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Abstract—In this paper, we propose a successive convex approximation
framework for sparse optimization where the nonsmooth regularization
function in the objective function is nonconvex and it can be written as the
difference of two convex functions. The proposed framework is based on a
nontrivial combination of the majorization-minimization framework and
the successive convex approximation framework proposed in literature
for a convex regularization function. The proposed framework has
several attractive features, namely, i) flexibility, as different choices of
the approximate function lead to different types of algorithms; ii) fast
convergence, as the problem structure can be better exploited by a proper
choice of the approximate function and the stepsize is calculated by the
line search; iii) low complexity, as the approximate function is convex
and the line search scheme is carried out over a differentiable function;
iv) guaranteed convergence to a stationary point. We demonstrate these
features by two example applications in subspace learning, namely, the
network anomaly detection problem and the sparse subspace clustering
problem. Customizing the proposed framework by adopting the best-
response type approximation, we obtain soft-thresholding with exact line
search algorithms for which all elements of the unknown parameter are
updated in parallel according to closed-form expressions. The attractive
features of the proposed algorithms are illustrated numerically.

Index Terms—Big Data, Line Search, Majorization Minimization,
Nonconvex Regularization, Successive Convex Approximation

I. INTRODUCTION

In this paper, we consider the following optimization problem

minimize h(x) £ f(x) + g(x), (1)

xEXCRK
where f is a smooth function and g is a nonsmooth function, and the
constraint set X is closed and convex. Such a formulation plays a
fundamental role in parameter estimation, and typically f models
the estimate error while g is a regularization (penalty) function
promoting in the solution a certain structure known a priori such as
sparsity [1]. Among others, the linear regression problem is arguably
one of the most extensively studied problems and it is a special
case of (2) by setting f(x) = 1 ||Ax — y||3 and g(x) = \|x[,,
where A € RV*X is a known dictionary and y € R¥*! is the
available noisy measurement. Many algorithms have been proposed
for the linear regression problem, for example, the fast iterative soft-
thresholding algorithm (FISTA) [2], the block coordinate descent
(BCD) algorithm [3], the alternating direction method of multiplier
(ADMM) [4], proximal algorithm [5] and the parallel BCD algorithm
with exact line search [6].

In linear regression, the function f(x) = 1 [[Ax — y|l5 is convex
in x. This is generally desirable in the design of numerical algorithms
solving problem (1) iteratively. However, this desirable property is not
available in many other applications where we have to deal with a

nonconvex f. Consider for example the linear regression model where
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we assume that the dictionary A is unknown and treated as a variable.
In this case, the objective function f(A,x) = 3 [|[Ax — yl3 is a
nonconvex function in (A, x) and the problem is known as Dictionary
Learning. An additional difficulty is that the gradient of f(A,x)
with respect to (w.r.t.) (A, x) is no longer Lipschitz continuous. In
nonlinear regression problems [7], f(x) is in general a nonconvex
function, for example, f(x) = 1 [|o(Ax) — b||5 and o is a given
function specifying the nonlinear regression model, e.g., the cosine
or sigmoid function.

When the function f is nonconvex, the above mentioned algorithms
must be re-examined. For example, the FISTA algorithm no longer
converges, and the generalized iterative soft-thresholding algorithm
(GIST) has been proposed instead [7]. However, as a proximal type
algorithm, the GIST algorithm suffers from slow convergence [2].
The block coordinate descent (BCD) algorithm usually exhibits a
faster convergence because the variable update is based on the so-
called nonlinear best-response [8]: the variable x is partitioned into
multiple block variables x = (xk)kK:l, and in each iteration of the
BCD algorithm, one block variable, say X, is updated by its best-
response X, ' = argminy, h(x{T L X xe, xh g, X))
(i.e., the optimal point that minimizes h(x) w.rt. the variable xy
only while the remaining variables are fixed to their values of the
preceding iteration) while all block variables are updated sequentially.
Its convergence is guaranteed under some sufficient conditions on
f and g [3, 9, 10, 11], and due to its simplicity, this method
and its variants have been successfully adopted to many practical
problems including the network anomaly detection problem in [12].
Nevertheless, a major drawback of the sequential update is that it
may incur a large delay because the (k + 1)-th block variable xj4+1
cannot be updated until the k-th block variable xj is updated and
the delay may be very large when K is large, which is a norm rather
than an exception in big data analytics [13].

A parallel variable update based on the best-response (also known
as the Jacobi algorithm [8] or the parallel BCD algorithm [14]) seems
attractive as a mean to speed up the updating procedure, however,
sufficient conditions guaranteeing the convergence of a parallel BCD
algorithm are known for smooth problems only (that is, g(x) = 0)
and they are rather restrictive, for example, f is convex and satisfies
the diagonal dominance condition [8]. However, it has been shown in
some recent works [9, 14, 15, 16] that if a stepsize is employed in the
variable update, the convergence conditions can be notably relaxed,
for example, f could be nonconvex. There the notion of approximate
functions play a fundamental role: a sequence of successively refined
approximate problems are solved, and the algorithm converges to
a stationary point of the original problem (1) for a number of
choices of approximate functions, including the best-response type
approximation, as long as they satisfy some assumptions on, e.g.,
(strong or strict) convexity, hence the name of the successive convex
approximation (SCA) framework [9, 15, 16].

The performance of the SCA algorithms in [15, 16] is largely
dependent on the choice of the stepsizes, namely, exact/successive
line search and diminishing stepsizes such as constant stepsizes and
diminishing stepsizes. The exact line search scheme (also known
as minimization rule) and the successive line search scheme (also
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known as the Armijo rule) are widely used for smooth problems (see
[17]) and adopted in [9]. However, when the traditional exact line
search is directly extended to the nonsmooth problems, a nonconvex
nonsmooth optimization problem must be solved and the complexity
is thus high (see for example [14, Sec. III-D]). The successive line
search has a lower complexity, but it typically consists of evaluating
the nonsmooth function g several times for different stepsizes per
iteration [16, Remark 4], which might be computationally expensive
for some g such as the nuclear norm [18] because of the large
dimension. Diminishing stepsizes has the lowest complexity, but
sometimes they are difficult to deploy in practice because the conver-
gence behavior is sensitive to the decay rate [6]. As a matter of fact,
the applicability of SCA algorithms in big data analytics is severely
limited by the meticulous choice of stepsizes [13]. Furthermore, to
apply the diminishing stepsizes, the function f must have a Lipschitz
continuous gradient (i.e., there exists a finite constant Lv s such that
IVFf(x) = Vf(y)l < Lvys|x—y] for all x,y € X), and this
assumption is not satisfied for many applications, for example in
Dictionary Learning where f(A,x) = 1 ||Ax — y|5 and X = R¥.

To reduce the complexity of the traditional line search schemes
and avoid the parameter tuning of the diminishing stepsize rules, an
efficient line search scheme is proposed in [6]: the exact line search is
carried out over a properly constructed differentiable function, while
in the successive line search, the approximate function only needs to
be optimized once. The line search schemes in [6] are much easier to
implement, and closed-form expressions exist for many applications.
Besides this, the assumption on the strong or strict convexity of the
approximate functions made in [15, 16] is also relaxed to convexity
in [6].

Another popular algorithm for problem (1) in big data analytics is
the alternating direction method of multipliers (ADMM) [4], but it
does not have a guaranteed convergence to a stationary point if the
optimization problem (1) is nonconvex [19]. There is some recent
development in ADMM for nonconvex problems, see [20, 21] and
the references therein. Nevertheless, the algorithms proposed therein
are for specific problems and not applicable in a broader setup. For
example, the ADMM algorithm proposed in [20] is designed for
nonconvex sharing/consensus problems, and the ADMM algorithm
proposed in [21] converges only when the dictionary matrix has full
row rank, which is generally not satisfied for the network anomaly
detection problem [12].

So far we have assumed that the regularization function g in (1)
is convex, for example, the ¢;-norm function, as it has been used as
a standard regularization function to promote sparse solutions [22].
However, it was pointed out in [23, 24] that the ¢;-norm is a loose
approximation of the £p-norm and it tends to produce biased estimates
when the sparse signal has large coefficients. A more desirable
regularization function is singular at the origin while flat elsewhere.
Along this direction, several nonconvex regularization functions have
been proposed, for example, the smoothly clipped absolute deviation
[23], the capped ¢1-norm [25], and the logarithm function [26]; we
refer the interested reader to [27] for a more comprehensive review.

The nonconvexity of the regularization function g renders many
of the above discussed algorithms inapplicable, including the SCA
framework [6], because the nonsmooth function g is assumed to be
convex. It is shown in [27] that if the smooth function f is convex and
the nonconvex regularization function g can be written as the sum of a
convex and a concave function, the classic majorization-minimization
(MM) method can be applied to find a stationary point of (1): firstly
in the majorization step, an upper bound function is obtained by
linearizing the concave regularization function, and then the upper
bound function is minimized in the minimization step; see [28] for
a recent overview article on the MM algorithms. Nevertheless, the

minimum of the upper bound cannot be expressed by a closed-form
expression and must be found iteratively. The MM method is thus
a two-layer algorithm that involves iterating within iterations and
has a high complexity: a new instance of the upper bound function
is minimized by iterative algorithms at each iteration of the MM
method while minimizing the upper bound functions repeatedly is
not a trivial task, even with a warm start that sets the optimal point
of the previous instance as the initial point of the new instance.

To reduce the complexity of the classic MM method, an upper
bound function based on the proximal type approximation is designed
in [29] and it is much easier to optimize (see [30] for a more general
setup). Although the algorithm converges to a stationary point, it
suffers from several limitations. Firstly, the convergence speed with
the proximal type upper bound functions is usually slower than some
other approximations, for example, the best-response approximation
[6]. Secondly, the proximal type upper bound function minimized in
each iteration is nonconvex, and it may not be easy to optimize except
in the few cases discussed in [29]. Thirdly, the function f must have
a Lipschitz continuous gradient.

