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Abstract—We study the classification performance of
Kronecker-structured models in two asymptotic regimes and
developed an algorithm for separable, fast and compact K-S
dictionary learning for better classification and representation
of multidimensional signals by exploiting the structure in the
signal. First, we study the classification performance in terms of
diversity order and pairwise geometry of the subspaces. We derive
an exact expression for the diversity order as a function of the
signal and subspace dimensions of a K-S model. Next, we study
the classification capacity, the maximum rate at which the number
of classes can grow as the signal dimension goes to infinity.
Then we describe a fast algorithm for Kronecker-Structured
Learning of Discriminative Dictionaries (K-SLD2). Finally, we
evaluate the empirical classification performance of K-S models
for the synthetic data, showing that they agree with the diversity
order analysis. We also evaluate the performance of K-SLD2

on synthetic and real-world datasets showing that the K-SLD2

balances compact signal representation and good classification
performance.

Index Terms—Machine learning, subspace models, Kronecker-
structured models, Gaussian mixture models, matrix normal
distribution, diversity order, classification capacity, principal
angles, discriminative K-S dictionary learning.

I. INTRODUCTION

The classification of high-dimensional signals arises in a
variety of image processing settiings: object and digit recogni-
tion [1], [2], speaker identification [3], [4], tumor classification
[5], [6], and more. A standard technique is to find a low-
dimensional representation of the signal, such as a subspace
or union of subspaces on which the signal approximately lies.
However, for many signals, such as dynamic scene videos
[7] or tomographic images [8], the signal inherently is multi-
dimensional, involving dimensions of space and/or time. To
use standard techniques, one vectorizes the signal, which
throws out the spatial structure of the data which could be
leveraged to improve representation fidelity, reconstruction
error, or classification performance.

In order to exploit multi-dimensional signal structure, re-
searchers have proposed tensor-based dictionary learning tech-
niques, in which the signal of interest is a matrix or a
higher-order tensor and the dictionary defining the (union of)
subspace model is a tensor. A simple tensor-based model
is the Kronecker-structured (K-S) model, in which a two-
dimensional signal is represented by a coefficient matrix
and two matrix dictionaries that pre- and post-multiply the
coefficient matrix, respectively. Vectorizing this model leads
to a dictionary that is the Kronecker product of two smaller

dictionaries; hence the K-S model is a specialization of sub-
space models. This model is applied to spatio-temporal data
in [9], low-complexity methods for estimating K-S covariance
matrices are developed in [10], and it is shown that the sample
complexity of K-S models is smaller than standard union-of-
subspace models in [11].

As standard union-of-subspace models have proven success-
ful for classification tasks [12], [13], [14], a natural question
is the classification performance of K-S subspace models. In
this paper, we address this question from an information-
theoretic perspective and developed an algorithm for learning
discriminative K-S dictionaries. We consider a signal model in
which each signal class is associated with a subspace whose
basis is the Kronecker product of two smaller dictionaries;
equivalently, we suppose that each signal class has a matrix
normal distribution, where the row and column covariances are
approximately low rank. Here the covariance of signal class
follows a specific structure which is exactly the Kronecker
product of two lower dimensional covariance matrices [15],
[16], [17]. In this sense, signals are drawn from a matrix
Gaussian mixture model (GMM), similar to [18], where each
K-S subspace is associated with a mixture component.

To find the underlying low dimensional representation of
signals, dictionary learning methods are widely used [19], [20],
[21]. The underlying signal is compactly represented by a few
large coefficients in an overcomplete dictionary. In a standard
dictionary learning setting a 1-D signal yi is represented
using a sparse coefficient vector xi, where an overcomplete
dictionary Di is learned by minimization problems similar to

arg min
{Di,xi}

∑
i

||yi −Dixi||2F + λ||xi||1 (1)

Where || · ||F denotes the Forbenius norm, || · ||1 denotes the
l1-norm, and λ denotes the strength of the sparsity prior. Well-
established methods for dictionary learning in this framework
include K-SVD [22] and the method of optimal directions [23].
These methods are targeted at dictionaries that faithfully repre-
sent the signal, and do not specifically consider classification.

Methods for incorporating discriminative ability into dictio-
nary learning have been proposed, such as discriminative K-
SVD [12] (D-KSVD) and label consistent (LC-KSVD) [24],
which jointly learn a linear classifier and an overcomplete
dictionary that is shared in common among the classes.
Signals are then classified in the feature space induced by the
dictionary. By contrast, [25], [13], [26], [27] propose methods
for learning class-specific dictionaries, either by promoting
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incoherence among dictionaries or learning class-specific fea-
tures. Signals are then classified by choosing the dictionary
that minimizes the reconstruction error.

The above methods consider one-dimensional signals; mul-
tidimensional signals must first be vectorized, which may
sacrifice structural information about the signal that could
improve signal representation or classification. To preserve
signal structure,[28] extends K-SVD to tensor dictionaries, and
[29], [30], [31], [6] employ a variety of tensor decompositions
to learn dictionaries tailored to multidimensional structure.
These methods boast improved performance over traditional
methods on a variety of signal processing tasks, including
image reconstruction, image denoising and inpainting, video
denoising, and speaker classification.

Similar to [32], we first study the classification perfor-
mance limits of K-S models in terms of diversity order and
classification capacity, characterizing the performance in the
limit of high SNR and large signal dimension, respectively.
Further, we derive a tight upper bound on the misclassification
probability in terms of the pairwise geometry of individual
row and column subspaces. Where row and column subspaces
correspond to two matrix dictionaries that pre- and post-
multiply the coefficient matrix, respectively. We use principal
angles between the subspaces as a measure to describe the
geometry of subspaces [33], [34].

Finally, to learn discriminative dictionaries, we propose a
new method, termed Kronecker-Structured Learning of Dis-
criminative Dictionaries (K-SLD2), that exploit multidimen-
sional structure of the signal. K-SLD2 learns two subspace
dictionaries per class: one to represent the columns of the
signal, and one to represent the rows. Inspired by [26], we
choose dictionaries that both represent each class individually
and can be concatenated to form an overcomplete dictionary
to represent signals generally. K-SLD2 is fast and learns com-
pact data models with many fewer parameters than standard
dictionary learning methods. We evaluate the performance of
K-SLD2 on the Extended YaleB and UCI EEG database. The
resulting dictionaries improve classification performance by
up to 5% when training sets are small, improve reconstruction
performance across the board, and result in dictionaries with
no more than 5% of the storage requirements of existing
subspace models.

In Section II, we describe the K-S classification model
in detail. In Section III we derive the diversity order for
K-S classification problems, showing the exponent of the
probability of error as the SNR goes to infinity. This analysis
depends on a novel expression, presented in Lemma 3, for the
rank of sums of Kronecker products of tall matrices. In Section
IV we provide high-SNR approximations to the classification
capacity. In Section V, we propose a discriminative K-S
dictionary learning algorithm which balances the learning
of class-specific, Kronecker-structured subspaces against the
learning of an general overcomplete dictionary that allows for
the representation of general signals. In Section VI we show
that the empirical classification performance of K-S models
agrees with the diversity analysis and evaluate the performance
of proposed discriminative algorithm on extended YaleB face
recognition dataset and EEG signal dataset correlating the

EEG signals with individual’s alcoholism.

