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Abstract

Inspired by recent advances in deep learning, we propose a novel iterative BP-CNN architecture for
channel decoding under correlated noise. This architecture concatenates a trained convolutional neural
network (CNN) with a standard belief-propagation (BP) decoder. The standard BP decoder is used to
estimate the coded bits, followed by a CNN to remove the estimation errors of the BP decoder and
obtain a more accurate estimation of the channel noise. Iterating between BP and CNN will gradually
improve the decoding SNR and hence result in better decoding performance. To train a well-behaved
CNN model, we define a new loss function which involves not only the accuracy of the noise estimation
but also the normality test for the estimation errors, i.e., to measure how likely the estimation errors
follow a Gaussian distribution. The introduction of the normality test to the CNN training shapes the
residual noise distribution and further reduces the BER of the iterative decoding, compared to using the
standard quadratic loss function. We carry out extensive experiments to analyze and verify the proposed
framework. The iterative BP-CNN decoder has better BER performance with lower complexity, is suitable
for parallel implementation, does not rely on any specific channel model or encoding method, and is
robust against training mismatches. All of these features make it a good candidate for decoding modern

channel codes.

I. INTRODUCTION

Channel encoding and decoding are important components in modern communication systems. Inspired
by Shannon’s original work [[1l], tremendous progresses have been made both in coding theory and its
applications. For example, low-density parity-check (LDPC) codes are able to yield a performance

close to the Shannon capacity for AWGN channels with a properly optimized encoding structure and the
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well developed belief-propagation (BP) decoding algorithm [3l]. As another example, short to medium-
block length linear codes such as Bose-Chaudhuri-Hocquenghem (BCH) code and Polar code [3] are
of great interest to the recent development in 5G [6], for delay-sensitive and mission-critical applications.

However, in practical communication systems, channels sometimes exhibit correlations in the noise
samples due to filtering, oversampling [7], channel fading and multi-user interference [8]. A well-
designed channel code may not have satisfactory performance if the receiver is not designed to handle
noise correlations. The difficulty in addressing this issue mainly comes from the high-complexity model
introduced by the colored noise. In theory, the decoder can first estimate the noise distribution, and then
optimize the BP decoder using the estimated joint distribution. This approach, nevertheless, is model-
based and may suffer from not obtaining a well-behaved joint distribution for noise samples. Furthermore,
optimizing the BP decoder with a joint noise distribution may be highly complex when the correlation is
strong. Hence, a low-complexity, highly-adaptive and robust decoder structure that can fully exploit the
characteristics of noise correlations and have good decoding performance is desired.

Recent advances in deep learning provide a new direction to tackle this problem. Instead of finding an
algorithm based on a pre-defined model, deep learning technologies allow the system to learn an efficient
algorithm directly from training data. Deep learning has been applied in computer vision [9], natural
language processing [10], autonomous vehicles [11] and many other areas, and the results have been
quite remarkable. Inspired by these advances, researchers have recently tried to solve communication
problems (including channel decoding) using deep learning technologies [12]]-[22], and a summary of
these works is provided in Section [l However, none of these works address the problem of efficient
decoding of linear codes under correlated channel noise.

In this paper, we design a novel receiver architecture to tackle the decoding problem when correlation
exists in channel noise. This architecture concatenates a trained convolutional neural network (CNN) with
a standard BP decoder, and the received symbols are iteratively processed between BP and CNN — hence
the name iterative BP-CNN. At the receiver side, the received symbols are first processed by the BP
decoder to obtain an initial decoding. Then, subtracting the estimated transmit symbols from the received
symbols, we obtain an estimation of channel noise. Because of the decoding error, the channel noise
estimation is not exact. We then feed the channel noise estimation into a CNN, which further removes
the estimation errors of the BP decoder and obtains a more accurate noise estimation by exploiting the
noise correlation via training. Iterating between BP and CNN will gradually improve the decoding SNR
and hence result in better decoding performance.

The proposed iterative BP-CNN decoder has many desirable properties. As we will see, it has better

decoding performance than the standard BP, with lower complexity. This is mainly due to the efficient



CNN structure, which consists mostly of linear operations and a few non-linear ones. This method is
data driven and does not rely on any pre-defined models, which makes it adaptive to different channel
conditions and different linear codes. It is also suitable for parallel computing, which is important for
VLSI implementation. Furthermore, our experiments show that the iterative BP-CNN decoder is robust
to SNR mismatches if the training data is generated carefully.

Intuitively, the reason that CNN can help channel decoding is similar to the success of CNN in low-level
tasks in image processing such as image denoising or image super-resolution [24]. This becomes
more clear when we view the correlation in channel noise as a “feature”, which can be extracted by CNN.
However, our problem setting is very different to these other applications where extracting features is the
ultimate goal. In the iterative BP-CNN architecture, the goal of CNN is not only to accurately estimate
the channel noise and depress the residual error, but also to generate an output that is beneficial to the BP
decoder. This unique requirement has motivated us to develop a novel loss function for CNN training,
which combines the effect of residual noise power with a Jarque-Bera normality test. We will see that
this new loss function plays an important role in the enhanced BP-CNN decoder.

In summary, our contributions in this work are as follows:

1) We propose a novel decoding structure for linear codes, called iterative BP-CNN, that concatenates

a trained CNN with a standard BP decoder and iterates between them. This structure is shown to
have the capability to extract noise correlation features and improve the decoding performance.

2) We design the CNN architecture for iterative BP-CNN with two different loss functions. In the

baseline BP-CNN, the well known quadratic loss function is used in CNN training. In the enhanced
BP-CNN, we develop a new loss function that depresses the residual noise power and simultaneously
performs the Jarque-Bera normality test.

3) We carry out extensive evaluations to verify and analyze the proposed framework.

