
ar
X

iv
:1

71
0.

05
13

3v
2 

 [m
at

h.
O

C
]  

28
 N

ov
 2

01
7

1

Tracking Moving Agents via Inexact Online

Gradient Descent Algorithm

Amrit Singh Bedi, Student Member, IEEE , Paban Sarma, and Ketan Rajawat,

Member, IEEE

Abstract

Multi-agent systems are being increasingly deployed in challenging environments for performing

complex tasks such as multi-target tracking, search-and-rescue, and intrusion detection. Notwithstanding

the computational limitations of individual robots, such systems rely on collaboration to sense and

react to the environment. This paper formulates the generic target tracking problem as a time-varying

optimization problem and puts forth an inexact online gradient descent method for solving it sequentially.

The performance of the proposed algorithm is studied by characterizing its dynamic regret, a notion

common to the online learning literature. Building upon the existing results, we provide improved

regret rates that not only allow non-strongly convex costs but also explicating the role of the cumulative

gradient error. Two distinct classes of problems are considered: one in which the objective function

adheres to a quadratic growth condition, and another where the objective function is convex but the

variable belongs to a compact domain. For both cases, results are developed while allowing the error

to be either adversarial or arising from a white noise process. Further, the generality of the proposed

framework is demonstrated by developing online variants of existing stochastic gradient algorithms

and interpreting them as special cases of the proposed inexact gradient method. The efficacy of the

proposed inexact gradient framework is established on a multi-agent multi-target tracking problem,

while its flexibility is exemplified by generating online movie recommendations for Movielens 10M

dataset.
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I. INTRODUCTION

Multi-agent systems involve teams of robots capable of accomplishing complex tasks in a

coordinated manner [1]–[3]. Fueled by advances in sensing and communications, multi-agent

systems are increasingly being used for challenging tasks such as multi-target tracking [4], [5],

planetary exploration and mapping [6], search-and-rescue, and intrusion detection [7]. Achieving

such team-based goals requires the robotic platforms to not only sense and understand the

environment, but also cooperate among themselves through judicious data exchange and fusion.

Consequently, resource allocation and optimization becomes an important aspect of the overall

motion planning problem. Indeed, the recent trend is to formulate target tracking as a constrained

convex optimization problem that must be solved at every time step [8]–[12] .

Such time-varying optimization problems have their origins in the control theory literature,

where they have been applied to path planning [13] and dynamic parameter tracking problems

[14], [15]. Given the limited computational and communications capabilities of the mobile

robots, solving the full per-time instant optimization problem before taking the action may

not necessarily be viable. Instead, recent works have advocated the use of simpler one-iteration

algorithms such as the online interior point, prediction-correction, online ADMM, and gradient

descent methods, that have been shown to approach the optimal asymptotically. Leveraging the

tools from classical optimization theory, these dynamic optimization algorithms not only admit

low-complexity distributed implementations, but are also amenable to analytical performance

guarantees.

Online machine learning represents a parallel but closely related development that has been

widely applied to solve problems in Big Data [16]. First proposed by [8], the online convex

optimization framework models the agents as learners and targets as adversaries. Within this

sequential learning paradigm, the learner performs an action and the adversary reveals a corre-

sponding loss function at each time step. The eventual goal of the learner is to minimize the

cumulative loss. Recent year have witnessed the development of theoretical guarantees in form

of dynamic regret, where the performance of the learner is measured against that of an adaptive

and time-varying adversary [11], [17], [18].

This paper studies the multi-agent multi-target tracking problem from the lens of online convex

optimization. Prompted by the noisy and possibly incorrect target position information available

to the agents, we put forth the inexact online gradient descent (IOGD) algorithm. The key
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theoretical contribution is the development of improved dynamic regret bounds for non-strongly

convex objective functions. Improving the existing results for general convex problems, it is

shown that the dynamic regret is bounded by the path length of the target. Different from the

existing literature, the gradient errors are not required to be unbiased, independent, or identically

distributed, and can even be adversarial. The cumulative impact of such errors on the dynamic

regret is explicitly studied and characterized. Regret bounds are developed for two classes of

problems, namely the ones where the objective function follows the quadratic growth property

(P1), and the ones where the function is convex but with a compact domain (P2). Interestingly,

it is shown that for P1 with linearly growing path lengths and cumulative errors, target tracking

is still possible, albeit with non-vanishing steady state error. Additionally, we provide further

motivation for the IOGD algorithm, by developing online variants of the incremental algorithm

from [19] and the proximal gradient method [20], that may still be analyzed within the current

framework. Finally, the flexibility of the IOGD algorithm is demonstrated by applying it to the

multi-agent multi-target tracking problem from [21] and the online matrix completion problem

[22].

The rest of the paper is organized as follows. We begin with a brief review of literature on

the areas of target tracking and online optimization. Sec.II formulates the problem at hand and

provides a succinct comparison of the existing results and those developed in this paper. The

required regularity conditions and assumptions, as well as the proposed IOGD algorithm are

stated in Sec.II-B and Sec.III. Regret bounds for the two classes of problems are developed in

Sec.IV and Sec.V. In the general case when the path lengths or the cumulative errors are not

sublinear, bounds on the steady state tracking error are developed in Sec.VI. The IOGD algorithm

is also shown to subsume the online variants of two of the existing gradient algorithms in Sec.VII.

Finally, numerical tests on real and synthetic data are provided in Sec.VIII.

A. Related work

Inexact gradient methods have been widely used to solve a variety of optimization problems,

especially in the context of machine learning [19], [23]–[25]. Since calculating an approximate

gradient is often cheap, recent years have witnessed the development of several variants, such

as the incremental aggregated gradient method [26], stochastic average gradient method [27],

[28], stochastic variance reduced gradient method [29], SAGA [30]. For static optimization

problems, the inexact gradient methods are known to converge at a linear rate even for non-
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strongly convex objectives [31], [32]. It is remarked that the present work considers an online

setting characterized by streaming or sequentially arriving data. Therefore, the performance of

the proposed algorithm is measured against that of a slowly moving clairvoyant. In contrast,

the inexact gradient methods (IGM) developed in [19], [23], [24], [31]are essentially offline

algorithms that are meant to be applied when full data is available. The claims in [19], [23],

[24], [31] therefore concern the asymptotic behavior of the iterates {xk} and are quite different

from those in the present paper. For instance, the dynamic regret bounds obtained here do not

directly follow from the convergence results in these works.

Time-varying optimization problems have classically been studied in the context of optimal

control [33], target tracking [34], [35], non-stationary optimization [36], and parametric pro-

gramming [37]. First order gradient based methods have been advocated as efficient solvers for

such problems [8]–[12], [17], [38]–[41], and will be discussed in detail in Sec. II-C. When the

dynamics of the target are partially known and the cost function is sufficiently smooth, it may

be possible to use second order methods, such as those proposed in [42]–[46]. On the other

hand, tracking is possible even for non-differentiable but strongly convex function using the

subgradient and alternating directions method of multiplier methods [47]. It is remarked that an

underlying assumption in all these papers is that of strong convexity of the cost function. Such

an assumption is quite strong and is not satisfied by several problems, such as least squares and

logistic regression [31].

Dynamic regret for analyzing tracking problems was first introduced in [8]. As compared to

the weaker notion of static regret, the idea here is to compare the performance of the tracker

against that of an adaptive and time-varying adversary [11], [12], [17]. Dynamic regret bounds

for the gradient descent and related first order methods have been reported in [8], [9], [11], [12],

[17], [39], [41]. An even stronger notion of offline regret has recently been introduced in [48].

The present work builds upon the dynamic regret and steady state tracking results reported in

[10], [11], [47]. As compared to existing results, the bounds provided here are not only stronger

but also require minimal assumptions on the cost function.

Notations: Scalars are denoted by letters in regular font, while vectors (matrices) are denoted

by bold face (capital) letters. The (i, j)-th element of a matrix E is denoted by [E]ij . The all-

one vector of size n × 1 is represented by 1n, while In denotes identity matrix of size n × n.

The notation ‖·‖ represents the Euclidean norm. The Kronecker product operator is denoted by

⊗. The expectation operator is symbolized by E. Finally, σmax(E) and σmin(E) represent the
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TABLE I: Summary of related works on time-varying optimization (cf. Sec.III)

References Loss function Inexact Function Regret rate

[8] Convex No Deterministic O(
√
K(1 +WK))

[9] Convex No Deterministic O(
√
K(1 +WK))

[17] Convex No Stochastic O(K2/3(1 + VK)1/3)

[17] Strongly convex No Stochastic O(
√

K(1 + VK))

[39] Convex No Deterministic O(
√
DK + 1 +min{

√

(DK + 1)WK , [(DK + 1)VKK]1/3})
[11] Strongly convex No Deterministic O(1 +WK)

[41] Convex No Stochastic O(
√

KW ′

K)

[12] Convex+QG No Deterministic O(1 +W ′′

K)

This work Convex + QG (P1) Yes Deterministic/Stochastic (A1) O(1 +EK +WK)

This work Convex (P2) Yes Deterministic/Stochastic (A1) O(1 +
√
KEK +WK)

This work Convex (P2) Yes Stochastic (A2) O(1 +EK +WK)

maximum and minimum non-zero singular values of matrix E, respectively.