II. PROBLEM DEFINITION

A. Kronecker-structured Signal Model

To formalize the classification problem, let the signal of
interest Y ∈ Rm1×m2 be a matrix whose entries are distributed
according to one of L class-conditional densities pl(Y).
Each class-conditional density corresponds to a Kronecker-
structured model described by the pair of matrices Al ∈
Rm1×n1 and Bl ∈ Rm2×n2 . The matrix Al describes the
subspace on which the columns of Y approximately lie,
and Bl describes the subspace on which the rows of Y
approximately lie. More precisely, if Y belongs to class l,
it has the form

Y = AlXBT
l + Z, (2)

where Z ∈ Rm1×m2 has i.i.d. zero-mean Gaussian entries
with variance σ2 > 0, and X ∈ Rn1×n2 has i.i.d. zero-mean
Gaussian entries with unit variance. We can also express Y
in vectorized form:

y = (Bl ⊗Al)x + z, (3)

for coefficient vector x = vec(X) ∈ RN , and noise vector
z ∈ RM , where N = n1n2, M = m1m2, and where ⊗ is the
usual Kronecker product. Then, the class-conditional density
of y is

pl(y) = N (0, (Bl ⊗Al)(Bl ⊗Al)
T + σ2 · I). (4)

In other words, the vectorized signal y lies near a subspace
with a Kronecker structure that encodes the row and column
subspaces of Y.

In the sequel, we will characterize the performance limits
over ensembles of classification problems of this form. To this
end, we parameterize the set of class-conditional densities via

A(m1,m2, n1, n2) = Rm1×n1 × Rm2×n2 , (5)

which contains the set of matrices indicating the row and
column subspaces given signal and subspace dimensions
m1,m2, n1, n2. We can represent an L-ary classification prob-
lem by a tuple a = (a1, · · · , aL) ∈ AL(m1,m2, n1, n2),
where each al ∈ A(m1,m2, n1, n2) is the pair of matrices
ai = (Al,Bl). Let p(y|al) = p(y|Al,Bl) = pl(y), for
1 ≤ l ≤ L, denote the class conditional densities parametrized
by a ∈ A(m1,m2, n1, n2). For a classification problem
defined by a, we can define the average misclassification
probability:

Pe(a) =
1

L

L∑
l=1

Pr(l̂ 6= l|y ∼ p(y|al), (6)

where l̂ is the output of the maximum-likelihood classifier
over the class-conditional densities described by al. In this
paper, we provide two asymptotic analyses of Pe(a). First,
we consider the diversity order, which characterizes the slope
of Pe(a) for a particular a as σ2 → 0. Second, we consider
the classification capacity, which characterizes the asymptotic
error performance averaged over a as n1,m1, n2,m2 go to
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infinity. For the latter case, we define a prior distribution over
the matrix pairs (Al,Bl) in each class:

p(a) =

m1∏
p=1

n1∏
q=1

m2∏
r=1

n2∏
s=1

N (apq; 0, 1/n1) ·N (brs; 0, 1/n2) (7)

where apq is the (p, q)th element of matrix A and brs is the
(r, s)th element of matrix B. Note that the column and row
subspaces described by A and B are uniformly distributed
over the Grassmann manifold because the matrix elements are
i.i.d. Gaussian; however, the resulting K-S subspaces are not
uniformly distributed.

B. Diversity Order

For a fixed classification problem a, the diversity order
characterizes the decay of the misclassification probability as
the noise power goes to zero. By analogy with the definition
of the diversity order in wireless communications [35], we
consider the asymptotic slope of Pe(a) on a logarithmic scale
as σ2 → 0 that is the mismatch between data and model is
vanishingly small. Formally, the diversity order is defined as

d(a) = lim
σ2→0

− logPe(a)
1
2 log(1/σ2)

. (8)

In Section III, we characterize exactly the diversity order for
almost every a.

C. Classification Capacity

The classification capacity characterizes the number of
unique subspaces that can be discerned as n1, n2, m1 and
m2 go to infinity. That is, we derive bounds on how fast
the number of classes L can grow as a function of signal
dimension while ensuring the misclassification probability
decays to zero almost surely. Here, we define a variable m1

and let it go to infinity. As m grows to infinity we let the
dimensions m1, m2, n1 and n2 scale linearly with m as
follows:

m1(m) = bκ1mc, m2(m) = bκ2mc,
n1(m) = bυ1mc, n2(m) = bυ2mc (9)

for υ1, υ2 ≥ 1 and 0 ≤ κ1, κ2 ≤ 1. We let the number of
classes L grow exponentially in m as:

L(m) = b2ρm1(m)m2(m)c, (10)

for some ρ ≥ 0, which we call the classification rate.
We say that the classification rate ρ is achievable if
limm→∞E[Pe(a)] = 0. For fixed signal dimension ratios
υ1, υ2, κ1 and κ2, we define C(υ1, υ2, κ1, κ2) as the supre-
mum over all achievable classification rates, and we call
C(υ1, υ2, κ1, κ2) (sometimes abbreviated by C) the classifi-
cation capacity.

We can bound the classification capacity by the mutual
information between the signal vector y and the matrix pair
(A, B) that characterizes each Kronecker-structured class.

1Note that m is different from M , where m is the variable we let to go to
infinity and M = m1m2.

Lemma 1. The classification capacity satisfies:

C ≤ lim
m→∞

I(y;A,B)

m1(m)m2(m)
(11)

Where the mutual information is computed with respect to
p(a).

To prove lower bounds on the diversity order and classifica-
tion capacity, we will need the following lemma, which gives
the well-known Bhattacharyya bound on the probability of
error of a maximum-likelihood classifier that chooses between
two Gaussian hypotheses.

Lemma 2 ([36]). Consider a signal distributed according to
N (µ1,Σ1) or N (µ2,Σ2) with equal priors. Then, define

b =
1

2
ln

(
|Σ1+Σ2

2 |
|Σ1|

1
2 |Σ2|

1
2

)
+

1

8
(µ1−µ2)

[
Σ1 + Σ2

2

]−1

(µ1−µ2)

(12)
Supposing maximum likelihood classification, the misclassifi-
cation probability is bounded by

Pe(µ1,Σ1, µ2,Σ2) ≤ 1

2
exp(−b). (13)

D. Subspace Geometry

We characterize the subspace geometry in terms of principal
angles. Principal angle defines as the canonical angles between
elements of subspaces, and they induce a distance metric
on the Grassmann manifold. If the principal angles between
subspaces is large, this means that the subspaces are far apart
and easily discernible.

Consider two linear subspaces A1 and A2 of Rm with same
dimensions n each. The principal angles between these two
subspaces are defined recursively as follows:

cos(θt) = max
ut∈A1

max
vt∈A2

uTt vt

subject to uTt ut = 1, vTt vt = 1,

uTt ui = 0, vTt vt = 0, (i < t)

where 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn1 ≤ π
2 and the first principal

angle θ1 is the smallest angle between all pairs of unit vectors
in the first and the second subspaces [37].

