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Abstract—For the Internet of Things (IoT), there might be a
large number of devices to be connected to the Internet through
wireless technologies. In general, IoT devices would have various
constraints due to limited processing capability, memory, energy
source, and so on, and it is desirable to employ efficient wireless
transmission schemes, especially for uplink transmissions. For
example, orthogonal frequency division multiplexing (OFDM)
with index modulation (IM) or OFDM-IM can be considered for
IoT devices due to its energy efficiency. In this paper, we study
a different IM scheme for a single-carrier (SC) system, which
is referred to as SCIM. While SCIM is similar to OFDM-IM in
terms of energy efficiency, SCIM may be better suited for IoT
uplink because it has a low peak-to-average power ratio (PAPR)
and does not require inverse fast Fourier transform (FFT) at
devices compared to OFDM-IM. We also consider precoding for
SCIM and generalize it to multiple access channel so that multiple
IoT devices can share the same radio resource block. To detect
precoded SCIM signals, low-complexity detectors are derived.
For a better performance, based on variational inference that
is widely used in machine learning, we consider a detector that
provides an approximate solution to an optimal detection.

Index Terms—sparsity; index modulation; compressive sens-
ing; diversity

I. INTRODUCTION

The Internet of Things (IoT) has attracted attention from
both academia and practitioners as it can support a number of
new services and applications through the network of various
(electronic) devices, sensors, and actuators [1] [2] [3]. While
some IoT devices are connected through wired networks, the
connectivity of most IoT devices (such as sensors) would rely
on wireless technologies [4]. For example, ZigBee [5], which
has been used for wireless sensor networks (WSNs), can be
employed to support the connectivity of IoT devices.

In cellular systems, machine-type communication (MTC)
has been considered for the connectivity of machines including
IoT devices [6] [7]. In particular, narrowband-IoT (NB-IoT)
[7] [8] is to support a large number of IoT devices in a cell.
NB-IoT is based on Long-Term Evolution (LTE) standards [9]
with a system bandwidth of 180 KHz for each of uplink and
downlink. In particular, orthogonal frequency division multiple
access (OFDMA) is adopted for downlink, while single-carrier
frequency division multiple-access (SC-FDMA) is used for
uplink as in LTE, which allows to reduce development time
for NB-IoT equipments and products. In addition, since most
IoT devices have various constraints and limitations, NB-IoT
focuses on low-cost design and high energy efficiency for IoT
devices.

Orthogonal frequency division multiplexing (OFDM) with
index modulation (IM) (OFDM-IM) has been proposed in [10]
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(see also [11]), where a subset of subcarriers are active and
the indices of them are also used to convey information bits.
The main advantage of OFDM-IM over conventional OFDM
is the energy efficiency and robustness against inter-carrier
interference (ICI) because only a fraction of subcarriers are
active [12]. A generalization of OFDM-IM is discussed in [13]
where the number of active subcarriers for each sub-block is
not fixed, but variable to increase the number of bits to be
transmitted. Furthermore, another scheme that independently
applies IM to in-phase and quadrature phase components of
complex symbols is considered to increase the number of
bits per sub-block in [13]. In [14], a performance analysis
is carried out when the maximum likelihood (ML) detector is
employed. An excellent overview of IM techniques including
spatial modulation [15] [16] [17] can be found in [18].

In OFDM-IM, the set of subcarriers is divided into multiple
subsets or clusters and in each subset both IM and conventional
modulation such as quadrature amplitude modulation (QAM)
are employed to transmit information bits [10]. In general,
the number of subcarriers per cluster is not large in order to
avoid a high computational complexity for the ML detection,
while the number of information bits can increase with the
size of cluster (for a fixed number of subcarriers). Thus, there
is a trade-off between the size of cluster (and the number of
information bits) and the receiver complexity in OFDM-IM.
In order to allow a low-complexity detection without dividing
the set of subcarriers into clusters, sparse IM is considered in
[19], which is also used for multiple access [20] [21]. Due to
the sparsity of active subcarriers in sparse IM, the notion of
compressive sensing (CS) [22] [23] can be exploited to derive
low-complexity detection methods.

OFDM-IM can also be applied to multiple input multi-
ple output (MIMO) systems [24]. In [25], low-complexity
detection approaches are considered for MIMO OFDM-IM.
Provided that a transmitter knows the channel state information
(CSI), precoding can be employed for MIMO OFDM-IM as
in [26], which results in a performance improvement. Since
OFDM-IM has a limited diversity gain [10], transmit diversity
techniques can be considered to increase the diversity gain.
In [27], a transmit diversity technique based on space-time
coding, is applied to OFDM-IM, which is called coordinated
interleaved OFDM-IM (CI-OFDM-IM), in order to improve
the diversity gain. Variations of CI-OFDM-IM to further
improve the performance are also studied in [28] [29]. Channel
coding with repetition diversity and trellis coded modulation
(TCM) are applied to OFDM-IM in [30] and [31], respectively.

Although OFDM-IM has a high energy efficiency and would
be suitable for energy limited IoT devices, it has drawbacks
that are inherited from OFDM (e.g., a high peak-to-average
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power ratio (PAPR)1, and no path diversity gain for uncoded
signals). In addition, in NB-IoT, since SC-FDMA (not OFDM)
is employed for IoT uplink as mentioned earlier, IM schemes
for SC-FDMA or single-carrier (SC) systems are desirable.
To this end, single-carrier index modulation or SCIM studied
in [33] [34] can be considered for IoT uplink with a few
advantages of SC system over multicarrier (MC) system
including the path diversity gain for uncoded signals [35] (as
SCIM inherits the advantages of SC (over MC)). In particular,
as shown in [32], the PAPR of SCIM is lower than that of
OFDM-IM. In comparison to OFDM-IM, another prominent
feature of SCIM in terms of IoT uplink is that the complexity
of the transmitter in IoT devices may be low, since no inverse
fast Fourier transform (FFT) is required. In addition, SCIM
can exploit the path diversity gain and performs better than
OFDM-IM, while the notion of sparse IM can be applied to
SCIM so that low-complexity CS algorithms can be used for
the signal detection [33].