The rest of this paper is organized as follows. In Section [l we give a brief review of some related
works. The system design, including the network training, is explained in detail in Section [[Ill Extensive

experiments is in Section [Vl We finally conclude this paper and discuss future works in Section [Vl

II. RELATED WORKS
A. Convolutional Neural Networks

Recent progresses of deep learning technologies, big data, and powerful computational devices such
as GPUs have started a new era in artificial intelligence. Taking computer vision as an example, deep
convolutional neural networks have been verified to yield much better performance than conventional

methods in various applications, from high-level tasks such as image recognition [9], and object



detection [26], to low-level tasks such as image denoising and image super-resolution [24]. In [23],
the authors propose to use a deep CNN for image classification, consisting of convolutional layers,
pooling layers, and fully-connected layers. A variant of this model won the ILSVRC-2012 competition,
and CNNs have received skyrocketed interest in both academia and industry since then. [9], the authors
have designed a residual learning framework (ResNet) which makes it easier to train deeper neural
networks. It is shown that ResNet can even outperform humans in some high-level tasks. With regard to
low-level tasks such as image super-resolution, the authors of show that a fully convolutional neural
network can achieve similar restoration quality with the-state-of-art methods but with low complexity for
practical applications. More recently, CNNs have played a crucial role in AlphaGo which beats the
best human player in Go games.

The task of channel decoding under colored noise is similar to some low-level tasks such as image
denoising or super-resolution, which has motivated us to combine a CNN with BP in this work. We will

elaborate on this similarity in Section [Tl

B. Applications of Deep Learning in Communications

Most algorithms in communications are developed based on given models. For some tasks, this is
only feasible when the model is simple enough, and model mismatch often happens in practice. Recent
advances in deep learning technologies have attracted attention of researchers in communications and there
have been some recent papers on solving communication problems using deep learning technologies. For
the topic of designing channel decoding algorithms, which is the focus of this paper, Nachmani ef al. have
demonstrated that by assigning proper weights to the passing messages in the Tanner graph, comparable
decoding performance can be achieved with less iterations than traditional BP decoders [12]. These
weights are obtained via training in deep learning, which partially compensate for the effect of small
cycles in the Tanner graph. The authors further introduce the concept of recurrent neural networks (RNN)
into BP decoding in [15]. Combined with the modified random redundant (mRRD) iterative algorithm
[28]], additional performance improvement can be obtained. Considering that BP decoding contains many
multiplications, Lugosch et al. have proposed a light-weight neural offset min-sum decoding algorithm in
[16], with no multiplication and friendly for hardware implementation. Addressing the challenge that deep
learning based decoders are difficult to train for long codes [17]], the authors in propose to divide
the polar coding graph into sub-blocks, and the decoder for each sub-codeword is trained separately.

Besides channel decoding, deep learning has the potential to achieve improvement in other areas of
communication systems [[19]. O’Shea et al. propose to learn a channel auto-encoder via deep learning

technologies [13]. Farsad er al. study the problem of developing detection algorithms for communication
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Fig. 1. The proposed iterative decoding architecture which consists of a belief propagation (BP) decoder and a feed-forward
convolutional neural network (CNN).

systems without proper mathematical models, such as molecular communications [20]. The authors of
[21]] apply deep neural networks to MIMO detection, which results in comparable detection performance
but with much lower complexity. In the application layer, deep recurrent neural networks can be also
used to recognize different traffic types [14]]. Most recently, Dorner et al. [22]] have demonstrated the
feasibility of over-the-air communication with deep neural networks and software-defined radios.

These early studies have not considered the channel decoding problem under correlated Gaussian noise,
which is another example of complex channel models that are difficult for theoretical analysis. In this

paper, we focus on this problem and propose a novel iterative BP-CNN receiver for channel decoding.

III. SYSTEM DESIGN

This section contains the main innovation of this work: an iterative BP-CNN channel decoder. In order
to better present the proposed design, we will first describe the system framework. Specifically, the CNN
structure will be introduced and its role in helping channel decoding will be explained. Finally, we will
highlight two crucial components in training the network: the design of the loss function and the data

generation.

A. System Framework

The proposed architecture is illustrated in Fig. [Il At the transmitter, a block of uniformly distributed
bits x of length K, is encoded to a binary codeword u of length N through a linear channel encoder.
In this paper, we focus on the LDPC code, but the proposed method is readily applicable to other linear

block codes. The codeword u is then mapped to a symbol vector s through the BPSK modulation.



The BPSK symbols will be passed through a channel with additive Gaussian noise. The channel noise
vector, denoted as n of length N, is modeled as a Gaussian random vector with auto-correlation matrix
3.. Note that the LDPC codeword may be long, and as a result the size of 3 can be significant. To better
illustrate our design, we will use a standard correlation model that is widely adopted in the literature [7]].

The correlation matrix 35 is given by:

Tig=4 (1)
("), iz,

where X; ; is the (i, j)th element of 3, and 7 is the correlation coefficient with |n| < 1. We should

emphasize that Eqn. (1) is not fundamental to our proposed design, as it works for any correlation

model. This will become evident later and be corroborated in the numerical simulations.

At the receiver, vector y is received and can be written as

y =s+n. 2)

A BP decoder is then used to decode the transmitted information bit vector from y. Typically, there is
a BPSK soft demodulator before the BP decoding, to calculate the log-likelihood ratios (LLRs) of the
transmitted symbols:

Pr(s; = 1ly;)

(1)
LLR;"” =log ———— %
! o8 Pr(s; = —1ly;)’

3)

where s;, y; denote the ¢th BPSK symbol and the corresponding received symbol, respectively, and
the superscript (1) to LLR indicates that this is the LLR computation for the initial BP. In our system
framework of Fig. [Il we omit this module and merge it into the BP decoder for simplicity.