The principal angles can be computed directly via comput-
ing the singular value decomposition (SVD) of AT

1 A2, where
A1 and A2 are orthonormal basis for the subspaces A1 and
A2, respectively.

AT
1 A2 = UA cos(ΘA)VT

A,

where the cosine of principal angles, cos(ΘA) =
diag(cos(θA1 ), cos(θA2 ), · · · , cos(θAn1

)), are the singular values
of AT

1 A2.
In this problem, suppose A1 and A2 are orthonormal

basis for the subspaces A1 and A2 on which columns of
signal approximately lies and B1 and B2 are orthonormal
basis for the subspaces B1 and B2 on which rows of signal
approximately lies. Then we define the orthonormal basis
D1 = B1 ⊗ A1 and D2 = B2 ⊗ A2 for the Kronecker-
structured subspaces D1 and D2, respectively. The cosine of
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principal angles between D1 and D2 are the singular values
of DT

1 D2 as follows:

DT
1 D2 = (B1 ⊗A1)T (B2 ⊗A2)

= (BT
1 B2)⊗ (AT

1 A2)

= (UB cos(ΘB)VT
B)⊗ (UA cos(ΘA)VT

A)

= (UB ⊗UA)(cos(ΘB)⊗ cos(ΘA))(VB ⊗VA)T

= U cos(Θ)VT ,

where the cosine of principal angle between two Kronecker
subspaces is the Kronecker product of cosine of principal
angles between two row subspaces and two column subspaces
that is cos(Θ) = cos(ΘA)⊗ cos(ΘB).

III. DIVERSITY ORDER

As mentioned in Section II, the diversity order measures
how quickly misclassification probability decays with the
noise power for a fixed number of discernible subspaces. By
careful analysis using the Bhattacharrya bound, we derive
an exact expression for the diversity order for almost every2

classification problem. First, we state an expression that holds
in general.

Theorem 1. For a classification problem described by the
tuple a ∈ AL such that r(Al) = n1 and r(Bl) = n2 for
every l, the diversity order is d(a) = r∗ − n1n2, where

r∗ = min
i,j

r(
[
Bi ⊗Ai Bj ⊗Aj

]
), (14)

and where r(·) denotes the matrix rank.

Proof: Applying the Bhattacharyya bound, the probability
of a pairwise error between two Kronecker-structured classes
i and j with covariances

Σi = DiD
T
i + σ2I, Σj = DjD

T
j + σ2I,

is bounded by

Pe(Di,Dj) ≤
1

2

 |DiD
T
i +DjD

T
j +2σ2I

2 |
|DiDT

i + σ2I| 12 |DjDT
j + σ2I| 12

− 1
2

(15)
where

DiD
T
i = BiB

T
i ⊗AiA

T
i ,

DjD
T
j = BjB

T
j ⊗AjA

T
j .

Using the well-known Kronecker product identities (p ⊗ q) ·
(r ⊗ s) = (pq ⊗ rs) and (p⊗ r)T = (pT ⊗ rT ) we can write
the matrix DiD

T
i + DjD

T
j as

DiD
T
i +DjD

T
j =

[
Bi ⊗Ai Bj ⊗Aj

]
·
[
BT
i ⊗AT

i

BT
j ⊗AT

j

]
(16)

It is trivial that r(A) = r(AAT ), thus

r(DiD
T
i + DjD

T
j ) = r(

[
Bi ⊗Ai Bj ⊗Aj

]
) = r∗ij

Let λi and λj denote the nonzero eigenvalues of DiD
T
i and

DjD
T
j respectively, and let λij denote the nonzero eigenvalues

of DiD
T
i +DjD

T
j and r∗ij denote its rank. Then, we can write

the pairwise bound in (17). By construction,

DiD
T
i + DjD

T
j ≥ DiD

T
i ,DjD

T
j

Using Weyl’s monotonicity theorem 2λijl ≥ λil and 2λijl ≥
λjl for every 1 ≤ l ≤ n1n2, Therefore,

n1n2∏
l=1

2(λijl + σ2) ≥

√√√√n1n2∏
l=1

(λil + σ2) ·
n1n2∏
l=1

(λjl + σ2)

From this we can write

Pe(Di,Dj) ≤
1

2

(
1

σ2

)− r∗ij−n1n2

2

· 2
n1n2

2

·

 r∗ij∏
l=n1n2+1

(λijl + σ2)

−
1
2

(19)

≤ 2
n1n2−2

2

(
1

σ2

)− r∗ij−n1n2

2

· (λijr∗ij + σ2)−
r∗ij−n1n2

2 (20)

= 2
n1n2−2

2

(
1 +

λijr∗ij
σ2

)− r∗ij−n1n2

2

(21)

Next, we bound Pe(a) ≤
∑
i6=j Pe(Di,Dj) via the union

bound. For all the L subspaces, we obtain the pairwise error
probability and by invoking the union bound over all the
subspaces we obtain:

Pe(a) ≤ 1

L

L∑
l=1

∑
l 6=l̂

Pe(Dl,Dl̂)

= (L− 1)Pe(Dl,Dl̂)

≤ 2ρm1m2Pe(Dl,Dl̂)

Taking logarithm on both sides we obtain:

log2(Pe(a)) ≤ ρm1m2 +
n1n2 − 2

2
−

r∗ij − n1n2

2
log2

(
1 +

λijr∗ij
σ2

)
(22)

Putting this and (21) into the definition of the diversity order
from (8), we obtain

d(a) ≥ min
i,j

lim
σ2→0

−
− r
∗
ij−n1n2

2 log(1/σ2)
1
2 log(1/σ2)

(23)

= min
i,j

r∗ij − n1n2 (24)

= r∗ − n1n2. (25)

Finally, [36] shows that the Bhattacharyya bound is exponen-
tially tight as the pairwise error decays to zero. Furthermore,
the union bound is exponentially tight. Therefore, the above
inequality holds with equality, and d(a) = r∗ − n1n2.

For almost every classification problem, the rank r∗ has the
same value, as we show in the next lemma.

2With respect to the Lebesgue measure over AL.
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Pe(Di,Dj) ≤
1

2

(
(σ2)m1m2−r∗ij

∏r∗ij
l=1(λijl + σ2)√

(σ2)m1m2−n1n2
∏n1n2

l=1 (λil + σ2) · (σ2)m1m2−n1n2
∏n1n2

l=1 (λjl + σ2)

)− 1
2

(17)

=
1

2

(
1

σ2

)− r∗ij−n1n2

2

·

( ∏r∗ij
l=1(λijl + σ2)√∏n1n2

l=1 (λil + σ2) ·
∏n1n2

l=1 (λjl + σ2)

)− 1
2

(18)

Lemma 3. For almost every classification problem a, the
matrices

[
Bi ⊗Ai Bj ⊗Aj

]
have rank

r∗ij = 2n1n2 − [2n1 −m1]+[2n2 −m2]+, (26)

where [·]+ denotes the positive part of a number.