II. PROBLEM FORMULATION

This section details the target tracking problem and formulates it within the online learning

framework. An example is also provided to motivate the setting.

A. System Model

We consider the general problem of tracking a time-varying parameter that evolves according

to an unknown dynamic model. The general setting considered here subsumes the target tracking

application of interest, where the parameter may represent the location(s) of the target(s) being

pursued by one or more agents. As motivated in [11], [18], [47], the parameter at time k can

be written as the solution of the following (discrete) time-varying convex optimization problem

x⋆
k ∈ argmin

x∈X
fk(x) k = 1, 2, . . . (1)

where fk is a smooth convex function and X ⊂ R
n is a convex set. The set notation in (1)

emphasizes the fact that in general, the minimizer of fk may not necessarily be unique. The

parameter estimate at time k is denoted by xk. The agents do not know the full functional form

of fk but are only revealed an inexact version of the gradient ∇̃f(xk) := ∇fk(xk)+ek for some

ek ∈ R
n. The agents make use of these inexact gradients to improve their estimates of x⋆

k in an

online manner.
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This paper considers the problem from an online convex optimization perspective, viewing

the agents as learners and targets as adversaries. Specifically, at time k, the online learner selects

an action xk ∈ X and incurs a cost fk(xk), where fk : Rn → R are smooth convex functions

selected by the adversary. In response to the agent’s action, the adversary also reveals an inexact

gradient ∇̃fk(xk) to the learner. The goal of the learner is to minimize its cumulative loss
∑K

k=1 fk(xk) over K time slots. Of particular interest is to characterize the so-called dynamic

regret of the learner, that measures the cumulative mismatch between the learner’s action and

the optimal action [9], [11], [17]:

RegK :=

K
∑

k=1

(fk(xk)− fk(x
⋆
k)) (2)

where x⋆
k is as defined in (1). In order for the tracking to be successful, the dynamic regret must

be upper bounded by a sublinear function of K.

B. Parameter variations and error bounds

It is well known that a sublinear dynamic regret may not always be achievable, e.g., if the

parameter variations or the gradient errors are too large [12], [17]. The goal of the current

paper will therefore be to bound the dynamic regret using functions of the cumulative parameter

variations and errors. For the target tracking setting at hand, it makes sense to characterize the

parameter variations using the path length, defined as

WK :=

K
∑

k=2

∥

∥x⋆
k − x⋆

k−1

∥

∥ (3)

for some sequence of parameter values {x⋆
k}k≥1. More generally there exist a class of related

complexity measures that can be used to characterize the parameter variations [11]. Examples

include the functional variation VK :=
K
∑

k=2

supx∈X |fk(x)− fk−1(x)| and the gradient variation

DK :=
K
∑

k=2

supx∈X ‖∇fk(x)−∇fk−1(x)‖2.
The gradient errors ek can be modeled either as being deterministic with bounded norms or

stochastic with bounded variance. Deterministic errors may be of interest in adversarial settings

while stochastic errors are useful for modeling communication and computational noise. In order

to unify the subsequent development, a generic stochastic error model is considered that subsumes

that deterministic case. Let Fk denote the sigma field generated by the random sequence {eτ}k−1
τ=1.

The following assumption bounds the second moment of the error.
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A1. Error bound: The stochastic sequence {ek}Kk=1 adheres to the following bound on the second

moment:

E
[

‖ek‖2 | Fk

]

≤ ε2k + ν2 ‖∇fk(xk)‖2 (4)

with εk ≤ ε <∞ for all k ≥ 1, and ν ≥ 0 and ε ≥ 0 are constants.

When the errors are deterministic, (4) is equivalent to a worst-case bound on the error norm.

In the general case, the goal will be to establish the sublinearity of the expected dynamic regret

E [RegK ]. The specific form of the bounds in (A1) is inspired from [49], [50] and allows for

errors that are proportional to the gradient norm in addition to an additive term. It is remarked

that from Jensen’s inequality, (4) implies that E [‖ek‖ | Fk] ≤ εk + ν ‖∇fk(xk)‖. The required

dynamic regret bounds will be developed in terms of the path length WK and the cumulative

error bound EK :=
∑K

k=1 εk.

A particular case of interest is when the gradient errors constitute a white noise process as

specified in the following assumption.

A2. White noise: The zero-mean error sequence {ek}Kk=1 is independent identically distributed,

i.e.,

E [ek | Fk] = 0. (5)

Assumption (A2) may be applicable, for instance, when the gradient errors arise from com-

munication errors. The requirement in (5) is more restrictive than that in (4), but also results in

improved regret bounds.

The dynamic regret bounds will only be meaningful when the quantities WK and EK are

sublinear in K. In the context of target tracking, a sublinear WK is obtained, for instance, if

the speed of the target goes to zero as K increases. Such situations are commonly encountered

for targets with finite total operational energy. Likewise, EK may be sublinear in scenarios

where the gradient error goes to zero with K. Again, such situations may arise if the noise

can be filtered out with increasingly higher accuracy. Finally, for the case when the WK and

EK are linear functions of K, it makes sense to instead characterize the tracking performance

‖xk − x⋆
k‖ of the proposed algorithm. Different from regret, the goal here is to simply ensure

that the asymptotic tracking performance is not too large; see Sec. VI.
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C. Related work and problem statement

Before detailing the problem statement, the existing literature on dynamic regret bounds is

briefly reviewed. In [8], an online gradient descent algorithm is considered and shown to achieve

O(
√
K(1+WK)) regret bound under diminishing step size. Similar regret bounds are shown to

exist for the online mirror descent algorithm in [9]. The online gradient descent with stochastic

error is considered in [17] and regret bounds for both convex and strongly convex case are

provided as O(K2/3(1 + VK)
1/3) and O(

√

K(1 + VK)), respectively. It is remarked that these

results cannot be practically applied to tracking problems since they assume a priori knowledge

of the functional variation VK . A regret bound in terms of all the three measures WK , VK and

DK is obtained in [39] for optimistic mirror descent algorithm. In succession to these works,

authors in [11], [12] achieved the O(1+WK) dynamic regret bound for online gradient descent

algorithm under constant step size and strongly convex functions. The case of non-strongly

convex functions has been recently considered in [12] and a regret bound of O(1 + W ′′
K) is

obtained for deterministic time-varying problems. The present results generalize those in [12] to

stochastic problems with adversarial gradient errors, unbounded domain X , and a stronger path

length definition (3). Finally, the case of noisy gradient is also considered in [41] for general

convex functions and dynamic regret bounds are obtained while assuming the knowledge of K.

The results in the present work improve upon those in [41], in addition to allowing gradient

errors that are not necessarily independent or identically distributed (cf. (A1). Moreover, the

impact of gradient errors on the regret is explicitly specified, allowing us to develop IOGD

variants that cannot be analyzed as special cases of the noisy OGD proposed in [41]. Table I

summarizes the regret bounds obtained in the existing literature. Next, we briefly remark on the

path length definitions used in [12], [41].

Remark 1. The path length definition used in (3) applies to an arbitrary sequence of true

parameter values {x⋆
k} and does not depend on X ⋆

k . Consequently, the path length definition in

(3) is stronger than those used in [12], [41]. In particular, the definitions in [12], [41] take the

following form

W ′
K := max

{uk∈X
⋆
k }

K
k=2

K
∑

k=2

‖uk − uk−1‖ (6)

W ′′
K :=

K
∑

k=2

max
u∈X

‖Pk(u)− Pk−1(u)‖ , (7)
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respectively, where Pk(u) := argminy∈X ⋆
k
‖y − u‖. Observe that in both cases, the path length

could become unbounded if the set X ⋆
k is not compact, as is the case in P1. For example, the

path lengths W ′
K and W ′′

K turn out to be infinite for the least squares example discussed in Sec.

VIII-A. The use of an arbitrary trajectory in (3) allows us handle such unbounded sets while

also ensuring that WK ≤W ′
K and WK ≤W ′′

K for problems where X ⋆
k is compact.

The present work considers the online inexact gradient descent method and develops various

regret and tracking bounds for the case when the cost function fk is not strongly convex. The

bounds developed here are efficient, and match the existing bounds in the cases when the gradient

is exact. Keeping the tracking application in mind, the algorithms developed here will not require

any prior knowledge of K. To this end, we consider two broad classes of non-strongly convex

functions.