We use § to denote the estimated transmit symbols. Subtracting it from the received symbols y, we

obtain n as
n=y-—8s, 4)

which can be viewed as an estimation of the channel noise. Because of the decoding errors in the BP

decoder, n is not exactly the same as the true channel noise n. We can re-write n as

n=n-+¢, (5

where £ is the error vector of noise estimation.



We are now ready to explain the proposed BP-CNN decoding architecture, as shown in the dashed box
of Fig. [l Inspired by the successful application of CNNs in image denoising and super-resolution, and
noticing that the correlation in channel noise n can be considered as a “feature” that may be exploited
in channel decoding, we propose to concatenate a CNN after BP, to utilize this correlation to suppress
& and get a more accurate estimation of the channel noise. The details of the proposed CNN and the
associated training procedure will be presented in subsequent sections. Using n to denote the CNN output

and subtracting it from the received vector y result in

=s+n—n, (6)

where r = n — 1 is defined as the residual noise. Then, the new vector y is fed back to the BP decoder
and another round of BP decoding is performed. Note that before the second round of BP iterations, the
LLR values need to be updated as follows,

Pr(s; = 1|3:)

LLR® = jog ——20 — 21Yi)
©T % Pr(si = —1[30)

(7

where the superscript (2) to LLR indicates that this is the LLR computation for the subsequent BPs after
processing the noise estimate with CNN.

Obviously, the characteristics of the residual noise r will affect the calculation in (Z) and thereby
influence the performance of the subsequent BP decoding. Therefore, the CNN should be trained to
provide a residual noise that is beneficial for the BP decoding. We propose two strategies for training

the CNN and concatenating with BP.

1) Baseline BP-CNN. The CNN is trained to output a noise estimation which is as close to the true
channel noise as possible. This is a standard method which can be implemented using a quadratic
loss function in CNN training. Intuitively, an accurate noise estimation will result in very low power
residual noise and thus very little interference to the BP decoding. In order to calculate the LLR
as (), we also need to obtain an empirical probability distribution of the residual noise.

2) Enhanced BP-CNN. The baseline BP-CNN may not be optimal considering that the channel
encoding (such as LDPC) is mostly optimized for the AWGN channel and the residual noise
may not necessarily follow a Gaussian distribution. Therefore, another strategy is to depress the

residual noise power and simultaneously let the residual noise follow a Gaussian distribution as



much as possible. By doing this, the calculation in (Z) becomes much easier:
2y

27
UT

LLR®) = (8)

where o2 is the power of the residual noise.

In Section [[II=El we will show how to train the network with the above two strategies. With a depressed
influence of noise, the BP decoding is expected to yield a more accurate result. The above processes
can be executed iteratively to successively depress the noise influence and improve the final decoding

performance.

Remark 1. Although majority of the channel coding study focuses on the AWGN or fading channels
with i.i.d. noise, we note that channels with additive correlated noise are particularly important for
some systems, such as in wireless and cellular communications. In these systems, coherent fading either
in time or frequency combined with multi-user interference can lead to the equivalent channel noise
being correlated for the purpose of channel decoding. These are increasingly important scenarios for
the performance of channel coding, with the growing emphasis on delay-sensitive and mission-critical

applications in 5G where long codes and deep interleaving may not be appropriate [6].

Remark 2. We note that the CNN in our system is a pure feed-forward network without memory and
state information. In the deep learning literature, there is another celebrated network form called recurrent
neural networks (RNN), which is mainly used in language processing [29]. The exploitation of the RNN
structure with memory in BP decoding is an important and interesting topic that we plan to investigate

in the future.

B. Why is CNN Useful for Channel Decoding?

As we have mentioned, one of the first motivations for us to use a CNN to estimate the channel noise
comes from CNN’s successful applications in some low-level tasks such as image denoising [23],
and image super-resolution [24]]. A careful investigation into these CNN applications reveals important
similarity to the channel decoding task at hand. Let us take image denoising as an example. Note that
the task of image denoising is to recover the original image pixels X from its noisy observation Y,
following the additive model Y = X + W where W denotes the unknown noise. As analyzed in [23]],
there is a strong mathematical relationship between convolution networks and the state-of-the-art Markov
random field (MRF) methods. One advantage to utilize a CNN for image denoising is that it allows the

network to learn high dimensional model parameters to extract image features, which have stronger image



processing power. The results in demonstrate that using CNN can achieve a better performance with
low complexity than previously reported methods.

Returning to our task in this paper, the role of CNN in the decoding architecture is to recover the true
channel noise n from the noisy version i following model (3), which is very similar to image denoising.
The recovered channel noise n in our task corresponds to the image pixels X in image denoising and
the error £ corresponds to the noise W. Note that just like CNN-based image denoising which exploits
the image features in pixels X, the iterative BP-CNN decoder exploits the correlations in channel noise
n. Given that CNN has excellent denoising performance with low complexity, it is natural to ask if such

advantage can translate to the channel decoding task in this paper.

C. Belief Propagation Decoding

In order to make this paper self-contained, we briefly introduce the standard belief propagation (BP)
decoding process. BP is an iterative process in which messages are passed between the variable nodes
and check nodes in a Tanner graph. We use v to denote a variable node and c for a check node. L,,_,. and
L., are messages passed from v to ¢ and c to v, respectively. First, L,_,. is initialized with the LLR
value calculated from the received symbol, as shown in (3). Then the messages are updated iteratively
as follows

Lv—>c = Z Lc’—m;

ceN(v)\c
. )
Loy = 2tanh ™! H tanh % ,
v eN(c)\v
where N (v)\c¢ (N (c)\v) denotes the set of neighboring check (variable) nodes of the variable node v
(the check node c), except ¢ (v). After several iterations, the LLR of a variable node v, denoted as L,,

is calculated as

L, = Z Loy (10)
c'eN(v)

Finally, the bit value corresponding to the variable node v is determined by

0, if L, >0,
b= (1T)

1, if L, <0.