In this paper, we study problem (1) and focus on the case that
the smooth function f is nonconvex and the nonsmooth nonconvex
regularization function g is the difference of two convex functions;'
a recent work [33] shows that such a decomposition exists for a
large class of nonconvex regularization functions g. We propose a
SCA framework and it is based on a nontrivial combination of the
SCA framework for a convex g proposed in [6] and standard MM
framework [28]. In particular, in each iteration, we first construct a
(possibly nonconvex) upper bound of the original function A by the
standard MM method, and then minimize a convex approximation
of the upper bound which can be constructed by the standard SCA
framework [6]. On the one hand, this is a beneficial combination be-
cause the approximate function is typically much easier to minimize
than the original upper bound function and the proposed algorithm is
thus a single layer algorithm if we choose an approximate function
such that its minimum has a closed-form expression. On the other
hand, this is a challenging combination because the convergence
of the proposed algorithms can no longer be proved by existing
techniques. To further speed up the convergence, we design a line
search scheme to calculate the stepsize with an affordable complexity
by generalizing the line search schemes proposed in [6] for a convex
g. The proposed framework has several attractive features, namely,

o flexibility, as the approximate function does not have to be
a global upper bound of the original objective function and
different choices of the approximate functions lead to different
types of algorithms, for example, proximal type approximation
and best-response type approximation;

 fast convergence, as the problem structure can be better exploited
by a proper choice of the approximate function, and the stepsize
is calculated by the line search;

o low complexity, as the approximate function is convex and easy
to optimize, and the proposed line search scheme over a properly
constructed differentiable function is easier to implement than
traditional schemes which are directly applied to the original
nonconvex nonsmooth objective function;

e guaranteed convergence to a stationary point, even when the
function f does not have a Lipschitz continuous gradient, as
long as the approximate function is convex and satisfies some
other mild assumptions on gradient consistency and continuity.

We then illustrate the above attractive features by customizing the
proposed framework for two example applications in subspace learn-
ing, namely, the network anomaly detection problem and the sparse

'Some preliminary results of this paper have been presented at [31, 32].
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subspace clustering problem, where both the optimal point of the
(best-response type) approximate functions and the stepsize obtained
from the exact line search have closed-form expressions.

The rest of the paper is organized as follows. In Sec. II we
introduce the problem formulation and the example applications. The
novel SCA framework is proposed and its convergence is analyzed
in Sec. III. In Sec. IV and Sec. V, two example applications, the
network anomaly detection problem through sparsity regularized rank
minimization and the subspace clustering problem through capped ¢; -
norm minimization, are discussed, both theoretically and numerically.
The paper is concluded in Sec. VI.

Notation: We use x, x and X to denote a scalar, vector and matrix,
respectively. We use X i to denote the (j, k)-th element of X; x
is the k-th element of x where x = (rk)szl, and x_j, denotes all
elements of x except Tx: X_ = (xj)f:L#k. We denote x™* as
the element-wise inverse of x, i.e., (x '), = 1/x. Notation X o y
and X ® Y denotes the Hadamard product between x and y, and
the Kronecker product between X and Y, respectively. The operator
[x]2 returns the element-wise projection of x onto [a, b]: [x]2 £
max(min(x, b), a). We denote d(X) as the vector that consists of
the diagonal elements of X. We denote diag(x) and diag(X) as a
diagonal matrix whose diagonal elements are as same as those of x
and X, respectively. We use 1 to denote a vector with all elements
equal to 1. The sign function sign(z) =1 if z > 0, 0 if x = 0, and
—1if < 0, and sign(x) = (sign(xx))k.

II. PROBLEM FORMULATION

In this section, we formally introduce the problem that will be
tackled in the rest of the paper. In particular, we assume g(x) in (1)
can be written as the difference of two convex functions, and consider
from now on the following problem:

minimize h(x) 2 f(x) + 9" (x) — g~ (), @)
xeX N—_——™X ™ @
g(x)

where

o f is a proper and differentiable function with a continuous
gradient,

e g7 and g~ are convex functions, and

o X is a closed and convex set.

Note that f(x) is not necessarily convex, and g* (x) and g~ (x) are
not necessarily differentiable.

We aim at developing efficient iterative algorithms that converge
to a stationary point x* of problem (2) that satisfies the first order
optimality condition:

(x—x")(VFx)+£7(x") - ¢ (x7) >0,Vx € X,

where £ (x) and £ (x) is a subgradient of g¥(x) and g~ (x),
respectively. Note that a convex function always has a subgradient.

A. Example Application: Network Anomaly Detection Through Spar-
sity Regularized Rank Minimization

Consider the problem of estimating a low rank matrix X € RV*¥
and a sparse matrix S € R’”*¥ from the noisy measurement Y €
RN <K which is the output of a linear system:

Y =X+DS+V,

where D € RY*7 is known and VV*¥ is the unknown noise.
The rank of X is much smaller than N and K, i.e, rank(X) <

min(N, K), and the support size of S is much smaller than IK,

ie., [|S]|, < IK. A natural measure for the estimation error is the

least square loss function augmented by regularization functions to
promote the rank sparsity of X and support sparsity of S:

L 1
minimize §||X+DS—YH%+)\HXH*+N||SH17 (€)

where || X||, is the nuclear norm of X. Problem (3) plays a fundamen-
tal role in the analysis of traffic anomalies in large-scale backbone
networks [12]. In this application, D is a given binary routing matrix,
X = RZ where Z is the unknown traffic flows over the time horizon
of interest, and S is the traffic volume anomalies. The matrix X
inherits the rank sparsity from Z because common temporal patterns
among the traffic flows in addition to their periodic behavior render
most rows/columns of Z linearly dependent and thus low rank, and
S is assumed to be sparse because traffic anomalies are expected
to happen sporadically and last shortly relative to the measurement
interval, which is represented by the number of columns K.
Problem (3) is convex and it can be solved by the SCA algorithm
proposed in [18], which is a parallel BCD algorithm with exact line
search. Although it presents a much lower complexity than standard
methods such as proximal type algorithms and BCD algorithms, it
may eventually become inefficient due to the use of complex models:
computing the nuclear norm ||X||, has a cubic complexity and is
unaffordable when the problem dimension is large. Furthermore,
problem (3) is not suitable for the design of distributed and/or parallel
algorithms because the nuclear norm ||X]|, is neither differentiable
nor decomposable among the blocks of X (unless X is Hermitian).
It follows from the identity [34, 35]

1
IXIl, = min & (IPI% +lIQll%) , st PQ=X

(P.Q)

that the low rank matrix X can be written according to the above
matrix factorization as the product of two low rank matrices P €
RN*? and Q € R?*X for a p that is larger than the rank of X but
usually much smaller than N and K rank(X) < p < min(N, K). It
may be useful to consider the following optimization problem where
the nuclear norm ||X||, is replaced by ||P||% + ||Q]|%, which is
differentiable and separable among its blocks:

| 2 | A 2 2
minimize 5 [PQ+DS = Y|[i. + 5 (IP[ + Q%) + » HSII(14~)

This optimization problem is a special case of (2) obtained by setting

1 A
f(P,Q,8) £ 5 [PQ+DS - Y[+ 5 (Il + 1QlI%)
g7 (8) £ p|Sll,, and g~ (S) = 0.

Although problem (4) is nonconvex, every stationary point of (4) is
an optimal solution of (3) under some mild conditions [19, Prop. 1].
We remark that the gradient of f(P,Q,S) wrt. (P,Q,S) is not
Lipschitz continuous.

Another way to enhance (3) is to replace the convex nuclear norm
of X by a general nonconvex regularization function:

N
A w(on(X)), s)

where k(z) is a concave and increasing function w.r.t. x > 0 with
#(0) = 0 while Vk is Lipschitz continuous and the number of points
at which Vk is not differentiable is finite. Note that in (5) we have
assumed w.l.o.g. that N < K. If k(x) = =, (5) reduces to the nuclear
norm A ||X]|, = )\Zﬁ;l on(X) in (3). In general, (0, (X)) is a
nonconvex function of X and some examples of x are given in [33,
Table I].
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Given the nonconvex regularization function (5), problem (3) is
modified in the following problem:

N
. 1 2
migimize L X + DS ¥[34 A Y w(oa (X)) + 4 81,

n=1
(6)

It is a special case of (2) obtained by setting
1
f(X,8) =5 X +DS - Y|,

9" (X,8) = Ao | X, +ulISll,
N
g (X) = Ao [IX]l, = AD_ w(on(X)),
n=1
where ko = V(0) and g~ (X, S) is convex and differentiable [33,
Prop. 5].

In Sec. IV, we will customize the proposed SCA framework to
design an iterative soft-thresholding with exact line search algorithm
for problems (4) and (6), which is essentially a parallel BCD
algorithm.

B. Example Application: Sparse Subspace Clustering Through
Capped {1-Norm Minimization

Consider the linear regression model
y=Ax+v,

where the dictionary A € RN*X is known and y € RNM*!
is the noisy measurement. To estimate x which is known to be
sparse a priori, we minimize the quadratic estimation error function
augmented by some regularization function to promote the sparsity of
x. A common routine is to use the ¢1-norm, which has however been
shown to yield biased estimates for large coefficients [25]. Alterna-
tives include for example the capped ¢1-norm function [25, 27, 29],
and the resulting optimization problem is as follows:
1 K
minixmize 3 |Ax -yl +u;min(|xk|,9). )

This optimization problem is a special case of (2) obtained by setting

1
Fx) £ 5 |Ax —b|2,

K K
g (x) £ uy lael, and g~ (x) £ p Y [wr| — min(|za],6),
k=1 k=1

where ¢~ (x) is a convex but nonsmooth function. A graphical
illustration of the functions g, g7 and g~ is provided in Fig. 1,
and interested readers are referred to [27, Fig. 2] for more examples.

