
1

Probabilistic Tile Visibility-Based Server-Side Rate

Adaptation for Adaptive 360-Degree Video Streaming

Junni Zou, Member, IEEE, Chenglin Li, Member, IEEE, Chengming Liu, Qin Yang, Hongkai Xiong, Senior

Member, IEEE, and Eckehard Steinbach, Fellow, IEEE

Abstract

In this paper, we study the server-side rate adaptation problem for streaming tile-based adaptive

360-degree videos to multiple users who are competing for transmission resources at the network

bottleneck. Specifically, we develop a convolutional neural network (CNN)-based viewpoint prediction

model to capture the nonlinear relationship between the future and historical viewpoints. A Laplace

distribution model is utilized to characterize the probability distribution of the prediction error. Given

the predicted viewpoint, we then map the viewport in the spherical space into its corresponding planar

projection in the 2-D plane, and further derive the visibility probability of each tile based on the

planar projection and the prediction error probability. According to the visibility probability, tiles are

classified as viewport, marginal and invisible tiles. The server-side tile rate allocation problem for

multiple users is then formulated as a non-linear discrete optimization problem to minimize the overall

received video distortion of all users and the quality difference between the viewport and marginal tiles

of each user, subject to the transmission capacity constraints and users’ specific viewport requirements.

We develop a steepest descent algorithm to solve this non-linear discrete optimization problem, by

initializing the feasible starting point in accordance with the optimal solution of its continuous relaxation.

Extensive experimental results show that the proposed algorithm can achieve a near-optimal solution,

and outperforms the existing rate adaptation schemes for tile-based adaptive 360-video streaming.

Index Terms

360-degree video, tile-based adaptive streaming, server-side rate adaptation, viewpoint/viewport

prediction, tile visibility probability

J. Zou, C. Li, Q. Yang and H. Xiong are with the School of Electronic Information and Electrical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China (e-mail: zou-jn@cs.sjtu.edu.cn, lcl1985@sjtu.edu.cn, yangqin@sjtu.edu.cn,
xionghongkai@sjtu.edu.cn).

C. Liu is with the Dept. of Communication Engineering, Shanghai University, Shanghai 200240, China (e-mail:
cmliu@shu.edu.cn).

E. Steinbach is with the Chair of Media Technology (LMT), Technical University of Munich (TUM), Munich 80333, Germany
(e-mail: eckehard.steinbach@tum.de).

ar
X

iv
:1

90
6.

08
57

5v
1

 [
cs

.M
M

]
 2

0
Ju

n
20

19

2

I. INTRODUCTION

In recent years, watching 360-degree videos with head-mounted displays (HMDs) has become

a popular virtual reality (VR) application. Compared to traditional videos, 360-degree videos

provide users with a panoramic scene captured by an omnidirectional camera. When watching

360-degree videos, the user is able to obtain an immersive experience by freely adjusting her/his

viewing orientation. Due to its huge file size and ultra high resolution, the delivery of a 360-

degree video may consume up to six times the transmission rate of a traditional video [1].

Current network infrastructures, especially mobile networks, can hardly support the full delivery

of the entire 360-degree video to users. An intuitive solution is to reduce the encoding and thus

the transmission bitrate of 360-degree videos, which, however, would inevitably degrade the

visual quality. Therefore, how to effectively save transmission rate while preserving the quality

of experience (QoE) for the users is a challenging problem in the field of 360-degree video

streaming.

Constrained by the field of view (FoV) of the HMD (e.g., 90-degree vertically and 110-

degree horizontally), the user at any time can only view a small portion of the full 360-degree

scene, which is called the viewport of the user. Thus, streaming only the viewport of the user at

a high quality provides an effective rate-saving approach. In practice, such a transmission rate

adaptability can be realized by integrating the concept of tiling [2] with HTTP adaptive streaming

(HAS) techniques. In tile-based HAS, a 360-degree video is divided into several spatial tiles and

each spatial tile is further divided into several temporal segments, then each tile in each segment

can be encoded and delivered at different quality levels, in adaptation to the user’s interest and

rate constraint.

Tile-based HAS requires to predict the user’s viewport and prefetch tiles within the predicted

viewport in advance. For viewport prediction, a general approach is to extrapolate the current

viewport into the future by using historical viewports. Since a variety of factors, such as

preference, occupation, gender, and age, influence the viewport of interest, the relationship

between the future and historical viewports can be characterized as nonlinear and long-term

dependent. Existing prediction methods, e.g., based on linear regression (LR) and neural networks

(NNs) [1], fail to capture these properties well, which may result in an undesirable prediction

error.

If the viewport prediction can achieve 100% accuracy, it is surely rate-efficient to stream the

3

tiles inside the predicted viewport at a higher quality and other invisible tiles at a lower quality.

However, absolutely accurate viewport prediction can hardly be reached, especially when the user

is fast moving her/his head. In this case, some marginal tiles that compensate for the prediction

error between the predicted viewport and the user’s actual viewport need to be transmitted at a

moderate quality for smooth playback on the user side. Intuitively, a larger margin will lead to

a higher probability that the user’s actual viewport can be fully covered, but with a cost of more

transmission rate consumed. This paper focuses on the tile rate allocation for both the predicted

viewport and the margin area based on the visibility probability of different tiles, so as to seek

the tradeoff between the user QoE and transmission rate utilization.

For adaptive 360-degree video streaming, the rate adaptation schemes in the literature [3]–[7]

are mostly user-driven. Namely, users determine the best encoding bitrates of tiles to download

from the server based on their transmission capacity estimation and buffer occupancy. Such a

user-side rate adaptation, despite its popularity, has shown some disadvantages. For example, the

user makes the rate adaptation decision merely based on local information, without considering

the conditions of the server and network. When multiple users compete for the transmission

capacity at the network bottleneck, their QoE, in terms of stability, fairness and efficiency,

achieved by the user-side rate adaptation becomes sub-optimal [8]–[10]. Furthermore, the current

HAS is used over HTTP/1.1, such as dynamic adaptive streaming over HTTP (DASH) [11], which

follows a pull-based video retrieval. When DASH is used for tile-based adaptive 360-degree

video streaming, the user needs to send an independent request for each video tile, leading to

an undesirable overhead and latency. The newly published HTTP/2 protocol [12] overcomes the

above drawbacks of HTTP/1.1 by using a server-side push technique. It allows the server to push

multiple content to a user instead of making individual request for each content, which therefore

enables server-side rate adaptation. In practice, HTTP/2 is easy to be realized as it shares the

same semantics and keeps backward compatibility with HTTP/1.1 [13], [14].

In this paper, we study the server-side rate adaptation for multiple users who are competing

for the server’s transmission capacity as the network bottleneck, subject to their personal rate

constraints and specific viewport requirements. Based on the viewpoint/viewport prediction

for users, the mapping from the spherical viewport to its corresponding planar projection,

and the corresponding visibility probability derivation of each tile for each user, the server

then determines the encoding/transmission rate of each tile to be sent to the users, aiming

at minimizing the overall expected video distortion perceived by all the users. The main

4

contributions of this paper can be summarized as follows.

1) Existing works on viewport prediction usually predict the center point of the viewport,

i.e., a kind of viewpoint prediction. To improve the viewpoint prediction accuracy, in particular,

to more accurately capture the nonlinear relationship between the future and past viewpoints,

we develop a convolutional neural network (CNN)-based viewing angle prediction model, in

which the pooling layers are dropped and more convolutional layers are added for stronger

nonlinear fitting ability. Experimental results show that our model outperforms the previous

works, especially for large-size prediction windows.

2) Given a predicted viewpoint/viewport on the spherical space, how to find its corresponding

area in the 2-D projection plane with the set of covering tiles has still remained unexplored

for 360-degree video streaming. In this paper, we theoretically analyze how to map the user’s

viewport on the sphere to the 2-D projection plane and determine the set of tiles within the 2-D

projection plane that cover this viewport. To the best of our knowledge, such a mapping from

the viewport on the sphere to the corresponding area in the 2-D projection plane has barely been

studied in the literature.

3) Based on real head movement traces, we adopt a Laplace distribution model to characterize

the probability of viewpoint prediction error, with which the viewpoint prediction error can be

presented more accurately. We further derive the visibility probability of each tile, based on

which the tiles are classified into viewport, marginal and invisible tiles to support tile-based rate

adaptation.

4) We develop an optimal server-side rate adaptation framework, in which the tile rate

allocation optimization problem among multiple users is formulated as a non-linear discrete

optimization problem, aiming at maximizing the received video quality and navigation quality

smoothness of multiple users. Thereafter, a steepest descent algorithm is developed to solve this

non-linear discrete optimization problem, where the feasible starting point is determined by the

optimal solution of its continuous relaxation.