The standard BP decoding is well known to be effective in AWGN channels [4] but will have difficulty

to handle correlation in the channel noise. To see this point, we recall that the BP decoding algorithm



10

k, feature maps k, feature maps Output

Input
| N x 1 vector

N x 1 vector

fix1

faxky

Fig. 2. The adopted CNN structure for noise estimation.

operates on a factor graph with the following probability model for the AWGN channel:

p(xy,x2,...,xN) = <Hpch(33i)> <H fi(M)) , (12)

where z; is the ith bit, p(x1,x2,...,xx) denotes the joint probability of all bits, p.p(z;) is the proba-
bility conditioned on the received channel symbols, f;(-) denotes the ith parity-check indicator function
corresponding to the ith check node, and N; denotes the set of variable nodes connected to the ith check
node. For a decoder facing correlated noise, however, the probability model can only be presented in the

following form:

p(wla‘%?a“'wa) :pch(wlaw27"'7xN) (Hfz(M)) 3 (13)

where the probability conditioned on the received symbols cannot be factored as symbols are correlated.
Therefore, improving the standard BP decoding algorithm to incorporate the joint distribution of noise

samples may have very high complexity, especially when the channel noise has strong correlations.

D. CNN for Noise Estimation

As mentioned before, adopting CNN for noise estimation is enlightened by its successful applications in
computer vision, which demonstrate its strong capability to extract local features. For some specific image
restoration tasks, Dong et al. have shown that CNN has a similar performance as previously known
strategies which represent image patches by a set of pre-trained bases, but with a lower complexity.
Moreover, the network can be trained to find better bases instead of the pre-defined ones, for better

performance. Therefore, CNN has the potential to yield a better image restoration quality.
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In the proposed iterative BP-CNN architecture, the adopted network structure, which is shown in Fig.
2l is similar to those used for low-level tasks in image restoration [23]], but with a conspicuous
difference in that the input of our network is a 1-D vector instead of a 2-D image. As can be seen at the

first layer in Fig. 2l ki feature maps are generated from the input data fi, which can be expressed as

Ci,j = ReLU(th * 0N+ bl,j), (14)

where c; ; is the jth feature map at the first layer, h; ; is the jth convolution kernel, which is essentially a
1-D vector of length f;, by ; is the corresponding bias, and ReLU(-) is the Rectified Linear Unit function
(max(x,0)) in order to introduce nonlinearity [31]]. In neural networks, the convolution operation is
denoted by * in (I4) and is defined as

(hy;=h) (v) = Y A(v+ Av)hy ;(Av), (15)
Av

which is slightly different with the standard definition in signal processing.
At the ith layer (z > 1), the convolution operation is performed over all feature maps of the previous

layer, which can be viewed as a 2-D convolution as shown in Fig. 2l The output can be written as

Cij = ReLU(hi,j * Ci—1 + biJ), (16)

where c; ; is the jth feature map at the ith layer. h; ; is the jth convolution kernel of size f; x k;_;
where k;_; is the number of feature maps of the previous layer. We use L to denote the number of total

layers. At the last layer, the final estimation of the channel noise is

fi=hpxcy | +bg. (17)

To summarize, the structure of a CNN is determined by its number of layers, filter sizes, and feature map
numbers in each layer. These parameters need to be decided before training the network. For simplicity

of exposition, we denote the structure of the network as

{L;f17f27"7fL;k17k27'-'7kL}- (18)

Besides convolution layers, pooling, dropout and fully-connected layers are also important components
in ordinary CNN architectures. However, they are not considered in our design for the following reasons.
First, pooling layers are often used for downsampling in high-level tasks. In our problem, the CNN output

is still a low-level representation which has the same dimension as the CNN input. Pooling layers are
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not needed in this case, because it may discard some useful details [32]. Second, dropout is a widely
used technique to control overfitting. In this work, we already have overfitting controlled by tracking the
loss value in the validation set. Furthermore, we have tested the performance of dropout and found that
it does not provide any gain. With regard to the fully connected layers, they are often used to output
the high-level description after the data dimensions have been reduced to a large extent. In the low-level

tasks, fully-connected layers are of high complexity and also hard to train.

E. Training

1) Loss function: It is well known in deep learning that the performance of a network depends critically
on the choice of loss functions for training [33]. Generally speaking, a loss function is to measure the
difference between the actual CNN output and its expected output, and it should be carefully defined based
on the specific task of the network. In the proposed architecture, CNN is used to estimate the channel noise
and its output will influence the performance of BP decoding in the next iteration. Therefore, a proper
loss function must be selected by fully considering the relationship between CNN and the following BP
decoding.

As introduced in Section [[I[-Al to facilitate the subsequent BP decoding, there are two strategies to
train the network. One is to only depress the residual noise power (baseline BP-CNN), and the other one
is to depress the residual noise power and simultaneously shape its distribution (enhanced BP-CNN).

For baseline BP-CNN, the loss function can be chosen as the typical residual noise power:

HI H
OSSA N

where NV is the length of a coding block. Note that this is the well adopted quadratic cost function in
neural network training.

