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Wideband MIMO Channel Estimation
for Hybrid Beamforming Millimeter Wave Systems

via Random Spatial Sampling
Evangelos Vlachos, Member, IEEE, George C. Alexandropoulos, Senior Member, IEEE,

and John Thompson, Fellow, IEEE

Abstract—Millimeter Wave (mmWave) massive Multiple Input
Multiple Output (MIMO) systems realizing directive commu-
nication over large bandwidths via Hybrid analog and digital
BeamForming (HBF) require reliable estimation of the wideband
wireless channel. However, the hardware limitations with HBF
architectures in conjunction with the short coherence time inherit
in mmWave communication render this estimation a challenging
task. In this paper, we develop a novel wideband channel
estimation framework for mmWave massive MIMO systems with
HBF reception. The proposed framework jointly exploits the
low rank property and the available angular information to
provide more accurate channel recovery, especially for short
beam training intervals. We introduce a novel analog combining
architecture that includes a random spatial sampling structure
placed before the input of the analog received signals to the
digital component of the HBF receiver. This architecture supports
the proposed matrix-completion-based estimation approach in
providing the sampling set of measurements for recovering the
unknown channel matrix. The performance improvement of
the proposed approach over representative state-of-the-art tech-
niques is demonstrated through numerous computer simulation
results.

Index Terms—Wideband channel estimation, angular infor-
mation, random spatial sampling, matrix completion, massive
MIMO, hybrid beamforming, millimeter wave communications.

I. INTRODUCTION

The millimeter Wave (mmWave) frequency band offers
large bandwidths for wireless communication, and thus, has
been considered as a promising enabler for the highly de-
manding data rate requirements of fifth Generation (5G), and
beyond, broadband wireless networks [1]. Although communi-
cation signals at mmWave systems are expected to experience
severe pathloss and atmospheric attenuation, their mm-level
wavelengths enable many antenna elements to be packed
in small-sized terminals, which allows for highly directional
beamforming. The IEEE 802.11ad standard adopts analog
beamforming [2] with single-stream communication, where
many antenna elements are connected to one Radio Frequency
(RF) chain via an analog network that is usually comprised
of phase shifters. To provide higher data rates, the 5G New
Radio (NR) technology [3] will support Hybrid BeamForming
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(HBF) [4] with up to four spatial streams for communication.
This technology capitalizes on both analog and digital signal
processing to enable a large number of antenna elements to
be connected to a much smaller number of RF chains.

Near-optimal HBF performance in mmWave massive Mul-
tiple Input Multiple Output (MIMO) systems necessitates
reliable Channel State Information (CSI) knowledge. This is
however very challenging to acquire in practice due to the very
large numbers of transceiver antenna elements and the high
channel variability [5]. Several approaches requiring receiver
feedback have been proposed for designing BF vectors suitable
for CSI estimation [6], [7]. On the other side, static dictionaries
or beam training techniques without receiver feedback have
also been adopted for beam codebook designs [8]–[12]. In
most of these studies, CSI estimation has been treated as
a compressive sensing problem [13], where the Orthogonal
Matching Pursuit (OMP) algorithm [14] has been usually
adopted to recover the sparse channel gain vector. However,
the performance of these channel estimation techniques is usu-
ally limited by the codebook design, since beam dictionaries
suffer from power leakage due to the discretization of the
Angle of Arrival (AoA) and Angle of Departure (AoD). Very
recently in [15]–[17], the sparsity and low rank properties of
certain wireless channels were jointly exploited for efficient
CSI estimation. Targeting narrowband mmWave MIMO chan-
nel estimation with HBF transceivers, a two-stage procedure
(one stage per channel property) was introduced in [16]. For
the same narrowband channels and considering transceivers
equipped with simple switches, [17] presented a matrix com-
pletion algorithm leveraging jointly from both properties. This
algorithm was shown to outperform the techniques of [8],
[16] in terms of estimation performance, requiring relatively
short channel sounding intervals. Wideband mmWave MIMO
channels with frequency selectivity were recently considered
in [11], where a CSI estimation technique exploiting channel’s
sparsity in both time and frequency domains was presented.

A. Novelty and Contributions

In this paper, we consider the uplink of wideband mmWave
massive MIMO systems with HBF reception and focus on
accurate pilot-assisted channel estimation with short training
lengths and low computational complexity. For the estima-
tion of the unknown channel, we formulate a multi-objective
optimization problem that capitalizes on the sparsity of the
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channel matrix in the beamspace domain, as well as on the
low-rank property of the received signal matrix during channel
sounding. The proposed channel estimation algorithm is based
on the Alternating Direction Method of Multipliers (ADMM)
[18]. In particular, the main contributions of this work are
summarized as follows:

• We introduce a novel analog combining architecture
including a random spatial sampling structure, which
comprises of a random selection step before the input of
the analog received signals to the digital component of
the HBF receiver. This architecture is used for measure-
ment collection during channel sounding, and is radically
different from the one proposed in [17], where an analog
combiner with switches was considered to estimate the
signals at the received antennas one-by-one. The key
characteristic of the proposed architecture is the random
selection of a subset of the available analog receive beams
per channel sounding interval, which in conjunction with
the proposed CSI estimation technique yields improved
performance with relatively short training lengths.

• We show that when the wideband mmWave massive
MIMO channel matrix is of a low rank, the same holds
for the matrix obtained at the HBF receiver after the
analog processing of training signals with multiple re-
ceive beams. Capitalizing on this finding, we formulate
an optimization problem for CSI estimation that jointly
exploits the low-rank property of the received training
signal matrix and the sparsity of the channel matrix in the
beamspace domain. The proposed optimization problem
formulation, which aims at finding the directions and
gains of the wideband channel paths, is different from
that in [17]. The differences refer to the mathematical
formulations, the measurement requirements needed for
them and the applicability of the approach in wideband
mmWave massive MIMO channels; [17] is based on
the low-rank property of narrowband mmWave MIMO
channels.

• We extend the proposed CSI estimation algorithm to
incorporate prior knowledge of the angles of the prop-
agation channel paths. This is achieved by imposing a
specific structure on the beamspace representation of the
wideband MIMO channel matrix using a hard threshold-
ing operation that does not add significant complexity
to the designed technique. It is shown via representative
simulation results that the proposed angle-aware CSI
estimation is robust in regimes of high noise exhibiting
improved performance in cases of reduced number of
spatial training measurements, i.e., when the number of
RF chains in the HBF receiver is small.

• Apart from the proposed iterative ADMM-based opti-
mization algorithms for solving the targeted wideband
mmWave massive MIMO channel estimation problem,
we design their low-complexity approximations that ex-
hibit very similar performance, but with significantly
reduced computational complexity requirements.

Our extensive simulation results showcase that the proposed
algorithms exhibit improved performance in terms of Mean

TABLE I
THE NOTATIONS OF THIS PAPER.

a,a and A Scalar, vector, and matrix
j ,
√
−1 The imaginary unit

AT and AH Matrix transpose and Hermitian transpose
A−1 and A† Matrix inverse and pseudo-inverse

[A]i,j Matrix element at the i-th row and j-th column
[a]i The i-th vector element

A and Â Actual and estimated matrix
IN N ×N identity matrix

0N×K N ×K matrix with zeros
IN×K Column concatenated matrix [IN 0N×K ]

Ω Matrix containing 0’s and 1’s
‖ · ‖∗, ‖ · ‖F Matrix nuclear and Frobenius norms

× Scalar multiplication
◦ Element-wise (Hadamard) matrix product
⊗ Kronecker product

vec(A) Vectorization of A
unvec(A) Inverse operation of vec(·)
diag(a) Diagonal matrix with a on the main diagonal

toeplitz(a) Toeplitz matrix with a on the first row
SVTt Singular Value Thresholding [19] with threshold t

L(X,Y,V) Lagrangian with primal (X,Y)
and dual (V) variables

SΩ(A) Hadamard operator (SΩ(A) , Ω ◦A)
which samples the entries of A based on Ω

Squared Error (MSE) for channel estimation with a short beam
training length and under high noise conditions, when com-
pared with other state-of-the-art wideband mmWave massive
MIMO channel estimation techniques.

Notations: A summary of the notation used throughout this
manuscript can be found in Table I.