Proof: Using standard matrix properties (e.g., [38]), we
can write

r(
[
Bi ⊗Ai Bj ⊗Aj

]
) = r(Bi ⊗Ai) + r(Bj ⊗Aj)−

dim[R(Bi ⊗Ai)
⋂
R(Bj ⊗Aj)]. (27)

Applying Lemma 4 from Appendix B, we obtain

r(
[
Bi ⊗Ai Bj ⊗Aj

]
) = r(Bi ⊗Ai) + r(Bj ⊗Aj)−

dim[R(Ai)
⋂
R(Aj)] · dim[R(Bi)

⋂
R(Bj)]. (28)

Almost every matrix has full rank, so r(Bi ⊗Ai) = r(Bj ⊗
Aj) = n1n2 almost everywhere, so we can rewrite (28) as

r(
[
Bi ⊗Ai Bj ⊗Aj

]
) = 2n1n2−dim[R(Ai)

⋂
R(Aj)]

· dim[R(Bi)
⋂
R(Bj)]. (29)

Next, we study the three possible cases for (29).
Case 1: n2 < m2 < 2n2 and n1 ≤ m1

2 . Here,

dim[R(Ai)
⋂
R(Aj)] = 0

dim[R(Bi)
⋂
R(Bj)] = (2n2 −m2)

r(
[
Bi ⊗Ai Bj ⊗Aj

]
) = 2n1n2

Case 2: n2 ≤ m2

2 and n1 < m1 < 2n1. Here,

dim[R(Bi)
⋂
R(Bj)] = 0

dim[R(Ai)
⋂
R(Aj)] = (2n1 −m1)

r(
[
Bi ⊗Ai Bj ⊗Aj

]
) = 2n1n2

Case 3: n2 < m2 < 2n2 and n1 < m1 < 2n1. Here,

dim[R(Ai)
⋂
R(Aj)] = (2n1 −m1)

dim[R(Bi)
⋂
R(Bj)] = (2n2 −m2)

r(
[
Bi ⊗Ai Bj ⊗Aj

]
) = 2n1n2 − (2n1 −m1)(2n2 −m2),

where the first and second equalities for each case hold almost
everywhere, and the third equality for each case follows from
Lemma 4. Combining the three cases yields the claim.

Applying Lemma 3 to Theorem 1, an exact expression for
the diversity order follows immediately.

Corollary 1. For almost every classification problem a, the
diversity order is

d(a) = n1n2 − [2n1 −m1]+[2n2 −m2]+. (30)

A. Diversity Order Gap

Diversity order characterize the slope of error probability,
higher the diversity order faster the decay of misclassification
probability. Since the Kronecker-structured subspaces comes
from a restricted set of subsapces, the error performance
of these subspaces can be worse. Therefore, to verify the
efficiency of Kronecker subspaces, we characterizes the di-
versity order gap as the difference between the slope of
misclassification probability of K-S subspaces and the standard
subspaces. This diversity order gap is a function of signal
dimensions, that is, n1, n2,m1 and m2. We derive the signal
dimension regimes where the diversity order gap is significant
or/and zero.
Diversity order for K-S subspaces:

dK-S = n1n2 − [2n1 −m1]+[2n2 −m2]+. (31)

For the standard subspaces model in (3), the signal of interest
Y ∈ RM and coefficient vector X ∈ RN where, M = m1m2

and N = n1n2. From [32], for the standard subspaces of same
dimensions the diversity order would look like N−[2N−M ]+.
This can be written in terms of Kronecker signal dimensions.
Diversity order for standard subspace:

dSTD = n1n2 − [2n1n2 −m1m2]+. (32)

We observe that the diversity order for K-S models is never
greater to the diversity order of standard subspace, for any
value of n1, n2,m1,m2. However, for some regimes the
diversity order of K-S model is smaller or equal to standard
subspaces.
When n1 < m1 < 2n1 and n2 < m2 < 2n2

1) if m1m2 > 2n1n2 then dK-S < dSTD:

γ = (2n1 −m1)(2n2 −m2).

2) if m1m2 < 2n1n2 then dK-S < dSTD:

γ = 2(m1 − n1)(m2 − n2),

where γ = dSTD−dK-S is the diversity order gap. For any other
region no diversity order gap exists, that is, dK-S = dSTD. The
details are provided in Appendix A.

The high-SNR classification performance of K-S subspaces
is the same as general subspaces when the subspace dimen-
sions are small, even though K-S subspaces are structured,
involve fewer parameters, and are easier to train.

B. Misclassification Probability in terms of Row and Column
Subspaces Geometry

We derive a more accurate and tight high-SNR approxima-
tion of the probability of error in terms of principal angles
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between the K-S subspaces and also in terms of principal
angle between the individual rows and columns subspaces.
Using the eigenvalue decomposition of covariance of row
subspace AiA

T
i = UA

i λ
A
i (UA

i )T and the column subspace
BiB

T
i = UB

i λ
B
i (UB

i )T , where UA
i ∈ Rm1×n1 ,UB

i ∈
Rm2×n2 are the orthonormal basis of row and column subspace
respectively and the diag(λAi ) ∈ Rn1 ,diag(λBi ) ∈ Rn2 are the
eigenvalues of row and column subspaces, we can write the
signal covariance as:

DiD
T
i = ((UB

i λ
B
i (UB

i )T ⊗UA
i λ

A
i (UA

i )T ))

= (UB
i ⊗UA

i )(λBi ⊗ λAi )((UB
i )T ⊗ (UA

i )T )

= (UB
i ⊗UA

i )(λBi ⊗ λAi )(UB
i ⊗UA

i )T

= UiλiU
T
i

Similarly, DjD
T
j = UjλjU

T
j . From [39], the Kronecker

product of two orthonormal matrix is a orthonormal matrix,
thus Ui,Uj ∈ Rm1m2×n1n2 are the orthonormal bases and the
diagonal elements of λi, λj ∈ Rn1n2×n1n2 are the eigenvalues.
From equation (27), the rank of sum of two Kronecker
products is written as:

r∗ = r(DiD
T
i ) + r(DjD

T
j )− dim[R(DiD

T
i )
⋂
R(DjD

T
j )]

= r(DiD
T
i ) + r(DjD

T
j )− r∩

= 2n1n2 − r∩. (33)

Since the intersection of two K-S subspaces define this rank
and hence plays an important role in bounding the misclas-
sification probability from above. According to [33], one can
write the covariances of K-S subspaces in terms of subspaces
intersections as follows:

Σi = Ui,∩λi,∩U
T
i,∩ + Ui,\λi,\U

T
i,\ + σ2I, (34)

Σj = Uj,∩λj,∩U
T
j,∩ + Uj,\λj,\U

T
j,\ + σ2I. (35)

Here Ui,∩, Uj,∩ ∈ Rm1m2,r∩ corresponds to the K-S sub-
space intersection and Ui,\, Uj,\ ∈ Rm1m2,n1n2−r∩ corre-
sponds to the set minus Di\Dj and Dj \Di respectively. Here
r∩ accounts for the overlap between the subspaces, smaller
the overlap between subspaces easier it to discern the classes.
While on the other hand, r∩ = n1n2 means the complete
overlap between subspaces and it becomes hard to discriminate
between classes.