In this paper, we mainly consider SCIM with precoding and
study different approaches to the signal detection. In particular,
we consider detection approaches that can exploit the sparsity
of signals in SCIM. For precoding, faster-than-Nyquist (FTN)
signaling [36] is mainly considered. We also generalize SCIM
with precoding to multiple access channel so that multiple IoT
devices can share the same radio resource block for uplink
transmissions. Note that FTN signaling has been applied to
SCIM in [37]. Thus, the approach in this paper can be seen as
a generalization of the approach in [37] in terms of precoding
(i.e., FTN is seen as a special case of precoding) and with
multiple access to support multiple users in the same resource
block.

The rest of the paper is organized as follows. In Section II,
we present the system model for SCIM over an intersymbol
interference (ISI) channel. Precoding is applied to SCIM,
which can increase the number of information bits transmitted
by IM, in Section III, where it is also shown that FTN signaling
can be seen as precoding. In Section IV, we discuss low-
complexity detectors for SCIM signals over ISI channels. To
find an approximation solution to an optimal detection for a
better performance, a detector based on variational inference
[38] that is widely used in machine learning is considered in
Section V. In Section VI, SCIM with precoding is generalized
to multiple access channel so that multiple IoT device can
share the same radio resource block for uplink transmissions.
Simulation results are presented in Section VII. The paper is
concluded with some remarks in Section VIII.

Notation: Matrices and vectors are denoted by upper- and
lower-case boldface letters, respectively. The superscripts T
and H denote the transpose and complex conjugate, respec-
tively. The p-norm of a vector a is denoted by ||a||p (If
p = 2, the norm is denoted by ||a|| without the subscript).
The support of a vector is denoted by supp(x) (which is the
index set of the non-zero elements of x). The superscript †
denotes the pseudo-inverse. For a vector a, diag(a) is the
diagonal matrix with the diagonal elements from a. For a

1Comparisons between SCIM and OFDM-IM in terms of PAPR can be
found in [32].

matrix X (a vector a), [X]n ([a]n) represents the nth column
(element, resp.). If n is a set of indices, [X]n is a submatrix
of X obtained by taking the corresponding columns. E[·]
and Var(·) denote the statistical expectation and variance,
respectively. CN (a,R) (N (a,R)) represents the distribution
of circularly symmetric complex Gaussian (CSCG) (resp.,
real-valued Gaussian) random vectors with mean vector a and
covariance matrix R.

II. SINGLE-CARRIER INDEX MODULATION

In this section, we present SCIM that is introduced in [33]
[34].

A. System Model

We consider SC transmission over an ISI channel with
cyclic prefix (CP) [35] from a device to a base station (BS)
or access point (AP). Let d = [d0 . . . dL−1]T denote a block
of data symbols, denoted by {dl}, to be transmitted over an
ISI channel, where L is the length of d. Then, the received
signal at time l is given by

rl =

P−1∑
p=0

hpdl−p + nl, (1)

where hp is the pth coefficient of the ISI channel of length
P and nl ∼ CN (0, N0) is the background noise. For the
transmission of each block without inter-block interference
(IBI), a CP is appended to d. At the BS after removing the
signal corresponding to CP, we have

r = [r0 . . . rL−1]T

= Hd + n, (2)

where n = [n0 . . . nL−1]T and H is a circulant matrix that
is given by

H =


h0 hL−1 · · · h1

h1 h0 · · · h2

...
...

. . .
...

hL−1 hL−2 · · · h0

 .
Here, hP = . . . = hL−1 = 0 for L > P .

Unlike conventional SC, d in SCIM is Q-sparse, i.e., d ∈
ΣQ, where

ΣQ = {d
∣∣ ||d||0 ≤ Q}.

Throughout the paper, we assume that the sparsity of d is Q
(i.e., there are Q non-zero elements in d) and the non-zero
symbols are referred to as active symbols. In addition, d is
referred to as an SCIM symbol and L is equivalent to as the
slot length. That is, one SCIM symbol is to be transmitted
within a slot. In addition, we assume that a non-zero element
of d (i.e., an active symbol) is an element of an M -ary
constellation, i.e., dl ∈ S if dl 6= 0, where S is the signal
constellation and |S| = M . We also assume that zero is not
an element of S, i.e., 0 /∈ S and a non-zero element of d, i.e.,
dl ∈ S, has the following properties:

E[dl] = 0 and Var(dl) = σ2
d,
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where σ2
d represents the (active) symbol energy. For example,

if we consider binary phase shift keying (BPSK) for S with
S = {−A,A}, we have σ2

d = A2. Then, the number of
information bits per slot becomes

Nb(L,Q,M) = blog2

(
L

Q

)
c+Q log2M. (3)

The resulting system is referred to as SCIM in this paper.
SCIM can be seen as a time-domain version of IM with single
cluster in [10] or a generalization of pulse-position modulation
(PPM). To see that PPM is a special case of SCIM, we can
assume that dl ∈ {A, 0} and Q = 1, which becomes a Q-ary
PPM.

As mentioned earlier, since SCIM does not require IFFT
and has a low PAPR as an SC transmission scheme [35], it
might be attractive for IoT devices of limited complexity.