II. CHANNEL MODEL

We consider a point-to-point NR × NT massive MIMO
communication system operating over wideband mmWave
channels. Similar to [20], we assume that each of the NT

antenna elements of the Transmitter (TX) is attached to a
dedicated RF chain, while the NR Receiver (RX) antenna
elements are connected (all or in small groups) to MR < NR

RF chains. Due to this hardware configuration, the TX is
capable of digitally precoding up to NT independent signals,
each provided from one dedicated RF chain. On the other
hand, we assume that RX is equipped with any of the available
HBF architectures [4] supporting both analog and digital
combining. As described next, the proposed framework applies
also to HBF transmission, but we leave the full details of
this extension for future work. From an information theoretic
point of view, the considered mmWave MIMO system can
realize a wireless communication link comprising of ds ≤
min(NT,MR) independent information data streams.

A. Frequency-Selective MIMO Channel Model

Let us utilize the geometric representation for the frequency-
selective mmWave MIMO channel, according to which the
channel has L delay taps with H(`) ∈ CNR×NT (` =
0, 1, . . . , L − 1) denoting the MIMO channel gain matrix for
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each `-th channel tap. For the `-th delay tap, H(`) can be
mathematically expressed as

H(`) ,

√
NTNR

Np

Np∑
k=1

αkp (`Ts − τk) aR(φk)aHT (θk), (1)

where Np denotes the number of propagation paths per chan-
nel delay tap `, and αk with k = 1, 2, . . . , Np is the gain
of the k-th channel path drawn from the complex Gaussian
distribution CN (0, 1/2). In addition, p(τk) denotes the band-
limited pulse shaping filter response at the discrete time τk.
The vectors aT(φk) ∈ CNT and aR(θk) ∈ CNR represent the
TX and RX normalized array response vectors, respectively,
which are expressed as described in [5, Sec. II.C] for uniform
linear arrays. Scalars φk and θk are the physical AoA and
AoD, respectively, which are commonly generated according
to the Laplace distribution [21].

In a similar way to the case of narrowband mmWave MIMO
channel estimation, techniques that capitalize on the low-rank
property of the channel (e.g., [16], [17]) can be employed.
Before proceeding with the proposed CSI estimation frame-
work, we first investigate the rank of the considered wideband
mmWave MIMO, which will witness the relevance of the latter
techniques to the targeted estimation problem. Specifically, the
rank of each `-th delay tap channel H(`) given by (1) can be
obtained as

rank(H(`)) = rank

 Np∑
k=1

αkp (`Ts − τk) aR(φk)aHT (θk)


(2)

≤
Np∑
k=1

rank
(
aR(φk)aHT (θk)

)
= Np, (3)

where the equality between the expressions in (2) and (3) holds
when the following steering matrices

AT ,
[
aT(θ1) aT(θ2) · · · aT(θNp

)
]
, (4)

and
AR ,

[
aR(φ1) aR(φ2) · · · aR(φNp)

]
(5)

are orthogonal. Hence, all channel matrices H(`) for ` =
0, 1, . . . , L − 1 have the same rank, which proves that the
rank of the concatenated channel matrix

H̄ , [H(0) H(1) · · · H(L− 1)] ∈ CNR×LNT

will also be upper bounded by:

rank(H̄) ≤ Np. (6)

It is already well known (see, e.g., [22]–[24]) that Np � NR,
which reveals that H̄ is of a low rank depending directly on
the geometry of the mmWave channel propagation paths.

B. Beamspace Decomposition

An alternative representation for H(`), that will be exploited
later in the proposed channel estimation algorithm, is based
on the beamspace channel of [25], which is defined as

H(`) = DRZ(`)DH
T , (7)

where DR ∈ CNR×NR and DT ∈ CNT×NT are unitary
matrices based on the Discrete Fourier Transform (DFT), and
Z(`) ∈ CNR×NT includes the virtual channel gains of H`.
Motivated by the low rank property of this matrix, we further
assume that Z(`) ∀` contains only few virtual channel gains
with high amplitude, i.e., it is a sparse matrix. The sparsity
level of Z(`) depends on the angular discretization in the
beamspace representation given by (7).

Low-rank-based mmWave MIMO channel estimation leads
to better approximation of the channel matrix, at the expense
of higher number of training blocks [26], [27]. On the opposite
side, CSI estimation approaches capitalizing on channel’s
spatial sparsity may approximate the channel matrix faster,
but with lower accuracy due to the angular discretization
errors [24]. In [17], an estimation framework for narrowband
mmWave MIMO channels was introduced leveraging jointly
the latter two properties. Although the extension of [17]’s
approach is feasible for wideband channels it may introduce
increased design complexity, given that the number of the
receiving antennas NR becomes very large. To overcome this
limitation, in this work we introduce a novel architecture for
the analog part of HBF reception including a random spatial
sampling structure. Owing to this new structure, the number of
RF chains is reduced to MR which is usually much lower than
the number of the receiving antennas NR, thus, the hardware
design complexity is significantly reduced.

III. PROPOSED ANALOG COMBINING ARCHITECTURE

In this section, we first describe the sounding procedure
for the considered wideband MIMO channel, and then present
the proposed analog combining architecture for HBF RXs with
large number of antenna elements.

A. Channel Sounding Procedure

We assume frame-by-frame communication, where the
wireless channel remains constant during each frame, but
might change independently from one frame to another. Every
frame consists of T blocks dedicated for channel estimation,
whereas the rest of the frame is used for data communication.
Naturally, a large T yields improved channel estimation, but
leaves less frame length for actual data communication. To
estimate the intended wideband mmWave MIMO channel, the
NT-antenna TX utilizes the NT × 1 training symbols’ vector
s[t] for each block t with t = 1, 2, . . . , T . Ignoring for the
moment for the clarity of the exposition the impact of the
Additive White Gaussian Noise (AWGN), the NR-dimensional
received training signal can be expressed as:

ỹ[t] =

L−1∑
`=0

H(`)s[t− `], (8)

which represents the convolution of the L tap delay channel
matrices and the L training vectors s[t − `] ∈ CNT×1.
Equivalently, (8) can be re-expressed as:

ỹ[t] =

L−1∑
`=0

NT∑
k=1

hk(`)sk[t− `], (9)
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1

...

NR

Analog
combiner

WRF ∈ WMR×NR

1
...

MR

Fig. 1. Block diagram of the conventional analog combiner [4] used for
wideband mmWave MIMO channel estimation with HBF reception. The
combiner connects via phase shifters its NR inputs from the respective RX
antennas to the MR receive RF chains.

where hk(`) is the k-th column of H(`) and sk[t] denotes
the k-th element of s[t]. Interchanging the summation order
in (9), we can express the inner convolution sum in terms of
L× T Toeplitz matrix. Particularly, by introducing the L× T
Toeplitz matrix Ψ̃k with its (`, t)-th element given by:

[Ψ̃k]`,t = sk[t− L− `+ 2], (10)

where ` = 0, 1, . . . , L − 1 and k = 1, 2, . . . , NT, (9) can be
re-written as:

Ỹ ,
NT∑
k=1

H̃kΨ̃k, (11)

where Ỹ ∈ CNR×T and H̃k , [hk(0) · · ·hk(L − 1)] ∈
CNR×L. Reorganizing the structure of Ψ̃ and H̃ so as to be
grouped over the transmitting antennas (see Appendix VIII-B),
(11) can be equivalently expressed as:

Ỹ = H̄Ψ̄, (12)

where H̄ , [H(0) · · ·H(L − 1)] ∈ CNR×LNT and Ψ̄ ,
[ΨT (0) · · ·ΨT (L − 1)]T ∈ CLNT×T . Moreover, using the
beamspace decomposition of each delay’s path matrix we have
that

H̄ = DRZ̄(IL ⊗DH
T ), (13)

where Z̄ , [Z(0) · · ·Z(L − 1)] ∈ CNR×LNT . The decompo-
sition of (13) can be seen as an equivalent to the beamspace
decomposition of (7) for the case of the wideband channel
matrix H̄. Putting all above together, the matrix including the
received training symbols is given by

Ỹ = DRZ̄(IL ⊗DH
T )Ψ̄. (14)

The difference of (14) with respect to (13) is the right hand
matrix Ψ̄, which contains the training symbols. The latter
expression will be used in our approach in order to express the
received training data with respect to the concatenated virtual
channel gains Z̄.