Theorem 2. As σ2 → 0, the misclassification probability in
terms of principal angle between individual row and column
subspaces is upper bounded as

Pe(Di,Dj) ≤ c1
(
σ2
) r∗ij−n1n2

2

·

(
n1∏

l=t1+1

n2∏
l=t2+1

(1− cos2(θAl ) cos2(θBl ))

)− 1
2

+ o((σ2)
r∗ij−n1n2

2 ) (36)

where

c1 = 2
n1n2−2

2 ·

(
pdet(Ui,∩λi,∩U

T
i,∩ + Uj,∩λj,∩U

T
j,∩)√∏r∩

l=1 λi,∩,l ·
∏r∩
l=1 λj,∩,l

)− 1
2

·


√√√√n1n2−r∩∏

l=1

λi,\,l ·
n1n2−r∩∏
l=1

λj,\,l

−
1
2

, (37)

t1 = b (n2−n1)−
√

(n2−n1)2+4r∩
2 c,

t2 = b (n1−n2)−
√

(n1−n2)2+4r∩
2 c and pdet denotes the pseudo-

determinant.

Proof: Appendix C.
In case of no overlap between subspaces, that is, r∩ = 0,

both t1 = t2 = 0 and as the misclassification probability is
inversely related to the product of all n1n2 principal angles,
this makes the misclassification error negligibly small. On the
other side, with subspace overlap r∩ 6= 0, t1 and t2 has some
positive value, there exists some non-trivial principal angles
which effect the classification performance and it becomes
very hard to distinguish between the subspaces.

IV. CLASSIFICATION CAPACITY

In this section, we derive upper and lower bounds on the
classification capacity that hold approximately for large σ2.
Detailed analysis can be found in the long version of the paper.

Theorem 3. The classification capacity is upper bounded by

C ≤ min{ν1, ν2}(κ1 − ν1 + κ2 − ν2)

2κ1κ2
log2(1/σ2) +O(1),

and

C ≥ ν1ν2 − [2ν1 − κ1]+[2ν2 − κ2]+

2κ1κ2
log2(1/σ2) +O(1).

Proof: The upper bound follows from an upper bound
on the mutual information I(y;A,B) = h(y) − h(y|A,B)
between the dictionary pairs (A,B) and the signal y and
invoke Lemma 1. In particular,

I(y;A,B) = h(y)− h(y|A,B). (38)

Given the conditional distribution p(y|(B⊗A)) = N (0, (B⊗
A)(B ⊗A)T + σ2 · I) and following the analysis similar to
[32] we bound the conditional entropy as:

h(y|A,B) ≥ m1m2 − n1n2

2
log2(σ2) +

m1m2

2
log2(2πe)

+
n1n2

2
E[log2((

√
κ1/υ1−1)2·(

√
κ2/υ2−1)2+ε(m)+σ2)],

(39)

From the i.i.d. Gaussian outer bound on entropy, we can derive
a naive bound on the marginal entropy:

h(y) ≤ m1m2

2
log(1 + σ2) (40)

Now consider the case when both A and B are tall i.e. m1 >
n1 and m2 > n2. Further suppose that n1 < m2. Then, we
can derive a tighter outer bound on h(y). Let yp be the first
n1 columns of y and let y′p be the rest m2 − n1 columns of
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y. Then, y′p ∈ Rm1×(m2−n1), and we can derive the following
high-SNR approximation on h(y):

h(yA) = h(yp) + h(y′p|yp) (41)

' h(yp) + h(y′p|A) (42)

h(yA) =
m1n1

2
log2(1+σ2)+

[m2 − n1]+(m1 − n1)

2
log2(σ2)

(43)
Now, let yq be the first n2 columns of y and let y′q denotes
the rest m1−n2 columns of y. Then, y′p ∈ R(m2−n2)×m2 , and
we derive the following high-SNR approximation on h(y):

h(yB) ' h(yq) + h(y′q|B) (44)

h(yB) =
m2n2

2
log2(1+σ2)+

[m1 − n2]+(m2 − n2)

2
log2(σ2)

(45)
Combining (43) and (45), we obtain the differential entropy:

h(y) ≤ min(h(yA), h(yB)) (46)

=
min{(m2 − n1)(m1 − n1), (m1 − n2)(m2 − n2)}

2

× log2(σ2) +
min{m1n1,m2n2}

2
log2(1 + σ2)

(47)

From (39) and (47), as m→∞ we can find the bound.

Lower Bound: In order to obtain the lower bound
on classification capacity we apply the Bhatacharyya bound
on probability of pairwise error between two Kronecker-
subspaces i and j. By expanding r∗ij in (22) and bounding
the value of λij{2n1n2−[2n1−m1]+[2n2−m2]+} away from zero
as m→∞. If

ρ <
n1n2 − 2

2m1m2
− n1n2 − [2n1 −m1]+[2n2 −m2]+

2m1m2
×

log2

(
1 +

λij{2n1n2−[2n1−m1]+[2n2−m2]+}

σ2

)
, (48)

then surely Pe(a) goes to zero as m→∞.
To compare the upper and lower bounds, consider the

symmetric case, i.e. m1 = m2 = m and n1 = n2 = n and
m > n. The gap between the prelog factor of the upper and
lower bounds is (m−n)2 and we leave tightening these bounds
as future work.

V. KRONECKER-STRUCTURED LEARNING OF
DISCRIMINATIVE DICTIONARIES (K-SLD2)

Here we introduce K-SLD2, an efficient and effective
method for learning discriminative dictionary pairs for clas-
sifying two-dimensional signals Y ∈ Rm1×m2 in (2). For L
number of classes let K is the number of training samples
per class. We define Yi as a collection of K 2-D signals
corresponding to class i. That is,

Yi = {Y1i,Y2i, · · · ,YKi},

for i = 1, · · · , L and Yji ∈ Rm1×m2 is the jth signal
belonging to class i.

We suppose that each class corresponds to a differ-
ent subspace. Thus, our objective is to learn the struc-
tured dictionary pairs A = {A1,A2, · · · ,AL} and B =
{B1,B2, · · · ,BL} that describe the training data. We de-
fine the set of structured dictionary pairs as (A,B) =
{(A1,B1), (A2,B2), · · · , (AL,BL)}, where (Ai,Bi) is the
class-specific sub-dictionary pair associated with class i.

Let X = {S1, S2, · · · , SL} be a set of coefficient matrices
for each signal, where Si = {X1i, X2i, . . . , XKi} is the sub-
matrix containing the coefficients of all the training samples Yi
belongs to a class i over the dictionary pair (A,B). We write,
Xji = {X1

ji,X
2
ji, · · · ,XL

ji} a representation of signal j of
class i over the dictionary pair (A,B), where Xl

ji ∈ Rn1×n2 is
the coefficient of a training sample Yji over the dictionary
pair (Ak,Bk). That is, (A,B) represent an overcomplete
dictionary, and we learn coefficients such that

Yji =

L∑
l=1

K∑
j=1

AiX
l
jiB

T
i . (49)

Algorithm Description: We want the dictionaries to have
both high reconstruction power and high discriminative power.
To encourage discriminability, we want a signal Yi to be
well represented by the class-specific dictionary (Ai,Bi), and
(comparatively) poorly represented by the other dictionaries
(Al,Bl), l 6= i. Here, AlX

l
jiB

T
l denotes the representation of

the training sample Yji over the lth dictionary pair. Then, the
dictionaries discriminate well if ||Yji−AlX

l
jiB

T
l ||2 is small

for i = l and large for i 6= l. This leads to a optimization
problem:

min
{A,B,X}

L∑
i=1

K∑
j=1

(
||Yji −

L∑
l=1

AlX
l
jiB

T
l ||2F+

||Yji −AiX
i
jiB

T
i ||2F + µ

L∑
l=1,l 6=i

||AlX
l
jiB

T
l ||2F

)
. (50)