Note that the number of information bits transmitted by IM
in (3) can be maximized if Q = L

2 for an even L. However,
large Q’s not only degrade the energy efficiency, but also
increase the complexity of the signal detection including the
ML detection (as will be explained in Subsection V-A). To
avoid the high computational complexity, multiple clusters can
be considered as in OFDM-IM [10], where the ML detection
is independently carried out for each cluster. However, clusters
are not orthogonal in SCIM due to ISI channels unless P = 1
(i.e., H is diagonal). Therefore, unlike OFDM-IM, the use
of multiple clusters does not help reduce the computational
complexity in SCIM.

B. Bit-to-Index Mapping

For a large L, the number of information bits transmitted
by IM, Nim = blog2

(
L
Q

)
c is also large and a non-trivial bit-

to-index mapping rule exists. For example, if L = 64 and
Q = 4, there are 19 bits that can be transmitted by IM and
a certain mapping rule from 19 bits to 219 = 524, 288 active
index sets can be used. At the BS, a demapping rule has to
be used to decide 19 bits from the estimated index set of
active symbols. A look-up table approach can be used for a
demapping rule. However, it may require a large memory. To
avoid this difficulty, we can impose a certain structure for IM.

Suppose that the block can be divided into Q subblocks
(or clusters) and each subblock consists of D symbols, where
L = QD. Here, D = L/Q is assumed to be a positive
integer. It is assumed that only one symbol per subblock is
active and there are Q active symbols per block as before. For
convenience, the resulting IM, which can be seen as D-ary
PPM for each subblock, is referred to the structured IM (with
Q active symbols) in this paper. Clearly, in this case, we only
need a mapping table for D-ary PPM for IM.

In the structured IM, the index set of active symbols or the
support of s has the following constraint:

supp(s) ∈ LQ = {{l0, . . . , lQ−1} | lq ∈ [qD, (q + 1)D],∀q} ,
(4)

where LQ represents the set of all the possible supports of s of
the structured IM with Q active symbols. The number of bits

transmitted per block in the structured IM, which is denoted
by Ñim, becomes

Ñim = Qblog2

L

Q
c = Qblog2Dc. (5)

If L = 64 and Q = 4, we have Ñim = 16 < Nim = 19. In
general, we have Ñim < Nim. However, when L is sufficiently
large, we can show that Ñim can approach Nim under certain
conditions as follows.

Lemma 1. Suppose that D is a power of 2 and 1/D � 1.
With a fixed D, we have

lim
L→∞

Ñim

Nim
→ 1, L→∞. (6)

Proof: When D is fixed, we have Q = O(L). Then, from
[39], it can be shown that

Nim = blog2

(
L

Q

)
c = b(1 + o(1))LHb(Q/L)c, (7)

where Hb(p) = −p log2 p− (1− p) log2(1− p) is the binary
entropy function. Since Q/L = 1/D � 1, we have

Hb(Q/L) ≈ Q

L
log2

L

Q
.

Thus, it follows

Nim ≈ bQ log2

L

Q
c = Q log2D,

since D is assumed to be a power of 2. From (5), we can also
show that Ñim = Q log2D. Thus, as L → ∞, we have (6),
which completes the proof.

While it is desirable to have a sufficiently small number of
active symbols, i.e., Q� L, for a high energy efficiency, it is
also highly desirable that D is a power of 2 in the structured
IM according to Lemma 1.

III. SCIM WITH PRECODING

The number of information bits that can be transmitted by
IM, i.e., Nim = blog2

(
L
Q

)
c, depends on the length of block,

L. If Q is fixed due to an energy constraint, we need to
increase L for a larger Nim, which however results in the
increase of the system bandwidth (for a fixed symbol interval).
Without increasing the block length, L, it might be possible
to increase the number of information bits using precoding.
In this section, we generalize SCIM with precoding [33] and
discuss its relation to FTN signaling [36].

A. Precoding

Let Ψ be a precoding matrix of size L×N , where N ≥ L.
Denote by ψn the nth column of Ψ, i.e., Ψ = [ψ0 . . . ψN−1].
Then, the precoded SCIM symbol is given by

d = Ψs =

N−1∑
n=0

ψnsn.

Here, d is no longer sparse, but it has a sparse representation
where s = [s0 . . . sN−1]T is sparse. Clearly, the length
of SCIM symbol becomes N , not L, and more bits can be
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transmitted by IM as
(
N
Q

)
>
(
L
Q

)
for N > L. In SCIM with

precoding, Ψs is transmitted with CP. Thus, the received signal
at the BS after removing CP becomes

r = H

(
N−1∑
n=0

ψnsn

)
+ n

= HΨs + n. (8)

Define the discrete Fourier transform (DFT) matrix as

[F]m,l =
1√
L
e−

j2πml
L , m, l = 0, . . . , L− 1.

If Ψ = FH, SCIM with precoding becomes OFDM-IM. To
see this, we apply the DFT to r. Then, from [40], we have

y = Fr

= FHFHs + Fn

= Hs + ñ,

where ñ = Fn and H is a diagonal matrix, which is referred
to as the frequency-domain channel matrix and given by

H = diag(H0, . . . ,HL−1).

Here, Hl =
∑P−1
p=0 hpe

− j2πplL . As mentioned earlier, since
OFDM-IM has a poor PAPR performance, Ψ = FH is not
desirable as a precoding matrix, and a different precoding
matrix is to be chosen to avoid a high PAPR. To this end,
it is desirable to have ψn that has a high energy concentration
at a certain time. Note that if ψn = un, where the un’s
represent the standard basis vectors, a good PAPR performance
is achieved. However, there is no gain in terms of Nim,
because the resulting precoding matrix is Ψ = I. To find
good precoding matrices, there might be a number of different
approaches under various constraints. For example, in [33],
a design approach to achieve repetition diversity gain with
precoding is considered.