P1. Special structure: The function fk takes the form fk(x) = gk(Ex) where E is an arbitrary

m× n matrix and the function gk is strongly convex with parameter µ > 0.

The functional form required in P1 is significantly more general than the strong convexity

condition for fk. Since gk is strongly convex, there exists a unique u⋆ = argminy∈X gk(y).

Consequently, the set of minimizers of fk is given by X ⋆
k := {x⋆

k | Ex⋆
k = u⋆}. The key property

of fk that will subsequently be utilized is the so-called quadratic growth condition

fk(x)− f ⋆
k ≥ µσmin(E)

2
‖x− Pk(x)‖2 (8)

where f ⋆
k := fk(x

⋆
k) for x⋆

k ∈ X ⋆
k , Pk(x) := argminy∈X ⋆

k
‖y − x‖ and σmin(E) denotes the

smallest non-zero singular value of E. The quadratic growth condition for convex problems is

weaker than the standard assumption of strong convexity [51]. For instance, P1 is applicable to

common machine learning and signal processing problems such as least squares, support vector

machines, and logistic regression, none of which are strongly convex [31].

P2. Bounded domain: For each k ≥ 1, fk is convex with the set of minimizers denoted by X ⋆
k

and the set X is compact with diameter R <∞.

It is remarked that the bounds developed for P2 are directly proportional to the diameter R,

and may therefore be quite loose. Before concluding, a remark on the possible generalization of

P1 is due.

Remark 2. The results developed here can be extended to the generalized version of P1 where

fk(x) = gk(h(x)) satisfies the QG condition, h is a smooth function, and gk is strictly convex.

Alternatively, it is also possible to consider convex QG functions fk that have a unique minimum.
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The extensions can be incorporated via minor modifications in the proofs, but are not pursued

here in order to keep the exposition succinct.

III. PROPOSED ALGORITHM AND ASSUMPTIONS

The online gradient descent algorithm has been widely used to solve online learning problems

owing to its flexibility and simplicity [8], [9], [11], [17], [39]. This work considers the inexact

online gradient descent (IOGD) method that takes the form:

xk+1 = PX [xk − α(∇fk(xk) + ek)] (9)

where PX (·) denotes the projection onto the set X and is defined as PX (u) := argminy∈X ‖y− u‖.

The IOGD method has also been applied to static and online problems [31]. The IOGD method

is also closely related to the incremental and variance reduced variants of the gradient descent

algorithm. The full algorithm is summarized in Algorithm 1.

Algorithm 1 IOGD: Inexact Online Gradient Descent

1: Initialize x1

2: for k = 1, 2, . . . do

3: Perform action xk

4: Observe inexact gradient ∇fk(xk) + ek at xk

5: Compute next action xk+1 = PX [xk − α(∇fk(xk) + ek)]
6: end for

In addition to Assumptions (A1) and (A2) stated in Sec. II, the subsequent analysis will also

require the following regularity conditions.

A3. Lipschitz continuity: The function ∇fk is Lipschitz continuous with parameter L:

‖∇fk(u)−∇fk(v)‖ ≤ L ‖u− v‖ (10)

for all k ≥ 1 and u, v ∈ X .

A4. Vanishing gradient: The optimum x⋆
k lies in the relative interior of the set X , that is,

∇fk(x⋆
k) = 0 for all x⋆

k ∈ X ⋆
k .

A5. Bounded Variation: For a given x⋆
k, there exists some σ > 0 such that

∥

∥x⋆
k+1 − x⋆

k

∥

∥ ≤ σ

for all k ∈ N.

Of these, both (A3) and (A4) are standard and apply to large class of online learning problems.

Likewise, the requirement in (A5) imposes a limit on the maximum velocity of the target and is
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therefore applicable to most target tracking problems. The bounded variation condition is also

satisfied, for instance, if WK is sublinear or linear and the target motion is not too ‘jumpy’.

The subsequent two sections develop the dynamic regret bounds stated in Table I. As stated

earlier, these bounds are meaningful when the variations WK and error bounds EK are sublinear

in K. Development of the tracking error bounds for linear WK and EK is deferred to Sec. VI.

IV. REGRET BOUNDS FOR P1

This section develops the dynamic regret bounds for P1 for the case when WK and EK are

sublinear in K. As discussed earlier, a simple example is that of a target that eventually stops,

either upon exhausting its energy or upon reaching its destination. For such targets, there exists

K0 < ∞ such that x⋆
k+1 = x⋆

k for all k ≥ K0, making WK constant for K ≥ K0. Likewise,

the term εk in the gradient error bound may decrease over time resulting in a sublinear EK .

Interestingly however, the gradient error is allowed to be proportional to the gradient norm, and

the factor ν need not be diminishing with k.

The section proceeds by developing regret bounds for the general case in (A1), while the

special case when the gradient errors constitute a white noise process as in (A2) is treated

towards the end. The mathematical analysis for these two cases is unified using an indicator

variable 1d, that takes the value 1 when (A1) is in effect and zero when both (A1) and (A2) are

in effect (cf. Appendix B). The overall proof involves four key steps, namely, (a) bounding the

quantity E [‖xk+1 − Pk(xk)‖] in terms of the gradient error and dist(xk,X ⋆
k ) := ‖xk − Pk(xk)‖;

(b) bounding the cumulative sum of dist(xk,X ⋆
k ); (c) establishing a bound on the average gradient

norm E [‖∇fk(xk)‖]; and finally, (d) using the gradient norm bound to obtain the required bound

on E [RegK ]. The following intermediate lemma develop the bounds required in the first three

steps. The proofs of these results are deferred to Appendix B.

Lemma 1. Under (A1), and (A3)-(A5), the sequence {xk} for all k ∈ N generated by IOGD

algorithm satisfies the following bounds for any sequence {x⋆
k} with sublinear path length WK:

E [‖xk+1 − Pk(xk)‖] ≤ ℓE [dist(xk,X ⋆
k )] + ζεk (11)

K
∑

k=1

E [dist(xk,X ⋆
k )] ≤

‖x1 − x⋆
1‖+WK + ζEK

χ− ℓ
(12)

E [‖∇fk(xk)‖] ≤ G :=L
ζε+σ

χ
+ Ldist(x1,X ⋆

1 ) (13)
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where, ℓ2 is obtained from (77) using 1d = 1 as

ℓ2 := 1− µα(1− αL(1 + ν)2) + 2ναL

and ζ is obtained from (79) using 1d = 1 as

ζ :=
α(1 + αL)

ℓ
. (14)

The step size α is chosen such that

µ− 2νL−̟

2µL(1 + ν)2
< α <

min{µ− 2νL+̟, 2µ}
2µL(1 + ν)2

(15)

where ̟2 = (µ− 2νL)2 − 4µL(1 + ν)2(1− χ2).

It is remarked that an appropriate value of α satisfying the conditions required in Lemma 1

always exists if µ−2νL > 2(1+ν)
√

µL(1− χ2). For example, in the case when E is an identity

matrix, the condition becomes µ > 2νL, while in the case when ν = 0, the condition translates to

µ > 4L(1−χ2). Interestingly, the selection of α does not require the prior information about K.

As also detailed in [11], [52], target tracking algorithms are generally required to run indefinitely

or until the some stopping criteria such as the ‘distance to target is sufficiently small’ is met. In

either case, the number of iterations K is generally not known or fixed in advance.

Among the bounds developed in Lemma 1, the gradient bound in (13) is particularly inter-

esting. Different from the vast majority of literature on online convex optimization, the gradient

bound allows us to forgo the assumption on the boundedness of the set X [8], [9], [17]. Further,

such a result is useful even when the set X is compact but has a large diameter R, for the

dynamic regret results presented here will not depend on R. Having stated the intermediate

lemma, the main result of this section can finally be stated as the following theorem.

Theorem 1. Under (A1), (A3)-(A5), and α satisfying (15), the IOGD iterates result in the

following dynamic regret bound

E [RegK ] ≤ O(1 + EK +WK). (16)
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Proof: The proof follows from the first order convexity condition for fk and the use of the

bounds in (12) and (13). Given a sequence {x⋆
k} with sublinear path length WK , it holds that

K
∑

k=1

(fk(xk)− fk(x
⋆
k)) =

K
∑

k=1

(fk(xk)− fk(Pk(xk)))

≤
K
∑

k=1

〈∇fk(xk),xk − Pk(xk)〉 (17)

≤
K
∑

k=1

‖∇fk(xk)‖ ‖xk−Pk(xk)‖ (18)

where we have used the first order convexity condition and the Cauchy-Schwarz inequality.