The remainder of this paper is organized as follows. Section II reviews the related work on

adaptive 360-degree video streaming. Section III presents the design of the CNN-based viewpoint

prediction model. In Section IV, we propose the mapping from the user’s viewport on the sphere

to the corresponding area in the 2-D projection plane, and derive a probabilistic tile visibility

model. In Section V, the optimal server-side rate adaptation problem is formulated and solved

with the steepest descent algorithm. Simulation results are presented and discussed in Section

5

VI. Finally, Section VII concludes this paper.

II. RELATED WORK

Rate adaptation for 360-degree video streaming involves three sequential procedures: view-

point/viewport prediction, mapping from the predicted viewpoint/viewport to the planar tile set

of interest, and rate allocation among the tiles. Most of the existing works separately studied

the first and the third procedure, leaving the second procedure untouched.

For the viewpoint/viewport prediction, Qian et al. [4] proposed a naive prediction model that

directly utilizes the current viewpoint of the user to represent her/his future viewpoint. Bao

et al. [15] proposed a linear regression model and a neural network to fit the variation of the

user’s viewpoint. Azuma et al. [16] characterized the user’s head motion as position, velocity and

acceleration, and proposed a predictor to derive the future head position. The authors in [17] took

content-related features into account, and predicted the viewpoint based on a saliency algorithm.

A deep reinforcement learning based viewpoint prediction approach is proposed in [18], in which

the reinforcement learning model is established to track the long-term head movement behaviors

of humans.

The rate allocation schemes in the literature [3]–[7] usually assume that the tile set of interest

is given and directly consider rate adaptation for this tile set. For instance, Toni et al. [3] proposed

a tile-based adaptive streaming strategy to determine the rate at which each tile is downloaded

for maximizing the quality experienced, where the tile set required by the user is given. Given

the viewport and bandwidth estimation, Ghosh et al. [5] formulated different QoE metrics and

designed a streaming algorithm for 360-degree video streaming. The authors in [6] presented

a viewport-adaptive 360-degree video streaming system, in which the front face is encoded in

full quality while the other faces are encoded in low quality. Zou et al. [7] proposed a deep

reinforcement learning-based rate adaptation algorithm to maximize the user QoE by adapting

the transmitted video quality to the time-varying network conditions, which also assumes tile

set of interest known.

This work differs from the related literature in the following aspects. First, we study all

these three procedures and present a complete framework including viewpoint prediction, tile

set mapping and rate adaptation. Second, considering that convolutional neural network (CNN)

can well capture the nonlinear relationship between the future and past viewpoints, we establish

a CNN-based viewpoint prediction model to generate predicted data for the tile set mapping

6

yaw

pitch

roll

viewport

viewpoint

V

(a) (b)

Fig. 1. (a) Head rotation angles; and (b) the position of viewpoint is represented by latitude θ and longitude ϕ in spherical
space with the rotations of pitch and yaw equal to the latitude and longitude, respectively.

and rate adaptation procedure. It is worth mentioning that the proposed tile mapping and rate

adaptation strategy can be compatible with any viewpoint prediction approach in the literature.

Third, we seek the rate adaptation from the server-side for a general scenario, where multiple

users simultaneously send their video requests to the server, resulting in a rate competition on

the server side.

III. CNN-BASED VIEWPOINT PREDICTION

As illustrated in Fig. 1, when watching a 360-degree video, the user wearing an HMD is

supposed to stand at the center point O of the sphere, with her/his viewpoint (i.e., the center

point V of the viewport) represented by the Euler angles, pitch (θ), yaw (ϕ), and roll (ψ),

respectively, corresponding to the head rotation around the X , Y and Z axis. Knowing θ and ϕ,

the user’s viewpoint can be determined as shown in Fig. 1(a). We define the initial head rotation

as zero degree for pitch, yaw, and roll angles, then θ and ψ rotate in a range of [−90◦, 90◦], ϕ

rotates in a range of [−180◦, 180◦].

LetRt = (θt, ϕt, ψt) represent the viewport of the user at time t, the goal of viewport prediction

is to estimate the future viewport Rt+tw for a given series of historical head rotations Rt−ts ,

..., Rt−1, Rt, where ts is the time span of the considered historical views and tw is the size

of the prediction window. The experimental results in [15] show that, compared with the auto-

correlations of these three angles, their cross-correlations are small and thus can be neglected.

Therefore, we assume that the rotations in the three directions are independent of each other,

which suggests that we can predict each angle independently by training three separate models.

Further, it has been verified that the rotation in the direction of roll is negligible compared

7

to the other two directions [15]. For the sake of simplicity and without loss of generality, we

assume that the roll angle stays at 0◦ all the time when the user watches the video. Our task

then becomes the estimation of the pitch and yaw angles, with the previous viewport prediction

problem reducing to a viewpoint prediction problem as shown in Fig. 1(a).

The design of a CNN-based viewing angle prediction model aims at building a CNN model

that takes the current and past viewing angles (i.e., the features) as input and outputs the future

viewing angles. In the following, we take the yaw angle ϕ as an example to illustrate our model

design. For the pitch angle, the CNN-based angle model can be developed in a similar way. We

denote by ϕt the yaw angle at time t, and ϕϕϕt−ts:t = (ϕt−ts , ..., ϕt−1, ϕt) the yaw angles from time

t− ts to time t that are collected from the HMD sensor. The task of the CNN model becomes

to predict ϕt+tw at some future point t+ tw based on the values of ϕϕϕt−ts:t.

According to our definition for the yaw angle, −180◦ and 179◦ will just have a difference of

1◦ instead of 359◦. To address this issue, we take an angle transformation, and use vt = (vst , v
c
t)

rather than ϕt as the input. That is

g(ϕt) = (sin(ϕt), cos(ϕt)) , (vst , v
c
t). (1)

Before outputting the prediction result, we take the inverse transformation and obtain ϕt from

vt. Namely, ϕt = arctan(vst /v
c
t).

Since the value of ϕt+tw exhibits strong nonlinear correlation with ϕϕϕt−ts:t, we abandon the

pooling layers to construct more convolutional layers so as to obtain stronger nonlinear fitting

ability, as shown in Fig. 2. Furthermore, we set the size of all kernels to 3 and the stride size to

1 without padding. Therefore, the depth of the network only depends on the input size. To find

the optimal input size, we try the input size to be 5, 7, 10, 12, 15, and the convolutional layers

as 2, 3, 3, 5, 7, respectively, and find that the highest prediction accuracy is achieved when the

input size is set to 10.

Since the values of vst and vct range from −1 to 1, we choose the hyperbolic tangent function

tanh() as the activation function of the fully connected layer, such that the output ranges from

−1 to 1. For all the convolutional layers, we set the activation function to be Rectified Linear

Unit (ReLU), i.e., f(x) = max(0, x). In this work, we use mean squared error (MSE) as the

loss function.

8

conv1, 32
conv2, 64

conv3, 64
fc, 2

…

Fig. 2. CNN-based viewing angle prediction model.

IV. PROBABILISTIC TILE VISIBILITY

The angle prediction models provide us with the user’s future viewpoint on the sphere. To

perform tile rate allocation, what we need in the 2-D plane is the set of tiles corresponding to

the user’s viewport. In this section, we first present our method to determine the viewport tile

region for a given spherical viewport. Based on the distribution of prediction error in the viewing

angles, we further analyze the probability of tile visibility.

A. From Spherical Viewport to Planar Viewport Tile Region

Consider a 360-degree spherical video that is projected into a rectangular 2-D planar video

by using the popular equirectangular projection (ERP) method. In order to unify the coordinate

system, we introduce the latitude and longitude to uniformly represent the position of any point

in both the spherical space and 2-D projection plane. Suppose that the user’s viewpoint is

V = (θ, ϕ), namely, his viewpoint in the spherical space is located at (θ, ϕ), with a latitude

θ and a longitude ϕ, as shown in Fig. 1(b). In the 2-D plane, as seen in Fig. 3, we use the

horizontal lines to represent the latitudes of the spherical surface, and the vertical lines to denote

the longitudes. Also, we let the longitudes of the eastern hemisphere to be positive, and those

of the western hemisphere to be negative. Similarly, the latitudes of the northern hemisphere are

set to be positive, and to be negative for the southern hemisphere. Following this mapping, the

relationship between the viewport and the set of tiles within or overlapped with the viewport

(referred to as viewport tile region) can be depicted by Fig. 3, where the region enclosed by

the red line represents the projected user viewport, and the tiles with yellow color constitute the

viewport tile region.

9

180 -180 0

-90

90

M

N n

m

1
2 …

2 1 …

Fig. 3. Viewport and viewport tile region in the 2-D projection plane.

(a)
(b)

Fig. 4. (a) The FoVs of the HMD are α horizontally and β vertically; (b) mapping the viewport plane ABCD onto the surface
EFGH on the sphere.

Actually, the image plane of the HMD can be considered as a 2-D plane with the region of

the plane constrained by the FoV of the HMD. As an example, Fig. 4(a) shows the image plane

ABCD of an HMD, whose horizontal and vertical FoVs are α and β respectively. Note that

the plane ABCD is tangent to the sphere at the user’s viewpoint V = (θ, ϕ). In Fig. 4(b), the

surface EFGH represents the result of mapping plane ABCD onto the sphere, i.e., the user’s

viewport. Given α, β and the user’s viewpoint V , the plane ABCD and the surface EFGH

are uniquely determined. Therefore, our problem becomes to find the viewport tile region in the

2-D projection plane based on the given plane ABCD and surface EFGH .