B. FTN Signaling

In [37], the notion of FTN signaling [36] is applied to
SCIM. In FTN signaling, the symbol transmission rate can
be higher than the Nyquist rate (of a given bandwidth) by a
factor of the inverse of the time-squeezing factor [41]. SCIM
with FTN signaling can be seen as an example of SCIM
with precoding where the precoding matrix depends on the
time-squeezing factor, denoted by ξ (≤ 1), and shaping pulse
(which is the impulse response of the transmit filter). With
FTN signaling, the size of precoding matrix becomes L×bLξ c,
i.e., N = bLξ c, and Ψ has its coefficients that are decided by
the time-squeezing factor and shaping pulse. For example, if
the Nyquist pulse is used, i.e.,

g(t) =
sinπ t

T

π t
T

,

where T is the Nyquist sampling interval, the (l, n)th element
of Ψ can be given by

ψl,n = [Ψ]l,n = g((l − nξ)T ), (9)

where l ∈ {0, . . . , L − 1} and n ∈ {0, . . . , N − 1}. The
resulting SCIM with the precoding matrix in (9) is referred
to as SCIM with FTN precoding in this paper. Note that it is
also called FTN-IM in [37].

Due to the time-squeezing factor ξ in FTN signaling, there
might be severe ISI, which can be overcome by equalizers and
coding [36] [42] with the sampled signals at a sampling rate of
1
ξT . To detect active symbols in SCIM with FTN precoding, a
higher sampling rate (i.e., 1

ξT ) can be used as in [37]. However,
it is also possible to detect active symbols with the Nyquist
sampling rate (or a lower rate than the Nyquist sampling rate)
by exploiting the sparsity of s, which will be discussed in
Subsection IV-B.

IV. MMSE AND CS-BASED DETECTION

In this section, we discuss low-complexity detection meth-
ods for SCIM without and with precoding.

A. MMSE Detection

In this subsection, we assume that Ψ = I, i.e., no precoding
is employed for SCIM. As in [35], [43], the frequency domain
equalization (FDE) can be considered to detect s (regardless
of its sparsity) with low-complexity. To this end, we can apply
the DFT to r in (2), and it can be shown that

y = Fr

= HFs + ñ, (10)

In FDE, we estimate x = Fs (instead of s) using the
minimum mean squared error (MMSE) filter (which is a
single-tap equalizer) that is given by

Wmmse = E[xyH]
(
E[yyH]

)−1

= HH

(
HHH +

L

Qγ
I

)−1

= diag

(
H∗0

|H0|2 + L
Qγ

, . . . ,
H∗L−1

|HL−1|2 + L
Qγ

)
,(11)

where γ =
σ2
s

N0
. Here, σ2

s represents the variance of non-zero
sl. Note that in (11), if we assume that the active symbols of
s are uniformly distributed, we have

E[xxH] = E[ssH] =
Qσ2

s

L
I.

Once x is estimated as Wmmsey, s can be recovered by taking
inverse DFT (IDFT). That is,

ŝmmse = F−1Wmmsey

= FHWmmsey. (12)

From the estimate of s in (12), the largest Q elements in terms
of their amplitudes can be chosen for the detection of index
modulated signals. Throughout the paper, the resulting detector
is referred to as the MMSE detector.
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B. CS-based Detection

In SCIM with FTN precoding, if the receiver chooses the
Nyquist sampling rate, the number of received signals, L,
becomes smaller than the block length, N . In general, when
precoding with N > L is used, the resulting system in
(8) becomes overdetermined, while s is sparse. Thus, the
notion of CS [22] [23] can be exploited to estimate s from
r. For example, as in [19] [33], a CS-based detector can be
considered using the sparsity of s.

Since s is sparse, the estimation of s can be carried out via
`1-minimization as follows:

ŝ = argmin ||s||1 subject to ||r−HΨs||2 ≤ ε, (13)

where ε is the error bound. The formulation in (13) is a typical
CS problem [44] and a number of algorithms are available to
obtain ŝ [45].

In (13), the recovery guarantee depends on the restricted
isometry property (RIP) of HΨ [46] [47]. It is said that A
satisfies the RIP of order k with RIP constant δk ∈ (0, 1) if
there exists a δk such that

(1− δk)||x||2 ≤ ||Ax||2 ≤ (1 + δk)||x||2,

where x ∈ Σk. If A has unit-norm columns, the RIP constant
is also related to the coherence of A as follows [45]:

δk = (k − 1)µ(A), (14)

where µ(A) is the coherence of A that is defined as

µ(A) = max
1≤n<m≤N

|aH
nam|

||an|| · ||am||
,

where N is the number of the columns of A.
Provided that HΨ satisfies the RIP, it is known that if

L ≥ CQ ln
N

Q
, (15)

where C is a constant that is independent of N and Q, s can
be recovered by solving (13) with a high probability [44] [47]
[45].

If FTN precoding is employed, we have L = ξN . Suppose
that τ = N

Q is fixed when N increases. Then, from (15), we
have

L = CQ ln τ or ξ = C
ln τ

τ
,

which implies that the time-squeezing factor ξ can be quite
small for a large τ . For example, if C = 0.28 [45] and
τ = 100, we have ξ = 0.012. Thus, we can expect to
be able to greatly increase the number of information bits
transmitted by IM, Nim, using FTN precoding. However, in
practice, HΨ may not satisfy the RIP as H is decided by
a random ISI channel. In addition, the error probability of
successful recovery is often too high to meet the requirement
in wireless communications, say 10−3 or lower. Consequently,
ξ cannot be too small.

Although (13) is a convex optimization problem, its compu-
tational complexity can be high. Thus, low-complexity greedy
algorithms might be used to find approximate solutions to
(13). For example, the (orthogonal matching pursuit) OMP
algorithm [48] [49] can be used as a low-complexity approach

to estimate sparse s. In general, the computational complexity
of the OMP algorithm depends on the size of the measurement
matrix and sparsity. Provided that Q is sufficiently small, the
computational complexity becomes O(LN) [45].