For enhanced BP-CNN, how to define a proper loss function is an open problem. well-known loss
functions such as quadratic, cross-entropy, or Kullback-Leibler divergence does not accomplish the goal.
In this work, we introduce normality test to the loss function, so that we can measure how likely the

residual noise samples follow a Gaussian distribution. The new loss function is formally defined as
[ g 1 2
L =—4A - (C — . 20
0SS A S°+ 1 (C—3) (20)

The first term in (20) measures the power of the residual noise and the second term, adopted from the

Jarque-Bera test [34]], represents a normality test to determine how much a data set is modeled by a
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Gaussian distribution. A is a scaling factor that balances these two objectives. Specifically, S and C' in

@0) are defined as follows:

S % ﬁ\il (Ti - s
- 3/27
(X, (=72
(21)
C — % i\il (TZ 77)4

where 7; denotes the ith element in the residual noise vector, and 7 is the sample mean. In statistics, .S
and C are called skewness and kurtosis, respectively. Although the Jarque-Bera test is not the optimal
normality test, the cost function is derivable and simple for training. Furthermore, experimental results
show that it can provide a very desirable output.

2) Generating the training data: To train the network, we need both channel noise data n and estimated
noise data n from the BP decoding results. For the simulation results in Section [Vl we focus on the
channel models with known (to the receiver) noise correlation functions, and thus we are able to generate
adequate channel noise samples to train the network. For example, given the channel correlation matrix

Y in (), the channel noise samples can be generated by

n= Zl/znw, (22)

where n,, is an AWGN noise vector. The estimated noise nn can be obtained by generating uniform
distributed binary bits x and successively performing channel encoding, BPSK mapping, simulated
channel interference and BP decoding.

Another factor in generating the training data is the channel condition, i.e., the signal to noise ratio
(SNR), which will determine the severity of errors of the BP decoding and hence affect the input to
the network. We use I' to denote a set of channel conditions to generate training data. If the channel
condition is very good, very few errors exist n and the network may not learn the robust features of the
channel noise. On the other hand, if the channel condition is very bad, many errors exist in n and they
will mask the channel noise features, which is also detrimental for the network training. In Section [[V]
we will conduct some experiments to analyze this problem.

We want to emphasize that although CNN training typically requires a large amount of data, has
high complexity, and the resulting network depends on the training data, these factors will not impede
the application of the proposed architecture to practical systems. The network training is largely done

offline, where the required training complexity can be satisfied with powerful computational devices such
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TABLE 1
SUMMARY OF IMPORTANT SYSTEM PARAMETERS.

Notation Meaning

K The number of iterations between
the BP decoder and the CNN
CNN structure:

{L; f1,.., fr; k1, ..., kr} | numbers of layers, filter sizes
and numbers of feature maps
{B} Numbers of BP iterations

\ The scaling factor of the
normality test for enhanced BP-CNN
Channel conditions to generate
training data

r

as GPUs. The amount of training data is also an offline issue, which can be generated and stored in mass
storage. Lastly, although CNN depends on the training data, in practical communication system design
we often focus on certain representative scenarios (‘“use cases”) and we can generate the training data
to reflect these scenarios. The resulting trained CNNs can be stored in the on-device memory for online

use.

FE. Design Summary

The proposed design can be summarized using the relevant parameters, which will result in the tradeoff
between performance and complexity as we will see later in the simulations. First, noting that the proposed
decoding framework is an iterative architecture, one important parameter is the number of total iterations,
denoted as K. Then, the structure of CNN is decided by the number of layers, filter sizes and the number of
feature maps in each layer, denoted as {L; f1, fa, ..., fr; k1, k2, ..., k1, }. For the BP decoder, the parameter
of interest is the number of iterations. Essentially, the iterative BP-CNN decoding architecture in Fig. [I]
can be unfolded to generate an open-loop structure and all networks are trained sequentially, which can be
concisely denoted as BP-CNN1-BP-CNN2-...-CNNz-BP. The proposed iterative architecture is actually
a subset of this general framework. Note that although the open-loop framework is more general and
thus may result in better performance, it will consume a much larger amount of resource to implement.
The closed-loop architecture in Fig. [l only requires training and storing one CNN, while the open-loop
framework has x CNNs. The training of multiple serially-concatenated CNNs may be highly complex,
as a later CNN may depend on the training of an early one. Storage of x CNNs on the device will also

increase the cost.



15

TABLE II
BAsIC CNN SETTING FOR EXPERIMENTS.

CNN structure {4;9,3,3,15;64,32,16,1}
Mini-batch size 1400
Size of the training data 2000000
Size of the validation data 100000

SNRs for generating
the training data (I")
Initialization method Xavier initialization
Optimization method Adam optimization

{0,0.5,1,1.5,2,2.5,3} dB

To train a network with enhanced BP-CNN, we need to select a proper A to balance the significance of
normality test in the loss function and the channel conditions to generate training data. Important system
parameters that need to be carefully chosen are summarized in Table [[l In Section [Vl we will carry
out extensive experiments to analyze the influence of these system parameters on the performance and

provide some guidance on their selection.

IV. EXPERIMENTS
A. Overview

Throughout all experiments, we use a LDPC code of rate 3/4. The code block length is 576 and the
parity check matrix is from [33]]. The experimental platform is implemented in TensorFlow [36]]. The basic
CNN structure is {4;9,3,3,15;64,32,16,1}. The network is initialized using the Xavier initialization
method, which has been demonstrated to perform better than random initialization [37]]. We use the Adam
optimization method for searching the optimal network parameters [38]. During the training process, we
check the loss value over the validation set every 500 iterations. The training data is generated under

multiple channel SNRs: {0,0.5,1,1.5,2,2.5,3} dB. The channel SNR is defined as

SNR = 101log (%) , (23)
(o2

where P is the average transmit power and o2 is the average power of the complex noise samples in the
I-Q plane. Each mini-batch contains 1400 blocks of data and the data of each SNR occupies the same
proportion. Training continues until the loss does not drop for a consecutive period of time (eight checks
in our experiment, which equals to 4000 iterations). The basic CNN setting is summarized in Table [l

In all experiments, the setting is the same as Table [ unless otherwise specified. The system per-
formance is measured by the bit error rate (BER). In order to test BERs with high accuracy and low

complexity, a total of 10® information bits are tested for high SNRs and 107 bits for low SNRs.
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In the remainder of this section, we will analyze and verify the proposed iterative BP-CNN decoding

architecture from different perspectives.