To find the viewport tile region, intuitively, we only need to know the bounding box rather

10

Fig. 5. Calculation of the boundary of the user’s viewport.

(a) (b) (c)

Fig. 6. Three-view drawing of the viewport, where red lines represent the viewport boundary, yellow lines represent the
longitude lines and blue lines are the latitude lines. (a) Frontal view; (b) vertical view; (c) lateral view.

than the exact shape of the viewport. As seen in Fig. 3, we can straightforwardly figure out the

yellow color region as long as we know the bounding box of the viewport indicated by the blue

rectangle. Considering that the bounding box of the viewport is uniquely determined by four

extreme points, i.e., the westernmost, easternmost, northernmost and southernmost points on the

viewport, we propose the following propositions to find these four points.

Proposition 1. If the user’s viewpoint V = (θ, ϕ) is located in the northern hemisphere, then

point E is the westernmost point of the viewport and point H is the easternmost point of the

viewport. Otherwise, point F and G are respectively the westernmost and easternmost point of

the viewport.

Proof: Fig. 5 illustrates the geometric position of the viewport in the spherical space when

11

the viewpoint is located in the northern hemisphere. Plane A′B′C ′D′ is generated by projecting

the plane ABCD onto the plane xOz vertically, arc EF is in the plane OAB and EF must be

projected into the triangle OA′B′ vertically. Since the longitude at a point would be equal to the

angle between a vertical north-south plane through that point and the plane of the longitude 0◦,

denoted as yOz , the westernmost point in the triangle OA′B′ is located on line segment OA′,

which means the point E is the westernmost point of the viewport. Known by symmetry, the

point H is the easternmost point of the viewport. By symmetry, if the viewpoint is at the southern

hemisphere, the points F and G are the westernmost and easternmost points, respectively.

The boundary of the viewport is also displayed in Fig. 6, in which the boundary crosses

different latitudes and longitudes. Similar to Proposition 1, we can derive Proposition 2:

Proposition 2. There are four cases for the location of the boundary points: 1) if the latitude

θ of the user’s viewpoint V = (θ, ϕ) satisfies −90◦ ≤ θ ≤ (β
2
− 90◦), then the latitude of the

southernmost point is −90◦ and the northernmost points are E and H; 2) if the latitude θ satisfies

(90◦ − β
2
) ≤ θ ≤ 90◦, then the latitude of the northernmost point is 90◦ and the southernmost

points are F and G; 3) if the latitude θ satisfies −β
2
< θ < β

2
, then the southernmost point is

located on arc GF and between points G and F , and the northernmost point is located on arc

EH and between point E and H; 4) otherwise, if the viewpoint is in the northern hemisphere,

then the northernmost point is on arc EH and between points E and H , and point G and F both

are the southernmost points; if the viewpoint is in the southern hemisphere, the southernmost

point is on arc GF and between points G and F , and points E and H both are the northernmost

points. In addition, when the northernmost or southernmost point is between any two points, its

latitude value is θ + β
2

or θ − β
2
.

Once we obtain the boundary points in the spherical space, the next critical step is to calculate

their longitude and latitude values so as to find the viewpoint tile region. For simplicity, we

assume that the viewpoint V satisfies θ > β
2

and ϕ = 90◦, since the longitude value ϕ of the

viewpoint has no effect on the longitude difference between the viewpoint and any point on the

viewport. Hence, the longitudes of points E and H can be calculated when we achieve their

longitude difference ∆ from the latitude and longitude of viewpoint V . The longitude difference

∆ can be calculated as follows.

As shown in Fig. 5, we should get the angle δ between the z-axis and the line segment OA′

first for calculating the longitude of point E. The angel δ equals to the angle ∠OA′D′ and the

12

distance from the viewpoint V to O equals to the radius R of the sphere. Then the distance from

the viewpoint to line segment AD and AB is Rtan(β/2) and Rtan(α/2), respectively. M ′ is the

point at which point M , midpoint of AD, is projected perpendicularly onto the plane xOz, so

we have VM = Rtan(β/2), A′M ′ = Rtan(α/2), and the angle between the line segment MV

and the plane xOz is 90◦ − θ, with the angle ∠V OV ′ = θ. Therefore, we have

V ′M ′ = VMcos(90◦ − θ) = Rtan(β/2)cos(90◦ − θ), (2)

and the length of OM ′ can be calculated by

OM ′ = OV ′ − V ′M ′ = Rcosθ −Rtan(β/2)cos(90◦ − θ). (3)

With the length of A′M ′ and OM ′, it is known that

δ = ∠OA′D′ = arctan
(
OM ′

A′M ′

)
= arctan

(
Rcosθ −Rtan(β/2)cos(90◦ − θ)

Rtan(α/2)

)
, (4)

and

∆/2 = 90◦ − δ

= 90◦ − arctan
(
Rcosθ −Rtan(β/2)cos(90◦ − θ)

Rtan(α/2)

)
, (5)

for the case where Rcosθ−Rtan(β/2)cos(90◦−θ) ≥ 0; otherwise, the viewport covers the north

pole and we thus define ∆/2 = 180◦.

For any given viewpoint V = (θ, ϕ) located in the northern hemisphere, the westernmost

longitude ϕwm and easternmost longitude ϕem of the viewport are given by

ϕwm = [ϕ−∆/2]l0 , (6)

ϕem = [ϕ+ ∆/2]l0 , (7)

where the function

[x]l0 =

 x+ 360◦ , if x < −180◦

x− 360◦ , if x > 180◦
(8)

13

ensures that the term always takes value between [−180◦, 180◦].

Similarly, as seen in Fig. 5, point N is the midpoint of BC, and point N ′ is the point at which

N is vertically projected onto the plane xOz. Since θ > β
2
, the southernmost point of the viewport

is point F (or G) with its latitude equal to ∠BOB′ (or ∠COC ′).
−−→
OV is the normal vector of

plane ABCD, ∠N ′OV = θ, so the angle between plane xOz and plane ABCD is 90◦−θ. And

recall that the line segment VM = Rtan(β/2), so the length of V ′N ′ is Rtan(β/2)cos(90◦− θ),

hence we have

ON ′ = OV ′ + V ′N ′ = Rcosθ +Rtan(β/2)cos(90◦ − θ). (9)

With BN = B′N ′ = Rtan(α/2), the length of OB′ is given by

OB′ =
√

(ON ′)2 + (B′N ′)2 (10)

=
√

[Rcosθ +Rtan(β/2)cos(90◦ − θ)]2 + [Rtan(α/2)]2.

And with the V V ′ = Rsinθ, the length of BB′ can be calculated as

BB′ = V V ′ − V Nsin(90◦ − θ) (11)

= Rsinθ −Rtan(β/2)sin(90◦ − θ).

Finally, we have

∠BOB′ = arctan
(
BB′

OB′

)
(12)

= arctan
(

Rsinθ −Rtan(β/2)sin(90◦ − θ)√
[Rcosθ +Rtan(β/2)cos(90◦ − θ)]2 + [Rtan(α/2)]2

)
.

Therefore, the latitude θsm of the southernmost point of the viewport is

θsm =


−90◦ if − 90◦ ≤ θ ≤ (β

2
− 90◦)

θ − β
2

if (β
2
− 90◦) < θ ≤ β

2

θ′ otherwise,

(13)

where

θ′ = arctan
(

Rsinθ −Rtan(β/2)sin(90◦ − θ)√
[Rcosθ +Rtan(β/2)cos(90◦ − θ)]2 + [Rtan(α/2)]2

)
, (14)

14

and similarly the latitude θnm of the northernmost point on the viewport can be derived as

θnm =


90◦ , if (90◦ − β

2
) ≤ θ ≤ 90◦

θ + β
2

, if − β
2
≤ θ < (90◦ − β

2
)

θ′′ , otherwise,

(15)

where

θ′′ = −arctan
(

−Rsinθ −Rtan(β/2)sin(90◦ + θ)√
[Rcosθ +Rtan(β/2)cos(90◦ + θ)]2 + [Rtan(α/2)]2

)
. (16)

When we obtain the westernmost longitude ϕwm, the easternmost longitude ϕem, the

northernmost latitude θnm, and the southernmost latitude θsm of user’s viewport, the set of tiles

in the viewport tile region can be determined. Specifically, assume that the rectangular planar

video frame is divided into M ×N tiles, with each tile crossing 180◦/M vertically and 360◦/N

horizontally. Let T (m,n) denote the tile located in the m-th row and the n-th column, with

m ∈ [1, 2, ...,M] and n ∈ [1, 2, ..., N], as shown in Fig. 3. In this way, the viewport tile region

vertically ranges from the m0-th to the m1-th row, and horizontally ranges from the n0-th to the

n1-th column, with

m0 =

⌈
M − M × (θnm + 90◦)

180◦

⌉
,m1 =

⌈
M − M × (θsm + 90◦)

180◦

⌉
,

n0 =

⌈
N × (ϕwm + 180◦)

360◦

⌉
, n1 =

⌈
N × (ϕem + 180◦)

360◦

⌉
, (17)

where d·e represents the ceiling operation that maps the value inside the operation to the least

integer greater than or equal to that value.

