
1

Geometric Approaches to Increase the Expressivity
of Deep Neural Networks for MR Reconstruction

Eunju Cha, Gyutaek Oh, and Jong Chul Ye∗, Fellow, IEEE

Abstract—Recently, deep learning approaches have been ex-
tensively investigated to reconstruct images from accelerated
magnetic resonance image (MRI) acquisition. Although these
approaches provide significant performance gain compared to
compressed sensing MRI (CS-MRI), it is not clear how to choose
a suitable network architecture to balance the trade-off between
network complexity and performance. Recently, it was shown that
an encoder-decoder convolutional neural network (CNN) can be
interpreted as a piecewise linear basis-like representation, whose
specific representation is determined by the ReLU activation
patterns for a given input image. Thus, the expressivity or the
representation power is determined by the number of piecewise
linear regions. As an extension of this geometric understanding,
this paper proposes a systematic geometric approach using
bootstrapping and subnetwork aggregation using an attention
module to increase the expressivity of the underlying neural
network. Our method can be implemented in both k-space
domain and image domain that can be trained in an end-to-end
manner. Experimental results show that the proposed schemes
significantly improve reconstruction performance with negligible
complexity increases.

Index Terms—Accelerated MRI, deep learning, expressivity,
convolution framelets, skipped connection

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a valuable
imaging method for diagnosis. However, its long scan

time still remains a challenge for MRI. To address this
issue, researchers have investigated various MR acceleration
techniques, where image reconstruction is performed from
sub-sampled k-space measurements. Specifically, for a given
under-sampling pattern Λ, the k-space measurement data for
accelerated MR is given by

ŷ := PΛ[x̂] (1)

where the downsampling operator PΛ is defined as

[PΛ[x̂]]i =

{
x̂[i], i ∈ Λ

0, otherwise
. (2)

and the spatial Fourier transform of the unknown image x :
R2 → R is

x̂(k) = F [x](k) :=

∫
Rd

e−jk·rx(r)dr, (3)
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with spatial frequency k ∈ R2 and j =
√
−1. Then, the image

reconstruction problem for accelerated MRI is to estimate
the unknown x(r) (or its discretized version x) from the
subsampled measurement ŷ.

To address the ill-posedness of the inverse problem from the
undersampled k-space measurements, many algorithms have
been developed by exploiting additional prior information,
such as multi-coil redundancy as in parallel MRI (pMRI) [1],
[2], or sparsity in the case of compressed sensing MRI (CS-
MRI) [3]–[6]. Recently, deep learning approaches have been
extensively explored as promising alternatives for accelerated
MRI thanks to its high performance in spite of significantly
reduced run-time complexity [7]–[17]. For example, Kwon et
al [8] proposed multilayer perceptron for parallel MRI. Wang
et al [7] employed a deep learning prior as an initialization
or regularization term for compressed sensing reconstruction.
Hammernik et al [9] proposed a variational network by
learning each step of unrolled compressed sensing iterations.
Learning-based alternating directional methods of multiplier
(ADMM) was also proposed by unrolling ADMM steps [18].
Since the introduction of these pioneering works, this area has
been populated with many innovative and interesting network
architectures such as image domain approaches [12], k-space
domain approaches [15]–[17], hybrid domain approaches [19],
domain transform learning approach [13], recursive learning
approach [14], etc.

Specifically, the basic idea of deep learning for compressed
sensing MRI is to design a neural network TΘ parameterized
with trainable parameters Θ by minimizing an empirical loss:

min
Θ

1

T

T∑
t=1

`
(
v(t), TΘ

(
z(t)
))

(4)

where ` is a performance metric such as l2 norm, and
{v(t), z(t)}Tt=1 refers to T training data, defined as

(v, z) :=

{
(x̂, ŷ), (k-space learning)(
F−1(x̂),F−1(ŷ)

)
, (image learning)

(5)

Aside from using different loss functions such as GAN
loss [20] or perceptual loss [21] as in [22]–[24], one of
the important research efforts in this field is to develop
novel network architecture that provides high quality image
reconstruction. Unfortunately, many of these new network
architectures are usually associated with increased network
complexity, so it is not clear whether the performance increase
is due to the unique network topology or the increased number
of network parameters. Therefore, it is important to analyze the
“expressivity” or “representation power” of a neutral network,
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Fig. 1: Encoder-decoder CNNs (a) without skipped connection
and (b) with skipped connection.

which indicates its ability to approximate the desired function.
More specifically, enhancing the expressivity of neural net-
work is directly related to the improvement in reconstruction
performance thanks to its elevated flexibility in approximating
a nonlinear mapping.