Taking expectation and using the bounds in (12) and (13), it follows that

E [RegK ] ≤
(

L
ζε+ σ

χ− ℓ
+ Ldist(x1,X ⋆

1 )

)

×
(‖x1 − x⋆

1‖+WK + ζEK

χ− ℓ

)

(19)

≤ O(1 +WK + EK) (20)

which is the required result.

The behavior of regret bound for the IOGD algorithm is governed by the target trajectory

{x⋆
k} and the error sequence ek. The results provided here subsume the OGD results in [11]

where fk is strongly convex and the exact gradient is available, i.e., EK = 0. Interestingly, this

theorem establishes that an O(1 +WK) is still obtainable for P1 with inexact gradients as long

as EK ≤ O(WK).

Finally, we provide the dynamic regret bounds for the case when the gradient errors follow a

white noise process as in (A2).

Corollary 1. Under (A1)-(A5) and α satisfying (15), the dynamic regret for the IOGD iterates

is bounded as follows

E [RegK ] ≤
(

L
αε+ σ

χ− ℓ

)(‖x1 − x⋆
1‖+WK + αEK

χ− ℓ

)

= O(1 +WK + EK) (21)

where ℓ is obtained from (77) with 1d = 0 given by ℓ :=
√

1− µα(1− αL(1 + ν2)) and ℓ < χ.

The value of α is chosen such that

µ−̟

2µL(1 + ν2)
< α <

min{µ+̟, 2µ}
2µL(1 + ν2)
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where ̟2 = (µ)2 − 4µL(1 + ν2)(1− χ2).

Proof: As shown in Appendix B, the intermediate results for (A1)-(A2) take the form

E [‖xk+1 − Pk(xk)‖] ≤ ℓE [dist(xk,X ⋆
k )] + αεk (22)

K
∑

k=1

E [dist(xk,X ⋆
k )] ≤

‖x1 − x⋆
1‖+WK + αEK

χ− ℓ
(23)

E [‖∇fk(xk)‖] ≤ L
αε+ σ

χ− lrℓ
+ Ldist(x1,X ⋆

1 ) (24)

where ℓ is as defined in Corollary 1. The required dynamic regret bounds can be obtained by

proceeding along the lines of proof of Theorem 1.

It is remarked that valid values of α exist if µ > 4L(1− χ2)(1 + ν2). It can be observed that

the additional assumption in (A2) does not provide any improvement in the asymptotic regret

rate, but only in the associated constants.

V. REGRET BOUND FOR P2

Having established the regret rates for P1 with a special QG structure, we now move to the

more general problem in P2. However, for this case, it would not be possible to develop the

results for generic stochastic errors following (A1). Instead, the results will be presented here for

two specific scenarios, namely (a) gradient errors following (A1) with ν = 0, and (b) gradient

errors following (A1)-(A2) but possibly non-zero value of ν. We begin with stating the following

intermediate lemma whose proof is deferred to Appendix C.

Lemma 2. Under (A1) with ν = 0, (A3)-(A4), and for a sequence {x⋆
k} with sublinear path

length WK , it holds for P2 that the IOGD iterates satisfy

E [‖xk+1−x⋆
k‖] ≤ E [‖xk−x⋆

k‖]+
ξ

R
(E [fk(xk)−fk(x⋆

k)]) + sk

where ξ := 2α(1− 2αL) and sk :=
√

2α2ε2k + 2αεkR (cf. (103) and (104)) under 1d = 1. The

step size α is chosen as 0 < α < 1/2L.

Lemma 2 leads directly to the required dynamic regret bounds for P2 under (A1) with ν = 0.

Theorem 2. Under (A1) with ν = 0, (A3)-(A4), and for a sequence {x⋆
k} with sublinear path

length WK , it holds for P2 that the IOGD iterates adhere to the following dynamic regret rate

E [RegK ] ≤ O(1 +
√

KEK +WK). (25)
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with step size selected as 0 < α < 1/2L.

Proof: Using triangle inequality and result of lemma 2 for k ≥ 1, we have that

E
[∥

∥xk+1 − x⋆
k+1

∥

∥

]

≤ E [‖xk+1 − x⋆
k‖] +

∥

∥x⋆
k+1 − x⋆

k

∥

∥

≤ E [‖xk − x⋆
k‖]−

ξ

R
E [fk(xk)−fk(x⋆

k)]

+ sk +
∥

∥x⋆
k+1 − x⋆

k

∥

∥ . (26)

It is now possible to apply the relationship in (26) recursively for k = 1, . . . , K, so as to obtain

E
[
∥

∥xK+1−x⋆
K+1

∥

∥

]

≤‖x1−x⋆
1‖ −

ξ

R

K
∑

k=1

E [fk(xk)−fk(x⋆
k)]

+
∑

k

sk +WK . (27)

Since the left hand side is positive by definition, it follows that

ξ

R
E

[

K
∑

k=1

(fk(xk)− fk(x
⋆
k))

]

≤ ‖x1 − x⋆
1‖+ Sk +WK (28)

where we have that

SK =
K
∑

k=1

√

2α2ε2k + 2αεkR (29)

≤
K
∑

k=1

√

2αRεk +
√
2αεk (30)

≤
√
2αR

(

K
K
∑

k=1

εk

)1/2

+
√
2αEK (31)

=
√

2αRKEK +
√
2αEK . (32)

Substituting the result in (32) into (28) yields the required result

E [RegK ] ≤
R

ξ

(

‖x1−x⋆
1‖+

√

2αRKEK+
√
2αEK+WK

)

≤ O(1 +
√

KEK +WK) (33)

where the inequality in (33) follows since
√
KEK > EK whenever EK is sublinear.

The results can be improved for the case when the gradient errors follow a white noise process.

Specifically, the following corollary holds as shown in Appendix C.
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Corollary 2. Under (A1)-(A4), and for a sequence {x⋆
k} with sublinear path length WK , it holds

for P2 that the IOGD iterates satisfy

E [‖xk+1−x⋆
k‖]≤E [‖xk−x⋆

k‖]+
ξ

R
(E [fk(xk)−fk(x⋆

k)])+αεk (34)

where ξ := 2α(1 − αL(1 + ν2)) since 1d = 0 (cf. (103)). For this case, the dynamic regret is

bounded as

E [RegK ] ≤ O(1 + EK +WK). (35)

for 0 < α < 1
L(1+ν2)

.

Proof: The proof of the bound in (34) is provided in Appendix C. The required regret bound

follows along the lines of the proof of Theorem 2.

VI. TRACKING PERFORMANCE

Departing from the regret analysis pursued in Sections IV and V, we now consider the

asymptotic tracking performance for the scenarios when WK or EK are not sublinear in K.

As a practical example, consider a target that continues to move with a constant velocity in

an adversarial manner. Likewise, we may consider the scenario when errors are unpredictably

random with constant variance. More generally, this section will only assume that the variations

and the gradient errors terms are bounded as follows

∥

∥x⋆
k+1 − x⋆

k

∥

∥ ≤ σ and εk ≤ ε (36)

where realistically, the terms σ and ε should not be too large. In both cases, it may not be

possible for the agents to reduce their distance from the target beyond a certain value [47], [52].

The goal of this section will be to characterize the tracking performance E [‖xk − x⋆
k‖].

Towards this end, only the problem P1 will be considered. As before, we begin with analyzing

the general case when (A1) is in effect, and specialize the results later to the case when both

(A1)-(A2) are in effect. The main result is provided in the subsequent lemma, whose proof is

provided in Appendix B.

November 30, 2017 DRAFT



17

Lemma 3. Under (A1) and (A3)-(A5), and sequences {x⋆
k, ek} satisfying (36), the IOGD iterates

for P1 adhere to the following bound

E
[

dist(xk+1,X ⋆
k+1)

]

≤ (ℓ/χ)k dist(x1,X ⋆
1 )

+

[

1− (ℓ/χ)k

1− (ℓ/χ)

]

σ + ζε

χ
. (37)

for all k ≥ 1. Here, the constants χ, ℓ, and ζ are as defined in Lemma 1 since 1d = 1 for this

case and α is chosen as in (15).

Lemma 3 establishes that the tracking error decreases exponentially with k, and is ultimately

bounded by a steady state value of σ+ζε
χ−ℓ

. Alternatively, if it holds that ∆1 := dist(x1,X ⋆
1 ) > ǫ,

then the number of iterations required for the tracking error is to satisfy

E
[

dist(xk+1,X ⋆
k+1)

]

≤ ǫ+
σ + ζε

χ
, (38)

is O(log(⌈1/ǫ⌉)).
For the case when errors constitute a white noise process, the following corollary provides

the required result.