B. Tile Visibility Probability

If the proposed viewport prediction is absolutely accurate, the tiles in the viewport tile region

Bv should be visible to the user with a probability of 1, and all the other tiles are invisible to

the user. Since prediction errors can hardly be avoided, some tiles located outside the viewport

tile region may be visible to the user. To calculate the visibility probability of those tiles, we

first analyze the viewport prediction error.

The authors in the literature [19], [20] assumed that the prediction error of the head motion

follows a Gaussian distribution. However, using the proposed viewport prediction model on the

real head movement traces (to be detailed in Sec. VI), we find that the Laplace distribution,

15

rather than the Gaussian distribution, can approximate the distribution of the prediction error

more accurately. This is illustrated in Fig. 7, where we fit the probability density function of

the prediction error with the Laplace and Gaussian distributions, respectively. Through running

the Jarque-Bera test [21], the hypothesis of Gaussian distribution for the prediction error data

shown in Fig. 7 has been rejected at the 5% significance level. In comparison, it can be seen

that the Laplace distribution is more accurate. Therefore, in the rest of this paper, we assume

the Laplace distribution for the prediction error of the pitch and yaw angles. Namely, we have

pθ(∆θ) =
1

λθ
e
− |∆θ|

λθ , pϕ(∆ϕ) =
1

λϕ
e
− |∆ϕ|

λϕ , (18)

where ∆θ and ∆ϕ denote the prediction errors for the pitch and yaw angles; the scale parameters

λθ and λϕ can be learned from training data.

For any tile T (m,n), we can calculate its upper, lower, left and right boundary, respectively,

as follows.

θupper
m,n = 90◦ − (m− 1)× 180◦

M
, θlower
m,n = 90◦ − m× 180◦

M
,

ϕleft
m,n = −180◦ +

(n− 1)× 360◦

N
,ϕright

m,n = −180◦ +
n× 360◦

N
. (19)

This tile is visible to the user if the following conditions on the prediction error are satisfied:

θnm + ∆θ ≥ θlower
m,n , θsm + ∆θ ≤ θupper

m,n , (20)

ϕem + ∆ϕ ≥ ϕleft
m,n, ϕwm + ∆ϕ ≤ ϕright

m,n, (21)

Eqs. (20) and (21) together specify that given the predication errors ∆θ and ∆ϕ, the tile T (m,n)

is within the user’s viewport if its northernmost latitude plus ∆θ is still higher than the lower

boundary of tile T (m,n), its southernmost latitude plus ∆θ is still lower than the upper boundary,

its easternmost longitude plus ∆ϕ is still right to the left boundary, and its westernmost longitude

plus ∆ϕ is still left to the right boundary. Assuming that the prediction errors of the pitch and

yaw angles are independent, then the visibility probability of any tile T (m,n) can be derived

as:

Pm,n , P θ
m,n · Pϕ

m,n =

∫ min{θupper
m,n−θsm,90◦}

max{θlower
m,n−θnm,−90◦}

pθ(∆θ)d∆θ ·
∫ [ϕ

right
m,n−ϕwm]l0

[ϕleft
m,n−ϕem]l0

pϕ(∆ϕ)d∆ϕ, (22)

where P θ
m,n and Pϕ

m,n are defined for notational simplicity; the functions max{·,−90◦} and

16

-80 -60 -40 -20 0 20 40 60 80
Prediction error in direction of Pitch (degree)

0

0.02

0.04

0.06

0.08

0.1
P

ro
ba

bi
lit

y
Error sample
Laplace distribution fitting
Gaussian distribution fitting

(a)

-150 -100 -50 0 50 100 150
Prediction error in direction of Yaw (degree)

0

0.02

0.04

0.06

0.08

0.1

P
ro

ba
bi

lit
y

Error sample
Laplace distribution fitting
Gaussian distribution fitting

(b)

Fig. 7. Prediction error distribution of pitch and yaw angles.

min{·, 90◦} in the lower and upper limits of the first integral map the value outside the range

of [−90◦, 90◦] to −90◦ and 90◦, respectively; and the function [·]l0 follows the definition in Eq.

(8) to ensure that the value is within the range of [−180◦, 180◦].

It is noted that Pm,n,∀T (m,n) /∈ Bv decreases and approaches zero when the tile T (m,n)

gradually deviates from Bv. In other words, the visibility probability of any tile outside the

viewport region depends on its distance to the viewport region, and becomes approximately zero

if it is far away from the viewport region. For the sake of analysis, we introduce a probability

threshold α, according to which the tiles T (m,n) /∈ Bv are further divided into marginal tiles

(if Pm,n ≥ α) and invisible tiles (if Pm,n < α). In this way, the tiles in a planar frame can be

classified into three categories: viewport tiles, marginal tiles and invisible tiles. The basic criterion

to allocate rate between different types of tiles is as follows. Viewport tiles are allocated with

an encoding rate higher than or equal to that of marginal tiles, since they will be displayed on

the user’s HMD with a much higher probability than marginal tiles. In addition, invisible tiles

are allocated with the smallest encoding rate to promise the transmission of basic video quality.

For a predicted user viewpoint V = (θ, ϕ), viewport tiles are fixed, referring to the tiles within

the corresponding viewport region Bv, while the probability threshold α adjusts the number

allocation between marginal and invisible tiles. As α decreases towards zero, the number of

marginal tiles will be increased to be more tolerant to prediction error of the user’s viewpoint,

at the cost of increased transmission rate. In the next section, we will discuss the server-side

optimal rate allocation strategy for these tiles among multiple users.

V. TILE RATE ADAPTATION

In this section, we first formulate the server-side rate adaptation problem, and then develop a

steepest descent solution.

17

A. Problem Formulation

Assume that the 2-D planar video sequence is temporally divided into a set of segments of

the same duration. Each frame within a segment is spatially divided into M × N tiles. Each

tile is encoded into L representations, with R = {R1, R2, ..., RL} denoting the set of encoding

rates in an increasing order, i.e., R1 < R2 < ... < RL. Assume that the server sends the

video simultaneously to a set K of users. The transmission capacity of the server and each

user k ∈ K is denoted as Cs and Ck, respectively. For each segment, let Bkv denote the set of

viewport tiles of user k, and Bkm denote the corresponding set of marginal tiles. Further, let the

combination Bk = Bkv
⋃
Bkm represent the set of visible tiles that are visible to user k, and Bk,

the supplementary set of Bk, represent the set of invisible tiles, as shown in Fig. 8.

To evaluate the quality of the 360-degree video, the weighted-to-spherically-uniform PSNR

(WS-PSNR) [22] is widely used. It defines the weighted average distortion of the points in the

plane as the 360-degree video distortion. The value of the weight (importance) depends on the

position of the point. For instance, the weight equals one around the equator and decreases

towards the poles, and finally approximates to zero at the poles.

To measure the video quality of each tile, we extend the pixel-based WS-PSNR definition

to the tile-granularity and define the weighted distortion of the tile in the plane as its spherical

distortion. The weight of the tile in the plane is proportional to its area of projection region in

the spherical space. Namely, we have

DSm,n = Sm,n ·Dm,n, (23)

where DSm,n and Dm,n are the distortion of the tile on the sphere and in the plane, respectively,

and Sm,n is the tile’s area on the spherical surface that is given by

Sm,n =

∫ −π+2 n
N
π

−π+2n−1
N

π

∫ π
2
−m−1

M
π

π
2
−m
M
π

R2 cosϕdϕdθ. (24)

Here, the distortion Dm,n in the plane can be measured by the traditional rate-distortion model

[23]:

Dm,n(Rm,n) =
σ

Rm,n −R0

+D0, (25)

where Rm,n is the encoding rate of the tile. The variables σ, R0 and D0 are the parameters of

the R-D model, which can be fitted by the empirical data from trial encodings using nonlinear

18

Viewport
tile region

k
v
k
v

Margins
k
m
k
m

Invisible
tile region

Predicted
Viewport

Fig. 8. Tile classification of a 2-D planar frame

regression techniques.

As previously mentioned, the tiles in a planar frame are classified into three types: viewport,

marginal and invisible tiles. The viewport tiles are streamed with high quality, while the marginal

tiles are transmitted with moderate video quality. As for the invisible tiles, they are transmitted

at the lowest rate R1 to save transmission capacity.

For each video segment, the server seeks optimal transmission rates for the viewport and

marginal tiles, aiming at minimizing the overall video distortion perceived by the users, subject to

both the server and user rate constraints. Mathematically, the server-side rate adaptation problem

can be formulated as the following problem P1:

P1: min
R

1

|K|
∑
k∈K

1∑
T (m,n)∈Bk Sm,n

·
[∑
T (m,n)∈Bk

Sm,n ·Dk
m,n(Rk

m,n)P k
m,n (26a)

+ ωSm̂,n̂D
k
m̂,n̂

(
min

T (m,n)∈Bkm

Rk
m,n

)
P k
m̂,n̂

]
s.t.