Recently, inspired by the so-called convolutional framelet
interpretation of CNN [25], our group showed that encoder-
decoder CNN can be understood as a piecewise linear framelet
representation whose basis are adaptively chosen by the rec-
tified linear unit (ReLU) activation patterns determined by
the network input [26]. We further showed that the increased
network width (i.e. number of filter channels) increases the
number of piecewise linear regions in which one of them is
selected depending on the input data. Therefore, this increase
directly leads to an improvement in the expressivity of the
neural network. Inspired by these geometrical understanding
of the encoder-decoder CNN [26], here we provide addi-
tional geometric insights of CNNs that lead to a systematic
approach to further improve the expressivity of the neural
network. Specially, we show that a novel attention scheme
combined with bootstrapping and subnetwork aggregation im-
proves network expressivity with minimal complexity increase.
In particular, the attention module is shown to provide a
redundant representation and increased number of piecewise
linear regions that improve the expressivity of the network.
Thanks to the increased expressivity, the proposed network
modification improves the reconstruction performance.

As a proof of concept, we provide several modifications
of the popular neural network baseline U-Net [27] that is
often used for MR reconstruction from sparse samples [10],
[11], [28]. Experimental results show that the modified U-
Net produces significantly better reconstruction results with
negligible complexity increases.

II. GEOMETRY OF CNN: A BIRD-EYE VIEW

To understand the theoretical background for the proposed
method, here we provide a review of the recent geometric

understanding on CNN [26].

A. Definition

Consider encoder-decoder networks in Fig. 1. For simplicity,
here we consider a symmetric configuration so that both
encoder and decoder have the same number of layers, say
κ; the input and output dimensions for the encoder layer E l
and the decoder layer Dl are symmetric:

E l : Rdl−1 7→ Rdl , Dl : Rdl 7→ Rdl−1 , l ∈ [κ] (6)

where [n] denotes the set {1, · · · , n}. At the l-th layer, ml

and ql denote the dimension of the signal, and the number of
filter channel, respectively. The length of filter is assumed to
be r.

We now define the l-th layer input signal for the encoder
layer from ql−1 number of input channels

zl−1 :=
[
zl−1>

1 · · · zl−1>
ql−1

]>
∈ Rdl−1 , (7)

where > denotes the transpose, and zl−1
j ∈ Rml−1 refers

to the j-th channel input with the dimension ml−1. The l-
th layer output signal zl is similarly defined. Then, we have
the following representations of the convolution and pooling
operation at the l-th encoder layer [26]:

zl = σ
(
El>zl−1

)
(8)

where σ(·) is defined as an element-by-element ReLU opera-
tion σ(x) = max{x, 0}, and

El =

 Φl ~ψl1,1 · · · Φl ~ψlql,1
...

. . .
...

Φl ~ψl1,ql−1
· · · Φl ~ψlql,ql−1

 (9)

where Φl denotes the ml × ml matrix that represents the
pooling operation at the l-th layer, and ψli,j ∈ Rr represents
the l-th layer encoder filter to generate the i-th channel
output from the contribution of the j-th channel input, and
~ represents a multi-channel convolution [26]. Note that the
inclusion of the bias in (8) can be readily done by including
an additional row into El as a bias and augmenting the last
element of zl−1 as 1. Accordingly, without loss of generality,
we assume that (8) is the general expression including the bias.

Similarly, the l-th decoder layer can be represented by [26]:

z̃l−1 = σ
(
Dlz̃l

)
(10)

where

Dl =

 Φ̃l ~ ψ̃l1,1 · · · Φ̃l ~ ψ̃l1,ql
...

. . .
...

Φ̃l ~ ψ̃lql−1,1
· · · Φ̃l ~ ψ̃lql−1,ql

 (11)

where Φ̃l denotes the ml × ml matrix that represents the
unpooling operation at the l-th layer, and ψ̃li,j ∈ Rr represents
the l-th layer decoder filter to generate the i-th channel output
from the contribution of the j-th channel input.

