as a reference the 4D LF obtained from
YUV 420 lenslet image, we obtain our reference from the
lenslet image in RGB 444, without any chroma subsampling.
This reference was selected to have a proper comparison with
acquisition data obtained with minimal pre-processing. For this

Fig. 6: Ordering of the views for coding.

reason, chroma subsampling was not applied on the reference,
since it alters the data.

A total of five compression schemes were evaluated. Each
compression scheme was given a label, as stated before, for
easier identification. A summary of the compression schemes
can be found in Table I. It should be noted that the Quan-
tization Parameters (QP) were selected to match the bitrates
described above.

B. Objective evaluation

To analyze the performance of evaluated coding schemes,
PSNR was selected as a full reference metric. PSNR values
were computed with respect to the uncompressed reference.
The computation is thus performed on the 4D LF after color
and gamma corrections (point B in Figure 1).The PSNR metric
was adapted to better suit properties of LF images. Therefore,
the PSNR value is computed on the Y channel as follows:

PSNRY (k, l) = 10 log10
2552

MSE(k, l)
, (3)
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in which k and l are the indexes of the acquired views. The
MSE(k, l) for each image is computed as follows:

MSE(k, l) =
1

mn

m∑
i=1

n∑
j=1

[I(i, j)−R(i, j)]2, (4)

where m and n are the dimensions of one viewpoint image
(i.e., n = 625, m = 434). I(i, j) is the Y value for the selected
acquired view in the evaluated 4D LF, whereas R(i, j) is the
corresponding value in the reference 4D LF. In the same way,
the PSNR for the other two channels U and V is obtained. A
weighted average [39] is then computed as follows:

PSNRY UV (k, l) =

6PSNRY (k, l) + PSNRU (k, l) + PSNRV (k, l)

8

(5)

The mean of all viewpoint images is subsequentially computed
to have an average value for PSNR for Y channel and for
Y UV :

PSNRXmean =
1

(K − 2)(L− 2)

K−1∑
k=2

L−1∑
l=2

PSNRX(k, l),

(6)
in which K = 15 and L = 15 represent the number of
perspective views, and X = Y and X = Y UV for Y channel
and for Y UV channels, respectively.

C. Subjective evaluation

1) Interactive test methodology: A recently introduced
methodology for interactive evaluation of plenoptic content
was selected to perform the first of the two visual assessments
[5]. The methodology is based on Double Stimulus Impairment
Scale (DSIS) [40].

The participants were asked to interact with the LF images
and to rate the level of impairment of the test LF image with
respect to the reference, on a scale from 1 (Very annoying)
to 5 (Imperceptible). Each LF image was presented together
with the uncompressed reference in a side-by-side fashion.
The position of the reference was set to either left or right for
each experiment, and the participants were informed about its
location on the screen.

For each stimulus, the central viewpoint image from the
4D LF was displayed. By clicking inside the displayed image
and dragging the mouse, the other viewpoints from the 4D LF
were accessed and displayed. Each image was displayed in its
native resolution of 625× 434 pixels.

Eleven refocused images were created for each content, us-
ing a modified version of the toolbox function LFFiltShiftSum.
The function shifts all the perspective views according to a
parameter, called slope, and performs a sum of the shifted
images to obtain a single image that is refocused on a specific
plane, which depends on the value of the slope. The number
of images to be shifted and consequently summed defines the
depth of field. Summing all 15×15 images creates the smallest
depth of field, in which only one specific plane in the image
is in focus. On the other hand, taking just the central image,

Fig. 7: Ordering of the views for animation for passive
methodology.

which is equivalent to summing just 1× 1 images, brings all
the objects in focus (largest depth of field). For our tests, it
was decided to sum images from index 3 to index 13 (11×11
images) to have a larger depth of field that still shows an
effects of refocusing. The values of the slopes are summarized
in Table II. The refocused images were accessible through a
slider shown at the bottom of each stimulus. The slopes were
selected so as to assure gradual transition between refocusing
on the foreground and on the background with respect to
semantically relevant objects in each content.