The first term in (50) encourages the representation power
of the joint, overcomplete dictionary, whereas the second and
third terms encourage the discrimination power of the class-
specific dictionaries. This problem is jointly nonconvex, but
it is convex in the individual variables A,B,X when the other
are fixed. We solve (50) by alternating between the variables,
solving the individual convex problem, and iterating until
convergence. Thus, we divide (50) into three subproblems:
updating X while fixing A and B; updating A while fixing X
and B; and updating B while fixing X and A. Each subproblem
further has a closed-form solution. The solution to the first
subproblem is

A∗i =
1

4

K∑
j=1

4Yji −
L∑

l=1,l 6=i

AlX
l
jiB

T
l

BiX
i
ji× N∑

j=1

Xi
jiB

T
i (Xi

jiB
T
i )T

−1

. (51)
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Then, the solution to the second subproblem is

B∗i =
1

4

K∑
j=1

4YT
ji −

L∑
l=1,l 6=i

Bl(A
∗
lX

l
ji)

T

A∗iX
i
ji× N∑

j=1

(A∗iX
i
ji)

TA∗iX
i
ji

−1

. (52)

Finally, the solution to the third subproblem is, for i = l

(Xi
ji)
∗ =

1

2

(
(A∗i )

TA∗i
)−1

(A∗i )
T×

K∑
j=1

4Yji −
L∑

l=1,l 6=i

A∗lX
l
ji(B

∗
l )
T

B∗i
(
(B∗i )

TB∗i
)−1

,

(53)

and for i 6= l:

(Xl
ji)
∗ =

1

2

(
(A∗l )

TA∗l
)−1

(A∗l )
T×

K∑
j=1

2Yji −
L∑

t=1,t6=l

A∗tX
t
ji(B

∗
t )
T

B∗l
(
(B∗l )

TB∗l
)−1

.

(54)

These iterations continue until changes in the objective func-
tion are sufficiently small.

(a) (b)

Fig. 1: Convergence performance on extended YaleB face
recognition dataset. (a) shows the overall reconstruction error;
(b) shows the in-class and the out-of-class reconstruction error.

Convergence: This procedure is guaranteed to converge
in terms of the objective function value via the following
argument. Because each subproblem is convex, the value of the
objective function is nondecreasing as iterations proceed. Fur-
thermore, because the objective function is bounded below, the
nondecreasing sequence of function values must converge. A
sample trajectory is shown in Fig. 1a. Here, K-SLD2 is trained
on the extended YaleB dataset. The overall reconstruction error
is shown in (50), whereas Fig. 1b, shows both that the signal
Yi is well represented by the dictionary pair (Ai,Bi) and as
the number of iterations increases the other dictionary pairs
(Al,Bl), l 6= i start loosing their ability to represent Yi.

Classification Procedure: Given a test signal Y to classify,
we first find the coefficient matrices for each class using

{X̂i} = arg min
{Xi}Li=1

||Y −
L∑
l=1

AlX
lBT

l ||2F . (55)

This problem is convex and has a closed-form solution. Then,
we compute the reconstruction error for each class-specific
dictionary:

ei = ||Y −AiX̂
iBT

i ||2F . (56)

Finally, we make the prediction k̂ = arg mini=1,··· ,L(ei); i.e.,
the class with the smallest reconstruction error.

Computational Complexity: In this analysis we use the
fact that: 1) if A ∈ Rm1×n1 and X ∈ Rn1×n2 then the
matrix multiplication AX has complexity m1n1n2. 2) if a
non singular matrix A ∈ Rn1×n1 , then A−1 has complexity
n3

1. We obtain a complexity (in terms of matrix multiplications
and additions) of

O(KLn1m2(m1 + n2)).

If we assume m1 = m2 =
√
m and n1 = n2 =

√
n then the

complexity becomes

O(KL(m
√
n+ n

√
m)).

Which is a reduction when compared to standard subspace
learning with computational complexity of O(KLnm).

VI. NUMERICAL RESULTS

In this section, we evaluate first demonstrate that the empir-
ical classification performance, when the classes are perfectly
known, agrees with the diversity order and bounds derived
above. Then, we demonstrate the learning and classification
performance of K-SLD2 on both synthetic and real-world data.

A. Diversity Order

1) Synthetic Data: We randomly choose two classes by
drawing matrix pairs Ai and Bi independently from the
distribution in (7). Then, we draw data samples i.i.d. from
the class-conditional densities in (3). We classify each data
sample by minimizing the Mahalanobis distance associated
with the covariance of each class-conditional density. We
consider five cases, in which we fix m1 = m2 = m and vary
n1 and n2. In Fig.2 we plot the misclassification probability Pe
against the SNR in dB, averaged over 105 random draws from
each class. We also plot the upper bound on misclassification
probability in terms of principal angles for each case described
in (??). Where dotted colored line shows the misclassification
probability associated with the corresponding solid line for
each case. In each case, the empirical performance agrees with
the diversity predictions with an offset. This offset is large
when the ambient signal dimension is small and with large
dimensions this offset approaches to zero.

B. Dictionary Learning Algorithm

In this section we evaluate the performance of K-SLD2 algo-
rithm on synthetic data and two real world datasets: extended
YaleB face dataset [40] and the UCI EEG dataset [41], which
differentiates the EEG signals of control patients and those
who suffer from alcoholism. We compare the performance
to state-of-the-art dictionary learning methods such as FDDL
[26], DLSI [13], LRSDL [27], standard subspace learning
(SSL) using (1) as a baseline method, and the standard kernel
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Fig. 2: Misclassification probability Pe Vs. SNR

support vector machine (SVM). We perform learning and
classification on unprocessed signals. When appropriate, we
choose model hyper-parameters via cross-validation.

1) Synthetic data: We consider two class classification
problem where we draw two matrix pairs Ai and Bi inde-
pendently from (7) and draw data samples i.i.d from the class-
conditional densities in (3). For this experiment we choose the
dimensions of the signal to be 32× 32 which lies on the row
and column subspaces of dimension 13 and 17, respectively.
For each class we draw 10 samples for training/dictionary
learning and 50 samples for testing. In total we have 60
samples per class. For learning K-S dictionaries using K-SLD2

we use the 2-D signal as it is while for the other learning
algorithms we first vectorize the signal (dimension 1024× 1).
Fig. 3 compares the performance of learned dictionaries using
different methods as the SNR decreases. When the noise power
is low, that is, ≤ 101, standard subspace learning and K-SLD2

performs equally well, but as the noise power increases a
significant gain in performance is observed as evident in Fig.
3. We find best classification performance for SVM with
polynomial kernel of degree 3.