Next, consider the skipped branch signal χl by concatenat-
ing the output for each skipped branch as shown in Fig. 1(b).
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It is easy to show that the l-th encoder layer with the skipped
connection can be represented by [26]:[

zl

χl

]
=

[
σ
(
El>zl−1

)
zl−1

]
(12)

z̃l−1 = σ
(
Dlz̃l +Dlχl

)
. (13)

If the skipped branch is concatenated in channel dimension,
(13) can be represented by

z̃l−1 = σ

(
Dl

[
z̃l

χl

])
= σ

(
Dl
zz̃
l +Dl

sχ
l
)
, (14)

whereDl = [Dl
z D

l
s] denotes the decoder filter matrix for the

channel concatenation, with Dl
z and Dl

s being the filter block
with respect to z̃l and the skipped signal χl, respectively. Due
to the similarity between (13) and (14), for the rest of the paper
we use (13) for simplicity.

B. Linear CNN

First, consider a linear encoder-decoder CNN without
skipped connections as shown in Fig. 1(a), where there exists
no ReLU nonlinearity. In this case, we have the following
linear representation at the l-th encoder layer [26]:

zl = El>zl−1 (15)

Similarly, the l-th decoder layer can be represented by

z̃l−1 = Dlz̃l (16)

Then, the output v of the encoder-decoder CNN with respect
to input z can be represented by the following basis-like
representation [26]:

v = TΘ(z) =
∑
i

〈bi, z〉 b̃i (17)

where Θ refers to all encoder and decoder convolution filters,
and bi and b̃i denote the i-th column of the following matrices,
respectively:

B = E1E2 · · ·Eκ , B̃ = D1D2 · · ·Dκ (18)

Note that this representation is completely linear, since the
representation does not vary once the network parameters
Θ are trained. Furthermore, consider the following frame
conditions for the pooling and filter layers:

Φ̃lΦl> = αIml−1
, ΨlΨ̃l> =

1

rα
Irql−1

, ∀l (19)

where In denotes the n×n identity matrix, α > 0 is a nonzero
constant, and

Ψl =

 ψl1,1 · · · ψlql,1
...

. . .
...

ψl1,ql−1
· · · ψlql,ql−1

 , (20)

Ψ̃l =

 ψ̃l1,1 · · · ψ̃l1,ql
...

. . .
...

ψ̃lql−1,1
· · · ψ̃lql−1,ql

 (21)

Under these frame conditions, we showed in [26] that (17)
satisfies the perfect reconstruction condition, i.e

z =
∑
i

〈bi, z〉 b̃i, (22)

hence the corresponding linear CNN is indeed a frame repre-
sentation, similar to wavelet frames [29].

C. Role of Skipped Connection

Without ReLU, the decoder branch of the skipped connec-
tion in (13) can be simplified to a linear sum:

z̃l−1 = Dlz̃l +Dlχl . (23)

This leads to the same expression in (17) except that bi and
b̃i are the i-th column of the following augmented matrices
Bskp and B̃skp, respectively [26]:

Bskp =

E1 · · ·Eκ, E1 · · ·Eκ−1Sκ, · · · , E1S2, S1︸ ︷︷ ︸
augmented blocks from skipped connection


(24)

B̃skp =

D1 · · ·Dκ, D1 · · ·Dκ−1S̃κ, · · · , D1S̃2, S̃1︸ ︷︷ ︸
augmented blocks from skipped connection


(25)

where

Sl =

 Iml
~ψl1,1 · · · Iml

~ψlql,1
...

. . .
...

Iml
~ψl1,ql−1

· · · Iml
~ψlql,ql−1

 (26)

S̃l =

 Iml
~ ψ̃l1,1 · · · Iml

~ ψ̃l1,ql
...

. . .
...

Iml
~ ψ̃lql−1,1

· · · Iml
~ ψ̃lql−1,ql

 (27)

Furthermore, the frame condition in (19) can be slightly
modified as

Φ̃lΦl> = αIml−1
, ΨlΨ̃l> =

1

r(α+ 1)
Irql−1

, ∀l (28)

Under this condition, the same perfect reconstruction condition
(22) holds. Therefore, the role of the skipped connection is
to make the basis representation more redundant. Since the
redundant basis representation makes the approximation more
robust to noise [30], we expect that the skipped connection
plays the same role [26].