Corollary 3. Under (A1)-(A5), and sequences {x⋆
k, ek} satisfying (36), the IOGD iterates for

P1 adhere to the following bound

E
[

dist(xk+1,X ⋆
k+1)

]

≤ (ℓ/χ)k dist(x1,X ⋆
1 )

+

[

1− (ℓ/χ)k

1− (ℓ/χ)

]

σ + αε

χ
. (39)

for all k ≥ 1 and ℓ is as defined in Corollary 1 and α should be chosen in same manner as in

Corollary 1.

The proof of Corollary 3 follows from the analysis provided in Appendix B. Likewise, the

iteration complexity of the tracking error for this case is also O(log(⌈1/ǫ⌉)).

VII. IMPLICATIONS OF PROPOSED RESULTS

This section provides two online algorithms that can be interpreted as variants of the proposed

IOGD algorithm.
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1) Incremental OGD with increasing sample size: Consider a scenario where the target

trajectory can be expressed as the solution to the following composite function optimization

problem

x⋆
k = argmin

x∈X
fk(xk) :=

1

N

N
∑

i=1

f i
k(x) k = 1, 2, . . . (40)

where the objective function adheres to either P1 or P2. Inspired by the sampling-based gradient

methods [19], consider the following online algorithm:

xk+1 = PX

(

xk −
α

Nk

∑

i∈Nk

∇f i
k(xk)

)

(41)

where Nk = |Nk| and Nk is a random subset of {1, . . . , N}. In order to view (41) as an IOGD

variant, observe that the gradient error is given by ek := 1
Nk

∑

i∈Nk
∇f i

k(xk)−∇fk(xk). If the

subsets Nk are formed by sampling the functions f i
k uniformly without replacement and in an

i.i.d. fashion, it holds that [Sec. 2.8] [53],

E
[

‖ek‖2 | Fk

]

=
N −Nk

NNk

Λ2 (42)

where Λ2 is a bound on the sample variance of the gradients {∇f i
k(xk)}Ni=1, i.e.,

1

N − 1

N
∑

i=1

∥

∥∇f i
k(x)−∇fk(x)

∥

∥ ≤ Λ2 x ∈ X (43)

Defining εk :=
√

(1/Nk − 1/N), it can be seen that EK is sublinear, for instance when Nk =

Nkρ/(N + kρ) with ρ > 0.

2) Proximal OGD methods for composite minimization: Next, consider a scenario where

the target trajectory is given by the solution of the following composite function minimization

problem:

x⋆
t = argmin

x
fk(x) := gk(x) + hk(x) (44)

where hk is a differentiable regularization function. We propose the proximal OGD algorithm

for solving (44) that takes the form

xk+1 = proxαhk
(xk − α∇gk(xk)) (45)

where the proximal function is defined as proxαhk
(z) = argminx αhk(x) +

1
2
‖x− z‖2. Equiva-

lently, it is possible to write the update in (45) as

∇x

(

αhk(x) +
1

2
‖x− xk + α∇gk(xk)‖2

)

= 0

⇒ xk+1 = xk − α∇gk(xk)− α∇hk(xk+1) (46)
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Recall that the IOGD algorithm for (44) takes the form xk+1 = xk − α(∇gk(x) +∇f(x) + ek).

Therefore, the error term becomes:

‖ek‖ = ‖∇hk(xk)−∇hk(xk+1)‖ ≤ L ‖xk+1 − xk‖

≤ αL ‖∇gk(xk) +∇hk(x) + ek‖

≤ αL

1− αL
‖∇fk(xk)‖ (47)

where L is the Lipschitz constant of ∇hk. Consequently, as long as ν = αL
1−αL

is sufficiently

small and subject to the assumptions (A1)-(A5), the proximal OGD algorithm adheres to the

O(1 +WK) bound developed earlier. In other words, the inexact gradient used in (46) does not

have any effect on the dynamic regret rate.

VIII. NUMERICAL TESTS

This section provides detailed numerical tests that demonstrate the usefulness and applicability

of the proposed IOGD framework to three different applications.

A. Time varying parameter estimation

Consider a network of N nodes placed over a planar region A ⊆ R
2. The nodes seek to

cooperatively estimate (track) a time-varying parameter x⋆
k ∈ R

n using observations bi,k ∈ R
m

made at each node i and time k. The measurements follow the linear model bi,k = Eix
⋆
k + ni,k

where Ei is a node-dependent measurement matrix and the noise ni,k ∼ N (0, σ2I) is independent

identically distributed across nodes and time. At time k, the least squares estimate for xk is given

by

x⋆
k = arg min

x∈Rn

1

N

N
∑

i=1

‖Eixk − bi,k‖22 . (48)

Here, the measurement matrices {Ei}Ni=1 may not necessarily be full rank and therefore the

optimum x⋆
k may not be unique. In this case, the path length in (3) is well-defined for a given

trajectory {x⋆
k}, while the path lengths in (6) and (7) turn out to be infinite.

Towards estimating xk in an efficient manner, we make use of the incremental OGD algorithm

proposed in (41). Letting Nk be a random subset of {1, . . . , N}, the incremental OGD updates

take the form:

xk+1 = xk −
α

Nk

∑

i∈Nk

∇f i
k(xk) (49)
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Fig. 1: Time varying parameter estimation for m = 2 and n = 3, N = 100. Fig. 1(a) plots the dynamic regret, Fig.

1(b) plots the cumulative error EK , and Fig. 1(c) shows the sublinear behavior of path length WK as a function

of the total number of iterations K .

where f i
k(xk) := ‖Eixk − bi,k‖22 and Nk := |Nk|. As detailed in Sec. VII, the incremental OGD

is a special case of the proposed IOGD algorithm if Nk increases to N as k goes from 1 to

K. Observe that the gradient error for this case is not independent or identically distributed.

Therefore, for this case, assumptions (A1) and (A3)-(A5) are satisfied and the results of Sec. IV

are applicable.

In order to validate the performance of the proposed algorithm, we consider a network with

N = 100 nodes and for m = 2 and n = 3. The subset Nk is selected uniformly without

replacement from {1, . . . , N} and following the rule Nk = Nk/(N + k) as stated in Sec. VII.

The step size is set to α = 0.1 for all iterations and irrespective of K. The algorithm is run

for different values of K and the resulting dynamic regret, error bound, and the path length are

shown in Figs. 1(a), 1(b), and 1(c). For the purposes of comparison, the regret obtained when
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full data is used (i.e. Nk = N for all k ≥ 1) is also shown (exact gradient). It can be seen that

although proposed incremental IOGD does not make use of the full data, its regret is not too

far from that of the classical OGD algorithm. Further, as expected from the analytical results,

the dynamic regret is clearly sublinear.

B. Multi-target tracking

This section develops a low-complexity online multi-target tracking algorithm inspired from

the convex optimization-based target tracking framework developed in [4]. Specifically, a team

of n agents at locations {xi
k}ni=1 is tasked with tracking a set of m targets at locations {yj

k}mj=1.

The discretized problem is formulated as the following convex optimization that must be solved

for each k ≥ 1 [4, Thm. 3.8.1]:

{xi
k+1} =arg min

{xi∈Rp}

n
∑

i=1

ψi
k(x

i) (50a)

s.t.
∥

∥xi − xi
k

∥

∥

2 ≤ v ; i = 1, . . . , n (50b)

n
∑

i=1

wij
k

∥

∥xi − y
j
k

∥

∥

2 ≤ η ; j = 1, . . . , m (50c)

where ψi
k(·) is a time-varying cost function and v is the square of the maximum distance that

an agent may cover within a single time slot. For this paper, the following cost function is used:

ψi
k({xi}) = 1

2

∑

ℓ 6=i

∥

∥xi − xℓ
∥

∥

2
+ γ

∥

∥xi − xi
k

∥

∥

2
(51)

where γ > 0 is a regularization parameter. The objective function encourages agent i to remain

close to the other agents. At the same time, the regularization term forces the agents to not move

around unnecessarily. The constraint in (50c) is the linearized version of the original constraint

obtained from using the process described in [4, Chap. 3]. A sigmoidal weight function is utilized

that takes the form:

wij
k =

(

1 + e−ϑ(ǫ−‖xi
k−y

j
k‖)
)−1

(52)

where ϑ and ǫ are positive parameters. Observe that the weights are small for agent-target pairs

that are far from each other. In other words, the constraint in (50c) encourages the set of agents

tracking a target j to stay close to it. The weights are normalized so that
∑n

i=1w
ij
k = 1 in order

to ensure that each target is tracked by at least one agent. Finally, it is remarked that the agents
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may only know the estimated target locations {ŷj
k}mj=1 instead of the true locations required for

(50c).