When 0 is sufficiently large, problem (7) reduces to the standard
LASSO problem, which plays a fundamental role in sparse subspace
clustering problems [36] and can be solved efficiently by the SCA
algorithm proposed in [6]. In Problem (7), we take one step further
by considering the capped ¢1-norm and then in Sec. V, we customize
the proposed SCA framework to design an iterative soft-thresholding
with exact line search algorithm for problem (7), which is essentially
a parallel BCD algorithm.

III. THE PROPOSED SUCCESSIVE CONVEX APPROXIMATION
ALGORITHMS

In this section, we formally introduce the proposed SCA frame-
work for problem (2), where h is in general a nonconvex function
since f is not necessarily convex and g~ is convex, and h is in

4
p=2, 0=5
20 \ ‘ ‘ ‘ /
N IR
16 \ _——t / 7
\ 9" /

function value

variable x

Figure 1. Illustration of the capped ¢1-norm function and its decomposition

general a nonsmooth function since both g™ and g~ are assumed to
be nonsmooth.

At any arbitrary but given point x°, assume the subgradient of
g~ (x) is £ (x"). Since g~ is convex, it follows from the definition
of convex functions that

g ()29 () +x-x)E ) xex. @
Define h(x;x") as
A(x;x') £ f(x) =g~ (x") = (x =x)"&" (x") + g7 (x). )
We can readily infer from (8) that h(x;x") is a global upper bound
of h(x) which is tight at x = x":
h(x;x") > h(x), and A(x";x") = h(x"),Vx € X.  (10)

In the standard MM method for problem (2) proposed in [27], a
sequence of points {x'}: is generated by minimizing the upper bound
function h(x;x"):
x"T! = arg min h(x; x").
xXEX

amn

This and (10) imply that {h(x")}: is a decreasing sequence as
h(x") < h(x"Tx") < h(x';x") = h(x).

However, the optimization problem (11) is not necessarily easy to
solve due to two possible reasons: A(x;x") may be nonconvex, and
x'*! may not have a closed-form expression and must be found
iteratively (even when h(x;x") is convex).

The proposed algorithm consists of minimizing a sequence of
successively refined approximate functions. Given x’ at iteration t,
we propose to minimize a properly designed approximate function of
the upper bound function h(x;x"), denoted as h(x;x?):

h(xx") = fxx") = (x = x") €™ (x") + ¢ (%),
where f(x;x") is an approximate function of f(x) at x* that satisfies
several technical conditions that are in the same essence as those
specified in [6], namely,

(A1) The approximate function f (x; x") is convex in x for any given
xt e x;

(A2) The approximate function f(x;x') is continuously differen-
tiable in x for any given x* € X and continuous in x’ for any
x € X;

(A3) The gradient of f(x;x') and the gradient of f(x) are identical
at x = x' for any x' € X, i.e., Vi f(x';x') = Vi f(x1).
Comparing h(x;x") in (9) with (x;x") in (12), we see that replac-

ing f(x) in h(x;x") by its approximate function f(x;x") leads to

12)
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the proposed approximate function A (x; x*). Note that A (x; x*) is not
necessarily a global upper bound of h(x;x") (or the original function
h(x)), because according to Assumptions (A1)-(A3), f(x; x") does
not have to be a global upper bound of f(x).

At iteration ¢, the approximate problem consists of minimizing the
approximate function B(x; x") over the same constraint set X':

mi)r:ierr;ize f(x; x') — (x— Xt)Tﬁ_(Xt) +97(x).

13)

h(x;xt)

Since f(x; x') is convex by assumption (Al), (13) is a convex
optimization problem. We denote as Bx' an (globally) optimal
solution of (13) and as S(x") the set of (globally) optimal solutions:

Bx' € S(x') = {x* : x* € arg min ﬁ(x;xt)} . (14)
xXEX
Based on (14), we define the mapping Bx that is used to generate
the sequence of points in the proposed algorithm:

Xox+— Bx e X. (15)

Given the mapping Bx, the following properties hold.

Proposition 1 (Stationary point and descent direction). Provided that
Assumptions (Al)-(A3) are satisfied: (i) A point X' is a stationary
point of (2) if and only if x' € S(x") defined in (14); (ii) If x* is
not a stationary point of (14), then Bx' — x" is a descent direction
of h(x;x") at x = x* in the sense that
(Bx' —x")"(Vf(x') — € (x) +¢"(Bx") —g"(x") < 0. (16)
Proof: See Appendix A. |
If Bx’ — x* is a descent direction of h(x;x') at x = x°, there
exists a scalar v* € (0, 1] such that

h(x" + ' (Bx" — x")) < h(x"),

for which a formal proof is provided shortly in Proposition 2. This
motivates us to update the variable as follows

xtt=x' 4 7' (Bx" — x"). 17)
The function value h(x") is monotonically decreasing because
(a) _ _
h(x') < R(x"x") < h(x';x") &) h(x"), (18)

where (a) and (b) follow from (10).

There are several commonly used stepsize rules, for example, the
constant/decreasing stepsize rules and the line search. In this paper,
we restrict the discussion to the line search schemes because they
lead to a fast convergence speed as shown in [6]. On the one hand,
the traditional exact line search aims at finding the optimal stepsize,
denoted as fyf,p[ ("opt" stands for "optimal") that yields the largest
decrease of h(x) along the direction Bx' — x* [14]:

Ve 2 argmin h(x" +v(Bx' — x")) — h(x")
0<~<1

SO+ A(Bx - x))

(19a)

= argmin
0<~<1

+g"(x" +(Bx" —x"))
—g~ (x' +9(Bx" —x"))

Although it is a scalar problem, it is not necessarily easy to solve
because it is nonconvex (even when f(x) is convex) and nondiffer-
entiable. On the other hand, as Bx® — x? is also a descent direction
of h(x;x") according to Proposition 1, it is possible to perform the

exact line search over the upper bound function h(x;x") along the
direction Bx* — x*:

Yoo 2 argmin h(x’ + y(Bx" — x');x") — h(x";x")

0<~y<1
FOxt (Bt — x1)
= arg min —(x' +yBx' —x") —x)Te" (%) ¢,
0<~y<1

g7 (x" +9(Bx' —x"))
(19b)

and we denote as %, ("ub" stands for "upper bound") the obtained
stepsize. However, this is not always favorable in practice either
because the above minimization problem involves the nonsmooth
function g*.

To reduce the complexity of traditional exact line search schemes
in (19), we start from (19b): applying the Jensen’s inequality to the
convex function g in (19b) yields that for any v € [0, 1],

g7 (x" +7(Bx" —x")) < (1 —7")g" (x") + 9" (Bx")
=g " (x") +1(g" (Bx") —g"(x")). (0)
The function on the right hand side of (20) is a differentiable and
linear function in . We thus propose to perform the line search over

the following function which is obtained by replacing the nonsmooth
function g* in (19b) by its upper bound (20):

S+ (Bx" —x"))

—(x" 4+ y(Bx" —x") - x")TE"(x)

t .
y" = argmin

0<~y<1
+97(x") + (g (Bx") — gF (x")).
fx' +(Bx' —x"))
= arg min
0<~<1

+y(g" (Bx") — g™ (x") — (Bx' —x")T€ (x))
@21

Combining (19b) and (20), we readily see that the function in (19b)
is upper bounded by the function in (21) which is tight at v = 0. The
optimization problem in (21) is differentiable and presumably much
easier to optimize than the nondifferentiable problems in (19). It is
furthermore convex if f(x) is convex, and it can be solved efficiently
by the bisection method; in many cases closed-form expressions exist,
as we will show later by the example applications in Sec. IV-V. This
is a desirable property because the scalar optimization problem in
(21) is convex as long as f is convex, although the original function
h is still not convex due to g~ .

Albeit the low complexity, a natural question to ask is whether the
stepsize 7" obtained by the proposed exact line search scheme (21)
leads to a strict decrease of the original objective function h(x).> The
answer is affirmative and we first provide an intuitive explanation:
the gradient of the function in (21) w.r.t. v at v = 0 is

(Bx' —x")"Vf(x") + g% (Bx") — g7 (x") - (Bx' —x")"€"(x),

which is strictly smaller than O according to Proposition 1. This im-
plies the function has a negative slope at y = 0 and its minimum point
~* is thus nonzero and positive. Consequently the objective function
h(x) can be strictly decreased: h(x’ +~'(Bx’ —x")) < h(x"). This
intuitive explanation will be made rigorous shortly in Proposition 2.

If no structure in f(x) (e.g., convexity) can be exploited to
efficiently compute 4* that minimizes the objective function in (21)

2With a slight abuse of terminology, we call the proposed line search
scheme (21) the exact line search, although it is carried out over a differ-
entiable upper bound of the original objective function h.
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6
FO" 4 ™ (Bx" —x)) = (x" + 5" (Bx" —x') = x") "€ (x") + g7 (x") + 57 (g7 (Bx") - g7 (x"))
< Fx) + " () +ap™(Bx' = x) T (VF(x') = €7 (x") +¢7 (Bx") — g7 (x") (23)
FO" 4 ™ (Bx" —x")) — 7 (Bx" —x") "€ (x") + 5" (g (Bx") — g7 (x"))
< f(x) +af™(Bx" - x)T (V) — € (x")) + 97 (Bx') — g" (x")) (24)

Algorithm 1 The proposed successive convex approximation frame-
work for problem (2)

Data: ¢ = 0, x° (arbitrary but fixed, e.g., x° = 0), stop criterion 4.
S1: Compute Bx" according to (14).

S2: Determine the stepsize " by the exact line search (21) or the
successive line search (23).

S3: Update x'*! according to (17).