C. CS-based Detection with MMSE Filtering

Without precoding, the MMSE filter is able to provide an
estimate of Fs from y as in (12). We can also use the MMSE
filter with precoding to estimate FΨs (instead of Fs). Since
F is unitary, we can find an estimate of Ψs as follows:

v = FHWmmsey ≈ Ψs. (16)

Then, from v, the following optimization problem can be
considered to estimate s:

ŝ = argmin ||s||1 subject to ||v −Ψs||2 ≤ ε. (17)

Provided that v is a good estimate of Ψs, the performance
of recovering s from v depends on Ψ. According to (14),
for a certain RIP constant, it is required that Q is to be
inversely proportional the coherence of Ψ (i.e., for a large Q,
the coherence of Ψ has to be small). We show the coherence
of Ψ in FTN precoding with L = 64 in Fig. 1. Since the
coherence increases as ξ decreases, as N increases (i.e., ξ
decreases) for a fixed L, Q has to be small.
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Fig. 1. The coherence of Ψ in FTN precoding with L = 64 as a function
of the time-squeezing factor, ξ.

For a low-complexity approximation, we can again use the
OMP algorithm to recover s from v. That is, to solve (17),
the OMP algorithm can be used. The resulting approach can
provide a good performance if Ψ satisfies the RIP and the
MMSE filtering provides a good estimate of Ψs.

V. VARIATIONAL INFERENCE BASED DETECTION

In this section, we study a different approach based on
variational inference [38] [50] to detect the indices of active
symbols. This approach does not solve (13), but finds an
approximation of the maximum a posteriori probability (MAP)
detection.
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A. Optimal Detection

In order to estimate s, we can consider the ML approach.
From (8), the likelihood function of s is given by

f(r | s) =
1

(πN0)L
exp

(
− 1

N0
||r−HΨs||2

)
.

The ML estimate can be found as [51]

ŝ = argmax
s∈Σ̄Q

f(r | s)

= argmin
s∈Σ̄Q

||r−HΨs||2, (18)

where Σ̄Q = {s | s ∈ ΣQ, sl ∈ S̄}. Here, S̄ = S ∪ {0}.
We note that |Σ̄Q| = 2Nb , which grows exponentially with
Q (from (3)). Since the complexity of the ML detection is
proportional to |Σ̄Q|, it might be computationally prohibitive
unless Q is small (i.e., Q is 1 or 2) if an exhaustive search is
used.

In order to take into account the sparsity of s, we can
consider the MAP detection. Let Pr(s | r) represent the a
posteriori probability of s for given r. Since

Pr(s | r) ∝ f(r | s) Pr(s), (19)

where Pr(s) is the a priori probability of s (which can take
into account the sparsity of s), the MAP detection to find s
that maximizes Pr(s | r) can be given by

ŝ = argmax
s∈Σ̄Q

Pr(s | r). (20)

Like the ML detection, if an exhaustive search is considered
to perform the MAP detection, the complexity becomes pro-
hibitively high.

B. Variational Inference

Since the optimal detection (ML or MAP) requires a high
computational complexity, we may need to consider a low-
complexity approach to find an approximation. To this end, we
can consider the variational inference [38] [50] [52], which is
a well-known machine learning technique.

The variation inference is to obtain an approximate solution
to the MAP problem using variational distributions of s. Let
ρn(sn) be the distribution of sn ∈ S̄. In addition, R denotes
the set of the distributions of ρn(s) for s ∈ S̄. Furthermore,
we assume that the sn’s are independent. Thus, we have

ρ(s) =

N−1∏
n=0

ρn(sn),

which results in the mean-field approximation in variational in-
ference [50]. An approximation of the a posteriori probability,
Pr(s | r), can be obtained through the following optimization:

ρ∗ = argmin
ρ∈RN

KL (ρ(s)||Pr(s | r)) , (21)

where KL(·) is the Kullback-Leibler (KL) divergence [53],
which is defined as

KL(ρ(s)||f(s)) =
∑
s

ρ(s) ln
ρ(s)

f(s)
.

Here, f(s) is any distribution of s with f(s) > 0 for all s ∈
S̄N . Since the KL divergence is to measure the difference
between two probability distributions, ρ∗(s) in (21) becomes
an approximation of Pr(s | r). Then, the MAP detection can
be carried out with ρ∗(s) instead of Pr(s | r). Thanks to the
assumption that the sn’s are independent, sn can be estimated
as follows:

ŝn = argmax
sn∈S̄

ρ∗n(sn).

If ŝn 6= 0, sn is detected as an active symbol and its value in
the M -ary constellation, S, can also be obtained.

Note that since the sparsity of s is Q, it has to be taken into
account. To this end, let ρ̃n = 1−ρn(0). In addition, denote by
a(n) the index of the nth largest one among {ρ̃0, . . . , ρ̃N−1},
i.e., ρ̃a(0) ≥ . . . ≥ ρ̃a(N−1). Then, the index set of Q active
symbols becomes {a(0), . . . , a(Q− 1)}. We can also readily
impose the constraint of structured IM if s is a structured
IM signal in choosing Q active symbols. Furthermore, soft-
decisions on the IM bits can be found as ρ(·) is a probability,
which might be useful for decoding when a channel code is
used.