Different from [21], where interior point methods are proposed towards solving (50) at each

time instant, the goal here is to track the targets at a significantly low complexity. To this end,

we propose an IOGD-based low-complexity algorithm capable of tracking high speed targets

in large multi-agent networks. Since the constrained optimization problem in (50) is not of the

form required in (1), the IOGD algorithm will instead be applied in the dual domain. It can be

verified that (50) satisfies the Slater’s conditions, and therefore has zero duality gap.

To this end, associate dual variables {λi}ni=1 and {νj}mj=1 with (50b) and (50c), respectively.

Collecting the primal and dual variables {λi}, {νj}, and {xi} into vectors λ, ν, and x respec-

tively, the Lagrangian can be written as

Lk(x,λ,ν) =

n
∑

i=1

n
∑

ℓ=i+1

∥

∥xi − xℓ
∥

∥

2
+ γ ‖x− xk‖2 (53)

+

n
∑

i=1

λi(
∥

∥xi − xi
k

∥

∥

2 − v) +

m
∑

j=1

νj

[

n
∑

i=1

wij
k

∥

∥xi − y
j
k

∥

∥

2 − η

]

.

Thus the dual function can be written as

̺k(λ,ν) = argmin
x
Lk(x,λ,ν) (54)

Since the dual function is always concave, the proposed IOGD algorithm can be utilized to

maximize ̺k in an online fashion. In particular, for a given λ and ν, the gradient of the dual

function is given by

∂Lk(x,λ,ν)

∂λi
=
∥

∥xi(λ,ν)− xi
k

∥

∥

2 − v (55)

∂Lk(x,λ,ν)

∂νj
=

n
∑

i=1

wij
k

∥

∥xi(λ,ν)− y
j
k

∥

∥

2 − η (56)

where {xi(λ,ν)}ni=1 = argminx L(x,λ,ν). In order to evaluate the minimization, observe that

the condition ∇xiLk(x,λ,ν) = 0 is equivalent to

(n + 2γ + 2λi + 2
m
∑

j=1

νjwij
k )x

i −
n
∑

ℓ=1

xℓ

= 2(γ + λi)xi
k + 2

m
∑

j=1

νjwij
k y

j
k (57)

for i = 1, . . . , n. Let Dk be a diagonal matrix with (i, i)-th element [Dk]ii = n + 2γ + 2λi +

2
∑m

j=1 ν
jwij

k and let the right-hand side of (57) be denoted by the i-th element of the vector
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ϕk. Then the solution to (57) can be written as x = (Dk − 11T )−1ϕk where 1 is an all-one

vector of appropriate dimension. Observe further that the solution is unique for all λ and ν

since Lk(x,λ,ν) is strongly convex in x. Using the matrix inversion lemma, it is possible to

calculate x with O(n) complexity as follows:

xi=[Dk]
−1
ii [ϕk]i+

[Dk]
−1
ii

1−∑n
ℓ=1[Dk]

−1
ℓℓ

(

n
∑

ℓ=1

[Dk]
−1
ℓℓ [ϕk]ℓ

)

(58)

Since the target location is not known exactly, the estimated target location must be used in (56),

making the gradient inexact. The agent location is determined from the current primal iterate xk

which serves as a proxy for the primal solution x⋆
k at time k. Consequently, the results of Sec.

VI will be applicable here. The full IOGD-based multi-target tracking algorithm is summarized

in Algorithm 2.

Algorithm 2 IOGD-based multi-target tracking

1: Initialize x1, λ1, and ν1, and step sizes αλ, and αν

Repeat for k = 1, 2, . . . ,

2: Compute weights {wij
k } from (52)

3: Calculate the next location as

xk+1 = argminx Lk(x,λk,νk)

4: Update for all agents and targets:

λik+1 =
[

λik − αλ(
∥

∥xi
k+1 − xi

k

∥

∥

2 − v)
]

+
(59)

νjk+1 =

[

νjk − αν(
n
∑

i=1

wij
k

∥

∥xi
k+1 − ŷ

j
k

∥

∥

2 − η)

]

+

(60)

The performance of the proposed multi-target tracking algorithm is studied on a number of

simulated planar environments. The agent velocities are restricted to 0.2 m/s and a target is

assumed covered if it is within η = 0.54 m from at least one agent. Consider first a simple

scenario consisting of three targets (m = 3) and three agents n = 3. The targets are co-located

at time k = 1 and start moving away from each other along the paths shown in Fig. 2. It can be

seen that the proposed algorithm works as expected, and the agent team splits up in order to track

the three targets. On the other hand, the algorithm in [21] does not necessarily exhibit such a

behavior and requires careful parameter tuning so as to allow tracking with reasonable accuracy;
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see Fig. 2. Indeed, since [21] entailed solving a constrained convex optimization problem at every

time instant, it was observed that unless the parameters are not selected carefully, the problem

could become infeasible. It was however possible to circumvent this behavior to a certain extent

by explicitly adding noise to the output of the optimization problem. In contrast, no such issue

was present in the proposed IOGD algorithm, whose performance was quite robust to the choice

of parameters. It is observed from the figure that the trajectory of the solution of (50) using

[21] is a bit away from the target trajectory because the formulation in (50) does not incentivize

the agents to come too close to target. On the other hand, the IOGD algorithm over-tracks to a

certain extent, thereby coming close to the target but at the same time yielding a higher objective

value.

Fig. 3 shows the error performance ‖xk − x⋆
k‖ for the IOGD algorithm. As expected from the

results of Sec. VI, the tracking error remains bounded. It is remarked that for tracking error is

small initially while the agents are close to each other and increases when they split up to track

the diverging targets.
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Fig. 2: Tracking performance comparison for m = 3 and n = 3.

Next, we consider a large scale system with m = 10 targets and n = 50 agents. As expected,
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Fig. 3: Tracking error performance of IOGD algorithm.

the IOGD algorithm is capable of tracking most of the targets at low complexity; see Figs. 4 and

5. As with the smaller system considered earlier, the splitting of the agent teams is observed in

Fig. 4d. The splitting behavior is also evident from the supplementary video included with this

paper 1. It is important to emphasize that the tracking performance of the IOGD is at par with the

convex optimization approach of [21]. In contrast, solving a general convex optimization problem

as required in [21] incurs a complexity of at least O(n3) as opposed to the O(n) complexity

incurred in the calculation of the inexact gradient in (59)-(60). For the sake of comparison,

both algorithms were implemented in MATLAB and their run-times measured on an Intel Xeon

E3-1226 3.30GHz CPU machine. The resulting per-iteration run-time for the proposed algorithm

was 49 ms, as compared to that of 974 ms required by [21].

C. Tracking movie ratings

This section considers the problem of tracking movie ratings in recommender systems. Tradi-

tionally, the problem has been posed as that of completing a low-rank matrix and solved using

a variety of offline or incremental algorithms. In many applications however, the dataset grows

over time, necessitating a real-time recommendation engine that predicts the missing ratings in

an online manner; see e.g. [22]. This section advocates an IOGD-inspired algorithm that can

predict and track missing ratings at low complexity.

1https://www.youtube.com/watch?v=bVto6LItehM
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(f) k = 100

Fig. 4: Target tracking for m = 10 and n = 50.

Let Mk ∈ R
K×L be the measurement matrix containing user ratings at locations specified in

the binary matrix Jk, i.e., [Jk]ij = 1 if [Mk]ij contains a rating and zero otherwise. The goal is

to generate a complete ratings matrix Xk, which is the solution to the following time-varying
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Fig. 5: Number of agents covering each target (m = 10, n = 50).

optimization problem:

X⋆
k = min

X∈X

1

2
‖Jk ⊙ (Mk −X)‖2F + λ ‖X‖⋆ . (61)

Following the notation of [54, Sec. III-D], ⊙ denotes the Hadamard product while ‖X‖⋆ denotes

the nuclear norm of X. In order to obtain Xk in an online fashion, we utilize the proximal OGD

algorithm introduced in (45), that takes the form:

Xk+1 = Dλ (Xk + µJk ⊙ (Mk −X)) (62)

where, Dλ(·) is the singular value thresholding operator. Given the singular value decomposition

of a matrix Y = Udiag(σ1, . . . , σr)V
T , the singular value thresholding operation is defined as

Dλ(Y) =Udiag([σ1 − λ]+, . . . , [σr − λ]+)V
T . (63)

It is remarked that although the proximal OGD in Sec. VII is motivated as an IOGD variant for

differentiable regularizers, it is applied and will be shown to work even for the non-differentiable
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regularizer ‖X‖⋆. The other assumptions, namely (A1), (A4), and (A5) are however satisfied for

this case.