B. Analog Combining with Random Spatial Sampling

1) Motivation: Before introducing the proposed analog
combining architecture, we provide some motivation argu-
ments. To receive the training symbols intended for chan-
nel estimation, the HBF RX utilizes its NR × MR analog
combiner denoted by WRF and belonging to a predefined

1

...

NR

Analog
combiner

We
RF ∈ WMe

R×NR

1

...

M e
R

SΩ(W
e
RF) ∈ WMe

R×MR

Random spatial
sampling
M e

R-to-MR

1

...

MR

Subset
of analog
combiner
outputs

Fig. 2. Block diagram of the proposed analog combining architecture for
wideband mmWave MIMO channel estimation with HBF reception. The
architecture includes an extended analog combiner having as inputs the NR

analog signals from the respective RX antennas. Those signals are fed via a
network of phase shifters to the Me

R outputs of the combiner, MR out of
which are selected from the subsequent random spatial sampling unit.

beam codebook WNR×MR . Its block diagram for standard
HBF RX architectures (see, e.g., [4]) is sketched in Fig. 1.
A network of Phase Shifters (PSs) is usually considered
for analog combining, hence all available WRF combiners
have unit magnitude elements. For the combiner’s phases, the
following generic quantized set is usually considered:

WNR×MR =

{
0,

2π

2NQ
, . . . ,

(2NQ − 1)2π

2NQ

}
, (15)

with NQ being the quantization resolution. After applying an
analog combiner from the available codebook to the received
training symbols’ matrix Ỹ in (13), the baseband received
signal at the MR inputs of the RX’s RF chains is given by
WH

RFỸ ∈ CMR×T .
Usually the number of receive RF chains is much smaller

than the number of receiving antennas, i.e., MR � NR,
to provide low implementation complexity and reasonable
power consumption for mmWave HBF reception [4]. However,
this reduction in the RF chain hardware introduces a loss
of information compared to the fully digital RX case, since
the received signals lie in a smaller vector space. This is
particularly true for the achievable Average Spectral Efficiency
(ASE), which is related to the orthogonality of the analog
combiner WRF. Specifically, assuming equal allocation of the
unit transmit power to the NT transmit antennas and AWGN
with variance σ2

n, the achievable ASE with conventional HBF
reception can be upper bounded as (see Appendix VIII-C):

CHBF = log2 det
(

IMR
+

1

σ2
nNT

WH
RFYYHWRF

)
(16)

≤ log2 det
(

INR
+

1

σ2
nNT

YYH
)
, (17)

where Y ∈ CNR×ds represents the received information
bearing data matrix having a similar expression to (12). It is
noted that the inequality (17) is satisfied with equality when
WRFWH

RF = INR
.

2) Architectural Components: The block diagram of our
novel analog combining architecture comprising of an ex-
tended analog combiner and a random spatial sampling unit is
illustrated in Fig. 2. As shown, the inputs of this architecture
are the Me

R analog signals received at the respective RX
antenna elements, and its outputs are fed to the MR receive



5

TABLE II
COMPARISON OF THE DIFFERENT COMPONENTS BETWEEN THE

CONVENTIONAL AND THE PROPOSED ANALOG COMBINER
ARCHITECTURES.

Conventional Proposed
Num. of PSs MRNR Me

RNR

Num. of LNAs (MR+1)NR (Me
R+1)NR

Total Power MRNRPPS+ Me
RNRPPS+MRPSW

consumption (P ) NR(MR+1)PLNA +NR(Me
R+1)PLNA

RF chains. In mathematical terms, the conventional analog
combiner WRF ∈ WNR×MR is replaced in the proposed archi-
tecture by the extended analog combiner We

RF ∈ WNR×Me
R

(having also unit magnitude elements) which is followed by
a random spatial sampling structure. The latter structure per-
forms sampling of the Me

R outputs of the extended combiner
We

RF forwarding only MR of these signals to the receive
RF chains, as shown in Fig. 2. In mathematical terms, the
functionality of the random spatial sampler can be represented
by the operator SΩ(We

RF) ∈ WMe
R×MR , which randomly

selects MR out of Me
R columns of the extended analog

combiner We
RF. Following the mode of operation of the

proposed analog combiner, the achievable spectral efficiency
is given by

Cp =log2 det
(

IMR +
1

σ2
nNT

SΩ(We
RF)HYYHSΩ(We

RF)

)
.

(18)
Since the sampling via the operator SΩ is performed to a larger
vector space, generated by the columns of We

RF, it can be
shown that SΩ(We

RF)(SΩ(We
RF))H has better orthogonality

properties than WRFWH
RF. This means that the achievable

rate of the proposed design is expected to be higher than the
conventional HBF architecture (c.f., Section VI.A).

The proposed extended analog combiner requires larger
number of PSs compared to the conventional combiner in
order to generate Me

R > MR outputs. We argue, however,
that those additional hardware components do not contribute
significantly to RX’s hardware complexity or power con-
sumption. In Table II, we compare the conventional and the
proposed analog parts of the HBF RX in terms of the total
power consumption P . We consider the power consumption
required by three main components: (i) PPS for each PS,
(ii) PLNA for each Low Noise Amplifier (LNA), and (iii)
PSW for each SWitch (SW). Specifically, the increase in
power consumption required by the proposed architecture is
(Me

R − MR)(PLNA + PPS) + MRPSW. The impact of the
increased hardware components to the power consumption and
the energy efficiency are thoroughly investigated in Section VI.

3) Random Spatial Sampling: Capitalizing on expression
(13) for the received training signal and the functionality of
the extended analog combiner, the output of the latter structure
in the proposed HBF RX architecture can be expressed by the
following Me

R × T complex-valued matrix:

R , (We
RF)H(Ỹ + Ñ) (19)

= (We
RF)H(DRZ̄B + Ñ) (20)

= AZ̄B + (We
RF)HÑ (21)

with A , (We
RF)HDR ∈ CMe

R×NR and B , (IL ⊗
DH

T )HΨ̄ ∈ CLNT×T where Ñ ∈ CNR×T is the AWGN
matrix with independent and identically distributed (i.i.d.)
entries each having zero mean and variance σ2

n.
An equivalent way to represent the sampling operator SΩ(·)

in the proposed architecture is via the Hadamard product. Let
us consider the matrix Ω ∈ {0, 1}NR×T composed of TMR

ones and T (NR−MR) zeros, where the positions of its unity
elements in each of its rows are randomly chosen in a uniform
fashion over the set {1, 2, . . . , NR}. The role of the random
spatial sampling unit is to process the output R of the extended
analog combiner as follows:

RΩ , Ω ◦R (22)

= Ω ◦
(
Y + N

)
(23)

with RΩ ∈ CMR×T , Y , AZ̄B, and N , (We
RF)HÑ.

Evidently, each column of RΩ will have only MR non-zero
rows out of its NR in total, which will be fed to the MR

receive RF chains.
The proposed analog combiner architecture for HBF recep-

tion retains the low complexity and low power consumption
characteristics of standard HBF reception. It also increases
the degrees of freedom for channel estimation since the
resulting effective channel has larger number of dominant
directions. Indeed, by reconstructing the training signal matrix
Ỹ ∈ CNR×T we recover the NR −MR lost directions due to
the reduced number of RF chains. In the ideal case where
We

RF = DR, it can be easily concluded that:

(We
RF)HỸ = Z̄(IL ⊗DH

T )Ψ̄ ∈ CNR×T . (24)

The latter equality is true since (We
RF)HDR = INR

holds.

IV. PROPOSED WIDEBAND MMWAVE
MIMO CHANNEL ESTIMATION

In this section, we present the proposed channel estimation
problem formulation together with its detailed algorithmic
solution.

A. Problem Formulation

It follows from (21) that the received training signal matrix
at the output of the extended combiner is given by the
sum of the low-rank matrix (We

RF)HỸ that includes the
training symbols after passing through the wideband mmWave
MIMO channel, and the AWGN matrix N. In this work, we
propose the exploitation of the low-rank property of Ỹ for the
estimation of the wideband channel matrix Z̄. To do so, let
us first investigate the rank properties of the latter matrix. For
simplicity, let us consider the ideal case where (We

RF)HDR =
INR

. In this case, the next proposition provides a worst-case
upper bound for the rank of Z̄(IL⊗DH

T )Ψ̄, which represents
the received training signal after applying the extended analog
combiner denoted by We

RF, i.e, (We
RF)HỸ.