Before the experiments, a training session was organized to
allow participants to get familiar with artifacts and distorsions
in the test images. Five training samples were manually
selected by expert viewers. In order not to influence the
results, the training samples were created by compressing other
content on various bitrates. The content used for the training
was chosen from the same LF image database used for the
test images [36]. The training samples were presented along
with the uncompressed reference, exactly as they were shown
in the test.

The experiment was split into two sessions. In each session,
40 stimuli were shown side by side with the uncompressed
reference, corresponding to approximately 20 minutes per
session. The display order of the stimuli was randomized, and
the same content was never displayed twice in a row. Each
subject took part in all the sessions, thus evaluating the entire
set of stimuli. A break of ten minutes was enforced between
the sessions to avoid fatigue. Before the test, one dummy
sample was inserted to ease the participants into the task. The
resulting scores from dummy stimuli were not included in the
results.

A total of 24 subjects (19 males and 5 females) participated
in the experiment, for a total of 24 scores per stimulus.
Subjects were between 18 and 35 years old, with an average
of 24.8 and a median of 25 years of age. All subjects were
screened for correct visual acuity with Snellen charts, and
color vision using Ishihara charts.

2) Passive test methodology: The second of the two vi-
sual assessments of quality was performed using a passive
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TABLE II: Values of refocusing slope for each content.

Slopes

Content 1 2 3 4 5 6 7 8 9 10 11

Bikes -10 -8 -6 -4 -2 0 2 4 6 8 10
Stone Pillars Outside -10 -8 -6 -4 -2 0 2 4 6 8 10
Fountain & Vincent 2 -10 -8 -6 -4 -2 0 2 4 6 8 10
Friends 1 -5 -4 -3 -2 -1 0 1 2 3 4 5

methodology, to ensure that all participants would visualize
and rate exactly the same viewpoints and refocused views.
The methodology is based on DSIS.

The participants were shown the LF content as a video
sequence navigating between the viewpoints and the refocused
images. Each stimulus was displayed alongside with the
uncompressed reference, in a side by side fashion, and the
subjects knew in advance on which side of the screen the
reference was displayed.

Due to distortions caused by the lenslet structure, several
viewpoints presented artefacts independent from the coding
procedure, and thus had to be discarded, in order not to
negatively influence the results. Therefore, only a subset of
97 out of 225 viewpoints was chosen to be displayed. Ten
viewpoints per second were displayed, to ensure a smooth
transition of the different viewpoints. The viewpoints were
accessed from top to bottom and from left to right and right
to left in alternate order (Figure 7). At the end of the viewpoint
animation, the eleven refocused images were displayed with
a framerate of four refocused images per second, going from
foreground to background and from background to foreground.
The animation setup was chosen and validated by expert
viewers in order to mimic the parallax effect, as well as to
mimic the refocusing effect that occurs when trying to change
the focal point. The total length of the animation for each
stimulus was 14 seconds.

Test subjects were asked to rate the level of impairment
of the test stimuli when compared to the uncompressed
references. The rating was performed on a scale from 1
(Very annoying) to 5 (Imperceptible). Before the experiment,
a training session was organized to allow participants to get
familiar with artefacts and distorsions in the test images. Five
training samples were manually selected by expert viewers.
To help subjects localize and identify compression artefacts
in the fast-paced video, the same content used in the test was
selected for the training. The training samples were presented
along with the uncompressed reference, exactly as they were
shown in the test.

The experiment was split into two sessions. In each session,
40 stimuli were shown side by side with the uncompressed
reference, corresponding to approximately 20 minutes per
session. The display order of the stimuli was randomized, and
the same content was never displayed twice in a row. Each
subject took part in all the sessions, thus evaluating the entire
set of stimuli. A break of ten minutes was enforced between
the sessions to avoid fatigue.