Towards testing the performance of the proposed algorithm, we consider the Movielens 10M

dataset, consisting of about 10 million ratings. The time-stamp associated with each rating

is utilized to obtain 40 matrices {Mk}40k=1, each consisting of new ratings added over the

last 30 days. Fig. 6 shows the evolution of the root mean-square error over time for the

step size parameter α = 1. Interestingly, the regularized mean square error (RMSE) decays

quickly over time and attains a value competitive with the benchmark [22]. Indeed, the proximal

algorithm in (59) can be viewed as a generalization of the Soft-Impute method for the dynamic

matrix completion problem. The tracking MSE for a class of related adaptive matrix completion

algorithms is provided in [54].

IX. CONCLUSION AND FUTURE WORK

This paper considered the problem of tracking time-varying and possibly adversarial targets.

An inexact gradient descent method is proposed, that is applicable to non-strongly convex

objective functions. The performance of the proposed framework is analyzed by developing

bounds on its dynamic regret in terms of the target path length and the cumulative gradient

error. Two distinct cases are considered: (a) case P1, where the cost function adheres to the

quadratic growth condition; and (b) case P2 where the cost function is convex but the optimization

variable belongs to a compact domain. For both cases, it is established that the dynamic regret

is sublinear if the target path length and the cumulative gradient errors are sublinear. Steady

state tracking errors are developed for the scenarios where these quantities are not sublinear.

Further, the proposed framework is utilized to develop online variants of the incremental gradient

and the proximal gradient descent algorithms. Tests on the multi-target tracking and movie

recommendation problems showcase the efficacy and low-complexity of the proposed algorithm.

While the present work broadens the applicability of OGD-like methods to time-varying

non-strongly convex functions, it also motivates some interesting research directions. To begin

with, the assumptions made here still preclude a large class of machine learning problems with

non-differentiable objective functions. More generally, it may be possible to relax (A4) and

characterize the dynamic regret for general time-varying and constrained convex optimization

problems. In practical multi-agent systems, it may also be desirable that the nodes minimize

their communication overhead and use distributed OGD variants such as the cyclic incremental
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Fig. 6: Tracking RMSE for the MovieLens Dataset

gradient descent method. Next, the existing literature on online learning relies heavily on char-

acterizing the performance of the algorithms using the dynamic regret as defined in (2). In the

context of target tracking however, it may be useful to consider a more appropriate exponentially

weighted dynamic regret, defined as Regω :=
∑K

k=1 ω
K−k(fk(xk)− fk(x

⋆
k)) for 0 < ω < 1. By

assigning higher weights to the decisions made in the recent past, such a definition is apposite for

tracking problems with shorter memory. Such an exponential window function is also reminiscent

of the classical adaptive filtering algorithms such as the recursive least squares algorithm.

APPENDIX A

PRELIMINARIES

To begin with, several preliminary results required for establishing various bounds are derived.

Observe that for P1, it follows from the convexity and quadratic growth property of fk that for

all x ∈ X ,

∇fk(x)T (x− Pk(x)) ≥ fk(x)− fk(Pk(x))

≥ µ

2
‖x− Pk(x)‖2 . (64)
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Likewise, the following gradient bounds follow from (A3)-(A4):

‖∇fk(xk)‖ = ‖∇fk(xk)−∇fk(Pk(xk))‖

≤ L ‖xk − Pk(xk)‖ = L dist(xk,X ⋆
k ) (65)

‖∇fk(xk)‖2 ≤ 2L(fk(xk)− f ⋆
k )). (66)

Note that f ⋆
k = fk(Pk(xk)) and this term will be used interchangeably throughout the analysis.

The following inequality will be utilized towards obtaining the bounds in Sec. V. For positive

scalars u, v, and w that satisfy u2 > v, it holds that

√
u2 − v + w2 ≤

√

u2 − v + v2/4u2 + w2

=

√

u2
(

1− v

2u2

)2

+ w2

≤ u
(

1− v

2u2

)

+ w

= u− v

2u
+ w. (67)

APPENDIX B

PROOF OF LEMMA 1, COROLLARY 1, AND LEMMA 3

Proof of (11): The proof begins by expanding the expression for ‖xk+1 − Pk(xk)‖2 in terms

of dist(xk,X ⋆
k ). Specifically, since PX (Pk(xk)) = Pk(xk), it follows from the non-expansiveness

property of the projection PX (·) that,

‖xk+1 − Pk(xk)‖2 ≤ ‖xk − α(∇fk(xk) + ek)− Pk(xk)‖2

= ‖xk − Pk(xk)‖2 − 2α∇fk(xk)
T (xk − Pk(xk))

+ α2 ‖∇fk(xk)‖2 + α2 ‖ek‖2

− 2αeTk (xk − Pk(xk)) + 2α2eTk∇fk(xk) (68)

≤ ‖xk − Pk(xk)‖2 − 2α(fk(xk)− f ⋆
k )

+ α2 ‖ek‖2 + α2 ‖∇fk(xk)‖2

− 2αeTk (xk − Pk(xk)) + 2α2eTk∇fk(xk) (69)

where the inequality in (69) follows from (64).
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The next step is different, depending on the gradient error model in effect. In the general

case (cf. (A1)), the last two terms in (69) can be bounded from the use of the Cauchy-Schwarz

inequality as

− 2αeTk (xk − Pk(xk)) + 2α2eTk∇fk(xk)

≤ 2α ‖ek‖ (‖xk − Pk(xk)‖+ α ‖∇fk(xk)‖) . (70)

Taking the conditional expectation Ek [·] := E [· | Fk], we obtain

Ek

[

−2αeTk (xk − Pk(xk)) + 2α2eTk∇fk(xk)
]

(71)

≤ 2α(εk + ν ‖∇fk(xk)‖) (‖xk − Pk(xk)‖+ α ‖∇fk(xk)‖) .

On the other hand, when the errors are zero-mean and i.i.d. (cf. (A2)), we have that xk is

independent of ek, implying that

Ek

[

−2αeTk (xk − Pk(xk)) + 2α2eTk∇fk(xk)
]

= 0 (72)

The inequalities in (71)-(72) can be encoded into a single inequality by making use of an indicator

variable 1d that takes the value 1 when (A1) is in effect and zero when both (A1) and (A2) are

in effect. Taking conditional expectation in (69), we have from (71)-(72) that

Ek

[

‖xk+1 − Pk(xk)‖2
]

≤ ‖xk − Pk(xk)‖2 − 2α(fk(xk)− f ⋆
k )

+ 2α1d(εk + ν ‖∇fk(xk)‖) (‖xk − Pk(xk)‖+ α ‖∇fk(xk)‖)

+ α2‖∇fk(xk)‖2+α2
Ek

[

‖ek‖2
]

(73)

≤ ‖xk − Pk(xk)‖2 − 2α(fk(xk)− f ⋆
k )

+ 2α1d

(

εk ‖xk − Pk(xk)‖+ ν ‖∇fk(xk)‖ ‖xk − Pk(xk)‖

+ αεk ‖∇fk(xk)‖+ να ‖∇fk(xk)‖2
)

+ α2(1 + ν2) ‖∇fk(xk)‖2 + α2ε2k (74)
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where we have used the error bound in (A1). Next using the inequality 2uv ≤ u2 + v2, and the

inequalities in (65) and (66), we obtain

Ek

[

‖xk+1 − Pk(xk)‖2
]

≤ ‖xk − Pk(xk)‖2

− 2α(1− Lα(1 + ν2)− 2ανL1d)(fk(xk)− f ⋆
k )

+ 2α1d

(

εk(1+αL) ‖xk−Pk(xk)‖+ νL ‖xk − Pk(xk)‖2
)

+ α2ε2k

= (1 + 2ανL1d) ‖xk − Pk(xk)‖2 + α2ε2k

− 2α(1− Lα(1 + ν2 + 2ν1d))(fk(xk)− f ⋆
k )

+ 2α1dεk(1 + αL) ‖xk − Pk(xk)‖ (75)

where for the second term on the right of (75) to be positive, it is required that αL(1+ν2+2ν1d) <

1. Next, the QG property of fk implies that

Ek

[

‖xk+1 − Pk(xk)‖2
]

≤ ℓ2 ‖xk − Pk(xk)‖2

+ 2α1dεk(1 + αL) ‖xk − Pk(xk)‖+ α2ε2k (76)

where

ℓ2 := 1− µα(1−Lα(1+ν2+2ν1d))+2ανL1d < 1. (77)

Note that it is always possible to find an appropriate α if µ > 2νL. The use of Jensen’s

inequality yields

Ek [‖xk+1 − Pk(xk)‖] ≤
√

Ek [‖xk+1 − Pk(xk)‖]2

≤
(

ℓ2 ‖xk − Pk(xk)‖2 + α2ε2k

+ 2α1dεk(1 + αL) ‖xk − Pk(xk)‖
)1/2

. (78)

Observe that for the case when 1d = 0, the right hand side is upper bounded by ℓ ‖xk − Pk(xk)‖+
αεk from the triangle inequality. In order to obtain a compact expression for the general case,

define

ζ :=











α 1d = 0

α(1+αL)
ℓ

1d = 1

= α + 1dα(1 + αL− ℓ)/ℓ (79)
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and observe that ζ > α since ℓ < 1. Therefore, it follows from (78) that

Ek [‖xk+1 − Pk(xk)‖] ≤
(

ℓ2 ‖xk − Pk(xk)‖2 + ζ2ε2k

+ 2α1dεk(1 + αL) ‖xk − Pk(xk)‖
)1/2

(80)

≤ ℓ ‖xk − Pk(xk)‖+ ζεk (81)

which is the required expression.