∑
k∈K

∑
T (m,n)∈Bk

Rk
m,n ≤ Cs, (26b)

∑
T (m,n)∈Bk

Rk
m,n ≤ Ck, ∀k ∈ K, (26c)

Rk
m,n ∈ {R1, R2, ..., RL} , ∀T (m,n) ∈ Bk,∀k ∈ K, (26d)

Rk
m,n = R1, ∀T (m,n) ∈ Bk,∀k ∈ K, (26e)

Rk
m,n = Rk

m′,n′ , ∀T (m,n), T (m′, n′) ∈ Bkv ,∀k ∈ K, (26f)

Rk
m,n ≤ Rk

m′,n′ , ∀T (m,n) ∈ Bkm,∀T (m′, n′) ∈ Bkv ,∀k ∈ K. (26g)

In the objective function in Eq. (26a), the first term defines the expected video quality in terms

19

of the weighted-to-spherically-uniform MSE perceived by all the users, which is decreasing

and strictly convex with respect to the video rate. The second term in the objective function

is introduced to avoid uncomfortable degradation in QoE when the user switches the viewing

direction from the predicted viewport to the margin area, where ω is a weight and (m̂, n̂) =

arg minT (m,n)∈Bkm R
k
m,n. Constraints in Eq. (26d) define the optional quality levels for each visible

tile. Constraints in Eq. (26e) set the quality level of all the invisible tiles to R1. Constraints in

Eq. (26f) specify that all the tiles in the viewport tile region should have the same quality level.

Constraints in Eq. (26g) ensure that the quality level in the margin area would not be higher

than that in the viewport region.

From Eq. (25), we know that Dm,n(Rm,n) is convex since D′′m,n(Rm,n) > 0 when Rm,n >

R0. Given that pointwise maximum preserves convexity [24], we have that min
T (m,n)∈Bkm

Rk
m,n =

− max
T (m,n)∈Bkm

(
−Rk

m,n

)
is concave. Then, based on the property of scalar composition that preserves

convexity of the outer function if the inner function is concave [24], Dk
m̂,n̂

(
min

T (m,n)∈Bkm
Rk
m,n

)
is

convex. Hence, the objective function of problem P1 in Eq. (26a) is a nonnegative weighted

sum of convex functions, which is still convex.

B. Steepest Descent Solution

The problem P1 is a nonlinear discrete optimization problem which is in general NP-hard. To

solve this problem, an intuitive way is to search all possible choices for the variables. This may

causes the computational complexity to increase exponentially. In contrast, a steepest descent

algorithm can efficiently reduce the computational complexity to achieve an optimal or near-

optimal solution by iteratively searching the steepest descent direction from which the variables

are updated under all the constraints. In the following, based on the steepest descent approach,

we propose an algorithm, of which the feasible starting point is achieved from the relaxed convex

optimization problem, to solve the problem P1 in polynomial time complexity.

Let Q(R) denote the objective function of problem P1, where the vector R = {Rk
m,n|∀k ∈

K,∀T (m,n) ∈ Bk ∪ Bk} represents the bitrates of all tiles that are allocated for each

user, and B(R) denotes the consumed transmission rate of all users in K, i.e., B(R) =∑
k∈K

∑
T (m,n)∈Bk∪BkR

k
m,n. Also, denote R+

j as an operation that increases the rate value Ru ∈ R

to the nearest higher rate value Ru+1 ∈ R for the j-th element of the vector R while the other

20

elements remain unchanged. Therefore, the slope in the j-th direction at R can be defined as

sj(R) = −
Q(R+

j)−Q(R)

B(R+
j)−B(R)

. (27)

The coordinate-wise steepest descent algorithm iteratively searches for the index j∗ with the

steepest descent direction, i.e., the index j∗ that achieves the largest ratio of the distortion

reduction to the rate increment for an increment in the bitrate by a single step within the available

encoding rate set R. If the constraints in Eqs. (26b)-(26g) of P1 are still met after executing

the operation R+
j∗ , R will be updated in accordance with R+

j∗ . To ensure the optimality of the

solution, three optimality conditions for the (Q(R), B(R)) pair should be satisfied [25]:

1) Cross-over condition: We define QRu
j (B) as the lower convex hull of achievable solutions

with the j-th element fixed to Ru. If for each j and Ru < Rv, ∀Ru, Rv ∈ R, we have QRv
j (B) <

QRu
j (B) for a sufficiently large B(R). Furthermore, if there exists some B0 such that QRv

j (B) ≤

QRu
j (B), we have QRv

j (B) < QRu
j (B), ∀B(R) > B0.

2) Cross-over ordering condition: We define the cross-over bandwidth Bc(Ru, Rv, j) between

two curves QRu
j (B) and QRv

j (B) as the smallest consumed transmission rate such that QRv
j (B) ≤

QRu
j (B) if Ru < Rv. Assume that Bc(Ru, Rv, j) is not achievable, i.e., Bc(Ru, Rv, j) 6=

B(R),∀Rk
m,n ∈ R, where Rk

m,n is the element of vector R. If for each j and Ru < Rv < Rw,

Bc(Rv, Rw, j) is greater than the consumed transmission rate of the first achievable solution on

QRv
j (B) with the consumed transmission rate greater than or equal to Bc(Ru, Rv, j).

3) Reachability condition: If for any j and Ru, the difference between the two vectors

corresponding to two adjacent achievable solutions on QRu
j (B) is exactly one index. In addition,

given a vector R corresponding to the highest consumed transmission rate achievable solution

smaller than or equal to Bc(Ru, Ru+1, j) on QRu
j (R), the vector R+

j gives the lowest achievable

consumed transmission rate solution on QRu+1

j (B) with the consumed transmission rate greater

than or equal to Bc(Ru, Ru+1, j).

It is proved in [25] that the steepest descent algorithm is able to find all achievable

(Q(R),B(R)) values on the lower convex hull with the consumed transmission rate B(R)

satisfying the constraints of problem P1 if the cross-over, cross-over ordering and reachability

conditions are satisfied. As an illustrative example, Fig. 9 shows that the (Q(R), B(R))

pairs in the proposed optimization problem P1 satisfy the cross-over and cross-over ordering

conditions. Specifically, for the increasing encoding bitrates R1 < R2 < · · · < R7, we

21

0.6 0.8 1 1.2 1.4 1.6 1.8
B(R): Consumed transmission rate of all users (Mbps)

0

5

10

15

20

25

Q
(R

):
 M

ea
n

V
id

eo
 D

is
to

rt
io

n
(M

S
E

)

Ru=R1

Ru=R2

Ru=R3

Ru=R4

Ru=R5

Ru=R6

Ru=R7

Fig. 9. An example of the lower convex hull of QRu
j (B) with the j-th element fixed to different values of Ru.

have QR7
j (B) < QR6

j (B) < · · · < QR1
j (B) for B(R) > 1.6 Mbps, which indicates

that the cross-over condition holds. Also, the cross-over ordering condition is verified since

Bc(R1, R2, j) < Bc(R2, R3, j) < · · · < Bc(R6, R7, j). The reachability condition may not be

guaranteed as there are too many directions in which R+
j gives the lowest achievable solution.

However, experimental results in Fig. 15 (please refer to Section VI) still suggest that the solution

achieved by the steepest descent algorithm in Algorithm 1 is close to the optimal solution obtained

by the global search approach.

The detailed implementation process of the proposed steepest descent algorithm is shown in

Algorithm 1. To avoid the steepest descent search dropping into a local optimum, it is important

to select a feasible starting point in proximity to the global optimal solution. To this end, we

first convert the original problem P1 into its continuous relaxation problem P2, by relaxing the

discrete rate constraint in Eq. (26d) as Rk
m,n ∈ [R1, RL]. We then solve the continuous relaxation

problem P2 by the standard convex optimization technique to obtain its optimal solution, denoted

as R̃ = {R̃k
m,n|∀k,m, n}. Based on the optimal solution to the continuous relaxation, we initialize

the starting point for the steepest descent search as a feasible rate vector that is close to R̃, as

R = {bR̃k
m,ncR|∀k,m, n}, where the operation bR̃k

m,ncR = arg maxRu∈RRu|Ru ≤ R̃k
m,n is

defined such that Rk
m,n takes the largest encoding rate value without exceeding R̃k

m,n from the

representation rate set R. Starting from R, we then search for the index j∗ that achieves the

largest ratio of the distortion reduction to the rate increment for an increment in the rate element.

If j∗ corresponds to the viewport tile of a user k∗, then according to the constraints in Eq. (26f),

the rates of all the viewport tiles of that user will be increased to the nearest higher rate value

in R. If j∗ corresponds to the marginal tile of a user k∗, then the rate of only that tile will be

22

Algorithm 1 Steepest descent algorithm with initialization based on the continuous relaxation
of problem P1

1: Initialization:
2: Convert the original problem P1 into its continuous relaxation problem P2, by relaxing the

discrete rate constraint in Eq. (26d) as Rk
m,n ∈ [R1, RL].