D. CNN with ReLU

In [26] we showed that even with ReLU nonlinearities the
expression (17) is still valid. The only change is that the basis
matrix has additional ReLU pattern blocks in between encoder,
decoder, and skipped blocks. For example, the expression in
(18) is changed as follows:

B(z) = E1Λ1(z)E2Λ2(z) · · ·Λκ−1(z)Eκ (29)
B̃(z) = D1Λ̃1(z)D2Λ̃2(z) · · · Λ̃κ−1(z)Dκ (30)
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where Λl(z) and Λ̃l(z) are the diagonal matrices with 0 and
1 elements indicating the ReLU activation patterns. Similar
modification can be added in Bskp and B̃skp [26].

Accordingly, the linear representation in (17) should be
modified as a nonlinear representation:

v = TΘ(z) =
∑
i

〈bi(z), z〉 b̃i(z) (31)

where we now have an explicit dependency on z for bi(z) and
b̃i(z) due to the input dependent ReLU activation patterns,
which makes the representation nonlinear. If each ReLU
activation pattern is independent to each other, then the
number of distinct ReLU activation pattern is 2# of neurons,
where the number of neurons is determined by the number
of the entire features. Therefore, the number of distinct linear
representations increases exponentially with depth, and width
[26]. In practice, ReLU activation patterns are not completely
independent, so that the actual number of piecewise linear
representations can be smaller. This issue will be discussed
later.

E. Deep Learning vs. Basis Pursuit

Over the last decade, the most widely used mathematical
tool in the signal processing theory were compressed sensing
or sparse representation techniques. In particular, the com-
pressed sensing theory is based on the observation that when
images are represented via bases of frames, in many cases
they can be represented as a sparse combination of bases or
frames. Thanks to the sparse representation, even when the
measurements are very few below the classical limits such
as Nyquist limit, one could obtain a stable solution of the
inverse problem by searching for the sparse representation that
generates consistent output to the measured data as shown in
Fig. 2(a). As a result, the goal of the image reconstruction
problem is to find an optimal set of sparse basis function
suitable for the given measurement data. This is why the
classical method is often called the basis pursuit.

The deep learning approach and the basis pursuit appear as
two completely different approaches. However, (31) showed
that indeed there exists a very close relationship between
the two. Specifically, since nonlinearity is applied after the
convolution operation, the on-and-off activation pattern of each
ReLU determines a binary partition of the feature space at each
layer across the hyperplane that is determined by the convolu-
tion. Accordingly, in deep neural networks, the input space is
partitioned into multiple non-overlapping regions so that input
images for each region share the same linear representation,
but not across the partition. This implies that two different
input images are automatically switched to two distinct linear
representations that are different from each other as shown in
Fig. 2(b). Hence, although the deep neural network is indeed
similar to the classical basis pursuit algorithm that searches
for distinct linear representations for each input, deep neural
networks have an important computational advantage over the
classical basis pursuit approaches that rely on computationally
expensive optimization techniques.

Moreover, the representations are entirely dependent on the
filter sets that are learned from the training data, which is

different from the classical representation learning approaches
that are designed by a top-down model. Furthermore, with
more number of input space partitions and the associated
distinct linear representations, the nonlinear function approx-
imation by the piecewise linear basis representation becomes
more accurate. Therefore, the number of piecewise linear
regions is directly related to the expressivity or representation
power of the neural network, and the goal of this paper is
to provide a geometric approach to increase the number of
partitions with minimal network complexity increase.

Fig. 2: Reconstruction principle of (a) basis pursuit, and (b)
deep neural networks.

III. MAIN CONTRIBUTION

In this section, which is novel, we provide further geometric
insights that lead to novel network architecture modification
schemes to increase the expressivity of the network to improve
reconstruction performance with minimal overhead.

A. Geometric Meaning of Features

One of the most interesting questions about neural network
is understanding the meaning of the intermediate features that
are obtained as an output of each layer of neural network.
Although these are largely regarded as latent variables, to the
best of our knowledge, the geometric understanding of each
latent variable is still not complete. In this section, we show
that this intermediate feature is directly related to the relative
coordinates with respect to the hyperplanes that partition the
product space of the previous layer features.