A total of 29 subjects (24 males and 5 females) participated
in the experiment, for a total of 29 scores per stimulus.

Subjects were between 18 and 35 years old, with an average
and median of 23 years of age.

3) Interactive test environment: To avoid the involuntary
influence of external factors and to ensure the reproducibility
of results, the laboratory for subjective video quality
assessment was set up according to ITU recommendation
BT.500-13 [40]. Professional Eizo ColorEdge CG301W
30-inch monitors with native resolution of 2560 × 1600
pixels were used for the test. The background color of the
display was set to mid grey, according to requirements in ITU
Recommendation ITU-R BT.2022 [41]. The monitors were
calibrated using an i1Display Pro color calibration device
according to the following profile: sRGB Gamut, D65 white
point, 120 cd/m2 brightness, and minimum black level of 0.2
cd/m2. The room was equipped with a controlled lighting
system that consisted of neon lamps with 6500 K color
temperature, while the color of all the background walls and
curtains present in the test area was mid grey. The illumination
level measured on the screens was 15 lux. The distance of
the subjects from the monitor was approximately equal
to 7 times the height of the displayed content, conforming
to requirements in ITU Recommendation ITU-R BT.2022 [41].

4) Passive test environment: To perform the tests, the
QualityCrowd 2 framework [42] was used. Nonetheless, it
should be noted that all the participants performed the tests
in the same environment at the same time, with equal lighting
conditions, using the same display model and the same screen
resolution.

Since there is no browser video plugin capable of reliable
real-time decoding and displaying for HEVC, the animations
were encoded with AVC. A two-pass encoding was used and
the deblocking filter was disabled to ensure transparency and
to preserve the original blockiness artefacts when encoded at
low bit rates. Expert viewing session conducted prior to the
main subjective assessment concluded that the AVC video
encoding was visually lossless. Selected settings for AVC
coder are summarised in Table III.

5) Data analysis: Outlier detection was performed accord-
ing to the guidelines defined in ITU recommendation BT.500-
13 [40]. One outlier was detected in both interactive and
passive tests, and the relative scores were discarded, thus
leading to 23 and 28 scores per stimulus, respectively. The
Mean Opinion Score (MOS) was computed, separately for
each methodology, for each coding condition j (i.e., each
content, codec and compression ratio) as follows:
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TABLE III: Selected settings for AVC coder for passive methodology.

-r 30 -s <size> -f rawvideo -pix fmt yuv420p -i <input> -c:v libx264 -profile:v high -x264opts no-scenecut:no-deblock:pass=1 -b:v 8M tmp.mp4
-r 30 -s <size> -f rawvideo -pix fmt yuv420p -i <input> -c:v libx264 -profile:v high -x264opts no-scenecut:no-deblock:pass=2 -b:v 8M <output>

MOSj =
1

N

N∑
i=1

mij , (7)

where N is the number of participants and mij is the score for
stimulus j by participant i. The corresponding 95% confidence
intervals were computed. To determine whether the results
yield statistical significance, a one-sided Welch’s test at 5%
significance level was performed on the scores, with the
following hypotheses:

H0 :MOSA ≤MOSB

H1 :MOSA > MOSB ,

in which A and B are the codecs that are being compared.
The test was performed for each compression ratio and for
each content, separately for each methodology. If the null
hypothesis were to be rejected, then it could be concluded
that codec A performed better than codec B for the given
content and compression ratio at a 5% significance level.

V. RESULTS AND DISCUSSION

In this section, results of the objective and subjective quality
assessments are presented. Results on the coding approaches
presented in Section III will be discussed separately. First,
the lenslet image compression is analyzed. Then, the 4D LF
compression is discussed. The hybrid approach is compared
to the other approaches. Finally, a comprehensive review of
all the codecs is performed.