Fig. 3: Classification accuracy Vs. SNR for synthetic data

2) Face Recognition: The extended YaleB dataset consists
of 2,414 frontal face images from 38 individuals captured
under varying lighting conditions. For each class, we use

10 images for training/dictionary learning and the remaining
54 images for testing. In Figure 4 we show the dictionaries
learned by K-SLD2 vs. a standard subspace learning model,
and we observe that the standard model learns dictionary
atoms that look similar to a few reference faces for each class,
whereas the K-SLD2 learns more abstract dictionary atoms.
This is in part due to imposition of the Kronecker structure
on the dictionary atoms, as well as the larger number of atoms
possible in a K-S dictionary.

(a) (b)

Fig. 4: A subset of dictionary atoms learned by (a) K-SLD2

model, and (b) standard subspace model.

(a)

(b)

Fig. 5: Performance on extended YaleB dataset (a) classifica-
tion accuracy (b) normalized reconstruction error

The best hyper-parameters for K-SLD2 turn out to be n1 =
13, n2 = 17, and µ = 0.9. For standard subspace model,
we obtain the best classification accuracy for 10 dictionary
atoms. The K-SLD2 uses more atoms overall, but each atom
is described by fewer parameters. In Table I, we compare the
classification accuracy of K-SLD2 with the other dictionary
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SSL DLSI FDDL LRSDL SVM K-SLD2

Test sample
classification accuracy (%) 79.36 85.62 88.43 88.14 80.43 88.86

Number of
parameters for representation 102400 102400 102400 ∼102400 ∼102400 9600

Average training
time (sec) 0.034 1.2697 9.3254 50.5129 2.234 0.111035

Normalized
reconstruction error 0.290 0.363 0.346 0.376 — 0.178

TABLE I: Comparison between different approaches for extended YaleB face recognition dataset.

learning methods. K-SLD2 offers better performance in this
case, rather close to FDDL and correctly classify 11.16% of
the images than the baseline method. Furthermore, K-SLD2

learns a much more compact model, needing on the order of
1/10th of the parameters of any other method.

We also calculate the normalized reconstruction error
(NRE) for all the learning algorithms as follows:

NRE =
||Y − Ŷ||2

||Y||2
,

where Y is the signal of interest and Ŷ is the reconstructed
signal. Table I shows that K-SLD2 provides the smallest
NRE, reducing the error by 38.19% over the baseline. Finally,
we observe that the computational complexity, measured in
training runtime on a standard desktop computer, is small.
LRSDL method requires 50.51 seconds for training while
K-SLD2 model requires only 0.11 seconds.

(a)

(b)

Fig. 6: Performance on EEG Signal dataset (a) classification
accuracy (b) normalized reconstruction error

We show the classification and representation performance
as a function of the size of the training set in Figs. 5a and
5b, respectively. When the number of samples for training
is very small, say 10 samples per class, K-SLD2 model
performance is superior, owing in part to the compact model.
However, other methods outperform K-SLD2 as the number of
samples increases. On the other hand, the reconstruction error
of K-SLD2 model is always smaller than other methods for
any number of training samples as evident in Fig. 5b. In Fig.
7, we show a subset of raw YaleB face images used for the
reconstruction and classification and compare the performance
of K-SLD2 with SSL, where face in white box are the ones
with the wrong label prediction.

3) EEG Dataset: We evaluate the performance of K-SLD2

on the UCI EEG dataset [41], where EEG from the brain were
recorded by placing the 64 electrodes on the scalp sampled at
256 Hz for 1 second to examine the correlation of EEG signal
to an individual’s alcoholism. Here, we obtain a 2-D signal
with electrodes on one axis and the corresponding electrical
signal time series on the other. This classification problem
is analogous to binary classification having two categories of
individuals either belongs to alcoholism or controlled group.
The full datasets contains 120 trials for 122 subjects. Similar
to YaleB face recognition dataset, we use 10 signals per class
for training/dictionary learning and the remaining images for
testing and find the value of n1 = 10 and n2 = 6 using cross-
validation.

We compare the performance of K-SLD2 in Table II with
other dictionary learning methods. Again, K-SLD2 gives bet-
ter classification performance and requires very few model
parameters. In terms of NRE, K-SLD2 reconstruction error
is less than 41% of the best among the other methods.
We obtain this performance gain for K-SLD2 because the
dictionaries with separable structure are very good at signal
representation [30]. Similarly, we plot the classification and
reconstruction accuracy in Figs. 6a and 6b, respectively. Here,
by contrast to YaleB, we observe competitive performance for
a larger number of training samples, due perhaps to the explic-
itly multidimensional nature of EEG signals. Reconstruction
performance, measured in NRE, remains superior to other
methods.

VII. CONCLUSION

We derive the performance limits on the classification
performance of Kronecker-structured models. We derive an
exact expression for the slope of misclassification probability
as the noise power goes to zero. In high SNR regime, we
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(a) (b) (c)

Fig. 7: (a) A subset of test samples; (b) Image reconstruction and classification using K-S dictionary (K-SLD2); (c) Image
reconstruction and classification using standard subspace dictionary; {White box indicates incorrect classification}

SSL DLSI FDDL LRSDL SVM K-SLD2

Test sample
classification accuracy (%) 64 66.25 67.5 65 64.9 68.25

Number of
parameters for representation 163840 163840 163840 ∼ 163840 ∼ 163840 2176

Average training
time (sec) 0.012 0.9546 3.4301 128.6921 1.12 0.04

Normalized
reconstruction error 0.290 0.363 0.346 0.50 — 0.178

TABLE II: Comparison between different approaches on EEG signal dataset

derive a more accurate and tighter bound on misclassification
probability which is determined by the product of princi-
pal angles between Kronecker subspaces. We determine the
upper and lower bounds on the rate at which the number
of classes can grow as the signal dimension goes to infin-
ity. We have also proposed a dictionary learning algorithm
K-SLD2, for fast classification and compact representation of
multidimensional signals. This algorithm balances the learning
of class-specific, Kronecker-structured subspaces against the
learning of an general overcomplete dictionary that allows for
the representation of general signals. Finally we show that
K-SLD2 has improved classification performance over state-
of-the-art dictionary learning methods, especially when the
size of the training set is small, and competitive reconstruction
performance in general.

APPENDIX A
DIVERSITY ORDER GAP

Given the K-S diversity order dK-S and the standard sub-
space diversity order dSTD. We derive the diversity gap

γ = −[2n1n2 −m1m2]+ + [2n1 −m1]+[2n2 −m2]+,

in terms of signal dimensions for different regions:
Region 1: m1 > 2n1 and m2 > 2n2

Since m1 > 2n1 and m2 > 2n2 therefore,
[2n1 −m1]+ = [2n2 − m2]+ = 0 and m1m2 > 4n1n2

makes [2n1n2 −m1m2]+ = 0.
Region 2: n1 < m1 < 2n1 and m2 > 2n2

Since m2 > 2n2 therefore, [2n2 − m2]+ = 0 also
m1 > n1 and m2 > 2n2 implies m1m2 > 2n1n2 therefore,
[2n1n2 − m1m2]+ = 0.