Proposition 1. The rank of Q , Z̄(IL ⊗ DH
T )Ψ̄ is upper

bounded by
rank(Q) ≤ min(Np, LNT). (25)
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with L denoting the number of delay taps of the wideband
mmWave MIMO channel and Np is the number of propagation
channel paths.

Proof. See Appendix VIII-A.

Capitalizing on both the sparse structure of Z̄ and the low
rank property of the training symbols’ matrix Ỹ, we formulate
the following dual objective Optimization Problem (OP) for
the estimation of Z̄:

minY,Z̄ τR‖Y‖∗ + τZ‖Z̄‖1
subject to RΩ = Ω ◦

(
Y + N

)
,

Y = AZ̄B, (26)

where Y’s nuclear norm in the objective function imposes
its low rank property, whereas the `1-norm of Z̄ enforces its
sparse structure. The weighting factors τR, τZ > 0 depend
in general on the number L of the distinct mmWave MIMO
channel propagation paths. Of course the noise matrix N is
unknown, so in the following, we replace the first constraint
in (26) with its least-squares estimate ‖RΩ −Ω ◦Y‖2F .

B. Solution via Alternating Minimization

The OP (26) can be solved optimally using the ADMM
technique. A similar approach has been adopted in [17],
however there, the sampling is performed on the channel
matrix, and not on the received training signal, as shown
from (26). To solve (26), we proceed as follows. We first
introduce the two auxiliary matrix variables X ∈ CNR×T and
C , Y−AZ̄B to reformulate the targeted OP in the following
equivalent form:

minY,Z̄,X,C τR‖Y‖∗ + τZ‖Z̄‖1

+
1

2
‖C‖2F +

1

2
‖Ω ◦X−RΩ‖2F

subject to Y = X and C = Y −AZ̄B, (27)

which is equivalent to (26), but the cost function has been
decomposed into the sum of four variables: Y, Z̄,X, and C.
Note that now the third term in the objective function takes
into account the discretization error, while the fourth term is
the AWGN noise. The Lagrangian function of the OP in (27)
is easily expressed as:

L(Y, Z̄,X,C,V1,V2) = τR‖Y‖∗ + τZ‖Z̄‖1

+
1

2
‖C‖2F +

1

2
‖Ω ◦X−RΩ‖2F + tr(VH

1 (Y −X))

+
ρ

2
‖Y −X‖2F + tr(VH

2 (C−X + AZ̄B))

+
ρ

2
‖C−X + AZ̄B)‖2F , (28)

where V1 ∈ CNR×T and V2 ∈ CNRT×1 are dual variables
(the Lagrange multipliers) adding the constraints of (27) to the
cost function, and ρ denotes the stepsize for ADMM.

According to the standard ADMM approach, at the i-th
algorithmic iteration, with i = 0, 1, . . . , Imax, the following
separate sub-problems need to be solved:

Y(i+1)=arg min
Y
L1

(
Y,X(i), Z̄(i),C(i),V

(i)
1 ,V

(i)
2

)
, (29)

X(i+1)=arg min
X
L1

(
Y(i+1),X, Z̄(i),C(i),V

(i)
1 ,V

(i)
2

)
, (30)

Z̄(i+1)=arg min
Z̄
L1

(
Y(i+1),X(i+1), Z̄,C(i),V

(i)
1 ,V

(i)
2

)
,

(31)

C(i+1)=arg min
C
L1

(
Y(i+1),X(i+1), Z̄(i+1),C,V

(i)
1 ,V

(i)
2

)
,

(32)

V
(i+1)
1 =V

(i)
1 + ρ

(
X(i+1)−Y(i+1)

)
, (33)

V
(i+1)
2 =V

(i)
2 + ρ

(
C(i+1) −X(i+1) + AZ̄(i+1)B)

)
. (34)

Note that for the initialization i = 0: Y(0) = Z̄(0) = C(0) =
V

(0)
1 = V

(0)
2 = 0, X(0) = RΩ.

The partial derivatives of each of the latter sub-problems
can be obtained as follows.

Solution of (29): The first subproblem considers the opti-
mization over the variable Y, so let us express (29) by keeping
only the terms that are related to it and completing the square,
i.e.,

Y(i+1) =arg min
Y

τY ‖Y‖∗+
ρ

2
‖Y−(X(i)− 1

ρ
V

(i)
1 )‖2F . (35)

It is known that the solution of (35) can be obtained from the
Singular Value Thresholding (SVT) operator as follows [19]:

Y(i+1) =U
(i)
L diag

(
{sign(ζ

(i)
j )×

max(ζ
(i)
j , 0)}1≤j≤r

)
(U

(i)
R )H , (36)

where U
(i)
L ∈ CNR×r and U

(i)
R ∈ CNR×r contain the left

and right singular vectors, respectively, of the matrix (X(i) −
1
ρV

(i)
1 ), and ζ(i)

j , σj − τ/ρ with σj denoting its r singular
values.

Solution of (30): Differentiating with respect to X, we
have:
∂L
∂X

=
∂

∂X

(
1

2
‖Ω ◦X−RΩ‖2F + tr((V(i)

1 )H(Y(i+1) −X))

+
ρ

2
‖Y(i) −X‖2F + tr((V(i)

2 )H(C(i) −X + AZ̄(i)B))

+
ρ

2
‖C(i) −X + AZ̄(i)B)‖2F

)
(37)

= Ω ◦X−RΩ −V
(i)
1 − ρ(Y(i+1) −X)

−V
(i)
2 − ρ(C(i) −X + AZ̄(i)B).

(38)

If we set (38) equal to zero, the resulting problem is equivalent
to solving the following system of equations (for details see
Appendix VIII-D) :

x =(K1 + 2ρI)−1(v
(i)
1 + ρy(i+1)

+ RΩ + v
(i)
2 + ρc(i) + ρK2z̄

(i)), (39)

where

K1 ,
NR∑
j=1

diag([Ω]j)
T ⊗Ejj ∈ CTNR×TNR , (40)
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Algorithm 1 Proposed ADMM-based Channel Estimation
Input: RΩ, Ω, A, B, ρ, τR, τZ , and Imax.
Output: Z̄(Imax)

Initialization: Y(0) = Z̄(0) = C(0) = V
(0)
1 = V

(0)
2 = 0,

X(0) = RΩ

1: for i = 0, 1, . . . , Imax − 1 do
2: Update Y(i+1) using (36).
3: Solve the system of equations in (39).
4: Update X(i+1) = unvec(x(i+1)).
5: Solve the sparse optimization (44) using (45).
6: Update Z̄(i+1) = unvec(z̄(i+1)).
7: Update C(i+1) using (47).
8: Update V

(i+1)
1 and V

(i+1)
2 using (33) and (34).

9: end for

with Ejj obtained from the NR × NR all-zero matrix after
inserting a unity value at its (j, j)-th position, and

K2 , BT ⊗A ∈ CTNR×LNTNR . (41)

Also, small boldfaced letters in (39) are the vec(·) results of
their capital equivalents, e.g., c = vec(C).

Solution of (31): The subproblem (31) concerns the un-
known variable Z̄, which can be equivalently expressed as:

Z̄(i+1)=argmin τZ‖Z̄‖1+
ρ

2
‖1

ρ
V

(i)
2 +C(i)−X(i+1)+AZ̄B‖2F .

(42)
By performing vectorization, the minimization of (42) is
equivalent to the following sparse optimization problem:

min
z̄
τZ‖z̄‖1 + ‖K2z̄− k(i)‖22, (43)

where k(i) , x(i+1) − c(i) − 1
ρv

(i)
2 ∈ CTNR×1 and z̄ ∈

CLNTNR×1.
To solve the problem of (43) we express it in the standard

LASSO form [28], i.e.,

min
z̄
‖z̄‖1 + ‖z̄− β(i)‖22, (44)

where

β(i) , K†2k
(i) ∈ CLNTNR×1.