B. Performance Evaluation

1) BP-CNN reduces decoding BER: We first compare the performances of the proposed method and
the standard BP decoder. For the BP decoder, total 50 iterations are executed (denoted as “BP(50)” in
the figure). For the proposed method, we use its simplest form for testing, i.e. there is only one iteration
between the BP decoder and the CNN. In this case, the receiver structure can be simply denoted as
BP-CNN-BP. We present the comparison results for two correlation parameters: n = 0.8 represents a
relatively strong correlation model and 7 = 0.5 represents a moderate one. In addition, the test results
under an AWGN channel without any correlation (1 = 0) are presented to demonstrate that the proposed
method can also work with uncorrelated noises, and thus has a wide range of application. Both baseline
and enhanced BP-CNNs are tested. For enhanced BP-CNN, we set A to 0.1, 10 and 10 for n = 0.8, 0.5
and 0, respectively.

In order to isolate and identify the contribution of CNN, we have kept the total number of BP iterations
the same in two systems. In the BP-CNN method, we execute 25 BP iterations in each BP decoding
process (denoted as “BP(25)-CNN-BP(25)” in the figure), resulting in the same 50 BP iterations as the
standard BP decoder.

The experiment results are reported in Fig. Bl We can see that both baseline and enhanced BP-CNN
achieve significant performance gains with correlated noise. In the strong correlation case when 7 = 0.8,
BP-CNN can improve the decoding performance by approximately 3.5dB at BER=10"*. It should be
emphasized that this performance gain cannot be compensated by more iterations in the standard BP
decoder, as BP(50) already achieves a saturating performance. In the moderate correlation case with
n = 0.5, the performance gain becomes smaller, because the correlation is weaker and the benefit of
adopting a CNN is less. For the special case where 7 = 0 and the noise becomes i.i.d., which is the
nominal AWGN channel, the proposed method performs similarly with the standard BP decoding. We
thus conclude that the iterative BP-CNN decoding method can support a wide range of correlation levels,
and the performance gains vary adaptively with the noise correlation. To see this more clearly, we plot
the SNR gains at BER=10"* of the enhanced BP-CNN decoder over the standard BP decoding algorithm
under different values of 7 in Fig. @l We see that the performance gain grows monotonically with the
correlation level 1, which is as expected because higher 1 presents a better opportunity for CNN to

extract the noise “feature”.
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Fig. 3. Performance comparison of BP-CNN with the standard BP decoding. Only one iteration between CNN and BP decoder
is executed for the proposed design. The numbers in the brackets denote the BP iterations.
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Fig. 4. Performance gains of enhanced BP-CNN under different n’s. A = 10 for n = 0,0.3,0.5 and A = 0.1 for n = 0.7,0.8.

We can also compare the baseline and enhanced BP-CNN decoders from Fig. [3l We see that although
both methods outperform the standard BP, enhanced BP-CNN further outperforms the baseline strategy.
As explained in Section [II-E] the enhanced strategy balanced both accurate noise estimation and shaping
the output empirical distribution, and thus is better suited for concatenation with the BP decoder.

2) BP-CNN achieves performance gain with lower complexity: Besides improving the decoding per-
formance under the same number of BP iterations, another desirable feature of the iterative BP-CNN
decoder is that it can outperform the standard BP decoding with lower overall complexity. To see this,
we present another set of results in Fig. Bl The implementation details are the same as Fig. [l except
that in the BP-CNN decoder, the number of each BP decreases from 25 to 5. For comparison, we also
plot the standard BP decoding performance with 12 and 50 iterations, respectively. Ideally, we would
like to set the BP parameters so that both methods have exactly the same overall complexity, and then
compare their BER performances. However, an accurate comparison of the complexity associated with a
BP network and a CNN is quite difficult. We get around this problem by comparing their runtime under
the same computation environment] and adjusting the parameters accordingly. In our test environment,
we observe that the runtime of CNN with the structure {4;9, 3,3, 15;64, 32,16, 1} is roughly equivalent
to two BP iterations. This means that the chosen BP(5)-CNN-BP(5) structure in Fig. [3 has approximately
the same complexity as the standard BP decoder with 12 iterations. We also plot BP(50) and observe that
further increasing the complexity of standard BP provides some marginal gain. Hence, BP(12) represents

a good-but-not-saturated scenario where the comparison to BP(5)-CNN-BP(5) is fair and meaningful.

'Both are implemented in TensorFlow and simulations are run with the same computation resources.
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Fig. 5. BP-CNN achieves performance gains with lower complexity.

We see from Fig. [3] that the baseline BP(5)-CNN-BP(5) decoder has comparable performance of
standard BP(50), but with a much lower complexity. When comparing the decoding performance with
approximately the same complexity, both baseline and enhanced BP(5)-CNN-BP(5) decoders outperform
the standard BP(12) decoder. Again, this gain is significant (around 3dB) in the strong correlation case
of Fig. but still noticeable (0.1 to 0.5dB) in the moderate correlation case of Fig.

As the enhanced BP-CNN decoder outperforms the baseline one, we focus on the enhanced BP-CNN

in the remainder of the experiments.



20

BER
=
o

S

—#— Normality test A=0.01
1078 | —s— Normality test A=0.1
Normality test A=1
1077 F| —*— Normality test A=10
—*— Normality test A\=20

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
SNR(dB)

o
I 4
m
10° - 3
—#— Normality test A=0.01 ¥
—#*— Normality test A=0.1
106 F Normality test A=1
—#— Normality test A\=10
—*— Normality test \=20
10-7 L L L L L
0 0.5 1 1.5 2 2.5 3
SNR(dB)

(b) n = 0.5, moderate correlation.