S4: If | (Bx" — x')7 (Vf(x') — £~ (x)) + g+ (Bx') — g* (x)| < 4,
STOP; otherwise ¢ <— ¢t + 1 and go to S1.

exactly, we adopt a stepsize if it yields sufficient decrease in the sense
specified by the successive line search (also known as the Armijo
rule) [17]. In particular, the successive line search counterpart of (19a)
or (19b) is as follows: given scalars 0 < a < 1 and 0 < B < 1,
the stepsize 7' is set to be v* = B™t, where m; is the smallest
nonnegative integer m satisfying the following inequality:

h(x' + B (Bx" — x")) — h(x")

<af™((Bx" —x")(VF(x") — & (x") + 9" (Bx) — g" (x")),
(22a)
or
h(xt + ,Bm(]B%xt — xt)) — h(xt7 xt)
< af™((Bx' —x")T(Vf(x") — € (x") + g7 (Bx") — g7 (x")),
(22b)

As a result, g7 (x" 4+ ™ (Bx" — x*)) (in h or h) must be evaluated
for my + 1 times, namely, m = 0,1, ..., m, and this may incur a
high complexity.

To reduce the complexity of traditional successive line search
schemes (22), we follow the reasoning from (19) to (21) and propose
a successive line search that works as follows (the detailed derivation
steps are deferred to Appendix A): given scalars 0 < o < 1 and
0 < B < 1, the stepsize v* is set to be 4* = 3™, where my is the
smallest nonnegative integer m satisfying the inequality in (23) shown
at the top of this page, which is the same as (24) after removing the
constants that appear on both sides. Note that the smooth function
f needs to be evaluated several times for m = 1,2,...,m; as
in traditional successive line search scheme, but we only have to
evaluate the nonsmooth function g* once at Bx?, i.e., " (Bx").

We show in the following proposition that the stepsize obtained by
the proposed exact/successive line search (21) and (23) is nonzero,
ie., 7 € (0,1] and h(x"™) < h(x").

Proposition 2 (Existence of a nontrivial stepsize). If Bx' — x* is a

descent direction of h(x;x") at the point x = x* in the sense of (16),
then the stepsize given by the proposed exact line search (21) or the
proposed successive line search (23) is nonzero, i.e., v* € (0, 1].

Proof: See Appendix A. |
The proposed SCA framework is summarized in Algorithm 1 and
its convergence properties are given in the following theorem.
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Theorem 3 (Convergence to a stationary point). Consider the
sequence {xt} generated by Algorithm 1. Provided that Assumptions
(Al)-(A3) as well as the following assumptions are satisfied:

(A4) The solution set S(x") is nonempty for t = 1,2,...;
(A5) Given any convergent subsequence {xt}tGT where T C
{1,2,...}, the sequence {th}teT is bounded.

Then any limit point of {xt} is a stationary point of (2).

Proof: See Appendix B. |
Sufficient conditions for Assumptions (A4)-(AS) are that either the
feasible set X in (13) is bounded or the approximate function in (13)
is strongly convex [37]. We will show that these assumptions are
satisfied by the example application in the next section.

If the approximate function f (x;x") in (12) satisfies an additional
assumption that it is a global upper bound of f(x), i.e., assume that
(A6) f(x;x") > f(x) and f(x";x") = f(x"),
then the proposed Algorithm 1 converges (in the sense specified by
Theorem 3) under a constant unit stepsize v* = 1, as it yields a larger
decrease than the successive line search. We refer the interested reader
to [6, Egs. (15)-(17)] for more details.

In what follows, we draw some comments on the proposed
algorithm’s features and connections to existing algorithms.

On the choice of approximate function. Note that different
choices of f (x;x") lead to different algorithms. We mention for the
self-containedness of this paper two commonly used approximate
functions, and assume for now that the constraint set X has a
Cartesian product structure and gJr is separable, i.e., g* (x) =
SN g7 (xk). We refer the interested readers to [6, Sec. ITI-B] for
a more comprehensive discussion.

Proximal type approximation. The proximal type approximate
function h(x;x") has the following form [5, Sec. 4.2]:

FO') + V()¢ = x) + S[x = x| = (x=x) 7€ (x)+9(x)

Flxixt)

(25a)
where ¢! > 0. Since the approximate function is separable among
the different block variables and the constraint set has a Cartesian
structure, minimizing the approximate function to obtain Bx' is

equivalent to set Bx’ = (Bxx")X_; where x = (x1)7—; and

co ) RGN o =)+ g [ — x|
Brx” = argmin ,
KREM | —(x — x) "€ (xF) + g7 (k)

(25b)
for all K = 1,..., K. According to Theorem 3 and the discussion
that immediately follows, the proposed algorithm converges under a
constant unit stepsize if f(x; x') in (25a) is a global upper bound of
f(x), which is indeed the case when ¢* > Ly ¢ (Lv is the Lipschitz
constant of V f) in view of the descent lemma [17, Prop. A.24].

Best-response type approximation. In problem (2), if f(x) is
convex in each xj where £ = 1,...,K (but not necessarily
jointly convex in (x1,...,Xx)), the best-response type approximate
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Algorithm f gt g~ The approximate function f in (13) The stepsize v! in variable update (17)
The proposed SCA | nonconvex | convex | convex (A1)-(A3) line search (21) or (24), v* = 1 if (A6)

MM [27] convex convex | convex flx;xt) = f(x) vi=1

SCA [6] nonconvex | convex 0 (A1)-(A3) line search (21) or (24), v = 1 if (A6)

GIST [7] nonconvex | convex 0 fxxt) = (x — xH)TVf(xt) + % lIx — xt”2 Y =1if ! > Lyy

Table T
CONNECTION BETWEEN THE PROPOSED SCA FRAMEWORK AND EXISTING ALGORITHMS IN TERMS OF THE ASSUMPTIONS ON f, g7, g~, f AND ~?.

function is defined as

f(x7 Xt) = Ef:lf(xkzxsz

and the approximate problem is

Bex' = argmin{ [ (xe %) — (i — 1) €5 () +g(xi) }.

e (26b)
for all £k = 1,..., K. Comparing (26) with (25), we see that the
function f is not linearized in (26b). The best-response type algorithm
typically converges faster than the proximal type algorithm because
the desirable property such as convexity is preserved in the best-
response type approximation while it is lost when f(x) is being
linearized in the proximal type approximation.

On the proposed line search schemes. Since the objective
function in the proposed exact line search scheme (21) is an upper
bound of the objective function in (19b) (see the discussion after
(21)), the obtained decrease by the proposed line search v* in (21) is
generally smaller than that of ~;, in (19b), the line search over the
upper bound function h(x;x"), which is furthermore smaller than
that of 'yf,p[ in (19a), the line search over the original function h(x):

(26a)

h(xt + mﬁp‘(th - xt)) < h(xt + ’yf,b(th - xt))
< h(x' +~'(Bx" — x")) < h(x").

Nevertheless, the order of the complexity performing the line search
is reversed. To see this, assume f is convex. Then the optimization
problem computing & in (19a), 74 in (19b), and ~* in (21) is
nonconvex and nondifferentiable, convex but nondifferentiable, and
convex and differentiable, respectively. Therefore, the proposed line
search scheme achieves a good tradeoff between performance and
complexity, and this will be illustrated by the example applications
in Sec. IV-V.

On the convergence of the proposed algorithm. The proposed
algorithm presents a fast convergence behavior because we could
choose the approximate function so that the problem structure is
exploited to a larger extent, for example, the partial convexity
in the best-response type approximation. Besides, the line search
leads to a much faster convergence than predetermined stepsizes
such as constant stepsizes and decreasing stepsizes. Furthermore,
the proposed algorithm converges even when V f is not Lipschitz
continuous, and is thus applicable for a wider class of problems.

On the complexity of the proposed algorithm. The Algorithm 1
has a low complexity due to the use of an approximate function and
the line search scheme over a differentiable function. The benefits
of employing the approximate function f (x;x") are twofold. On
the one hand, it is a convex function by Assumption (Al), so the
approximate problem (13) is a convex problem, which is presumably
easier to solve than (11) which is nonconvex if f(x) is nonconvex.
On the other hand, it can be tailored according to the structure of
the problem at hand so that the approximate problem (13) is even
easier to solve. For example, if g™ (x) is separable among the scalar
elements of x (as in, e.g., £1-norm ||x[, = S5, |xx[), we can

choose f (x;x") to be separable as well, so that the problem (13) can
be decomposed into independent subproblems which are then solved
in parallel. Furthermore, the proposed line search scheme (21) is
carried out over a differentiable function, which is presumably much
easier to implement than traditional schemes (19) over nonconvex
nonsmooth functions.

On the connection to the classic MM method [27]. Assume f is
convex.® The proposed algorithm includes as a special case the MM
method proposed in [27] by setting f(x;x*) = f(x) and v* = 1. For
this particular choice of approximate function, it can be verified that
the assumptions (A1)-(A3) are satisfied. Furthermore, f(x; xt) =
f(x) is a trivial upper bound of f(x) and Assumption (A6) is thus
satisfied. We can therefore skip the line search procedure and directly
choose the constant unit stepsize 4* = 1 for all t. Interpreting the
MM method as a special case of the proposed algorithm consolidates
once more that choosing a possibly different approximate function
f (x;x") that leads to an easier optimization problem at each iteration
than the original function f(x) as in the classic MM method may
notably reduce the algorithm’s complexity.

On the connection to the SCA framework for a convex g [6].
The proposed framework includes as a special case the SCA frame-
work proposed in [6] for a convex g¢: assume g~ (x) = 0, and the
approximate function in (12) reduces to h(x; x') = f(x;x%)+g7 (x).