Region 3: n2 < m2 < 2n2 and m1 > 2n1

Using the similar argument the diversity gap is 0.
Region 4: n1 < m1 < 2n1 and n2 < m2 < 2n2

Since n1 < m1 < 2n1 and n2 < m2 < 2n2 implies that
n1n2 < m1m2 < 4n1n2, this gives rise to two different
subregions which are m1m2 > 2n1n2 and m1m2 < 2n1n2.
For m1m2 > 2n1n2, n1 < m1 < 2n1 and n2 < m2 < 2n2

which implies [2n1n2 −m1m2]+ = 0 we derive the diversity
order gap as:

γ = −[2n1n2 −m1m2]+ + [2n1 −m1]+[2n2 −m2]+

= (2n1 −m1)(2n2 −m2).

On the other hand if m1m2 < 2n1n2, n1 < m1 < 2n1 and
n2 < m2 < 2n2,

γ = −[2n1n2 −m1m2]+ + [2n1 −m1]+[2n2 −m2]+

= −(2n1n2 −m1m2) + (2n1 −m1)(2n2 −m2)

= 2(m1 − n1)(m2 − n2).

APPENDIX B
INTERSECTION OF KRONECKER SUBSPACES

Here we characterize the dimension of intersections of
subspaces spanned by Kronecker products of matrices. To
the best of our knowledge this result is not in the literature,
although its statement is intuitive.

Lemma 4. Suppose dim[R(Ai)
⋂
R(Aj)] = x and

dim[R(Bi)
⋂
R(Bj)] = y, where R(·) denotes the range

space of a matrix. Then,

dim[R(Bi ⊗Ai)
⋂
R(Bj ⊗Aj)] = xy. (57)
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Proof: From [39, p. 447] for p ∈ Rm1×n1 and q ∈
Rm2×n2 , we have

R(p⊗ q) = R(p⊗ Im2×m2
)
⋂
R(Im1×m1

⊗ q). (58)

Therefore, we can write the dimension as

dim
[
R(Bi ⊗Ai)

⋂
R(Bj ⊗Aj)

]
=

dim
[
R(Bi ⊗ Im1×m1

)
⋂
R(Im2×m2

⊗Ai)
⋂

R(Bj ⊗ Im1×m1
)
⋂
R(Im2×m2

⊗Aj)
]
. (59)

Rearranging terms, we obtain

dim
[
R(Bi ⊗Ai)

⋂
R(Bj ⊗Aj)

]
=

dim
[ [
R(Bi ⊗ Im1×m1

)
⋂
R(Bj ⊗ Im1×m1

)
]

⋂[
R(Im2×m2

⊗Ai)
⋂
R(Im2×m2

⊗Aj)
] ]
. (60)

Next, let Aij and Bij be matrices whose column spans
are R(Ai)

⋂
R(Aj) and R(Bi)

⋂
R(Bj), respectively. It is

straightforward to verify that

R(Bi⊗ Im1×m1)
⋂
R(Bj ⊗ Im1×m1) = R(Bij ⊗ Im1×m1),

(61)
and

R(Im2×m2 ⊗Ai)
⋂
R(Im2×m2 ⊗Aj) = R(Im2×m2 ⊗Aij).

(62)
Therefore, we can rewrite the subspace dimension as

dim
[
R(Bi ⊗Ai)

⋂
R(Bj ⊗Aj)

]
=

dim
[
R(Bij ⊗ Im1×m1

)
⋂
R(Im2×m2

⊗Aij)
]
. (63)

Next, we can apply the lemma of [39, p. 447] in reverse,
yielding

dim[R(Bi ⊗Ai)
⋂
R(Bj ⊗Aj)] = dim[R(Bij ⊗Aij)]

= r(Bij) · r(Aij)

= xy.

APPENDIX C
PROOF OF THEOREM 2

Expanding the Bhattacharyya bound from (15) we obtain the
misclassification probability bound in terms of λij the nonzero
eigenvalues of DiD

T
i + DjD

T
j in (18) as:

Pe(Di,Dj) ≤
1

2

(
1

σ2

)− r∗ij−n1n2

2

·

( ∏r∗ij
l=1(λijl + σ2)√∏n1n2

l=1 (λil + σ2) ·
∏n1n2

l=1 (λjl + σ2)

)− 1
2

= 2
n1n2−2

2 ·
(

1

σ2

)− r∗ij−n1n2

2

·

( ∏r∗ij
l=1 λijl√∏n1n2

l=1 λil ·
∏n1n2

l=1 λjl

)− 1
2

+ o((σ2)
r∗ij−n1n2

2 )

(64)

Now, our aim is to expand
∏r∗ij
l=1 λijl in terms of principal

angles.

r∗ij∏
l=1

λijl = pdet(Ui,∩λi,∩U
T
i,∩ + Uj,∩λj,∩U

T
j,∩+

Ui,\λi,\U
T
i,\ + Uj,\λj,\U

T
j,\).

As the image of Ui,∩ is orthogonal to Ui,\ we can write:

r∗ij∏
l=1

λijl = pdet(Ui,∩λi,∩U
T
i,∩ + Uj,∩λj,∩U

T
j,∩)×

pdet(Ui,\λi,\U
T
i,\ + Uj,\λj,\U

T
j,\).

Following few simple mathematical steps as described in [33]
we obtain:

r∗ij∏
l=1

λijl = pdet(Ui,∩λi,∩U
T
i,∩+Uj,∩λj,∩U

T
j,∩) · det(λi,\)×

det(λ
1
2

j,\(I− U
T
j,\Ui,\U

T
i,\Uj,\)λ

1
2

j,\).

By expanding Ui,∩, Uj,∩, Ui,\, Uj,\ in terms of their row and
columns subspace Kronecker products and then following
some simple Kronecker product properties we obtain:

r∗ij∏
l=1

λijl = pdet(Ui,∩λi,∩U
T
i,∩+Uj,∩λj,∩U

T
j,∩) · det(λi,\)×

det(λ
1
2

j,\(I−(UATj,\ U
A
i,\U

AT
i,\ U

A
j,\)⊗(UBTj,\ U

B
i,\U

BT
i,\ U

B
j,\))λ

1
2

j,\).

By careful inspection of det(UATj,\ U
A
i,\U

AT
i,\ U

A
j,\) we find that

product of eigenvalues of (UATj,\ U
A
i,\)(U

AT
j,\ U

A
i,\)

T is the square
of the singular values of (UATj,\ U

A
i,\) and are the cosines square

of the principal angles between the subspaces. Therefore we
obtain:

r∗ij∏
l=1

λijl = pdet(Ui,∩λi,∩U
T
i,∩ + Uj,∩λj,∩U

T
j,∩)×

n1n2−r∩∏
l=1

λi,\,l ·
n1n2−r∩∏
l=1

λj,\,l ·
n1n2∏
l=r∩+1

(1− cos2(θl)).

In terms of principal angles of individual row and column
subspaces we obtain:

r∗ij∏
l=1

λijl = pdet(Ui,∩λi,∩U
T
i,∩ + Uj,∩λj,∩U

T
j,∩)×

n1n2−r∩∏
l=1

λi,\,l

n1n2−r∩∏
l=1

λj,\,l

n1∏
l=t1+1

n2∏
l=t2+1

(1−cos2(θAl ) cos2(θBl )).

Substituting this in (64), we obtain the desired results as stated
in Theorem 2.
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