Fig. 6. Showing the necessity of the normality test. The receiver structure is BP(5)-CNN-BP(5).

3) Choice of hyperparameter X affects the performance of enhanced BP-CNN: In @20), we have defined
a new loss function for enhanced BP-CNN, which involves measures of both power and normality of
the residual noise. The coefficient A is an important hyperparameter to balance the trade-off between the
residual noise power and its distribution. To demonstrate the importance of A\, we report the simulation
results in Fig. [l using different values of \ in the enhanced BP-CNN decoder. Note that the simulation
uses the basic setting except the value of A. To speed up the simulations, we use a low-complexity
architecture of BP(5)-CNN-BP(5) in this set of experiments. We can see from Fig. [6] that very small

values of A cannot guarantee a Gaussian distribution for the residual noise, while very large A cannot
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Fig. 7. Compare the residual noise distribution with and without normality test. The residual noise is collected under n = 0.8,
SNR = 0dB and the system structure is BP(5)-CNN-BP(5). When training the network with the normality test, A is set to be
0.1.

depress the residual noise power. Hence a proper choice of hyperparameter A will affect the performance
of BP-CNN. However, just like in many other deep learning tasks, optimizing A\ analytically is very
difficult and we select this parameter based on simulations.

Now let us take a deeper look at (20) and numerically validate whether the normality test can indeed
shape the output distribution to approximate Gaussian. We report the empirical cumulative distribution
function (CDF) of the residual noise after CNN in Fig.[7] both with (i.e., enhanced BP-CNN) and without
(i.e., baseline BP-CNN) normality test. The residual noise data is collected under n = 0.8, SNR = 0dB
and BP(5)-CNN-BP(5). When training the network with the normality test, A is set as 0.1. It is evident
from Fig. [7 that involving the normality test in the loss function makes the residual noise distribution
more like Gaussian.

From Fig. [@ we also find that for n = 0.8, A = 0.1 performs the best among all tested \ values,
while A = 10 performs the best for n = 0.5. We observe that a smaller A is preferred when n = 0.8
compared to n = 0.5, which can be explained as follows. With strong correlation in the channel noise,
more information can be utilized to remove the errors of the network input and thus a smaller A is

preferred to make the network focus on reducing the residual noise power. On the other hand, when
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Fig. 8. Multiple iterations between CNN and BP can further improve decoding performance.

correlation becomes weak and input elements are more independent, less information can be utilized to
remove errors. In this case, the network needs to pay more attention to the distribution of the residual
noise and a larger A is thus favored.

4) Multiple iterations between CNN and BP further improve the performance: Up to this point, we
have only presented simulation results of the proposed iterative BP-CNN decoder with one iteration.
Naturally, we can perform multiple iterations between CNN and BP with the hope of further reducing
the BER, as shown in Fig. [l Notation-wise, we use K {BP(n)-CNN}-BP(n) to denote the iterative BP-

CNN decoder structure with K iterations between BP and CNN, and n iterations inside BP. In total,
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K 41 BP(n) and K CNN are run. Enhanced BP-CNN is adopted for this set of experiments. We report
the simulation results with different K’s in Fig.[8l It is clear that multiple iterations further improve the
decoding performance. When 1 = 0.8, compared to the receiver architecture with only one iteration, two
BP-CNN iterations improves the decoding performance by 0.7dB at BER=10"%. In addition, we notice
that after four BP-CNN iterations, the performance improvement becomes insignificant. This is because
the CNN has reached its maximum capacity and cannot further depress the residual noise power.

5) BP-CNN is robust under different correlation models: So far all the simulation results are obtained
using the noise correlation model defined in (I). As mentioned in Section [[IIzAl the proposed iterative
BP-CNN decoder does not rely on this specific correlation model. This should be intuitively reasonable
as neither BP nor CNN uses the specific format of (I). We now verify this statement by simulating
the iterative BP-CNN decoder with another correlation model whose characteristics are described by the

following power spectrum density:

P(f) o 1/[f]*. (24)

When o = 1, the noise is commonly referred to as pink noise.
We simulate the enhanced BP-CNN with pink noise and the results are reported in Fig. 9l ) is set to

0.1 for training the network. Clearly, the proposed method still achieves significant performance gains,
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proving that the proposed method can support different correlation models.

C. BP vs. CNN: Impact on the Decoding Performance

In the proposed framework, both the BP decoder and the CNN contribute to the improved decoding
performance, but in very different ways. The BP decoder estimates the transmitted bits based on the
encoding structure, while the CNN depresses the noise by utilizing its correlation. An important question
can be asked: for a given amount of computation resources, how should the designer allocate the system
complexity between BP and CNN, to obtain the best decoding performance?

A complete answer to this question remains unknown, and we resort to numerical simulations to
provide some insight. In the simulations, we alter the complexity assignment between BP and CNN,
and track the performance changes. We focus on the simplest form with only one iteration between BP
and CNN, so that the receiver structure is concisely denoted as BP-CNN-BP. We start our investigation
from a structure with relatively low complexity, and add complexity to the BP decoder and the CNN
respectively to observe how the performance improves.