A. Compression of lenslet images

For PSNR computed on Y channel (Fig. 8, solid lines),
the performance of the two codecs examined here (P01 and
P02) strongly depends on the content, as it is common
when computing PSNR. In general, P01 outperforms codec
P02 for high bitrates. For low bitrates, P02 outperforms
P01 for contents Bikes and Fountain & Vincent 2, and is
outperformed in the remaining cases. PSNR computed on
YUV channels (Fig. 8, dashed lines) shows similar trends.

Codec P02 has a particularly poor performance with content
Friends 1, and in general performs worse than codec P01 for
high bitrates. Results are particularly surprising since the codec
proposed in P02 is supposed to improve the performance
of HEVC Intra (anchor P01) with new prediction schemes.
To better investigate the reasons behind this behaviour, we
computed PSNR at different stages of the pipeline. Results
from PSNR computation are shown in Figure 9. In particular,
we computed PSNR on the 4D LF without any color or
gamma correction, on the color-corrected 4D LF, on the
gamma-corrected 4D LF and when both corrections were
applied on the 4D LF. Additionally, we compute PSNR on
the lenslet image prior to the transformation, to better assess
the performance of the two codecs on 2D images. The PSNR
was computed with respect to the uncompressed reference at
the same stage of the pipeline.

Results show that, on the lenslet image and on the 4D LF
without any correction, P02 always outperforms P01. On the
gamma-corrected 4D LF, P02 performs better than P01 on
half of the contents. When color correction is applied on the
4D LF, however, we see a degradation in performance, with
P01 outperforming P02 for high bitrates. This suggests that
the prediction method, while working efficiently on compres-
sion of regular images, as proven by the results obtained on
the lenslet image prior to transformation, adapts rather poorly
to the peculiarities of LF images, and is more susceptible to
errors after color correction is applied. Results from PSNR
computed on YUV channels follow the same trend.

Results from both interactive and passive subjective evalu-
ations show that P01 is performing significantly better than
P02 for the highest bitrate. In particular, in the interactive test
P01 is significantly better than P02 for all contents, whereas
in the passive test it is significantly better for 3 out of 4
contents. For bitrate = 0.5 bpp, interactive tests show that P01
performs better than P02 for only 1 out of 4 contents, whereas
passive tests indicate that it outperforms P02 on half of the
contents. For lower bitrates (0.2 and 0.1 bpp) the difference
between the two codecs is negligible.

B. Compression of 4D light field
As discussed in section III, we want to analyse the effect

of downsampling the lenslet image prior to transformation to
4D LF. For this reason, we compare the performance of P04,
which uses a chroma subsampled version of the lenslet image,
with P05, which creates the 4D LF from the lenslet image
which has not been subsampled (see Fig. 3).

For PSNR computed on Y channel (Fig. 8, solid lines), the
two codecs have similar performance for all bitrates for con-
tents Bikes and Stones Pillars Outside, whereas for contents
Fountain & Vincent 2, P05 performs better than P04 for all
bitrates. Although downsampling of chroma channels should
not affect the Y channel, color correction is applied on RGB
channels of the single views, which are then converted to YUV
to compute the PSNR. The downsampling thus affects the Y
channel as well.

Results are similar for PSNR computed on YUV chan-
nels (Fig. 8, dashed lines), although for content Foun-
tain & Vincent 2, the difference between P04 and P05 is
now negligible.

Results from subjective evaluations and pairwise compari-
son (Fig. 10, 11, 12 and 13) show a stronger preference for
codec P05 when compared to codec P04. In particular, results
from the interactive tests show that, for the highest bitrate,
P05 performs significantly better than P04 for two out of four
contents. For bitrate = 0.25 bpp, P05 performs better on three
out of four contents, whereas for the remaining two bitrates
(0.5 bpp, 0.1 bpp) it always performs significantly better than
P04.On the other hand, results from the passive tests show
that P05 always performs significantly better than P04, for
all bitrates.
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(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 8: Rate distortion plots for Y channel (solid line) and for YUV channels (dashed line). PSNR was computed on the 4D
LF after color and gamma correction.