On the connection to the GIST algorithm [7]. Assume g~ (x) =
0.4 In the GIST algorithm [38], the variable is updated as follows:

t
x"t = argmin (x — x")Vf(x") + % Hx — xtH2 +97(x). @7

This is a special case of the proximal type algorithm by choosing
¢t > Ly and ' = 1. When the value of Ly is unknown, ¢’ is
estimated iteratively [29]: for a constant 8 € (0, 1), define x* (™)
as

1
x*(8™) £ argmin (x — x" )V f(x") + 257 Hx — Xt”2 + g7 (x).
) (28)
Then ¢! = 1/8™ and x'*' = x*(8™*) while m, is the smallest
nonnegative integer such that the following inequality is satisfied for
some a € (0,1):

FETM™) +g9(x"(n™))

<P+ g(x') = oo |3 (™) = x|

26
This implies that, in the GIST algorithm, x*(8™) and g(x*(8™))
are evaluated for m; + 1 times, namely, m = 0,1,...,m¢. This

is however not necessary in the proposed successive line search
(23), because Bx" given by (14) does not depend on any unknown
parameters and both Bx’ and g™ (Bx") only need to be computed
once. Therefore, the algorithmic complexity could be notably reduced
by employing a convex approximate function that is not necessarily
an upper bound of the original function h(x).

3This is an assumption made in [27].
4This is an assumption made in [38].
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The above discussion on the connection to existing algorithms is
summarized in Table L.

IV. NETWORK ANOMALY DETECTION THROUGH SPARSITY
REGULARIZED RANK MINIMIZATION

In this section, we propose an iterative algorithm by customizing
Algorithm 1 to solve the network anomaly detection problem intro-
duced in Sec. II-A.

A. Network anomaly detection based on matrix factorization

For the simplicity of cross reference, we first duplicate the problem
formulation (3) here:

| 2, A 2 2
minimize 5 |[PQ + DS — Y|l + 5 (1Pl + Q%) + IS, ,
(29)
and remark again that problem (29) is a special case of (2) by setting

1 A
f(P.Q,8) £ Z[PQ+DS - Y|z + 3 (IP[7 +11QII%) ,

9(8) £ ulIsll; .

where g¢(S) is convex. To simplify the notation, we use Z as a
compact notation for (P, Q,S): Z £ (P, Q,S); in the rest of this
section, Z and (P, Q, S) are used interchangeably.

Related work. We first briefly describe the BCD algorithm adopted
in [12] to find a stationary point of the nonconvex problem (29),
where the variables are updated sequentially according to their best-
response. For example, when P (or Q) is updated, the variables
(Q,S) (or (P,S)) are fixed. When (P, Q) is fixed for example,
the optimization problem w.r.t. S decouples among its columns:

1 2
5 PQ+DS = Y[ + ]Sl

K

1 2

=3 (§1Pai—Dsi—ilE +lsil )

k=1
where qg, si and yy, is the k-th column of Q, S and Y, respectively.
However, the optimization problem w.r.t. s, does not have a closed-
form solution and is not easy to solve. To reduce the complexity,
the elements of S are updated row-wise, as the optimization problem
W.L.t. S; k, the (4, k)-th element of S, has a closed-form solution:

2
K 1 Cdisi g — S G n —

o 2Hqu disike — 251 iz disik YkH2
minimize E ,
(XA —— K

BEIR=L k=1 \  4-plsi k] +/’(‘Zj:1,j7£i |5,k

where d; is the i-th column of D, and s; x is the ¢-th element of s,
(and hence the (j, k)-th element of S). Solving the above optimiza-
tion problem w.r.t. (s;x)f_; for a given i results in simultaneous
update of all elements in the same (i-th) row of S, and changing ¢
from iteration to iteration results in the sequential row-wise update.
Nevertheless, a major drawback of the sequential row-wise update is
that it may incur a large delay because the (¢ + 1)-th row cannot be
updated until the ¢-th row is updated and the delay may be very large
when I, the number of rows, is large, which is a norm rather than
an exception in big data analytics [13].

Proposed algorithm. Although f(P,Q,S) in (29) is not jointly
convex w.rt. (P,Q,S), it is individual convex in P, Q and S.
In other words, f(P,Q,S) is convex w.rt. one variable while
the other two variables are fixed. This leads to the best-response
type approximation: given Z‘ = (P' QY S*) in iteration ¢, we
approximate the original nonconvex function f(Z) by a convex
function f(Z;Z") that is of the following form,

f(Z;2") = fr(PZ") + fo(QZ°) + fs(S;Z°),  (30)

8
where
. 1 A
fr(Pi2') £ j(P,Q"S") = 5 [[PQ" + DS’ — Y| + T IPII%.,
\ (31a)
. 1
Jo(Q:z") £ f(P',Q,8") =  [P'Q+DS' - Y[+ 7 Q7
(31b)
Fs(S;Z8) 237 F(PY, Q1 sik, (85.0)520, (85)524)
i,k
1 t .t t 2
= Z 5 HP qr + disi,k =+ Zj;&idjsj,k — ka2
ik
= (S diag(D" D)S)
— tr(S” (diag(D"D)S* — D' (DS’ — Y + P'Q"))),
(lc)

with qx (or yx) and d; denoting the k-th and ¢-th column of Q (or
Y) and D, respectively, while diag(D” D) denotes a diagonal matrix
with elements on the main diagonal identical to those of the matrix
D”D. Note that in the approximate function w.r.t. P and Q, the re-
maining variables (Q, S) and (P, S) are fixed, respectively. Although
it is tempting to define the approximate function of f(P,Q,S) w.r.t.
S by fixing P and Q, minimizing f(P*, Q*,S) w.rt. the matrix
variable S does not have a closed-form solution and must be solved
iteratively. Therefore the proposed approximate function fg(S; Z")
in (31c) consists of K component functions, and in the (i, k)-th
component function, s; x is the variable while all other variables are
fixed, namely, P, Q, (s;,x) s, and (s;);:. As we will show shortly,
minimizing f(S;Z!) w.r.t. S exhibits a closed-form solution.

We remark that the approximate function f (Z;Z") is a (strongly)
convex function and it is differentiable in both Z and Z’. Further-
more, the gradient of the approximate function f(P,Q,S;Zt) is
equal to that of f(P,Q,S) at Z = Z*. To see this:

Vef(Z;2") = Ve fp(P;Z") = Vp f(P,Q",S")| o p

and similarly Vqf(Z;2') = Vqf(P,Q,S)|,_z:. Furthermore,
Vsf(Z;Z') = (Vs, . f(Z;ZY)); 1 while
Veirf(Z;2°) = Vs, [5(S; 2")
= sz,kf(Pt7 Qta sl}kasﬁ,—k?st—i)
= Ve i /(P,Q,8)|,_,. -

Therefore Assumptions (A1)-(A3) are satisfied.
In iteration ¢, the approximate problem consists of minimizing the
approximate function:

fP(P;Z) + fo(Q; Z") + fs(S;Z") +9(S).

f(z;zt)

(32)

minimize
Z=(P.Q,S)

Since f(Z;Z') is strongly convex in Z and g(S) is a convex
function w.r.t. S, the approximate problem (32) is strongly convex
and it has a unique globally optimal solution, which is denoted as
BZ' = (BpZ',BoZ',BsZ"). As the approximate problem (32) is
separable among the optimization variables P, Q and S, it naturally
decomposes into several smaller problems which can be solved in
parallel:

BpZt 2 arg min fp(P;Zt)
Py

= (Y -Ds)(Q)"(Q(Q")" + A1, (33a)
BoZ' £ arg min fo(@;2")
= ((PHTP' + A1) ' (PHT (Y — DS, (33b)
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BsZ' £ arg min fs(S; Z") + g(S)
S
= diag(D"D) "
S, (diag(DTD)St -D"(DS' —Y'+ PtQt)) :
(33¢)

where S,,(X) is an element-wise soft-thresholding operator: the
(4,7)-th element of S, (X) is [Xs; — A]t — [-Xi; — A]T. As we
can readily see from (33), the approximate problems can be solved
efficiently because the optimal solutions are provided in an analytical
expression.

Since f(Z;Z") is convex in Z and differentiable in both Z and
Z', and has the same gradient as f(Z) at Z = Z', it follows from
Proposition 1 that BZ® — Z® is a descent direction of the original
objective function f(Z) + g(S) at Z = Z'. The variable update in
the ¢-th iteration is thus defined as follows:

P = P' 4+ y(BpZ' — PY), (34a)
Q" = Q" +7(BeZ' - Q), (34b)
S = S' + 4 (BsZ' — SY), (34c)

where v € (0, 1] is the stepsize that should be properly selected.
We determine the stepsize ~ by the proposed exact line search
scheme (21):

F(Z' +~7(BZ' —Z") + g(S") +(g(BsZ") — g(S")).
After substituting the expressions of f(Z) and g(S) into (35), the
exact line search consists in minimizing a fourth order polynomial
over the interval [0, 1]:

vt:mgm?{ﬂf+w@mtffn+vw®sX6fmyn}

0<~<

(33)

= arg min {ia'y‘l + 1573 + lc,y? + d'y} , (36)

0<~<1 3 2
where
a22|AP'AQE,
b2 3r(AP'AQ'(P'AQ' + AP'Q' + DASY)T),
c220(AP'AQ'(P'Q' + DS — YH)T)
+|P'AQ" + AP'Q' + DAS!||
2 2
+ (AP + [[2Q1[5),
d2u(P'AQ'+ AP'Q' + DASH(P'Q' + DS’ — YY)

+ Ar(P*APY) + r(Q'AQY)) + p(||BsX'||, — ||S*]],):
for AP' 2 BpZ' — P!, AQ' 2 BoZ' — Q' and AS' £ BsZ' —
S*. Finding the optimal points of (36) is equivalent to finding the
nonnegative real root of a third-order polynomial. Making use of

Cardano’s method, we write 7' defined in (36) as the closed-form
expression:

t
v =

[7'Jo

_t 3 [ 3, 3 A 3 b
7_\/21“!‘ E1"’224'\/21_ 21—’—22_37&,
where [z](l) = max(min(z,1),0) is the projection of = onto the
interval [0, 1], £1 £ —(b/3a)® + bc/6a® — d/2a and T2 2 ¢/3a —
(b/3a)?. Note that in (37b), the right hand side contains three values
(two of them can attain complex numbers), and the equal sign must
be interpreted as assigning the smallest real nonnegative values.