3: Obtain the optimal solution R̃ := {R̃k
m,n|∀k,m, n} to the continuous relaxation problem P2

by the standard convex optimization technique.
4: Initialize the feasible starting point as R := {bR̃k

m,ncR|∀k,m, n}.
5: Let the active searching set A include the indices {j} to which the corresponding elements

in the rate vector R can be executed by the operation R+
j while the constraints in Eqs.

(26b)-(26g) are still satisfied.
6:

7: Steepest descent search:
8: while A is nonempty do
9: Compute sj(R) for all j ∈ A according to Eq. (27).

10: Obtain the index j∗ := arg maxj∈A sj(R) with the corresponding T ∗(m,n) and k∗.
11: if T ∗(m,n) ∈ Bk∗V then
12: for each index i corresponding to k = k∗, T (m,n) ∈ Bk∗V do
13: R′ := R+

i

14: end for
15: else if T ∗(m,n) ∈ Bk∗m then
16: R′ := R+

j∗

17: end if
18: if R′ satisfy the constrains in Eqs. (26b)-(26g) then
19: R∗ := R′

20: else
21: Remove j∗ from A.
22: end if
23: end while
24: return R∗

increased to the nearest higher rate value in R. If the above rate increment does not violate the

constraints in Eqs. (26b)-(26g), the optimal rate solution is updated accordingly; otherwise, the

index j∗ is removed from the active searching set.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed steepest descent algorithm,

and derive simple guidelines for the server-side rate adaptation for adaptive 360-degree video

streaming under different simulation settings.

23

TABLE I
COMPARISON ON PITCH AND YAW ANGLE PREDICTION ERROR OF NAIVE, LR, NN AND THE PROPOSED CNN-BASED

MODEL.

Prediction time window (s) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pitch θ (◦)

Mean

Navie-x 1.10 2.21 3.20 4.27 5.10 5.92 6.76 7.73 8.15 8.71
LR-x 1.14 2.81 5.26 7.13 8.89 12.37 13.84 16.09 18.52 21.51
NN-x 0.57 1.43 2.38 3.18 4.32 5.49 6.23 7.06 7.51 8.68

CNN-x 0.60 1.42 2.21 3.05 3.84 4.51 5.34 5.99 6.68 7.80

RMSE

Navie-x 1.95 3.84 5.69 7.33 8.51 9.94 11.42 12.77 13.10 14.24
LR-x 1.85 4.10 6.70 8.75 10.60 14.43 16.18 18.40 21.11 24.26
NN-x 0.92 2.31 3.84 5.31 6.94 8.51 9.62 10.74 11.79 13.07

CNN-x 0.94 2.28 3.54 4.91 6.30 7.40 8.65 9.52 10.52 11.99

99.9th

Navie-x 13.14 23.39 36.69 46.91 51.92 58.76 66.46 67.36 63.04 80.26
LR-x 10.73 25.98 37.25 41.73 43.74 57.36 51.38 65.39 70.14 74.96
NN-x 6.75 17.45 27.66 37.02 46.13 52.28 57.19 60.99 69.04 72.02

CNN-x 6.62 14.61 22.90 31.05 41.22 45.41 54.61 54.86 60.42 69.24

Yaw ϕ (◦)

Mean

Navie-y 2.68 5.40 7.86 10.21 12.03 14.93 16.94 18.76 20.66 22.91
LR-y 2.68 5.50 8.43 10.21 13.14 16.16 18.71 20.90 22.27 25.57
NN-y 0.91 2.41 4.23 6.20 8.23 10.18 12.29 13.99 15.93 17.78

CNN-y 0.88 2.29 4.08 5.88 7.75 9.49 11.47 13.24 14.90 16.55

RMSE

Navie-y 4.87 9.73 13.72 17.45 20.25 24.72 27.67 29.95 32.64 36.16
LR-y 4.58 9.77 14.47 16.96 20.41 24.42 28.78 30.65 32.48 36.86
NN-y 1.83 4.59 7.82 11.45 14.60 17.55 20.89 23.25 26.06 28.46

CNN-y 1.57 3.90 7.13 10.02 13.04 15.82 18.71 21.58 24.12 26.31

99.9th

Navie-y 32.58 70.31 91.17 114.51 123.99 143.91 158.62 165.69 163.54 170.73
LR-y 27.04 64.26 95.82 125.25 137.65 116.71 158.55 157.09 161.84 158.57
NN-y 14.07 37.57 68.47 92.45 112.75 135.87 152.55 157.66 160.58 165.56

CNN-y 11.87 31.65 53.28 71.70 94.63 115.92 121.69 137.89 157.86 155.26

A. Viewport Prediction

We first evaluate the proposed CNN-based method on the dataset in [15]. This dataset collected

head motion data (represented by Euler angles) of 153 volunteers when they were watching 16

clips of 360-degree videos covering a variety of scenes, such as landscape and sport activities.

Most of the volunteers only viewed a portion of the 16 clips, resulting in 985 views in total.

Then through preprocessing, the head movement was sampled 10 times per second, with each

view containing 289 samples. Therefore, the dataset includes a total of 285665 samples of

the users’ head motion. In the proposed CNN-based viewing angle prediction model, we use

80 percent of the data for training, and the remaining 20 percent for testing. To evaluate the

accuracy of viewpoint prediction, we adopt three metrics, namely, mean error, root-mean-square

error (RMSE), 99.9th percentile. For the implementation of the CNN-based model, the first

convolutional layer has 32 channels, all the other convolutional layers have 64 channels, where

Adam optimization [26] is used. The momentum and weight-decay are set to 0.8 and 0.999

respectively. We set the batch size to 128 and train the model for 200 epochs. The learning rate

is linearly decayed from 1e− 3 to 1e− 4 in the first 100 epochs.

In terms of these three metrics, we compare the prediction accuracy of the proposed CNN-

24

based viewpoint prediction model with three existing prediction models, naive [4], linear

regression (LR) [15] and neural network (NN) [15]. As shown in Table I, the proposed CNN-

based model significantly improves the prediction accuracy for both the pitch and yaw angles,

especially when the prediction window becomes large. Compared to the NN model that performs

best among the prior works, the proposed CNN-based model increases the prediction accuracy

by 9% ∼ 27% in all the three metrics, and achieves up to 69% improvement in comparison

to the baseline naive model. This indicates that the proposed CNN-based model has a stronger

ability of nonlinearity fitting and performs better for a larger prediction window.

B. Tile Rate Allocation

To evaluate the performance of the proposed server-side tile rate adaptation optimization and

the steepest descent algorithm, we further compare the performance of the proposed steepest

descent algorithm in Algorithm 1 with two other tile-based rate adaptation schemes: baseline,

where all the tiles are transmitted to the users at the same quality (encoding rate); and greedy,

where tiles in the predicted viewport region of users are allocated with a high quality (encoding

rate) while the remaining tiles are allocated with the lowest quality (encoding rate). We use three

recommended test sequences for 360-degree videos, Canolafield [27], Driving in Country [27]

and Basketball [28], with an identical spatial resolution of 3840×1920 and the same frame rate of

25 fps. We divide the 360-degree video in ERP format into 8×8 tiles and use high efficiency video

coding (HEVC) to encode each tile into six different rate representations. The corresponding QP

for encoding each rate representation is set as {42, 37, 32, 27, 22, 17}, respectively, resulting in

an increasing average encoding rate per tile as {R1, R2, R3, R4, R5, R6} = {2, 4, 10, 20, 49, 120}

kbps. For each test sequence, ten users are simultaneously watching that video wearing the

same type of HMD, i.e., the perspective FoVs of their HMDs are 90◦ vertically and 110◦

horizontally. However, these users will watch the same video with different initial viewpoints

and head movement trajectories, which are set accordingly based on ten randomly selected views

from the head motion dataset in [15]. We use the prediction time window of 1.0 s and set the

probability threshold to differentiate the marginal and invisible tiles for each user as α = 0.05.

Fig. 10(a) illustrates a tiling example for a user in a frame of the video Driving in Country,

where tiles in the red rectangle represent the predicted viewport tiles and tiles in the blue

rectangles represent marginal tiles. Then, in Figs. 10(b)-10(d), we compare the quality of a

viewport tile (green rectangle) and a marginal tile (yellow rectangle) achieved by the three

25

(a)

(b)

(c)

(d)

Fig. 10. (a) Tiling in a frame of Driving in Country, where tiles inside the red rectangle represent predicted viewport tiles for
a user and tiles inside the blue rectangles represent marginal tiles. Illustration of the achievable subjective quality for two tiles
with (b) baseline algorithm, (c) greedy algorithm, and (d) proposed algorithm.

different algorithms. Here, the server’s transmission capacity is set to Cs = 26 Mbps, while

all the ten users are assumed to have the same transmission capacity Ck = 2 Mbps. In this

case, the user’s transmission capacity is not sufficient to guarantee the transmission of visible

tiles with the highest quality. Since the baseline algorithm allocates the user’s transmission

capacity equally to all the tiles within the frame, both the viewport tile and the marginal tile

are transmitted with a relatively low bitrate representation. It can be seen in Fig. 10(b) that

26

the visual quality of both the viewport tile and the marginal tile presented to the user is the

same but at a relatively low level. The greedy algorithm attempts to allocate a highest possible

bitrate representation for the tiles within the predicted viewport region subject to the transmission

capacity, while the marginal and invisible tiles are allocated with the lowest bitrate representation.