Hence, a soft-thresholding operator can be applied to provide
an estimate of z̄ in (44), which is expressed as follows:

z̄(i+1)=sign(Re(β(i))) ◦max
(
|Re(β(i))| − τ ′Z , 0

)
+ sign(Im(β(i))) ◦max

(
|Im(β(i))| − τ ′Z , 0

)
, (45)

where τ ′Z , τZ/ρ, and the max(·) and the sign operator
sign(·) are applied component wise. Note that the superscript
(i + 1) will be used in the proposed iterative algorithm. The
resulting vector in (45) is then transformed into matrix form
as Z̄(i+1) = unvec(z̄(i+1)) ∈ CLNR×NT .

Solution of (32): Finally, differentiating with respect to C
yields:

∂L
∂C

=
∂

∂C

(
1

2
‖C‖2F + tr((V(i)

2 )H(C−X(i+1)+ AZ̄(i+1)B

+
ρ

2
‖C−X(i+1) + AZ̄(i+1)B‖2F

)
= (1 + ρ)C− ρ

(
X(i+1) −AZ̄(i+1)B− 1

ρ
V

(i)
2

)
,

(46)

and setting (46) equal to zero leads to the solution:

C(i+1) =
ρ

1 + ρ

(
X(i+1) −AZ̄(i+1)B− 1

ρ
V

(i)
2

)
. (47)

We have summarized the algorithmic steps of the proposed
ADMM-based channel estimation method in Algorithm 1.

C. Computational Complexity

Algorithm 1 involves some algorithmic steps which are
computationally demanding in terms of processing and mem-
ory operations. To have a better understanding of the re-
quirements, we next describe the computational complexity
of Algorithm 1, considering the basic steps separately.
• In Line 2 of the Algorithm 1, the solution of (36)

is obtained by employing the SVT operator on the
dense non-square matrix Y ∈ CNR×T . Recall that SVT
is based on the Singular Value Decomposition (SVD).
Thus, in general, this step requires complexity which is
proportional to M2

RT [29, Chapter 8.6]. However, for
large values of T and MR, the dominant singular values
and vectors can be efficiently computed via incomplete
SVD methods (e.g., Lanczos bidiagonalization algorithm
[30]) or via subspace tracking (e.g., [31]), where the
complexity can be reduced to O(MRT ).

• In the 3rd Line of the algorithm, the solution of the
system of equations in (39) is required, which involves
the inversion of the matrix K1 + 2ρI ∈ CTNR×TNR .
However, this matrix is diagonal, hence, the order of the
complexity is O(TNR).

• In Line 5 of the Algorithm 1, the pseudo-inverse of
K2 ∈ CTNR×LNTNR needs to be computed. This requires
the computation and the inversion of the Gram matrix
KH

2 K2 ∈ CLNTNR×LNTNR , which is the most costly
step of the proposed algorithm. However, it can be
seen that KH

2 K2 is a dominant diagonal matrix, hence
gradient-based iterative algorithms can be used to reduce
the complexity for the inversion of the Gram matrix to
O(LNTNR) [32].

The other lines of Algorithm 1 involve the computation of
matrix-matrix and matrix-vector products, which have smaller
computational order than the aforementioned steps.

V. EXTENSIONS

In this section, we detail a couple of extensions for
the proposed wideband mmWave MIMO channel estimation
framework. We first present an algorithm for the case where
information for the angles of the propagation paths is available.
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For this case, we also present a low complexity solution.
Finally, we discuss the consideration of the beam squint effect
in the proposed estimation framework.

A. Exploitation of Angle Information

The previously described wideband mmWave MIMO chan-
nel estimation algorithm can be extended to incorporate prior
knowledge of the angles of the propagation channel paths,
e.g., obtained via dedicated direction estimation techniques
[33], [34]. As is will be shown in the section with the
simulation results that follow, this knowledge can boost the
CSI estimation performance in certain cases.

To exploit angle information in the considered beamspace
representation of the wideband mmWave MIMO channel ma-
trix Z̄, we introduce the selection matrix ΩS which contains
1’s at its elements corresponding to the receive or transmit
angles, and 0’s elsewhere. For those cases, instead of mini-
mizing the `1 norm of the sparse matrix Z̄, we first impose
the a priori known structure (offered by the availability of the
path angles) to this matrix, and then insert the term ‖ΩS ◦Z̄‖1
into the problem formulation (26) in the place of ‖Z‖1, where
ΩS ∈ {0, 1}NR×T . This matrix is composed of S ones and
T (NR − S) zeros, while the positions of its unity elements
are chosen based on prior information of the angles. Using
the latter considerations, we formulate the following OP for
wideband mmWave MIMO channel estimation for the case
where prior angle information is available

minY,Z̄ τY ‖Y‖∗ + τZ‖ΩS ◦ Z̄‖1
subject to RΩ = Ω ◦

(
Y + N

)
,

Y = AZ̄B, (48)

where the objective is to obtain the estimation of Z̄. This OP
can be solved following the previously developed ADMM-
based methodology, while replacing the optimization of (31)
as follows. More specifically, the subproblem (42) is expressed
for the considered prior angle knowledge case as:

Z̄=arg min τZ‖ΩS◦Z̄‖1+
ρ

2
‖1

ρ
V2+C−X+AZ̄B‖2F , (49)

which can be shown to be equivalent to the following opti-
mization problem (using similar steps as in Appendix VIII-D):

min
z̄
‖K3z̄‖1 + ‖z̄− β′(i)‖22, (50)

with z̄ ∈ CNTNR×1, β
′(i) given by

β′(i) = K†2(x(i+1) − c(i) − 1

ρ
v

(i)
2 ), (51)

and

K3 ,
NR∑
j=1

diag([Ω]j)
T ⊗Ejjvec(X). (52)

Note that K3 ∈ CNTNR×NTNR applies a hard threshold to
the known structure of Z̄, while for the remaining entries we
apply the soft-thresholding operator as follows:

z̄(i+1)=sign(Re(γ(i))) ◦max
(
|Re(γ(i))| − τ ′Z , 0

)
+ sign(Im(γ(i))) ◦max

(
|Im(γ(i))| − τ ′Z , 0

)
. (53)

In the latter expression, we have defined for each algorithmic
iteration the generic vector

γ(i+1) , K3K
†
2(x(i+1) − c(i) − 1

ρ
v

(i)
2 ) ∈ CLNTNR×1. (54)

Putting all above together, by replacing (45) in line 5 of
Algorithm 1 with (53) yields our proposed ADMM-based
channel estimation algorithm for the special case where angle
information is a priori known. The computational complexity
of this new algorithm follows the properties of Algorithm 1
requiring also the construction and the application of the diag-
onal matrix K3 ∈ CNTNR×NTNR , i.e., O(NTNR) operations.
Concerning the computational complexity of the technique
that exploits the prior angle information, it only requires
the construction and the application of the diagonal matrix
K3 ∈ CNTNR×NTNR , i.e., O(NTNR) operations.

B. Low-Complexity Implementation

To deal with the increased computational complexity over-
head of Algorithm 1, we hereinafter modify its part with the
highest computational burden, i.e., line 5 which calls for the
solution of β(i) , K†2k

(i) ∈ CNRNT×1. Specifically, we
consider the following system of normal equations:

Φβ(i) = b(i), (55)

where
Φ , KH

2 K2 ∈ CLNTNR×LNTNR , (56)

and
b(i) , KH

2 k(i) ∈ CLNTNR×1. (57)

Instead of employing the exact least-squares solution, at each
ADMM iteration step i, we approximate β(i) with one step
from the iterative Gradient Descent (GD) algorithm. This GD
step for the i-th iteration is expressed as:

β̃
(i)

= β̃
(i−1)

− α(i)r(i), (58)

where r(i) is the residual of the i-th GD step, defined as:

r(i) = b(i) −Φβ̃
(i−1)

. (59)

In other words, we employ an inexact gradient method to
approximate β(i), since at each step the right hand side is
also varying over i. The step size α(i) can be obtained using
a pre-fixed value, i.e., α(i) = α > 0, or the exact line search,
i.e.,

α(i) =
(r(i))Hr(i)

(r(i))HAr(i)
. (60)

Remark: The convergence rate of the GD algorithm depends
on the spectral condition number of the matrix Φ, which is
the ratio of the largest to the smallest eigenvalue, κ , λmax

λmin
.