Proof of (12): This proof will make use of the following bounds, that hold for any x⋆ ∈ X ⋆,

‖Ex− Ex⋆‖ ≥ σmin ‖x− P (x)‖ (82a)

‖Ex− Ey‖ ≤ σmax ‖x− y‖ (82b)

where σmax := σmax(E) and σmin := σmin(E).

Using the lower bound in (82a) and from the triangle inequality, it holds for any sequence

{x⋆
k}Kk=1 that

K
∑

k=1

‖xk − Pk(xk)‖ ≤ 1

σmin

K
∑

k=1

‖Exk − Ex⋆
k‖ (83)

≤ 1

σmin
‖Ex1 −Ex⋆

1‖

+
1

σmin

K−1
∑

k=1

(

‖Exk+1 − Ex⋆
k‖+

∥

∥Ex⋆
k+1−Ex⋆

k

∥

∥

)

. (84)

Next, since all points in X ⋆
k map to a unique point u⋆

k, it holds that Ex⋆
k = EPk(xk). Therefore,

the upper bound in (82b) implies that

K
∑

k=1

‖xk − Pk(xk)‖ ≤ σmax

σmin

‖x1 − x⋆
1‖

+
σmax

σmin

K−1
∑

k=1

(

‖xk+1 − Pk(xk)‖+
∥

∥x⋆
k+1−x⋆

k

∥

∥

)

. (85)

While the result in (85) holds for any arbitrary {x⋆
k}, of particular interest is a sequence with

sublinear path length, as defined in (3). Multiplying both sides of (85) by χ = σmin

σmax
, taking

expectations, and substituting the result from (81), we obtain

χ
K
∑

k=1

E [‖xk − Pk(xk)‖] ≤ ‖x1 − x⋆
1‖+WK

+ ℓ

K
∑

k=1

E [‖xk − Pk(xk)‖] + ζ

K
∑

k=1

εk. (86)

November 30, 2017 DRAFT



34

Since ℓ < χ, it therefore holds that

K
∑

k=1

E [‖xk − Pk(xk)‖] ≤
‖x1 − x⋆

1‖+WK + ζEK

χ− ℓ
. (87)

Proof of Lemma 3 and equation (13): Using the bounds in (82) and the triangle inequality,

it follows that

‖xk+1 − Pk+1(xk+1)‖ ≤ 1

σmin

∥

∥Exk+1 − Ex⋆
k+1

∥

∥ (88)

≤ 1

σmin

(

‖Exk+1 − Ex⋆
k‖+

∥

∥Ex⋆
k+1 − Ex⋆

k

∥

∥

)

(89)

=
1

σmin

(

‖Exk+1−EPk(xk)‖+
∥

∥Ex⋆
k+1 − Ex⋆

k

∥

∥

)

(90)

≤ 1

χ
(‖xk+1 − Pk(xk)‖+ σ) (91)

where the equality in (90) holds since Ex⋆
k = EPk(xk) and the last inequality makes use of the

bounded variation property in (A5). Taking expectation, substituting the result in (81), and using

the bounds is (36), we obtain

E [‖xk+1 − Pk+1(xk+1)‖] ≤ ℓ/χE [‖xk − Pk(xk)‖] +
ζε+ σ

χ
(92)

Recursive use of (92) yields

E
[

dist(xk+1,X ⋆
k+1)

]

≤ (ℓ/χ)k dist(x1,X ⋆
1 )

+

[

(1− (ℓ/χ)k)

(1− ℓ/χ)

]

ζε+ σ

χ
. (93)

which is the required result in the statement of Lemma 3. The result in (13) can be obtained by

using the upper bound ℓ
χ
< 1 in (93), resulting in

E
[

dist(xk+1,X ⋆
k+1)

]

≤dist(x1,X ⋆
1 ) +

ζε+ σ

χ
(94)

which, along with (65), yields the required result.

APPENDIX C

PROOF OF LEMMA. 2 AND COROLLARY 2

As earlier, the proofs of Lemma 2 and Corollary 2 will be developed in a unified manner. To

this end, we will again make use of the indicator function 1d that takes values 0 or 1, depending

on the assumption under effect. In particular, the following two cases are considered: (a) the
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general case under (A1) with ν = 0 for which 1d = 1 (Lemma 2); and (b) the white noise error

case under (A1)-(A2) for which 1d = 0 Corollary 2.

Proof of Lemma 2: Given a sequence {x⋆
k} satisfying (3), and using the first order convexity

property of fk, we obtain

‖xk+1 − x⋆
k‖2

= ‖xk − x⋆
k‖2 − 2α∇fk(xk)

T (xk − x⋆
k) + α2 ‖∇fk(xk)‖2

− 2αeTk (xk − x⋆
k) + α2 ‖ek‖2 + 2α2eTk∇fk(xk)

T (95)

≤ ‖xk − x⋆
k‖2 − 2α(fk(xk)− fk(x

⋆
k)) + α2 ‖ek‖2

+ 2α2L(fk(xk)− fk(x
⋆
k)) + 2α2eTk∇fk(xk)

− 2αeTk (xk − x⋆
k) (96)

Next, we take conditional expectation given Fk in (96), and consider the two cases separately.

In the general case under (A1) with ν = 0, the last two terms can be bounded as in (71) to yield

Ek

[

2α2eTk∇fk(xk)− 2αeTk (xk − x⋆
k)
]

≤ 2αEk [‖ek‖] (α ‖∇fk(xk)‖+ ‖xk − x⋆
k‖) (97)

≤ 2αεk (α ‖∇fk(xk)‖+ ‖xk − x⋆
k‖) (98)

≤ α2(ε2k + ‖∇fk(xk)‖2) + 2αεkR (99)

where recall that R := diam(X ). Inequality in (99) follows from 2uv ≤ u2 + v2. Finally, it

follows from (66) that

Ek

[

2α2eTk∇fk(xk)− 2αeTk (xk − x⋆
k)
]

≤ α2ε2k + 2α2L(fk(xk)− fk(x
⋆
k)) + 2αεkR. (100)

In the second case, when gradient errors are zero mean and i.i.d., it can be seen from (97) that

the right-hand side is zero. Combining the two cases within (96), it follows that

Ek

[

‖xk+1 − x⋆
k‖2
]

≤ ‖xk − x⋆
k‖2

− 2α(fk(xk)− fk(x
⋆
k)) + α2

Ek

[

‖ek‖2
]

+ α2 ‖∇fk(xk)‖2

+ 1d
(

α2ε2k + 2α2L(fk(xk)− fk(x
⋆
k)) + 2αεkR

)

(101)

≤ ‖xk − x⋆
k‖2 + α2ε2k(1d + 1) + 2αεkR1d

− 2α(1−αL(1+ν2+1d(1−ν2)))(fk(xk)−fk(x⋆
k)) (102)
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where we have again used (66) and the bounds in (A1) and for the two cases. It is remarked

that the last term in (102) is negative for αL < 1/(1 + ν2 + 1d(1− ν2)). Henceforth, denote

ξ :=2α(1− αL(1 + ν2 + 1d(1− ν2))) (103)

s2k :=α
2ε2k(1d + 1) + 2αεkR1d. (104)

Using (67), it follows that

[

Ek

[

‖xk+1−x⋆
k‖2
]]1/2≤ ‖xk−x⋆

k‖−
ξ(fk(xk)−fk(x⋆

k))

‖xk−x⋆
k‖

+ sk

≤ ‖xk − x⋆
k‖ −

ξ

R
(fk(xk)− fk(x

⋆
k)) + sk. (105)

Taking full expectation and using the Jensen’s inequality, it follows that

E [‖xk+1 − x⋆
k‖] ≤ E

[

[

Ek

[

‖xk+1 − x⋆
k‖2
]]1/2

]

≤ E [‖xk − x⋆
k‖]−

ξ

R
E [fk(xk)− fk(x

⋆
k)] + sk (106)

which is the required result.
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