The proposed algorithm is summarized in Algorithm 2, which we
name as the Soft-Thresholding with Exact Line search Algorithm

(37a)

(37b)

Algorithm 2 STELA: The proposed parallel BCD algorithm with
exact line search for the sparsity regularized rank minimization
problem (29)

Data: ¢t = 0, Z° (arbitrary but fixed), stop criterion &.

S1: Compute (BpZ', BoZ', BsZ") according to (33).

S2: Determine the stepsize 7* by the exact line search (37).

S3: Update (P, Q, Z) according to (34).

S4: If |ir((BZ' — Z")"Vf(Z")) 4+ g(BsZ") — g(S")| < 8, STOP;
otherwise ¢t <— ¢ + 1 and go to S1.

(STELA). We draw a few comments on its attractive features and
compare it with state-of-the-art algorithms proposed for problem (29).

i) Fast convergence. In each iteration, the variables P, Q, and S are
updated simultaneously based on the best-response. The improvement
in convergence speed w.r.t. the BCD algorithm in [12] is notable
because in the BCD algorithm, the optimization w.r.t. each row of S is
implemented in a sequential order, and the number of rows is usually
very large in big data applications. To avoid the meticulous choice
of stepsizes and further accelerate the convergence, the stepsize is
calculated by the exact line search and it yields faster convergence
than SCA algorithms with diminishing stepsizes [15, 16].

ii) Low complexity. The proposed algorithm STELA has a very low
complexity, because both the best-responses (BpZ', BoZ', BsZ")
and the exact line search can be computed by closed-form expres-
sions, cf. (31) and (37). Note that computing BpZ’ and BoZ’
according to (33a)-(33b) involves a matrix inverse. This is usually
affordable because the matrices to be inverted are of a dimension p X p
while p is usually small. Furthermore, the matrix inverse operation
could be saved by adopting an element-wise decomposition for P
and Q that is in the same essence as S in (31c¢).

iii) Guaranteed convergence. Since f(P,Q,S) is nonconvex and
Vf(P,Q,S) is not Lipschitz continuous, the ADMM algorithm
[19] and SCA algorithms with diminishing stepsizes [15, 16] do not
necessarily converge. By comparison, the proposed algorithm STELA
has a guaranteed convergence in the sense that every limit point of
the sequence {Z'}; is a stationary point of problem (29).

Parallel Decomposition and Implementation of the Proposed Algo-
rithm STELA

The proposed algorithm STELA can be further decomposed to
enable the parallel processing over a number of L nodes in a
distributed network. To see this, we first decompose the system model
across the nodes:

Yl:)(l-f—DlS-i-\/-hl:1,...7[/7

where Y; € RV>*E X, e RN K D, € RV and V; € RV XK
consists of N; rows of Y, X, D and V, respectively:

Yl X1 D1 Vl

Yo X D. V2
Y = X = ,D = V=

YL XL DL VL
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Since the variables of interest for the node [ are Xj; and S, we
decompose P into multiple blocks (P;); with P; € RV*7:

P,

P,

Pr

All nodes should have access to the variable Q so that X; can be
estimated locally by X; = P;Q.

The computation of BpZ* in (34a) can be decomposed as BpZ’ =
(BpiZ)fy:

BpiZ' = (Y- DiS Q) (Q(Q) + )7 i=1,... L

Accordingly, the computation of BoZ* and BsZ in (34b) and (34c)
can be rewritten as

BQZt = (ZZL:1(P§)TP§ + )\1)71 (Zszl(Pf)T(Yl - Dlst)) ’

—1
BsZ' = diag (¥, DI Di) -
S, (diag (ZleDlTDl) SLZZLZIDZT(D,SLYHPth)) .

Before determining the stepsize, the computation of a in (37) can
also be decomposed among the nodes as a = Zle a;, where

a 22| APIAQ![.
The decomposition of b, ¢, and d is similar to that of a, where
b £ 3u(AP|AQ'(PIAQ! + AP} Q' + D, ASY)T),
a 2 2ar(APIAQ!(PIQ! + DiS' — Y))T)
+|PiAQ" + AP{Q' + DiAS!%
112 A 112
+A 2P+ F [ 2QH
di 2 u(P{AQ' + AP[Q' + DiAS')(P{Q' + DiS' — Y)))
A
+Au(P{AP]) + F1(Q'2Q") + L (|[BsX'||, — [|S*],)-
To compute the stepsize as in (37), the nodes mutually exchange
(ai,bi,ci,di). The four dimensional vector (ay, by, ci,d;) provides
each node with all the necessary information to individually calculate
(a,b,c,d) and (X1,¥2,%3), and then the stepsize +* according to

(37). The signaling incurred by the exact line search is thus small
and affordable.

Numerical Simulations

We perform numerical tests to compare the proposed algorithm
STELA with the BCD algorithm [12] and the ADMM algorithm
[19]. We start with a brief description of the ADMM algorithm: the
problem (29) can be rewritten as

. 1 2 A 2 2
minimize 2 IPQ+DA - Y|+ 5 (IPl% + 11_Ql1%) + #[Bll,

IEat]

subject to A = B. (38)

The augmented Lagrangian of (38) is
1 A
L.(P,Q,A,B,TI) = [PQ+DA-Y| %+ (IP|3+]Ql3)

(&
0B+ (T (A=B)+£ [ A-BJ2,

10
15
10 i
© i - STELA (proposed)
% 10%0 T = - — © —BCD (state-of-the-art)
> d i — e ADMM (state-of-the-art)
S 10T ~ 0 5 1015 1
= --~9--6-0-6--6G-90--06--0—=0
E
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a7
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Figure 2.  Sparsity regularized rank minimization: achieved function value

h(Z!) versus the number of iterations and CPU time (in minutes).

where c is a positive constant. In ADMM, the variables are updated
in the ¢-th iteration as follows:

(Q"!,B") = argmin L.(P', Q,A", B, II"),
QA
pitt = arg min L. (P, QH'I, AH—I’Bta Ht)7
P
A" = argmin L. (P, Q'Y A, B! IT),
B

Ht+l — Ht + C(At+l _ Bt+1),

Note that the solutions to the above optimization problems have an
analytical expression [19]. We set ¢ = 10%,

The simulation parameters are set as follows. N = 1000, K =
4000, I = 4000, p = 10. The elements of D are binary and generated
randomly and they are either O or 1. The elements of V follow the
Gaussian distribution with mean 0 and variance 0.01. Each element of
S can take three possible values, namely, -1, 0,1, with the probability
P(Six = —1) = P(Six = 1) = 0.05 and P(Six = 0) = 0.9. We
set Y = PQ + DS + V, where P and Q are generated randomly
following the Gaussian distribution A/(0,100/1) and (0, 100/ K),
respectively. The sparsity regularization parameters are A = 0.1-||'Y ||
(Y]] is the spectral norm of Y) and p = 0.1 - HDTYHOO. The
simulation results are averaged over 20 realizations. For the visual
convenience, the curves of STELA and ADMM are magnified in a
small window inside the same figure.

In Fig. 2 (a) and (b), we show respectively the achieved objective
function value and error versus the CPU time (in minutes) by different
algorithms, namely, STELA, BCD and ADMM. In Fig. 2 (b), the
error i defined as (f(Z')+9(S')—f(Z*)—g(S*))/ (F(Z*)+9(S"),
where Z* is obtained by running the proposed algorithm STELA for
a sufficiently large number of iterations. As we see from Fig. 2 (a),
the ADMM does not converge, as the optimization problem (38) (and
(29)) is nonconvex. We also observe that the behavior of the ADMM
is very sensitive to the value of c: in some instances, the ADMM
may converge if c is large enough, but it is a difficult task on its own
to choose an appropriate value of ¢ to achieve a good performance.

We run the BCD algorithm for 10 iterations, each represented by a
circle. In each iteration, all rows of S are updated once in a sequential
order, and it incurs a large delay. In particular, we see from Fig. 2
(a) that each iteration of the BCD algorithm takes about 35 minutes,
and a reasonably good solution is obtained after two iterations (70
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minutes). By contrast, all variables are updated simultaneously in
STELA and the CPU time needed for each iteration is very small.
We see from Fig. 2 (b) that STELA converges to a stationary point
with a precision of 107> in less than 1 minute, while it takes the
BCD algorithm about 330 minutes (5.5 hours) to find a solution that
has the same precision. This marks a notable improvement which is
important in real time anomaly detection in large networks.