Specifically, the error of the i-th step is upper bounded by:

‖e(i)‖A ≤
(
κ− 1

κ+ 1

)
‖e(0)‖A, (61)

where e(i) , βopt−β(i) is the error vector. In our case, Φ is
a diagonal dominant matrix, which constraints the eigenvalues
spread and guarantees fast convergence rate.
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Algorithm 2 Low-complexity Channel Estimation Exploiting
Angle Information
Input: RΩ, Ω, ΩS , A, B, ρ, τR, τZ , and Imax.
Output: Z̄(Imax)

Initialization: Y(0) = Z̄(0) = C(0) = V
(0)
1 = V

(0)
2 =

0NR×T , v(0) = 0NRNT×1

1: for i = 0, 1, . . . , Imax − 1 do
2: Update Y(i+1) using (36).
3: Solve the system of equations in (39).
4: Update X(i+1) = unvec(x(i+1)).
5: Compute the GD step size and residual using (60) and

(59).
6: Compute one GD step to obtain β(i) using (58).
7: Solve the sparse optimization (44) using (45) and β(i).
8: Update Z̄(i+1) = unvec(z̄(i+1)).
9: Update C(i+1) using (47).

10: Update V
(i+1)
1 and V

(i+1)
2 using (33) and (34).

11: end for

The aforementioned algortihmic steps can be incorporated
into the proposed CSI methods of the current and previous
sections by replacing line 5 with eqs. (58) - (60). Algorithm
2 describes the proposed low-complexity channel estimation
method exploiting angle information. In terms of computa-
tional efficiency, instead of the computation of the pseudo-
inverse of K2, Algorithm 2 requires only the computation of
two matrix-vector products for the computation of the GD
step size and residual. While the presented GD-based modifi-
cation yields an inexact solution, it turns out that it behaves
remarkably well. This is due to the interesting property of
ADMM according to which, under certain conditions, it is
observed to converge even in cases where the alternating
minimization steps are not carried out exactly. In the next
section with the performance evaluation results that follows,
we will verify this behavior and we will compare the MSE
estimation performance of both Algorithms 1 and 2.

C. Consideration of the Beam Squint Effect

In this section, we briefly discuss the impact of the beam
squint effect on our problem formulation. Large size antenna
arrays realizing directive beams in wideband communication
systems are susceptible to the beam squint phenomenon that
imposes selectivity both in the frequency and the spatial
domains [35], [36]. This spatio-frequency selectivity needs to
carefully accounted for when designing wideband mmWave
massive MIMO systems. By considering the beam squint effect
in the time domain, the received training signal at the t-th
channel block at each m-th receiving antenna element with
m = 1, 2, . . . , NR can be mathematically expressed as

[y[t]]m =

L−1∑
`=0

NT∑
k=1

[hk(`)]msk(t− `−mψ`), (62)

where ψ` is a function of the direction-of-arrival for the `-th
path [35]. Following (62), the NR-dimensional vector with the

received training signal can be written as

y[t] =

L−1∑
`=0

NT∑
k=1

S`,k[t]hk(`), (63)

where S`,k[t] is a NR×NR diagonal matrix with the diagonal
entries sk(t−`−mψ`) ∀m = 1, 2, . . . , NR. Alternatively, (63)
can be written in the following vector form:

y[t] = Ξ[t]

 vec(H(0))
...

vec(H(L− 1))

 , (64)

where Ξ[t] is a (NTNR(L− 1))×NR matrix created by the
horizontal concatenation of NT(L− 1) matrices S`,k[t] ∀` =
0, 1, . . . , L − 1 and ∀k = 1, 2, . . . , NT. Equivalently, using
the beamspace decomposition of the channel matrix for each
delay tap, y[t] can be re-written as

y[t] = Ξ[t]

 (DT
T ⊗DR)vec(Z(0))

...
(DT

T ⊗DR)vec(Z(L− 1))

 (65)

= Ξ[t]Dbs

 vec(Z(0))
...

vec(Z(L− 1))

 , (66)

where Dbs , IL−1 ⊗ DT
T ⊗ DR. Finally, concatenating the

columns of T received training blocks, one gets the following
compact expression for the received training signal matrix
Ybs ∈ CNT×T :

Ybs , ΞR

(
IT ⊗Dbsvec(Z̄)

)
, (67)

where ΞR , [Ξ[1] · · · Ξ[T ]]. It is noted that the latter
expression extends (12) to incorporate the beam squint effect.

Using the latter discussion for the case of beam squint,
the optimization problem (26) can be extended to include the
unknown beam squint matrix ΞR as follows:

minY,Z̄,ΞR
τR‖Ybs‖∗ + τZ‖Z̄‖1

subject to RΩ = Ω ◦
(
Ybs + N

)
,

Ybs = ΞR

(
IT ⊗Dbsvec(Z̄)

)
. (68)

However, the investigation of (68)’s solution is out of the scope
of this paper, and is left for future work.

VI. PERFORMANCE EVALUATION RESULTS

In this section, we consider a mmWave point-to-point
NR ×NT MIMO system for various large values of NR and
NT and investigate the performance of the proposed wide-
band channel estimation technique using the proposed analog
combining architecture for HBF reception. All computer simu-
lation results have been obtained using MATLABTM. We have
specifically simulated the Average Spectral Efficiency (ASE),
Energy Efficiency (EE), and MSE performances, which were
averaged over 100 Monte-Carlo realizations. We have also
investigated the convergence speed and the computationally
complexity of the proposed approach in comparison with
relevant state-of-the-art techniques. Block transmissions with
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TABLE III
SIMULATION PARAMETERS FOR THE PERFORMANCE EVALUATION.

Carrier frequency 30 GHz
Antenna array characteristics Uniform Linear Array (ULA)

Length of zero prefix L− 1 symbols

Parameters for Algorithms 1, 2 ρ =
√
λmin

τR+τZ
2

[37]

τR = 1/‖RΩ‖2F
τZ = 1/2‖Z̄‖2F
Imax = 100

Maximum Iterations for OMP [14] Imax = 100

Maximum Iterations for VAMP [38] Imax = 100

Step size for SVT [16] 0.1

zero padding appended to each transmitted frame have been
assumed, and the channel estimation has been performed in
the time domain at RX over T frames. We have assumed that
the channels coherence time is larger than the duration of the
T frames required for channel estimation.

During each t-th channel estimation frame with t =
1, 2, . . . , T , NT complex-valued training symbols s(t) have
being used such that E{s(t)s(t)H} = INT

. The training signal
is received at the NR antenna elements of the HBF RX, which
are connected to MR < NR RF chains. Finally, we have
assumed perfect time and frequency synchronization between
the communicating TX and RX sides and fully connected PS
networks at all considered HBF RXs.

A. ASE and EE Performances

For the design of the PS network at the RX analog com-
biner, we have considered quantized angles, i.e., [WRF]i,j =
N−1

R ejωi,j with ωi,j ∈ W as defined in (15), for the two
cases of angle quantization NQ = 4 and 6. We have also
included performance results for the extreme case of very
high angle quantization resolution, where the analog combiner
was designed based on Q-th root Zadoff-Chu (ZC) sequence
with Q = 11 [32]. Moreover, we have considered the fully
digital combining case, where the number of the RX RF chains
is equal to the number of receiving antenna elements, i.e.,
MR = NR.

The ASE performance is illustrated in Fig. 3 as a function of
the number of RX RF chains MR for three different cases of
system parameters and SNR = 15dB (SNR stands for Signal
to Noise Ratio and is mathematically defined as SNR , σ−2

n ).
We have particularly numerically evaluated expressions (16)
and (18) for the proposed analog BeamForming (BF) approach
with 6-bit PSs and compared it with the ASE for the fully
digital RX case, conventional analog BF with ZC combining,
and conventional analog BF with 6-bit PSs. The obtained
performance curves demonstrate that the proposed design is
able to recover part the lost performance that happened due to
the non-orthogonality of the conventional analog combining
matrix. The ASE performance from conventional analog BF
reception is more pronounced for low to mid number of RF
chains, cases which are particularly relevant with the design
specifications of the current cellular base stations. It is also
evident in this figure that the proposed analog BF design
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Fig. 3. ASE as a function of the number of RF chains MR for T = 40,
Np = 6, NT = 16 and SNR = 15dB. (a) NR = 32, Me

R = 32, (b)
NR = 64, Me

R = 32, and (c) NT = 128, Me
R = 64,

exhibits smoother ASE curves over MR due to the randomness
of the selection operator happening in the random sampling
unit.