C. CAVI Algorithm with Gaussian Approximation

As shown in [52], the minimization of the KL divergence in
(21) is equivalent to the maximization of the evidence lower
bound (ELBO), which is given by

ELBO(ρ) = E[ln f(r, s)]− E[ln Pr(s)], (22)

where the expectation is carried out over s. Let s−n =
[s1 . . . sn−1 sn+1 . . . sN ]T. Then, for given s−n, it can
be shown that

ρn ∝ exp (E−n[ln f(sn | s−l, r)]) , (23)

where the expectation, denoted by E−n, is carried out over
s−n. The coordinate ascent variational inference (CAVI) al-
gorithm [50], [52] is to update ρn, n = 0, . . . , N − 1, while
the other variational distributions, ρ−n, are fixed. The CAVI
algorithm requires a number of iterations, denoted by Nrun.

To carry out the updating in (23), we need to have a
closed-form expression for E−n[ln f(sn | s−n, r)]. Unfortu-
nately, since f(sn | s−n, r) is a Gaussian mixture and it is
difficult to find a closed-form expression. However, as shown
in [54], a suboptimal approach is available with the Gaussian
approximation where an active symbol sn is assumed to be
a CSCG random variable. In particular, let sl be a zero-mean
CSCG random variable with variance σ2

s when sl 6= 0. Define
the activity variable, xl, as

xl =

{
1, if sl 6= 0
0, if sl = 0.

For convenience, let A = HΨ and denote by al the lth
column of A. Furthermore, let χ(i)

l (xl) be the estimate of
Pr(xl) in the ith iteration of the CAVI algorithm, where the
superscript (i) represents the ith iteration (i.e., i is used for
the iteration index). Under the Gaussian assumption of sl, the
CAVI updating rule for χ(i)

l (xl) is given by

χ
(i)
l (xl) = e−r

HR
(i)
l (xl)

−1r−ln det(R
(i)
l (xl)), xl ∈ {0, 1}, (24)
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where

R
(i)
l (xl) = ala

H
l xl +

∑
t<l

ata
H
t χ̄

(i)
t

+
∑
t>l

ata
H
t χ̄

(i−1)
t + γ−1I, (25)

where χ̄
(i)
l is the normalized version of χ(i)

l (xl), which is

given by χ̄(i)
l =

χ
(i)
l (1)

χ
(i)
l (0)+χ

(i)
l (1)

. The resulting CAVI algorithm
provides the support of s. Once the support of s is found, we
can easily estimate the non-zero elements of s from r. In [54],
detailed derivations are presented and it is also shown that the
complexity per iteration is O(L2N). From this, we can see
that the complexity grows linearly with N (which is similar
to the OMP algorithm) and its complexity is higher than that
of the OMP algorithm by a factor of LNrun.

VI. GENERALIZATION OF SCIM TO MULTIPLE ACCESS
FOR LOW-RATE DEVICES

In this section, SCIM with precoding is generalized to mul-
tiple access channel so that multiple devices can be supported
in the same resource block.

Suppose that there are K devices to transmit their signals
to the BS. Let Hk and Ψk ∈ CL×N denote the channel
and precoding matrices of device k, respectively. Then, the
received signal at the BS is given by

r =

K∑
k=1

HkΨksk + n. (26)

Let

A = [(H1Ψ1) · · · (HKΨK)] ∈ CL×NK

z = [sT
1 . . . sT

K ]T ∈ CNK×1. (27)

Then, it can be shown that

r = Az + n. (28)

If each device uses the structured IM with Q active symbols
(and N = DQ), z can be seen as a structured IM with
QK active symbols. It is clear that both the OMP and
CAVI algorithms can be employed at the BS to detect the
signals from K devices, i.e., QK-sparse signal z, from r.
For example, the CAVI algorithm can provide an approximate
solution to the MAP detection by obtaining an approximate a
posteriori probability as follows:

ρ(z) ≈ Pr(z |r).

Note that since the MMSE filtering is not applicable to the
superposition of precoded signals, the approach in Subsec-
tion IV-C cannot be used.

FTN signaling can be applied to SCIM for multiple access.
In particular, according to (27), since the size of A is L×NK,
the system time-squeezing factor becomes ξ = L

NK with the
following precoding matrix for device k:

[Ψk]l,n = g((l − (nK + k − 1)ξ)T ), k = 1, . . . ,K, (29)

where l ∈ {0, . . . , L − 1} and n ∈ {0, . . . , N − 1}. Let lk =
l − ξ(k − 1). Then, from (29), we have

[Ψk]l,n = g((lk − nKξ)T ), (30)

which shows that the effective time-squeezing factor at a
device becomes Kξ = L

N . Thus, if N < L, the device’s
transmission rate becomes lower than the BS’s sampling rate
(or Nyquist rate). For example, if L = 64, K = 2, and
(Q,D) = (5, 8), we have N = 40. Thus, the system time-
squeezing factor is 64

80 < 1, while the device’s time-squeezing
factor Kξ is 64

40 > 1. In Fig. 2, SCIM waveforms transmitted
from two low-rate devices are illustrated when L = 64 and
K = 2 with (Q,D) = (5, 8). The BS would be able to recover
the two sparse signals from L = 64 samples per block by
solving (28).
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Fig. 2. Transmitted SCIM waveforms transmitted from two low-rate devices
when L = 64 and K = 2 with (Q,D) = (5, 8).

As shown above, the generalization of SCIM with FTN
precoding to multiple access channel can play a key role in
supporting a number of devices with a limited spectrum by
allowing multiple IoT devices of low transmission rates to
share the same radio resource block. However, there are other
issues to be addressed as follows.
• Channel Estimation: As shown in (27), the BS needs

to know A, which means that it requires to estimate
Hk since Ψk is known. As in [6] [7], prior to data
transmissions, a handshaking procedure can be used for
random access where the channel estimation can also
be carried out as each active device is to transmit a
preamble. In particular, once the BS is able to detect
the preambles transmitted by multiple active devices
without any collision, it should be able to estimate their
channels (taking the preambles as pilot signals). Then, for
data transmissions, multiple active devices can employ
SCIM (with different precoding matrices) to transmit
their signals in the same radio resource block.