B. Network anomaly detection based on nonconvex regularization
functions

In this subsection, we apply the proposed SCA algorithm to find
a stationary point of (6), which we duplicate here for the simplicity
of cross-reference:

.o 1
migimize - |X + DS = Y%+ Mo X[, + # S|

£(X,9) gt (X,;8)
N N
~ (Ao Y on(X) =AY Klon(X)), (39
n=1 n=1

97 (X)

where ¢~ (X) is convex and differentiable [33, Prop. 5].
Since f(X,S) is convex in (X,S), we adopt the best-response
type approximation at a given point Z' = (X', S*), namely,
F(X,8:2") = fx(X;Z") + f5(S; 2, (402)
where

fx(X,Z) = f(X,8") :%HX—&—DSt—YHQF (40b)

Fs(S;Z°) 23 F(PY, Q1 sik, (85,0520, (35)50)

ik
:ZEHPtQZeriSMJrZ- -d'St'k-*YkHQ-
— 2 , JFEI 00 2
(40c)

In iteration ¢, the approximate problem consists of minimizing the
approximate function:

) 2+ fs(8:2Y) - (X - X, Vg (X))
minimize ,

s +g* (X, S)

@1

where (A,B) 2 tr(ATB). Its optimal point, denoted as BZ' =
(BxZ',BsZ"), has a closed-form expression:

BxZ' = argmax fx(X;2Z") — (X — X', Vg~ (X")) + ko || X],
X

=Ut maX(Dt — Akol, 0)(Vt)T’
BsZ! = arg;nax fs(S;Z%) + p ISl

= diag(DD) 'S, (diag(DTD)St—DT(DSt—Yt-i-Xt)) ,

where Y — DS* + Vg~ (X*) = U'D*(V")7 is the singular value
decomposition (SVD) of Y — DS + Vg~ (X%).
We determine the stepsize by the proposed exact line search (21):

F(X! +~(BxZ' — X'), X" + 7(BsZ' — S))

L : : -
minimize ¢ 7 (BxZ' — X', Vg~ (X))
+v(9* (BxZ', BsZ') — g* (X", S"))

42)
This is a convex quadratic problem and its solution has a simple
closed-form expression; we leave the details to the reader.

After the stepsize is obtained, the variable is updated as follows:

Xt — xt + ’)/t(Bth _ Xt)’
S =8'++'(BsZ' — 8").

(43a)
(43b)

We name the proposed iterative procedure (41)-(43) as the Soft-
Thresholding with Exact Line search Algorithm (STELA). The
sequence {X* S'}, generated by STELA converges to a stationary
point of (39) in the sense specified in Theorem 3.

Remark 4. The expression of Vg~ (X?) in (41) given by

Vg (X') =V (MO > MX)) -V (A > /{(Gn(X))> .

Note that

\Y (Z n(an(X))> = Udiag([V&(D11) ... Ve(Dnn))VT,

n=1

where X = UDV7 (with D, = 0, (X)) is the SVD of X [33,
Lemma 22]. Note that V (25:1 Un(X)) can be derived from the
above expression by setting k(z) = x.

On the comparison with DC programming. The objective
function in (39) is a difference of convex (DC) functions f(X,S) +
g7 (X, 8S) and g~ (X), and it can also be solved by the standard MM
algorithm, which iterates as follows:

. . | rXs) — (X=X, Vg (X))
(BxZ",BgZ") = arg min ,
xS +97(X,8)
(44a)

(X8 = (BxZ', BsZ"). (44b)
This iterative procedure can be interpreted as a special case of
the proposed SCA algorithm by choosing in (40) the following
approximate function

f(X,8;2") = f(X,8),

and setting the stepsize in (43) to 1. The convergence of the MM
algorithm (44) can be established from the proposed SCA framework
as Assumptions (A1)-(A6) are satisfied. However, the MM algorithm
(44) has a much higher complexity as it is a two-layer algorithm: the
approximate problem in (44a) does not have a closed-form solution
and must be solved iteratively. By comparison, the proposed SCA
framework is flexible in the sense that we can design the approximate
function that preserves the problem structure (namely, the partial
convexity in (40)) but is still easy to optimize. Although the line
search in (42) is needed, it has a simple closed-form expression and
the computational complexity is thus very low.

V. SPARSE SUBSPACE CLUSTERING THROUGH CAPPED /1-NORM
MINIMIZATION

In this section, we consider the sparse subspace clustering problem
through the capped ¢;-norm minimization introduced in Sec. II-B:

K
1 .
5 1A% = bJ2 + 1> min(|z], 0),

k=1

minimize
P

or more compactly,

minimize % IAx — bl + p|jmin(jx], 61)][,.  (45)
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Algorithm 3 STELA: The proposed parallel BCD algorithm with
exact line search for the capped ¢;-norm minimization problem (45)

Data: ¢t = 0, x° (arbitrary but fixed, e.g., x° = 0), stop criterion ¢.
S1: Compute Bx" according to (14).

S2: Determine the stepsize 7* by the exact line search (21).

S3: Update x'*! according to (17).
S4: 1f |(Bx’ —x!)T (Vf(x') — £~ (x')) + g* (Bx') — g* (x'
STOP; otherwise ¢ <— ¢ + 1 and go to S1.

)| <4,

It is shown in [27] that problem (45) is a special case of (2) by setting

Al
Fx) £ 5 |Ax = D3, (462)
g (x) £ plxl,, (46b)
g~ (x) £ p|lx|l; — pljmin(|x[,01)[; . (46¢)

Since f is convex, we adopt the best-response type approximate
function: the approximate function consists of K component func-
tions, and in the k-th component function, only the k-th element, x,
of x is treated as a variable while other elements x_j = (x;);.k
are fixed,

K K
T SV AR

k=1

2
t
arTr + E ajz; —b
ik

2
(47
To obtain the update direction, we solve the approximate problem

Bx' = arg;nin {f(x;x") — (x = x")& (x") +g" (%)}

=d(ATA) oS (r(x', £ (X)), (48)
where
r(x', € (x") £ d(V*f(x") ox" + € (x") = Vf(x')
=dATA)ox'+ ¢ (x') — AT(AX' — D),
d(X) is the diagonal vector of X, Sa(b) £ [b —a]t —[-b —a]™ is

the soft-thresholding operator, and the subgradient of g~ (x) defined
in (31) is £ (%) = (& (wx))i=y with

122 if > 07

—HK, if zp < _07

0, otherwise,

& (@k) =

or more compactly,
£ (%)=

Given the update direction Bx’ — x’, we calculate the stepsize
~* according to the proposed exact line search (21), which can be
performed in a simple closed-form expression:

%,u(sign(x —0) —sign(—x — 0)).

fx" +~(Bx" —x"))
+y(g" (Bx') — " (x") — (Bx' xt)Tﬁ_(xt))

(£_(xt)fAT(Axt7b)) (Bx'—x") HIB%xtHlfotH
(A(Bxt — xt))T (A(th —xt))

t .
v = argmin
0<~y<1

0

(49)
The proposed update (48)-(49) are summarized in Algorithm 3 and
we name it as Soft-Thresholding with Exact Line search Algorithm
(STELA). It has several attractive features:

o i) low complexity, as the approximate function is chosen such
that its minimum can be obtained in closed-form expressions

and the proposed algorithm thus has a single layer. Besides this,
the stepsize can also be computed by closed-form expressions;
e i) fast convergence, as all elements are updated in parallel, the
approximate function is of a best-response type, and the stepsize
is based on the exact line search;
e iii) guaranteed convergence, as [ (x;x') in (47) is strongly
convex and Assumptions (A4)-(AS) are satisfied.
Compared with state-of-the-art algorithms proposed for problem (45),
we remark that
« feature i) is an advantage over the traditional MM method [27];
« feature ii) is an advantage over the algorithms [29, 30] with a
proximal type approximation;
« feature iii) is an advantage over the standard SCA framework
for convex regularization functions [6, 15, 16].
On the comparison with the proximal MM method [29]. The
proximal type algorithm proposed in [29] is essentially a MM method,
because the variable is updated by

i e AT x5 k- x?
X" = argmin ,
T et (x) 9T ()

50)
with ¢ > Ly, while the objective function in (50) is a global upper
bound of h(x) in view of the descent lemma [17, Prop. A.24]. When
the value of Lv is not known, ¢t is estimated iteratively: for some
constants 0 < o < 1 and 0 < B < 1, set x'T' = x*(8™*) , where
x*(B™) is defined as

t t\T t 1 |2
x*(B™)%arg min Fc) + VI = x + e HX * H
) -9 (%)

(51
and m is the smallest nonnegative integer such that h(x*(8™!)) —
h(x") < —a/28™ Hx*(Bm‘) — xtH2. As a result, x*(8™) must be
evaluated repeatedly for m; times, namely, m = 0,1,...,m;. This
is however not necessary in the proposed algorithm STELA, because
computing the descent direction and the stepsize according to (48)
and (49) does not depend on any unknown parameters. Furthermore,
(51) may not be easy to solve for a general g~ (x) except for some
specific choices studied in [29].

Numerical Simulations

In our numerical simulations the dimension of A is 10000 x 50000:
all of its elements are generated randomly by the normal distribution
N(0,1), and the rows of A are normalized to have a unit £2-norm.
The density (the proportion of nonzero elements) of the sparse vector
Xiue 18 0.1. The vector b is generated as b = Axye + € where e is
drawn from an i.i.d. Gaussian distribution with mean O and variance
10~*. The regularization parameter i is set to o = 0.1 ||ATbHOO,
which allows Xie to be recovered to a high accuracy [39], and the
parameter 0 in the capped ¢;-norm is set to 1.

We compare the proposed algorithm STELA with the classic MM
method [27] and the proximal MM algorithm [29]. The comparison
is made in terms of CPU time that is required until the maximum
number of iterations (100 for STELA and the proximal MM algorithm
and 10 for the classic MM method) is reached. The running time
consists of both the initialization stage required for preprocessing
(represented by a flat curve) and the formal stage in which the
iterations are carried out. For example, in STELA, d(ATA) is
computed in the initialization stage since it is required in the iterative
variable update in the formal stage, cf. (48). The upper bound function
in the classic MM method, cf. (11), is minimized by STELA for ¢;-
norm (with a warm start that sets the optimal point of the previous
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Figure 3. Capped #1-norm minimization: achieved function value h(x*) and
error h(x?~1) — h(x?) versus CPU time (in seconds).

iteration as the initial point of the current iteration [27, Sec. 1I-D]),
which was presented in [6, Sec. IV-III]. All algorithms have the same
initial point, x° = 0. The simulation results are averaged over 20
instances.