The user’s transmission capacity of 2 Mbps allows the transmission of viewport tiles with the

highest bitrate representation, however, the marginal tiles are still delivered with the lowest

bitrate representation. It, as shown in Fig. 10(c), results in an uncomfortable quality degradation

when the predicted user’s viewport deviates from the actual viewport such that some marginal

tiles are included in the actual viewport. Compared with these two algorithms, as shown in Fig.

10(d), the proposed algorithm not only allocates a relatively high bitrate representation for the

predicted viewport tiles, but also preserves for the marginal tiles with a representation the bitrate

of which is lower than the viewport tile but still higher than the lowest bitrate representation to

tolerate the viewport prediction error.

In Fig. 11, we compare the representation rate indices of tiles allocated by the proposed

algorithm for two users with different viewports, where ω = 0, Cs = 26 Mbps and Ck = 2

Mbps. Comparing the location of these two viewports, the user’s viewport in Fig. 11(a) is close to

the north pole while that in Fig. 11(b) is near the equator. Therefore, a higher rate representation

(i.e., R6) is allocated for viewport tiles in Fig. 11(b) than the rate representation (i.e., R4)

allocated for those in Fig. 11(a). This is because we take the WS-PSNR measure to define the

weighted average distortion of tiles as the 360-degree video distortion. The weight equals to 1

when the tile is around the equator and decreases towards zero when it becomes closer to the

poles. Therefore, the viewport tiles in Fig. 11(b) have higher weights than those in Fig. 11(a),

and thus are allocated with a higher rate representation. On the other hand, the marginal tiles in

Fig. 11(a) are allocated with a higher rate representation (i.e., R3) than the rate representation

(i.e., R2) of those in Fig. 11(b), since according to Eq. (22) their visible probabilities are higher.

In Fig. 12, we increase the value of weight parameter ω to one, and keep the other experiment

settings the same as in Fig. 11. Through comparison, it can be seen that with the increment of

the weight parameter ω, the difference in representation rate (or quality) between the viewport

tiles and marginal tiles of the same user is reduced. This is because according to the optimization

objective in Eq. (26a), a larger ω will impose a higher penalty on the representation rate difference

between the viewport and marginal tiles. In this way, the quality difference between these two

types of tiles is flattened, and the quality degradation when the user switches the viewing direction

27

(a) (b)

Fig. 11. Representation rate indices of tiles received by two users when using the proposed algorithm, where ω = 0, Cs = 26
Mbps and Ck = 2 Mbps: (a) user’s viewpoint is near the north pole, and (b) user’s viewpoint is near the equator. (Black lines
cover the predicted viewport region while the red rectangles cover the viewport tiles, and blue rectangles represent the marginal
tiles.)

(a) (b)

Fig. 12. Representation rate indices of tiles received by two users when using the proposed algorithm, where ω = 1, Cs = 26
Mbps and Ck = 2 Mbps: (a) user’s viewpoint is near the north pole, and (b) user’s viewpoint is near the equator. (Black lines
cover the predicted viewport region while the red rectangles cover the viewport tiles, and blue rectangles represent the marginal
tiles.)

from the predicted viewport to the marginal region becomes imperceptible.

Fig. 13 compares the average WS-PSNR of all users when they are viewing the three test video

sequences with different algorithms, under different settings of server’s and users’ transmission

capacities. Specifically, in Figs. 13(a)-13(c), we assume that the transmission capacity of each

user is a randomly selected value following the uniform distribution within the range of [1.3, 1.7]

Mbps, and vary the server’s transmission capacity from 9 Mbps to 30 Mbps. It can be seen

that the average WS-PSNR versus the server’s transmission capacity curves achieved by the

same algorithm for the three sequences present the same trend. For the same video sequence,

the average WS-PSNR of all the three algorithms will increase as the server’s transmission

capacity becomes larger. When the server’s transmission capacity exceeds the sum of transmission

capacities of all the users, the average WS-PSNR achieved by each algorithm will stop increasing.

The proposed algorithm generally outperforms the baseline and greedy algorithms by achieving

28

5 10 15 20 25 30
Server Bandwidth (Mbps)

32

34

36

38

40

42
A

ve
ra

ge
 W

S
-P

S
N

R
 o

f a
ll

us
er

s
(d

B
)

Canolafield

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(a)

5 10 15 20 25 30
Server Bandwidth (Mbps)

40

42

44

46

48

A
ve

ra
ge

 W
S

-P
S

N
R

 o
f a

ll
us

er
s

(d
B

) Basketball

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(b)

5 10 15 20 25 30
Server Bandwidth (Mbps)

38

40

42

44

46

A
ve

ra
ge

 W
S

-P
S

N
R

 o
f a

ll
us

er
s

(d
B

) Driving in Country

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(c)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

28

30

32

34

36

38

40

42

A
ve

ra
ge

 W
S

-P
S

N
R

 o
f a

ll
us

er
s

(d
B

)

Canolafield

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(d)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

36

38

40

42

44

46

48

A
ve

ra
ge

 W
S

-P
S

N
R

 o
f a

ll
us

er
s

(d
B

)

Basketball

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(e)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

34

36

38

40

42

44

46

48

A
ve

ra
ge

 W
S

-P
S

N
R

 o
f a

ll
us

er
s

(d
B

)

Driving in Country

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(f)

Fig. 13. Average WS-PSNR of all users vs. server’s transmission capacity for (a) Canolafield, (b) Basketball, and (c) Driving
in Country; and average WS-PSNR of all users vs. average user transmission capacity for (d) Canolafield, (e) Basketball, and
(f) Driving in Country.

a much higher average WS-PSNR for a given transmission capacity of the server. In addition, as

already discussed in Figs. 11 and 12, the average WS-PSNR performance will decrease slightly

with the increment of weight parameter ω, but the quality degradation between the viewport and

marginal tiles will become imperceptible. In Figs. 13(d)-13(f), we set the server’s transmission

capacity as 15 Mbps, and vary the average user transmission capacity from 0.3 Mbps to 3.1

Mbps, where similar observations can be found for the average WS-PSNR versus average user

transmission capacity curves achieved by different algorithms.

To reflect the quality difference between viewport and marginal tiles, we define an instability

29

5 10 15 20 25 30
Server Bandwidth (Mbps)

0

5

10

15

A
ve

ra
ge

 in
st

ab
ili

ty
 in

de
x

Canolafield

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(a)

5 10 15 20 25 30
Server Bandwidth (Mbps)

0

5

10

15

A
ve

ra
ge

 in
st

ab
ili

ty
 in

de
x

Basketball

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(b)

5 10 15 20 25 30
Server Bandwidth (Mbps)

0

5

10

15

A
ve

ra
ge

 in
st

ab
ili

ty
 in

de
x

Driving in Country

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(c)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 in
st

ab
ili

ty
 in

de
x

Canolafield

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(d)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 in
st

ab
ili

ty
 in

de
x

Basketball

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(e)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 in
st

ab
ili

ty
 in

de
x

Driving in Country

Proposed (=0)
Proposed (=0.5)
Proposed (=1)
Greedy
Baseline

(f)

Fig. 14. Average instability index of all users vs. server’s transmission capacity for (a) Canolafield, (b) Basketball, and (c)
Driving in Country; and average instability index of all users vs. average user transmission capacity for (d) Canolafield, (e)
Basketball, and (f) Driving in Country.

index for each user as the standard deviation of the representation rate indices of all the tiles

within the viewport and marginal regions. Further, in Fig. 14, we compare the average instability

index of all the users achieved by different algorithms. Unless stated otherwise in the figure, the

server’s transmission capacity is set to 15 Mbps, while the transmission capacity of each user

is a randomly selected value that follows the uniform distribution within the range of [1.3, 1.7]

Mbps. It can be observed that the instability index of the baseline algorithm is always zero, while

the greedy algorithm presents the largest instability index under the same transmission capacity

setting for the server and users. This is because all the tiles within the frame are allocated with the

30

5 10 15 20 25 30
Server Bandwidth (Mbps)

3

4

5

6

7
Q

(R
):

 M
ea

n
V

id
eo

 D
is

to
rt

io
n

(M
S

E
)

Canolafield (=0)

Steepest descent without initialization
Proposed
Global search

(a)

5 10 15 20 25 30
Server Bandwidth (Mbps)

14

16

18

20

Q
(R

):
 M

ea
n

V
id

eo
 D

is
to

rt
io

n
(M

S
E

)

Canolafield (=0.5)