We now investigate the power consumption of the extended
analog combining design, which has been detailed component-
wise in Table II. In Fig. 4, we compare the required power in
mW of the conventional and the proposed analog BF designs
as functions of the number of RX RF chains MR. We used
the realistic values PSW = 0.005mW and PLNA = 0.02mW.
For the conventional analog BF with PS we used PPS =
0.015mW, while for the conventional analog BF with ZC
we assume an equivalent to PS power consumption equal
to PPS = 0.06mW [8]. As shown in Fig. 4, the power
consumption of the proposed design does not depend on
MR, but on the number of outputs of the extended analog
BF Me

R ≥ MR. This means that has always higher power
requirements than the conventional analog BF. However, when
MR > NR/4, the power consumption of the proposed analog
BF is lower than the conventional ZC case. In particular, for
the case of NR = 64 and Me

R = 22, the increase in the
power consumption with the proposed analog BF for 6-bit PSs
compared to the conventional case the same PS resolution is
close to 44%, while the increase in ASE is almost 77%.

The power consumption improvement offered by proposed
analog combining architecture over the conventional one, as
showcased in Fig. 4(a), can also be witnessed from the EE
performance inspection. EE is mathematical expressed as:

EE ,
ASE
P

(Mbit/Joule), (69)

where P denotes the power consumption given by Table
II. Figure 4(b) plots EE versus MR and depicts that the
proposed analog BF outperforms all compared designs when
MR > NR/4. In Fig. 4 (b) we show the EE results, where the
proposed analog BF design exhibits higher efficiency when the
number of RF chains is more than the 1/4 of the receiving
antennas.
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Fig. 4. Power Consumption (a) and EE (b) with respect to the number of
RF chains MR for T = 40, Np = 6, NT = 16, NR = 64, Me

R = 32, and
SNR = 15dB.

B. Channel Estimation Performance

In this subsection, we evaluate the performance of the
proposed algorithms for the estimation of beamspace channel
matrix Z̄ for different system parameters. For the training
data symbols we have considered Quadrature Amplitude Mod-
ulation (QAM) with the four constellation points 1√

2
{1 +

j, 1 − j,−1 + j,−1 − j}. In assessing the performance of
the algorithms and comparing with relevant state-of-the-art
wideband mmWave MIMO channel estimation techniques, we
have simulated the Normalized Mean-Square-Error (NMSE)
criterion, which is defined as:

NMSE ,
‖Z̄− ˆ̄Z‖
‖Z̄‖

, (70)

where ˆ̄Z represents the estimated channel matrix in the
beamspace domain. The considered benchmark channel es-
timation techniques are based on compressive sensing and
matrix completion tools. We have particularly simulated the
performance of iterative thresholding and message passing
for solving the `1-minimization problem, and the SVT [19]
technique for solving the rank minimization problem. The
iterative thresholding algorithms, e.g., Orthogonal Matching
Pursuit (OMP) [11] and CoSaMP [39], can efficiency solve the
`1-minimization problem with low computational complexity
but they yield good estimation performance only for the case
of highly sparse vectors, i.e., when the unknown vector has
only few non-zero values. On the contrary, message passing
techniques, e.g., Approximate Message Passing (AMP) [40]
and Vector AMP (VAMP) [38], provide more robust estimation
performance in the cases of signals with lower sparsity as well
as for measurements with increased noise level.

The NMSE performance of the proposed channel estimation
algorithms versus the number of training frames T is sketched
in Fig. 5, where we also include NMSE curves for the Least
Squares (LS) estimation given by:

ẐLS = (Ỹ + Ñ)
(
(IL ⊗DH

T )Ψ̄
)† ∈ CNR×LNT . (71)

Additionally, we have included performance results for the
compressed sensing: OMP [14], CoSaMP [39], and VAMP
[38], which solve the following problem:

min
z̄
‖z̄‖1 s.t. ‖y −

(
(IL ⊗DH

T )Ψ̄⊗ INR

)
z̄‖2F ≤ ε, (72)

where y , vec(Ỹ + Ñ), z̄ , vec(Z̄), and ε ∈ R+ represents
a very low positive real number. Note that VAMP represents
a statistical learning estimator that is based on the training
data, thus, larger training period is in principal required. The
OMP-MMV algorithm is based on OMP but exploits the
common sparsity pattern between the L beamspace matrices.
This algortihm actually solves the following OP:

min
Z̄
‖Z̄‖1 s.t. ‖Ỹ − Z̄

(
(IL ⊗DH

T )Ψ̄
)
‖2F ≤ ε. (73)

In Fig. 6, we have also simulated the NMSE performance of
the subspace thresholding techniques SVT and TSSR (define
the abbreviation, it’s not defined), which exploit the low-
rank property of the received training signal matrix. The SVT
algorithm solves the following OP:

minY ‖Y‖∗ subject to RΩ = Ω ◦ (Y + Ñ), (74)

whereas, TSSR offers a two-stage procedure which exploits
both the sparsity and low-rank properties. This is accomplished
by first employing the SVT operator to recover the received
signal Y from (74), then by transforming it to the beamspace
domain, and finally using it as input to the OMP-MMV
algorithm to solve (73).

It is evident that the LS solution provides the lowest
NMSE after T = 35 training frames with the cost of high
computational complexity, i.e., O(L3N3

TT
3). However, to be

able to consider large number of training frames, we restrict
the wideband mmWave channel to be static for longer time,
i.e., longer coherence time is required. The techniques SVT
and TSSR are not able to converge under this scenario, while
OMP, VAMP and CoSaMP converge slowly compared to LS.
The OMP-MMV and the proposed technique (Algorithm 1)
achieve similar NMSE with the LS, up to 35 frames. For
T > 35, OMP-MMV outperforms Algorithm 1.

In Figs. 6, 7, 8, 9 and 10 we plot the the NMSE performance
as functions of the SNR, the number of the channel propaga-
tion paths Np, the number of the wideband mmWave channel
delay taps L, the number of the transmitting antenna elements
NT, and the number of the RX RF chains, respectively. We
actually focus on comparing the performances among the LS,
VAMP, OMP-MMV, and the proposed Algorithms 1 and 2,
since the OMP, SVT, CoSaMP, and TSSR approaches results
in higher NMSE, as showcased in

Finally, in Fig. 11, we plot NMSE versus the number of
RX RF chains MR for NT = 8, NR = 31, Me

R = 32, and
SNR = 5dB. It is shown that both proposed algorithms yield
the best performance with Algorithm 2 being the best algo-
rithm overall. For all considered techniques, NMSE improves
as MR increases.

C. Algorithmic Convergence and Computational Complexity

In Fig. 11, the convergence curves of the proposed itera-
tive Algorithms 1 and 2 are illustrated. Particularly, we plot
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the ADMM error concerning the estimation of the received
training signal matrix Y, which is defined as:

ε1 ,
‖X(Imax)−Y(Imax)‖2

‖Y(Imax)‖2
, (75)

where Y(Imax) and X(Imax) are given by (29) and (30)
after Imax iterations, respectively. The GD residual error is
expressed as:

ε2 ,
‖β(i+1) − β(i)‖2

‖β(i)‖2
, (76)

expecting that both they will go to zero after Imax itera-
tions. We have considered different scenarios for investigating
the convergence rates of ε1 and ε2. The first one, shown
in Fig. 11(a), assumes only NT = 4 transmitting antenna
elements and high SNR. As shown in this subfigure, the
convergence rates are fast for both proposed algorithms, par-
ticularly, e.g. ε1 < 1e − 6 is achieved after 14 algorithmic
iterations. The same trend happens when NT increases, as
shown in Fig. 11(b), and when lower SNR values are used,
as considered in Fig. 11(c). In Fig. 11(d), the impact of the
number of propagation channel paths Np is depicted. It is
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Fig. 7. NMSE performance as a function of the number of propagation
channels Np for NT = 8, NR = 32, MR = 4, Me

R = 32, L = 4,
T = 20, and SNR = 15dB.
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Fig. 8. NMSE performance as a function of the number of the channel delay
taps L for NT = 8, NR = 32, MR = 4, Me

R = 32, Np = 6, T = 20, and
SNR = 15dB.

evident form the latter subfigures that for Algorithm 1 both
errors converge very fast to 0. Algorithm 2 exhibits faster
convergence, however its error floor is higher than that of
Algorithm 1. This error floor depends on the reliability of the
available angle information. In the formulation of Algorithm
2, this information was expressed based on the number of the
non-zero values of K3. In Fig. 12, we have used a K3 such
that ‖K3‖ = 10. Increasing the latter value will result in lower
error floors for Algorithm 2.