The results for » = 0.8 and n = 0.5 are given in Fig. In each case, we first test a rela-
tively low-complexity structure, denoted as BP(5)-CNN(LP)-BP(5), with five BP iterations executed
in each BP decoding process. “CNN(LP)” denotes a low-complexity CNN, with its structure defined
as {3;5,1,9;16,8,1}. Next, we add another five BP iterations to each BP decoding process to test a
relatively high-complexity (with respect to BP) structure BP(10)-CNN(LP)-BP(10). Finally, we adopt a
CNN structure {4;9, 3, 3,15;64,32,16,1} (denoted as “CNN(HP)”), and test a relatively high-complexity
(with respect to CNN) structure BP(5)-CNN(HP)-BP(5). First, it is clear that increasing the complexity of
the BP decoder can improve the system performance, when the underline CNN structure is unchanged.
Second, as mentioned before, the complexity of the CNN(HP) structure is roughly equivalent to two
BP iterations. Thus the receiver structure of BP(5)-CNN(HP)-BP(5) has lower complexity than BP(10)-
CNN(LP)-BP(10). However, as observed from Fig. BP(5)-CNN(HP)-BP(5) yields a better performance
than BP(10)-CNN(LP)-BP(10). This demonstrates the necessity of introducing a CNN for decoding when
the channel noise has strong or moderate correlation. The BP algorithm does not have the capability to
extract the features existed in the channel noise for decoding. Therefore, when strong correlation exists,
it is more effective to increase the CNN complexity to learn the channel characteristics than to increase
the complexity of the BP decoder.

However, the above statement is not valid when the correlation is weak enough so that very few
characteristics of the channel noise can be extracted by the CNN. To verify this, we report a set of tests

under the AWGN channel in Fig. [[T} Intuitively, in the AWGN case where channel has no “feature” for
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Fig. 10. The influences of different modules to the system performance. The legend CNN(LP) denotes a low-complexity network
structure {3;5,1,9;16,8,1} and CNN(HP) denotes a high-complexity network structure {4;9, 3,3, 15; 64, 32, 16, 1}.

the CNN to extract, assigning more complexity to the BP decoder is more effective. This is verified in

Fig. 1l

D. The Impact of Training Data Generated under Different Channel Conditions

In the basic setting of our experiments, the training data is generated under multiple channel SNRs,
ie. ' = {0,0.5,1,1.5,2,2.5,3}dB. In a mini-batch, each channel SNR occupies the same proportion
of the training data. In practice, the operational range of SNR may not be known a priori, and hence

training SNR and operation SNR may have a mismatch. Thus, in this section, we focus on training the
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Fig. 11. Experiments under AWGN channels (i.e., n = 0) to show how the BP decoder and the CNN affect the system
performance. The legend CNN(LP) denotes a low-complexity network structure {3;5,1,9;16,8,1} and CNN(HP) denotes a
high-complexity network structure {4;9, 3, 3, 15; 64, 32, 16, 1}.

network with data generated under a single SNR and investigate how robust the BP-CNN decoder is
under a range of SNR’s.

It is worth noting that in the previous results, we have already reported some results with mismatched
SNRs. For example, when 7 = 0.8, the channel SNR range for evaluating the performance, i.e. —3 ~ 1dB,
is already different from the SNR range for training data. This is because the strong correlation exists in
the noise and CNN can achieve significant performance gains, and we have tested the BER performance
under channel SNRs that are lower than the training SNRs. In this section, we report a more complete
set of results.

In order to analyze how the data generation influences the system performance, we change the channel
SNR range in the following experiments. Specifically, when 77 = 0.8 we conduct the experiments under
three different settings: I' = {—3, —2.5, -2, —1.5,—1,—0.5,0}dB, I = {—3}dB and I' = {0}dB. When
n = 0.5, we consider I' = {0,0.5,1,1.5,2,2.5,3}dB, T' = {0}dB and I" = {3}dB. The decoder
architecture is BP(5)-CNN-BP(5) and the CNN structure is {4;9, 3,3, 15; 64, 32,16, 1}.

The results are reported in Fig. Generally speaking, generating training data under a wide range of

channel SNRs is a better choice. As shown in Fig. training the network for OdB or 3dB yields a
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Fig. 12. Analyze the system robustness to the training data generated under different channel conditions.

worse performance than {0,0.5,1,1.5,2,2.5, 3}dB. This is mainly ascribed to deep learning technologies
which depend on training data to select network parameters. When I' = {3}dB, the SNR is good and
there are few errors in the input to CNN, i.e. n. With these “skewed” data, it is difficult for the network
to learn how to remove errors. On the other hand, it is also not a good choice to generate training data
under a bad channel condition, such as I' = {0}dB in Fig. In this case, the training data contains
too many errors, which is also not beneficial for the network to learn robust features of the channel noise.

Similar results are also obtained for 7 = 0.8 as shown in Fig. It is worth noting that generating

data under OdB provides a similar performance as generating data under -3 to OdB. It indicates that
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generating data under OdB is also a good choice when 1 = 0.8. Ultimately, how to select the optimal
channel conditions for data generation is a difficult task. Therefore, we suggest that the training data be

generated under multiple channel conditions to enhance the data diversity.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have designed a novel iterative BP-CNN decoding structure to handle correlated
channel noise. The proposed framework serially concatenates a CNN with a BP decoder, and iterates
between them. The BP decoder is to estimate the coded bits and indirectly estimate the channel noise. The
CNN is to remove the channel noise estimation errors of the BP decoder by learning the noise correlation.
To implement the framework, we have proposed to adopt a fully convolutional network structure and
provided two strategies to train the network. We have carried out extensive simulations to show the
effectiveness of the proposed iterative BP-CNN decoder.

There are some important research directions for the iterative BP-CNN framework, which is worth
investigating in the future. First, the loss function is not completely equivalent to the system performance
measurement, and finding a better loss function is one of the important future directions. Furthermore,
as mentioned in Section [II-F the iterative system proposed in this paper can be unfolded into an open-
loop system, and for maximum flexibility, we can design different number of BP iterations in each BP
decoding process as well as different CNN structures. This system can be denoted as BP(n;)-CNNI1-
BP(n2)-CNN2-...-BP(n,)-CNNz-BP(n,1), and provides the maximum degrees of freedom as we can
allocate the complexity in all components to maximize the performance. We plan to study this general

architecture in a future work.
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