Steepest descent without initialization
Proposed
Global search

(b)

5 10 15 20 25 30
Server Bandwidth (Mbps)

22

24

26

28

30

32

34

Q
(R

):
 M

ea
n

V
id

eo
 D

is
to

rt
io

n
(M

S
E

)

Canolafield (=1)

Steepest descent without initialization
Proposed
Global search

(c)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

0

5

10

15

20

25

Q
(R

):
 M

ea
n

V
id

eo
 D

is
to

rt
io

n
(M

S
E

)

Canolafield (=0)

Steepest descent without initialization
Proposed
Global search

(d)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

10

15

20

25

30

35

40

45

Q
(R

):
 M

ea
n

V
id

eo
 D

is
to

rt
io

n
(M

S
E

)

Canolafield (=0.5)

Steepest descent without initialization
Proposed
Global search

(e)

0 0.5 1 1.5 2 2.5 3 3.5
Average User Bandwidth (Mbps)

20

30

40

50

60

Q
(R

):
 M

ea
n

V
id

eo
 D

is
to

rt
io

n
(M

S
E

)

Canolafield (=1)

Steepest descent without initialization
Proposed
Global search

(f)

Fig. 15. Comparison with the steepest descent solution without initialization, and the globally optimal solution achieved by
global search.

same rate representation by the baseline algorithm, and the greedy algorithm attempts to allocate

a highest possible bitrate representation for viewport tiles while the other tiles are allocated with

the lowest bitrate representation. In comparison to the greedy algorithm, the proposed algorithm

preserves for the marginal tiles with a lower representation rate than the viewport tile but still

higher than the lowest bitrate representation. Therefore, the proposed algorithm achieves a much

smaller instability index than the greedy algorithm, for given transmission capacities of the server

and users. In addition, when the weight parameter ω increases from zero to one, the instability

index can be further reduced to become more tolerant to the viewport prediction error.

In Fig. 15, we further compare the solution of problem P1 in Eq. (26) achieved by the

31

global search approach, the steepest descent algorithm with initialization based on the continuous

relaxation of problem P1 as shown in Algorithm 1, and the steepest descent algorithm without

such an initialization. In terms of the objective function value Q(R), the global search approach

can find the optimal solution of problem P1 and thus returns the minimum value of Q(R) for

given transmission capacities of the server and users. For the steepest descent algorithm without

initialization, the starting point for the search will be set as the lowest rate representation for

each tile, i.e., R = {R1|∀k,m, n}. This might cause the steepest descent search to drop into a

local optimum, resulting in a solution much deviated from the optimal solution. In contrast, the

proposed algorithm in Algorithm 1 utilizes the optimal solution of the continuous relaxation of

problem P1 to initialize the starting point for the steepest descent search, and obtains a solution

much closer to the optimal solution. It can be seen in Fig. 15 that at some points, the proposed

algorithm can even reach the optimal solution.

VII. CONCLUSION

In this paper, we have investigated the server-side tile rate adaptation problem for multiple

users competing for the server’s transmission capacity. Based on the CNN-based viewpoint

prediction, the mapping from the spherical viewport to its corresponding planar projection, and

the corresponding visibility probability derivation of each tile for each user, it was then formulated

as a non-linear discrete optimization problem to minimize the overall received video distortion

of all users and the quality difference between the viewport and marginal tiles of each user,

subject to the transmission capacity constraints of the server and users, and the specific viewport

requirements of users. To solve this discrete optimization problem, we developed a steepest

descent algorithm with the feasible starting point determined by the optimal solution of its

continuous relaxation. Extensive simulations have been done under different system settings,

empirically demonstrating the near-optimal performance of the proposed algorithm.

REFERENCES

[1] Y. Bao, T. Zhang, A. Pande, H. Wu, and X. Liu, “Motion-prediction-based multicast for 360-degree video transmissions,”

in Proc. IEEE International Conference on Sensing, Communication, and Networking, 2017.

[2] A. Mavlankar and B. Girod, “Pre-fetching based on video analysis for interactive region-of-interest streaming of soccer

sequences,” in Proc. IEEE ICIP, 2009, pp. 3061-3064.

[3] S. Rossi and L. Toni, “Navigation-aware adaptive streaming strategies for omnidirectional video,” in Proc. IEEE

International Workshop on Multimedia Signal Processing, 2017.

32

[4] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video delivery over cellular networks,” in Proc. ACM

Workshop on All Things Cellular: Operations, Applications and Challenges, 2016, pp. 1-6.

[5] A. Ghosh, V. Aggarwal, and F. Qian, “A rate adaptation algorithm for tile-based 360-degree video streaming,” arXiv

preprint arXiv: 1704.08215, 2017.

[6] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski, “Viewport-adaptive navigable 360-degree video delivery,” in Proc.

IEEE ICC, 2017.

[7] N. Kan, J. Zou, K. Tang, C. Li, and H. Xiong, “Deep reinforcement learning-based rate adaptation for adaptive 360-degree

video streaming,” in Proc. ICASSP, 2019.

[8] O. E. Marai, T. Taleb, M. Menacer, and M. Koudil, “On improving video streaming efficiency, fairness, stability, and

convergence time through client-server cooperation,” IEEE Trans. on Broadcasting, vol. 64, no. 1, pp. 11-25, 2018.

[9] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen, “Server-based traffic shaping for stabilizing oscillating

adaptive streaming players,” in Proc. ACM NOSSDAV, 2013.

[10] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe and adapt: rate adaptation for http video

streaming at scale,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 4, pp. 719-733, Apr. 2014.

[11] T. Stockhammer, “Dynamic adaptive streaming over HTTP – standards and design principles,” in Proc. ACM MMSys,

2011, pp. 133-144.

[12] IETF, “Hypertext transfer Protocol version 2 (HTTP/2),” https://tools. ietf.org/html/rfc7540.

[13] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. D. Turck, “ An HTTP/2-based adaptive streaming framework for 360◦

virtual reality videos,” in Proc. ACM MM, 2017, pp. 1-9.

[14] M. Xiao, C. Zhou, V. Swaminathan, Y. Liu, and S. Chen, “BAS-360◦ : exploring spatial and temporal adaptability in

360-degree videos over HTTP/2,” in Proc. IEEE INFOCOM, 2018, pp. 953-961.

[15] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu, “Shooting a moving target: motion-prediction-based transmission for

360-degree videos,” in Proc. IEEE International Conference on Big Data, 2016, pp. 1161-1170.

[16] R. Azuma and G. Bishop, “A frequency-domain analysis of head motion prediction,” in Proc. ACM SIGGRAPH, 1995,

pp. 401-408.

[17] A. D. Aladagli, E. Ekmekcioglu, D. Jarnikov, and A. Kondoz, “Predicting head trajectories in 360 virtual reality videos,”

in Proc. International Conference on 3D Immersion, 2018, pp. 1-6.

[18] M. Xu, Y. Song, J. Wang, M. Qiao, L. Huo, and Z. Wang, “Predicting head movement in panoramic video: a deep

reinforcement learning approach,” IEEE Trans. on Pattern Analysis and Machine Intelligence, preprint, 2018.

[19] T. Aykut, C. Burgmair, M. Karimi, J. Xu, and E. Steinbach, “Delay compensation for actuated stereoscopic 360 degree

telepresence systems with probabilistic head motion prediction,” in Proc. IEEE Winter Conference on Applications of

Computer Vision, 2018, pp. 1-9.

[20] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo, “360ProbDash: improving QoE of 360 video streaming using tile-based

http adaptive streaming,” in Proceedings of ACM MM, 2017, pp. 315-323.

[21] C. M. Jarque and A. K. Bera, “A Test for Normality of Observations and Regression Residuals,” International Statistical

Review/Revue Internationale de Statistique, vol. 55, no. 2, pp. 163-172, Aug. 1987.

[22] ISO/IEC JTC1/SC29/WG11. AHG8: WS-PSNR for 360 video objective quality evaluation, 2016.

[23] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video transmission over lossy channels,” IEEE Journal on

Selected Areas in Communications, vol. 18, no. 6, pp. 1012-1032, June 2000.

[24] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[25] Y. Sermadevi and S. S. Hemami, “Efficient bit allocation for dependent video coding,” in Proc. IEEE DCC, 2004.

33

[26] D. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in Proc. International Conference on Learning

Representations, 2015.

[27] ISO/IEC JTC1/SC29/WG11. Test sequences for virtual reality video coding 2016.

[28] SO/IEC JTC1/SC29/WG11. AHG8: new GoPro test sequences for virtual reality video coding, 2016.

	I Introduction
	II Related Work
	III CNN-based Viewpoint Prediction
	IV Probabilistic Tile Visibility
	IV-A From Spherical Viewport to Planar Viewport Tile Region
	IV-B Tile Visibility Probability

	V Tile Rate Adaptation
	V-A Problem Formulation
	V-B Steepest Descent Solution

	VI Performance Evaluation
	VI-A Viewport Prediction
	VI-B Tile Rate Allocation

	VII Conclusion
	References