In Fig. 12, we take a closer investigation of the NMSE
performance gap between Algorithm 1 and its low-complexity
approximate Algorithm 2 for NR = 32. It is shown in the
figure that the performance loss of GD-based Algorithm 1 is
negligible for all considered values of the maximum number
of ADMM iterations Imax. It can be also observed that both
proposed algorithms converge to the steady state after 30
ADMM iterations, i.e., for Imax > 30 the NMSE is constant. It
is noted that Algorithm 2, which is based on a GD technique,
converges very fast when the involved matrix is strongly
diagonal dominant.

Finally, in Table IV, we compare the algorithmic run time
in seconds of the two proposed algorithms and representative
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ones from the state-of-the-art. It is noted that the run time val-
ues depend on the system specifications where the algorithms
are executed, however, Table IV provides their comparison
for the sketched parameters when executed in in a desktop
computer with Intel(R) Core(TM) i3-8350K CPU at 4.00GHz
and with a 32GB DDR4 2666MHz random access memory.
It is shown that OMP and SVT techniques yield the smallest
elapsed time, while Algorithm 1 is the slowest for all system
configurations. However, a fair comparison should focus on
techniques having equivalent estimation performance. Hence,
comparing VAMP and Algorithm 2, reveals that the pro-
posed low-complexity channel estimation technique exhibits
the faster execution time, rendering it suitable for latency
demanding real-time applications.

VII. CONCLUSIONS

In this paper, we have presented iterative ADMM-based
algorithms for wideband mmWave MIMO channel estimation
that exploit jointly the channel’s low rank and beamspace
sparsity in order to provide more accurate channel recovery,
especially for short beam training intervals. The presented
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algorithms capitalize on our proposed analog combining ar-
chitecture that includes an extended analog combiner incorpo-
rating a random spatial sampling structure placed before the
input of the analog received signals to the digital component
of the HBF receiver. It has been shown through extensive
simulation results that the proposed algorithms exhibit im-
proved performance in terms of MSE for channel estimation
requiring only short beam training lengths and when operating
under high noise conditions. Interestingly, in scenarios with
small numbers of receiver RF chains and severe noise, angle
information can be exploited to boost channel estimation
performance. Extension to the case of soft angular information
and HBF transmission, as well as the solution of the optimiza-
tion framework for the case where beam squint is present are
left for future works.
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TABLE IV
RUN TIME IN SECONDS FOR THE CONSIDERED WIDEBAND MMWAVE MIMO CHANNEL ESTIMATION ALGORITHMS.

OMP VAMP SVT Algorithm 1 GD-based Algorithm 1
NT = 4, NR = 32, T = 70 0.5085 6.0917 0.0419 15.1963 1.1699
NT = 4, NR = 64, T = 70 1.0993 29.9625 0.0744 147.8875 5.9474
NT = 8, NR = 32, T = 70 0.8079 17.5677 0.0407 67.2175 1.7646
NT = 8, NR = 64, T = 70 1.3836 79.4238 0.0750 535.5001 8.3759
NT = 4, NR = 32, T = 120 0.9974 10.5556 0.0663 39.3253 2.8179

VIII. APPENDIX

A. Proof of Proposition 1

Based on (12) and the properties of the rank operator, we
have that:

rank(Q) ≤ min
(
rank(Z̄), rank(IL ⊗DH

T )), rank(Ψ̄)
)
, (77)

where Q , Z̄(IL ⊗ DH
T )Ψ̄. The rank of the concatenated

wideband channel matrix Z̄ is upper bounded by rank(Z̄) ≤
Np based on (2). Additionally, based on the properties of the
Kronecker product, rank(IL ⊗DH

T ) = rank(IL)rank(DT) =
LNT. The rank of L concatenated Toeplitz matrices Ψ ∈
CNT×T is rank(Ψ̄) ≤ LNT. Putting all together, we have
that rank(Q) ≤ min(Np, LNT).

B. Derivation of (12)

The matrix product given by (12) can be obtained by
reorganizing the columns and rows of the involved matrices.
In particular, the finite summation of (11) can be expressed as
the product of two concatenated matrices, as follows:

Ỹ =

NT∑
k=1

H̃kΨ̃k =
[

H̃1 · · · H̃NT

]  Ψ̃1

...
Ψ̃NT

 = H̄Ψ̄

(78)
where H̄ ∈ CNR×LNT is given by

H̄ ,
[

H̃1 · · · H̃NT

]
=

=
[ [

h1(0) · · ·h1(L−1)
]
· · ·
[
hNT

(0) · · · hNT
(L−1)

] ]
=
[ [

h1(0) · · ·hNT(0)
]
· · ·
[
hNT(L−1) · · · hNT(L−1)

] ]
=
[

H(0) · · · H(L− 1)
]
,

while Ψ̄ ∈ CLNT×T is defined as

Ψ̄ =

 Ψ̃1

...
Ψ̃NT

=

 toeplitz(s1)
...

toeplitz(sNT
)

=



 toeplitz1(s1)
...

toeplitz(sNT
)


... toeplitzL(s1)
...

toeplitzL(sNT)




,

where toeplitz`(sk) represents the `-th row of an L×T Toeplitz
matrix.

C. Derivation of (16)
We first consider the low AWGN regime, i.e., σ2

n � 1. In
this case, the achievable ASE can be approximated by [41]

CHBF =log2 det
(

IMR +
1

σ2
nNT

WH
RFYYHWRF

)
(79)

=log2 det
(

INR +
1

σ2
nNT

YYHWRFWH
RF

)
(80)

≈ log2 det
(

1

σ2
nNT

YYHWRFWH
RF

)
(81)

=log2

1

σ2
nNT

+log2 det
(
YYH

)
+log2 det

(
WRFWH

RF

)
(82)

≤ log2

1

σ2
nNT

+log2 det
(
YYH

)
, (83)

where the last inequality holds since the analog combining
matrix WRF is composed by unit norm entries, which yields
det
(
WRFWH

RF

)
≥ 1.

Similarly, for the high AWGN regime, the achievable ASE
can be upper bounded as follows:

CHBF ≈ det
(

1

σ2
nNT

WH
RFYYHWRF

)
(84)

=
1

σ2
nNT

+det
(
YYH

)
+det

(
WRFWH

RF

)
(85)

≤ 1

σ2
nNT

+det
(
YYH

)
. (86)

It is noted that the expressions (83) and (86) can be seen as
the low and high AWGN approximations, respectively, of the
achievable ASE of a fully Digital BeamForming (DBF) system
(i.e., MR = NR). In this case, ASE can be computed as

CDBF = log2 det
(

INR
+

1

σ2
nNT

YYH
)
. (87)

D. Derivation of (39)
Given (38), it can be straightforwardly obtained that:

Ω ◦X−RΩ −V1 − ρ(Y −X)

−V2 − ρ(C−X + AZ̄B) = 0 (88)
⇒Ω ◦X + 2ρX = RΩ + V1 + ρY + V2 + ρC + ρAZ̄B

(89)

⇒
NR∑
j=1

EjjX diag([Ω]j) + 2ρX

= RΩ + V1 − ρY −V2 + ρC− ρAZ̄B
(90)
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⇒vec

NR∑
j=1

EjjX diag([Ω]j) + 2ρX


= vec

(
RΩ + V1 − ρY −V2 + ρC− ρAZ̄B

)
(91)

⇒
NR∑
j=1

diag([Ω]j)
T ⊗Ejjvec(X) + 2ρvec(X)

= vec
(
RΩ + V1 − ρY −V2 + ρC− ρAZ̄B

)
, (92)

where from the last equality one easily obtains (39).
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