To understand the claim, let us first revisit the ReLU
operation for each neuron at the encoder layer. Let El

i denote
the i-th column of encoder matrix El and zli is the i-th
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element of zl. Then, the output of an activated neuron can
be represented as:

zli =
|〈El

i, z
l−1〉|

‖El
i‖︸ ︷︷ ︸

distance to the hyperplane

× ‖El
i‖ (32)

where the normal vector of the hyperplane can be identified
as

nl = El
i. (33)

This implies that the output of the activated neuron is the
scaled version of the distance to the hyperplane which par-
titions the space of feature vector zl−1 into active and non-
active regions. Therefore, the role of the neural network can
be understood as the representing the input data using a
coordinate vector using the relative distances with respect to
multiple hyperplanes.

Fig. 3: Two layer neural network with two neurons for
each layer. Red arrows indicate the normal direction of the
hyperplane. The black lines are hyperplanes for the first layers,
and the blue lines correspond to the second layer hyper planes.

In fact, the aforementioned interpretation of the feature may
not be novel, since similar interpretation can be used to explain
the geometrical meaning of the linear frame coefficients.
Instead, one of the most important differences comes from
the multilayer representation. To understand this, consider the
following two layer neural network:

zli = σ(El>
i z

l−1) (34)

where

zl−1 = σ
(
E(l−1)>zl−2

)
= Λ(zl−1)E(l−1)>zl−2 (35)

where Λ(zl−1) again encodes the ReLU activation pattern.
Using the property of inner product and adjoint operator, we
have

zli = σ(El>
i z

l−1)

= σ
(〈
El
i,Λ(zl−1)E(l−1)>zl−2

〉)
= σ

(〈
Λ(zl−1)El

i,E
(l−1)>zl−2

〉)
(36)

This indicates that on the space of the unconstrained feature
vector from the previous layer (i.e. no ReLU is assumed), the
hyperplane normal vector is now changed to

nl = Λ(zl−l)El
i. (37)

This implies that the hyperplane in the current layer is adap-
tively changed with respect to the input data, since the ReLU
activation pattern in the previous layer, i.e. Λ(zl−l) can vary
depending on the inputs. This is an important difference over
the linear multilayer frame representation, whose hyperplane
structure is the same regardless of different inputs.

For example, Fig. 3 shows a partition geometry of R2 by
a two-layer neural network with two neurons at each layer.
The normal vector direction for the second layer hyperplanes
are determined by the ReLU activation patterns such that the
coordinate values at the inactive neuron become degenerate.
More specifically, for the (A) quadrant where two neurons
at the first layers are active, we can obtain two hyperplanes
in any normal direction determined by the filter coefficients.
However, for the (B) quadrant where the second neuron is
inactive, the situation is different. Specifically, due to (37), the
second coordinate of the normal vector, which corresponds
to the inactive neuron, becomes degenerate. This leads to
two parallel hyperplanes that are distinct only by the bias
term. Similar phenomenon occurs for the quadrant (C) where
the first neuron is inactive. For the (D) quadrant where two
neurons are inactive, the normal vector becomes zero and there
exists no partitioning. Therefore, we can conclude that the
hyperplane geometry is adaptively determined by the feature
vectors in the previous layer.

Fig. 4: Partition geometry of (a) skipped connection, and (b) a
general expressivity enhancement scheme using two networks.

For the case of the skipped connection, (13) informs that we
have additional features from the previous layer that retains the
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unprocessed information. This provides redundant information
from distinct partitions as shown in Fig. 4(a).

Finally, for the case of CNN, the choice of the hyperplanes
becomes further constrained due to the convolutional relation-
ship. For example, to encoder the data manifold in R3 with
the r = 2 convolution filter with the filter coefficient of [1, 2],
the following three vectors determine the normal direction of
the three hyperplanes:

nl1 =
[
1 2 0

]
, nl2 =

[
0 1 2

]
, nl3 =

[
2 0 1

]
(38)

where we assume the circular convolution and no pooling
operation (i.e. Φl = I3). This implies that each channel of
the convolution filter determines an orthant of the underlying
feature space, and the feature vectors are directly related to
the coordinate on the resultant orthant.