• When FTN precoding is used, in (30), each device has
the same effective time-squeezing factor, L

N . In fact,
it is also possible to have a different time-squeezing
factor by allowing a different number columns of Ψk,
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which is denoted by Nk. Then, the system time-squeezing
factor becomes L∑K

k=1Nk
, while device k’s effective time-

squeezing factor is L
Nk

. In other words, supporting mul-
tiple devices of different transmission rates is possible
using SCIM with precoding. This feature might be crucial
to support a wide range of IoT devices that may have
different transmission rates.

VII. SIMULATION RESULTS

In this section, we present simulation results of SCIM2

when 4-QAM (in this case, M = 4) is used for active
symbols with S = {±1 ± j} with the structured IM. For the
multipath channel, we assume that the channel coefficients are
independent and hp ∼ CN (0, 1/P ), p = 0, . . . , P − 1, i.e., a
multipath Rayleigh fading channel is considered. The signal-
to-noise ratio (SNR) is defined as Eb

N0
, where Eb represents

the bit energy that is given by

Eb =
Qσ2

s

Ñim +Q log2M
.

Here, σ2
s = 2 as 4-QAM is used. We also assume FTN

precoding for SCIM. For the signal detection, the following
3 different approaches are considered at the receiver of BS:
(i) the OMP detector that uses the OMP algorithm to solve
(13); (ii) the OMP-MMSE detector that employs the MMSE
filtering with the OMP algorithm to solve (17); (iii) the CAVI
detector that is based on the CAVI algorithm (unless stated
otherwise, we assume that the number of iterations for the
CAVI detector is set to Nrun = 4). To see the performance,
we consider the index error rate (IER) that is the probability
of erroneously detection of any index of active symbols.

We first consider SCIM with FTN precoding for a single
device. Fig. 3 shows the IERs of the three detectors as
functions of SNR with two different sets of parameters’ values.
In Fig. 3 (a), we consider L = 128 and N = 160 with P = 6
and (D,Q) = (32, 5). In this case, we have Ñim = 25 bits. On
the other hand, in Fig. 3 (b), we consider L = 64 and N = 80
with P = 4 and (D,Q) = (8, 10), where Ñim = 30 bits.
Clearly, the size of the system in Fig. 3 (b) is smaller than that
in Fig. 3 (a), while the former transmits slightly more bits than
the latter. As a result, the performance of the system in Fig. 3
(a) in terms of IER is better than that in Fig. 3 (b). We note
that the CAVI detector outperforms the other detectors, i.e.,
the OMP and OMP-MMSE detectors, at the cost of a higher
computational complexity. It is also interesting to see that the
OMP-MMSE detector can provide a comparable performance
to the CAVI detector, while the OMP detector suffers from the
error floor. Thus, we need to use the OMP-MMSE or CAVI
detector at a high SNR to avoid the error floor.

For a fixed L, SCIM with precoding can transmit more bits
as N increases. In particular, with a fixed D, Ñim can grow
linearly with N or Q as Ñim = Q log2D = N

D log2D. In
Fig. 4 (a), we present the IER as a function of sparsity Q (or
N ) with fixed D = 8 when L = 64, P = 4, and SNR = 16dB,

2In [33] [34], performance comparisons between SCIM and OFDM-IM can
be found, where it is shown that SCIM outperforms OFDM-IM in terms of
error rates. Thus, we only present simulation results of SCIM in this paper.
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Fig. 3. IER as a function of SNR: (a) L = 128, P = 6, Q = 5, D = 32;
(b) L = 64, P = 4, Q = 10, D = 8.

where a trade-off between the number of bits transmitted by
IM (i.e., Ñim) and the performance of IER is shown. That
is, the increase of Ñim results in a poor IER performance.
We note that the performance of the OMP-MMSE detector is
close to that of the CAVI detector when Q is small. However,
as Q increases, the performance of the OMP-MMSE detector
approaches that of the OMP detector. Thus, when a sufficiently
low IER is desirable with a small Q, the OMP-MMSE detector
(instead of the CAVI detector) can be used as it can provide
a good performance with low-complexity.

In Fig. 4 (b), we show the computation times of the 3
different detectors with the same parameter set as those used
in Fig. 4 (a). It is shown that the computation time increases
with Q or N and the computation time of the CAVI detector
is much higher than those of the OMP and OMP-MMSE
detectors as expected. In particular, as mentioned earlier, the
complexity order of the CAVI algorithm is LNrun times higher
than that of the OMP algorithm, so the CAVI detector requires
a higher computation time when comparing the OMP detector
by LNtimes = 256 times or a factor of 102, which is clearly
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Fig. 4. IER and computation time of the 3 different detectors as functions
of Q (or N ) with fixed D = 8 when L = 64, P = 4, and SNR = 16dB:
(a) IER; (b) computation time (obtained by “tic” and “toc” commands of
MATLAB).

shown in Fig. 4 (b).
Note that in Fig. 4 (b), the computation time of the OMP

detector is higher than that of the OMP-MMSE detector. This
is due to the different measurement matrices in (13) and
(17). In (17), Ψ with FTN signaling has a number of zeros,
which allows efficient pseudo-inverse operations in the OMP
algorithm and results in a low computation time. Thus, the
OMP-MMSE detector is better than the OMP detector in terms
of performance as well as computational complexity.

With FTN precoding, the time-squeezing factor, ξ, affects
performance. To see this, we show the IER as a function of ξ
in Fig. 5 with Q = 4, L = 64, P = 4, and SNR = 16dB. Note
that since Q is fixed, as ξ increases, N or D also increases,
which also results in the increase of Ñim. It is shown that
the time-squeezing factor cannot be too small to provide a
reasonable performance. For example, with ξ = 0.5, an IER
of 10−2 can be achieved. However, if ξ becomes smaller than
0.5, the IER becomes too high.