C. Hybrid compression of lenslet images

As seen in section III, the third compression scheme P03 is
compressing 4D LF and then converting them back to lenslet
images. It is thus worthy of note to compare the performances
of P01, P02 and P03, since they have the same input and
output in the compression and decompression steps, although
they use different approaches.

From the objective metric point of view, P01 and P03
outperform codec P02 for high bitrates. For low bitrates,
P03 always outperforms P01 and P02, although in case
of content Stone Pillars Outside, the difference between the
codecs is negligible. For PSNR computed on YUV channels
(Fig. 8, dashed lines), codec P03 outperforms the others
for all contents. Interestingly enough, for codec P03 PSNR
computed on YUV channels always has higher values than

PSNR computed on the Y channel, while for all the other
codecs the opposite is true. One possible explanation for
this peculiar behavior is that the inverse color and gamma
transformation applied before transforming the 4D LF back to
lenslet has an effect on the final color performance, leading to
better results in the YUV channels.

The subjective evaluation results do not show the same
trends as the objective results (Fig. 10, 11, 12 and 13). In
particular, results from the interactive tests show that for the
lowest bitrate (0.1 bpp) P03 outperforms P01 on two out of
four contents and never outperforms P02, whereas the passive
tests show that P03 performs better than P01 on only 1 out
of 4 contents, and performs better than P02 on 2 out of
4 (Fig. 13 (a)). For intermediate bitrates (0.5 bpp and 0.25
bpp), interactive tests show that P01 and P03 both perform
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(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 9: Rate distorsion plots for Y channel. PSNR was computed at various stage of the pipeline (See Fig. 2).

significantly better than P02 on one out of four contents,
whereas passive tests additionally show that P01 performs
significantly better than P03 on half of the contents for both
bitrates. For the highest bitrate, P01 performs significantly
better than P03 on at least half of the contents (3 out of 4 in
case of passive tests, 2 out of 4 in case of interactive tests),
and outperforms P02 in the majority of cases (3 out of 4 in
case of passive tests, 4 out of 4 in case of interactive tests).

For the objective evaluation, the hybrid scheme P03 per-
forms better than the other lenslet compression schemes.
However, results from the subjective evaluation suggest that
the difference in performance with respect to P01 (simple
HEVC Intra) is negligible for low bitrates, and leads to poorer
results for the highest bitrates.

Since P03 compresses lenslet images through transforma-
tion to 4D LF, it is useful to compare its performance to
the performance of P04. For PSNR computed on Y channel
(Fig. 8, solid lines), the performance of codecs P03 and P04
strongly depends on the content, as expected. For high bitrates,
P04 performs better than P03, with the notable exception of
content Stones Pillars Outside, in which codec P03 performs
slightly better for all bitrates. For low bitrates, however, P04
performs slightly worse than P03 for all contents except
Friends 1, for which P04 performs better than P03. PSNR
computed on YUV channels (Fig. 8, dashed lines) show
similar trends.

Results from subjective evaluation and pairwise comparison
(Fig. 10, 11, 12 and 13), however, show that codec P03 never
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(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 10: Results of interactive subjective tests. MOS vs bitrate for all contents, with respective confidence intervals.

performs significantly better than codec P04. In particular, for
the lowest bitrate, results from the interactive tests indicate that
no codec performs significantly better than the other, whereas
results from passive tests suggest that P04 performs better than
P03 on 1 out of 4 contents. For bitrate = 0.25 bpp and 0.5 both
interactive and passive tests agree that P04 outperforms P03
for 2 out of 4 contents and 1 out of 4 contents, respectively. For
the highest bitrate, interactive tests indicate that P04 performs
significantly better than P03 on 1 out of 4 contents, whereas
for the passive tests they are statistically equivalent for all
contents.