The achieved function value h(x') and error h(x'™') — h(x")
versus the CPU time (in seconds) is plotted in Fig. 3 (a) and 3 (b),
respectively. We see from Fig. 3 (a) that all algorithms converge
to the same value. Furthermore, the initialization stage of STELA
is much longer than that of the proximal MM algorithm, because
computing d(ATA), the diagonal vector of ATA, is computa-
tionally expensive, especially when the dimension of A is large.
Nevertheless, in the formal stage, the convergence speed of STELA
is much faster than the proximal MM algorithm, and this is mainly
due to the use of the best-response type approximate function (47),
and more specifically, the use of d(AT A), cf. (48), which represents
partial second order information of the function f in (45) (note that
V2f(x) = AT A). We see from Fig. 3 (b) that the long initialization
stage is compensated by the fast convergence speed in the formal
stage. We mention for the paper’s completeness that d(A” A) can
be calculated analytically in some applications, e.g., when A is a
Vandermonde or constant modulus matrix.

We see from Fig. 3 (a) that the major complexity of the classic
MM method lies in the first few iterations, as the complexity of late
iterations are notably reduced by a good initialization thanks to the
warm start. The most notable difference between the MM method and
the STELA is that the upper bound function is only approximately
minimized in the STELA, and this leads to a significant reduction
in the computational complexity. Using the approximate function is
also beneficial when the upper bound function h(x;x") is not easy
to minimize, e.g., f(x) is nonconvex.

VI. CONCLUDING REMARKS

In this paper, we have proposed a successive convex approxima-
tion framework for sparse signal estimation where the nonsmooth
nonconvex regularization function is nonconvex and can be written
as the difference of two convex functions. The proposed procedure
is to apply the standard successive convex approximation for convex
regularization functions to an upper bound of the original objective
function that can be obtained following the standard MM method.
This procedure also facilitates the design of low-complexity line

search schemes which are carried out over a differentiable function.
The proposed framework is flexible and it leads to algorithms that
exploit the problem structure and have a low complexity. Customizing
the general framework for the example applications in network
anomaly detection and sparse subspace clustering, the proposed
algorithm STELA is a parallel BCD algorithm with exact line search
and it has several attractive features, illustrated both theoretically
and numerically: i) fast convergence due to the best-response type
approximation and the line search for stepsize calculation; ii) low
complexity as both the optimal point of the approximate function
and the exact line search have closed-form expressions; and iii)
guaranteed convergence to a stationary point.

APPENDIX A
PROOF OF PROPOSITIONS 1 AND 2

Proof of Proposition 1: Since the approximate problem (13) is
convex, Bx" is a globally optimal point of (13) and

h(Bx";x") = rrg;(l h(x;x") < h(x";x").

We discuss the two possibilities separately, namely,

i): h(Bx";x") = h(x";x"), (52)

or
ii): h(Bx';x") < h(x';x"). (53)
i) h(Bx'; x?) = h(x';x*). We show that h(Bx®; x!) = h(x*; x?)
is equivalent to x* being a stationary point of (2).
If h(Bx";x") = h(x';x"), then x* € S(x*):

x' € argmin B(x; x"),
xeX
and it must satisfy the first-order optimality condition: for some

N (x"),
(x —x")(Vf(x"x") + €5 (x") — € (x")) > 0,vx.

This is exactly the first-order optimality condition of problem (2)
after replacing V f (x";x") by Vf(x") in view of Assumption (A3)
on the gradient consistency. Therefore, x" is a stationary point of (2).
Reversely, if x* is a stationary point of (2), then it satisfies the
first-order optimality condition: for some £ (x") and £~ (x*),

(x—x")(Vf(x")+£7(x") — & (x) > 0,vx.

By assumption (A3) on the gradient consistency, the above condition
is equivalent to

(x —x")(Vf(x"x") + €5 (x") — € (x")) > 0,vx.

Since problem (13) is convex, the above condition implies that x'is
a globally optimal point of (14) and h(x";x") = minxex h(x;x").
i) h(Bx'; x") < h(x";x"). We remark that problem (13) is convex
and equivalent to the following problem
minimize f(x;x") — (x —x)T¢" (x") +y
x,y
subject to x € X, 9" (x) <.

(54)

The equivalence between (12) and (54) is in the sense that Bx'
defined in (14) is the optimal x of (54), and the optimal y of (54),
denoted as y*(x"), is given by y*(x") = g™ (Bx"). If h(Bx";x") <
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h(x!;x"), then

xx) = (x" = x) T (x) + g7 (x)
- x)TE(x") +y,
where the equality (a) follows from the fact that y* (x') = g™ (Bx"),
and the inequality (b) follows from the fact that y* > g™ (x*) in view
of the constraint in (54). Since 3" does not appear in (54), we set
without loss of generality y* = g™ (x").

The objective function of (54) is convex and differentiable, and thus

also pseudoconvex [6, Figure 1]. From the definition of pseudoconvex
functions that

(IBX x") —
(x'3x") —

f (Bx' —x")"&" (x') +
< fix' (x' *X)TE (Xt)+y,
implies

(Bx' — x")"(Vi(x'sx") — € (x')) + " (Bx')
which is equivalent to the following inequality after replacing
Vf(x'x") by Vf(x") in view of Assumption (A3) on the gradient
consistency:

(Bx' —x')T (VI(x') — € () +y"

where y* (Bx') = g7 (Bx") and y* = g7 (x"). Therefore, we readily
obtain the inequality in (16) and the proof of Proposition 1 is thus

y' <0,

(Bx') —y' <0, (55)

completed. |
Proof of Proposition 2: We define
U,y x") & f(x) = (x = x") &7 (x") +y.
We can see that Vil(x,y;x") = Vf(x) — £ (x") and
Vyl(x,y;x") = 1. Then the inequality (55) can be rewritten as
0> (Bx' —x")"Vul(x', 5" x") + (" (Bx") — ") Vyl(x", 45 x")
= (Bx' —x",y" (x") —y") " VI(x',y";x")

From the above inequality we can claim that (]Bx y*(xH)) —(x
is a descent direction of the function I(x,y;x") = f(x) — (x
x")T¢™ (x') + y at the point (x',y*).

The proposed exact line search (21) is equivalent to applying the
standard exact line search to the differentiable function I(x,y;x")
along the direction (Bx‘,y*(x")) — (x,3"):

,y)

fOx" 4y (Bx" —x"))
—(x (B! —x)
=y
Therefore the existence of a 7' € (0,1] is guaranteed according to
[40, 8.2.1].

Similarly, the proposed successive line search is equivalent to
applying the standard successive line search to the differentiable
function I(x, y; x*) along the direction (Bx',y*(x")) — (x*,y"):

I(x"+ 87 (Bx" —x),y" + B (y" (x") —y')ix")

<Ux"y'x") +af™ (Bx' - xy" (x) —y") VI

The proof of Proposition 2 is thus completed. |

+ .
v~ = argmin
0<~y<1

x)TE™ (x")

+y' +(y*(x

s xh).

APPENDIX B
PROOF OF THEOREM 3

Proof: Similar to [6, Theorem 1], the key of the proof is to
show that Bx is a closed mapping [41], i.e., if lim; o X" = x and
lim¢— oo Bx' =y, then Bx € S(x). The key difference is that the
objective function h in (2) is nondifferentiable.

Since Bx’ is the optimal point of (13), it satisfies the first-order
optimality condition:

(x—Bx")T(Vf(Bx';x")—¢ (x")+£1(x")) >0, Vx € X. (56)

If (52) is true, then x' € S(x") and it is a stationary point of (2)
according to Proposition 1 (i). Besides, it follows from (2) (with x =
Bx' and y = x%) that (Bx' —x")" (V f(x")—€~ (x")+£T(x")) > 0.
Note that equality is actually achieved, i.e.,

(Bx" —x")"(Vf(x') =& (x") + €7 (x") =0

because otherwise Bx —x* would be an ascent direction of fz(x; x")
at x = x" and the definition of Bx* would be contradicted. Then from
the definition of the proposed successive line search in (23), we can
readily infer that

h(x"h) < h(x"). (57)

It is easy to see (57) holds for the exact line search as well.

If (53) is true, x" is not a stationary point and Bx® — x” is a strict
descent direction of h(x) at x = x‘ according to Proposition 1 (ii):
h(x) is strictly decreased compared with h(x") if x is updated at
x" along the direction Bx’ — x*. From Proposition 2, the proposed
successive line search schemes yield a stepsize ~* such that 0 <
~* <1 and

h(x"") = h(x" + 7' (Bx" —x")) < h(x"). (58)

This strict decreasing property also holds for the exact line search
because it is the stepsize that yields the largest decrease, which is
always larger than or equal to that of the successive line search.
We know from (57) and (58) that {h(x")} is a monotonically
decreasing sequence and it thus converges. Besides, for any two (pos-

sibly different) convergent subsequences {xt} . and {xt} Ty
the following holds:
. ty . ty .
A hOc) =l hO) =l ARG

Since h(x) is a continuous function, we infer from the preceding

equation that
h( lim xt) =h ( lim xt) .
Ti3t—o0 T22t—o0

Now consider any convergent subsequence {x'};c7 with limit
point y, ie., lim7s:mso00 xt = y. To show that y is a stationary
point, we first assume the contrary: y is not a stationary point.
Since h(x;x') is continuous in both x and x' by Assumption
(A2) and {th} eT is bounded by Assumption (AS5), there exists
a sequence {]th}te . With Ts C T such that it converges and
it follows from the Maximum Theorem in [41, Ch. VL3] that
lim7, 500 Bx* € S(y). Since both f(x) and V f(x) are contin-
uous, applying the Maximum Theorem again implies there is a 7,
such that T, C T5(C T) and {x”l}teT/ converges to y’ defined

as y' £ y + p(By — y), where p is the stepsize when either the
exact or successive line search is applied to f(y) along the direction
By — y. Since y is not a stationary point, it follows from (58)
that h(y’) < h(y), but this would contradict (59). Therefore y is
a stationary point, and the proof is completed. |

(59)
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