We now consider the use of SCIM with FTN precoding to
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Fig. 5. IER as a function of the time-squeezing factor ξ with Q = 4, L = 64,
P = 4, and SNR = 16dB.

support multiple low-rate devices in the same radio resource
block. As mentioned earlier, in this case, the OMP-MMSE
detector cannot be used. Thus, for a good performance with
a reasonable computational complexity, we may need to use
the CAVI detector. Since the CAVI detector is based on an
iterative algorithm, its performance depends on the number
of iterations, Nrun. In Fig. 6, we show the IER of the CAVI
detector as a function of the number of iterations, Nrun, when
L = 64, P = 4, K = 2, (Q,D) = (5, 8), and SNR =
16dB. We can see that 3 or 4 iterations are sufficient for the
convergence at a medium or high SNR. Thus, as before, Nrun

is set to 4 in the rest of simulations.
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Fig. 6. IER of CAVI as a function of the number of iterations, Nrun when
L = 64, P = 4, K = 2, (Q,D) = (5, 8), and SNR = 16dB.

In Fig. 7, we show the IER of SCIM with multiple devices
as a function of SNR when L = 64, P = 4, Q = 5, D = 8,
and K = 2. In this case, the transmission rate at each device
is lower than the Nyquist rate at the receiver by a factor of
40/64 = 0.625, and each device has Ñim = 5 log2 8 = 15 bits
to be transmitted by IM. In addition, since 4-QAM is used for
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active symbols, the total number of bits per block per device
is 15 + 5 log2 4 = 25 bits. At an SNR of 16dB, the CAVI
detector can provide an IER lower than 10−3 and the OMP
detector can achieve an IER slightly lower than 10−1. Clearly,
it demonstrates that the simple OMP detector cannot be used,
but a more complicated detector, e.g., the CAVI detector, is
required to achieve a good performance.
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Fig. 7. IER of SCIM with multiple devices as a function of SNR when
L = 64, P = 4, Q = 5, D = 8, and K = 2.

Fig. 8 shows the IER of SCIM with multiple devices as a
function of K when L = 64, P = 4, Q = 3, D = 8, and
SNR = 16 dB. Since D and Q are fixed, each device can
transmit Ñim = 3 log2 8 = 9 bits by IM regardless of K, and
the transmission rate at each device is lower than the Nyquist
rate at the receiver by a factor of 24/64 = 0.375 (since N =
QD = 24). It is shown that as K increases, the IER increases,
which demonstrates a trade-off between the performance and
the number of devices to be supported. Clearly, the number of
devices, K, is to be limited for a reasonably good performance
in terms of IER. For example, at a target IER of 10−2, K can
be up to 5 if the CAVI detector is used.

The impact of L on the performance of SCIM with multiple
devices in terms of IER is shown in Fig. 9 when K = 2,
P = 4, Q = 5, D = 8, and SNR = 16 dB. Since Q and D
are fixed, N = 40 is also fixed at each device. Thus, as L
increases, we can assume that the system bandwidth increases
and the spectral efficiency decreases. Thus, in Fig. 9, we can
see that the IER decreases at the cost of spectral efficiency
(i.e., lowering the spectral efficiency results in a lower IER).

As mentioned earlier, an advantage of SCIM over OFDM-
IM is the path diversity gain. Thus, it is expected to see a better
performance as P increases. In Fig. 10, the IER is shown as
a function of the number of multipaths, P , with L = 64,
K = 2, Q = 5, D = 8, and SNR = 16 dB. As expected, due
to a higher path diversity gain, a lower IER can be achieved
with increasing P when the CAVI detector is used. On the
other hand, the OMP detector does not provide an improved
performance as P increases. This demonstrates that in order
to fully exploit the path diversity gain, an optimal detector or
an approximate optimal detector has to be used.
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Fig. 8. IER of SCIM with multiple devices as a function of K when L = 64,
P = 4, Q = 3, D = 8, and SNR = 16 dB.
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Fig. 9. IER of SCIM with multiple devices as a function of L when K = 2,
P = 4, Q = 5, D = 8, and SNR = 16 dB.

VIII. CONCLUDING REMARKS

In this paper, we studied SCIM that is an application of
IM to SC systems for IoT uplink as it has several advantages,
e.g., low PAPR, path diversity gain, no inverse FFT operation
required, compared to OFDM-IM. To increase the number of
information bits transmitted by IM, precoding was applied
to SCIM. In particular, FTN precoding has been considered.
We also generalized SCIM with precoding to multiple access
channel so that multiple devices can share the same radio
resource block for uplink transmissions. With FTN precoding,
we showed that devices can have lower transmission rates than
the receiver’s sampling rate (Nyquist rate), which might be
useful when a device needs to lower its clock frequency for
energy saving. We also derived different detectors for sparse
signal detection including the CAVI detector that can provide
an approximate solution to the (optimal) MAP detection.

There are a number of further research works for SCIM
with precoding. For example, optimal precoding matrices can
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Fig. 10. IER of SCIM with multiple devices as a function of P when L = 64,
K = 2, Q = 5, D = 8, and SNR = 16 dB.

be designed under various constraints. In particular, when
devices have different transmission rates, the design of optimal
precoding matrices might be an interesting and important
topic. Channel coding can also be considered. Since the
CAVI detector can provide soft-decisions, channel decoding
can be performed with soft-decisions together with the CAVI
detector. Furthermore, in each iteration of the CAVI algorithm,
channel decoding can be performed, which can result in a fast
convergence rate as well as an improved performance.
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