D. General discussion

In general, both objective and subjective results show that
coding 4D LF (point B in Figure 1) leads to better performance
when compared to coding lenslet images directly. In particular,
pseudo-temporal ordering of 4D LF, obtained from RGB 444

lenslet image, performs significantly better than the other pro-
posals for at least half of the contents for all bitrates examined
in the subjective assessment of quality, showing that chroma
subsampling of lenslet images can lead to a considerable
reduction in visual quality. It is worth noting, however, that
results from passive tests show that P01 performs statistically
better than P04 on 2 out of 4 contents for the highest bitrate
(Fig. 13 (d)).

Comparison of different lenslet image compression algo-
rithms shows that improvements in performance for 2D image
coding do not necessarily result in better visual quality of LF
image. In particular, whereas HEVC intra with LLE and SS
has better performance in objective evaluation carried out on
lenslet images and 4D LF without color correction, it performs
significantly worse when color correction is applied. Further
work on lenslet image compression should address the effect of
color correction on the final 4D LF, and propose new strategies



JOURNAL OF SELECTED TOPICS ON SIGNAL PROCESSING 13

(a) Bikes (b) Stone Pillars Outside

(c) Fountain & Vincent 2 (d) Friends 1

Fig. 11: Results of passive subjective tests. MOS vs bitrate for all contents, with respective confidence intervals.

to appropriately cope with this issue.

Coding 4D LF has the benefit of not requiring any metadata
to be correctly displayed. Moreover, it can be used to code 4D
LFs acquired with different acquisition technologies. Since
the most distorted views in the 4D LF can be discarded in
the compression process, it also allows for bitrate saving. As
we previously mentioned, the transformation to 4D LF is an
additional step that would be not suitable for low-memory
devices. Thus, if consumers’ market is the desired target,
a solution that does not require any transformation would
be preferrable. In this case, coding 4D LFs seems the most
suitable choice.

The additional step of converting to 4D LF is not an issue
if the target is the professional market. However, fidelity to
acquisition parameters is of paramount importance. As seen
before, chroma subsampling leads to poorer performances,
especially after color correction has been applied. On the other

hand, coding 4D LF leads to discarding metadata, which could
be used in post-processing softwares, as well as potentially
discarding some heavily distorted views. In this case, both
approaches presented in this paper do not seem suitable. A
new approach should be designed, aimed at high fidelity to
acquisition parameters.

VI. CONCLUSION

In this paper, two different coding approaches for light field
image compression were defined, described, and evaluated.
Objective and subjective quality assessments of five different
compression algorithms, following the aforementioned coding
approaches, were conducted. Experimental results provide
some insights on the impact of compression algorithms within,
as well as across predefined use cases, on the perceived
quality. This reveals the necessity of further investigations and
improvements of compression algorithms especially in terms
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(a) R4 (b) R3 (c) R2 (d) R1

Fig. 12: Pairwise comparison results for interactive subjective tests. Each cell contains the number of contents for which the
null hypothesis was rejected, for each compression ratio. The null hypothesis is defined as MOSi ≤ MOSj , in which i
indicates the row and j the column of the matrix.

(a) R4 (b) R3 (c) R2 (d) R1

Fig. 13: Pairwise comparison results for passive subjective tests. Each cell contains the number of contents for which the null
hypothesis was rejected, for each compression ratio. The null hypothesis is defined as MOSi ≤MOSj , in which i indicates
the row and j the column of the matrix.

of processing of the metadata related to light field image data
rendering.

More specifically, subjective quality evaluations show that
one coding approach, namely, compressing 4D LF, yields
significantly better results in terms of visual quality for all
bitrates when compared to compressing lenslet images. The
4D LF coding approach is particularly suitable for general
consumers’ use case, since it does not involve additional
computations at the decoder side to be properly rendered.
Moreover, the coding approach does not require metadata to be
successfully decoded and displayed, thus reducing the bitrate.
Finding a successfull approach for the professional market,
however, is still an open issue. A new method for compressing
lenslet images while taking into account color fidelity must
be designed for this type of market. Further research should
focus on how to modify the proposed compression algorithm
for light field images to further improve the performance and
to meet the needs of all use cases.
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