B. Geometric Meaning of Decoder

Based on our understanding of multilayer encoder structure,
here we also provide a geometric interpretation of the decoder
in a multilayer setup. Consider the unconstrained feature
before ReLU:

ξ̃l := Dl+1z̃l+1, l ∈ [κ] (39)

which corresponds to the synthesis formula from the features
z̃l and the synthesis frame Dl. Then, from (10) we have

ξ̃l−1 = Dlz̃l = Dlσ
(
ξ̃l
)

(40)

=
(
DlΛ(ξ̃l)

)
ξ̃l (41)

where Λ(ξ̃l) denotes the ReLU activation patterns from the l-
th decoder layer. Accordingly, the operation of the decoder can
be interpreted as representing the signal with the unconstrained
coefficients ξ̃l and the synthesis frame DlΛ(ξ̃l). Since Λ(ξ̃l)
is a diagonal matrix with 0 and 1 values depending on the
ReLU activation patterns, the synthesis frame DlΛ(ξ̃l) is
indeed a subset of the original synthesis frame. Therefore, the
ReLU activation patterns work as a subset selection criterion
of the original synthesis frame. This is in contradiction to the
classical frame-based signal processing that requires explicit
shrinkage operation to select the optimal frame basis. In multi-
layer neural network, this process can be done automatically
by the ReLU activation patterns.

In addition, the geometry of the decoder with the skipped
connection turns out to be more complicated. From (13) and
(39), we have

ξ̃l−1 = Dlz̃l +Dlχl =
(
DlΛ(ξ̃l)

)
ξ̃l +Dlχl

=
[
DlΛ(ξ̃l) Dl

]︸ ︷︷ ︸
augmented frame basis

[
ξ̃l

χl

]
(42)

where the augmented frame basis is composed of the adaptive
basis by the ReLU activation and an unconstrained basis for
the skipped branch. Therefore, even though we use the same
decoder operation using Dl, the skipped branch makes the
representation more redundant and the shrinkage behavior in
(40) is now dependent on the signal in the skipped branch.

C. Expressivity Enhancement

Based on the discussion so far, we now understand that
there is an important mechanism to improve the expressivity
of the neural network: one by the increasing the number of
piecewise linear regions from the partition, and the other for
improving the noise robustness by increasing the redundancy
of the basis representation at each piecewise linear regions.
The aforementioned discussion has also revealed that the
skipped connection achieves both goals with basically no
additional complexity thanks to the redundant representation
using distinct set of partitions. In this section, we show that
the idea can be generalized to improve the expressivity of the
neural network with negligible complexity overhead.

Suppose we are given multiple neural networks T (n)
Θ with

enough capacity such that target vector v can be equally
represented by

v = T (n)
Θ (z), n = 1, · · · , N (43)

We will defer the discussion as to how such multiple neural
networks can be obtained with minimal complexity increase.
We now propose the following nonlinear summation of the
result using attention neural network

v = B(w,Θ)(z) :=
∑
n

wn(z)T (n)
Θ (z) (44)

where w(z) = {wn(z)}Nn=1 refers to the output of the
attention neural network. The specific design of the attention
module will be discussed later.

One of the most important advantages of the nonlinear com-
bination in (44) is the increased expressivity of the resulting
neural network. This is because distinct piecewise linear region
can be partitioned using different neural networks as shown in
Fig. 4(b). Accordingly, the number of piecewise linear regions
can be upper-bounded by the product of number of piecewise
linear regions for each neural network. In addition to the
potential increase of the piecewise linear regions, the nonlinear
combination model (44) increases the redundancy of the
representations in each piecewise linear region. Specifically,
using the representation in (17) for each neural network, we
have

B(w,Θ)(z) =
∑
n

wn(z)T (n)
Θ (z) (45)

=
∑
n

∑
i

wn(z)
〈
b

(n)
i (z), z

〉
b̃

(n)
i (z) (46)

=
∑
k

〈
batk (z), z

〉
b̃atk (z) (47)

where batk and b̃atk are the k-th column of the following
concatenated basis matrices, respectively:

Bat(z) =
[
B(1)(z) · · · B(N)(z)

]
(48)

B̃at(z) =
[
w1(z)B̃(1)(z) · · · wN (z)B̃(N)(z)

]
(49)

where B(n) is the concatenation of the {b(n)
i }i. Therefore, the

representation can become more redundant, and the nonlinear
combination in (44) is expected to improve the reconstruction
performance. In the following, we discuss how to obtain dis-
tinct basis representations with minimal complexity increase.
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1) Bootstrap subsampling: One simple way to obtain di-
verse neural network with basically no complexity increase is
the bootstrap and subsampling scheme [31], [32]. The basic
idea is that instead of using all k-space measurements, we train
the neural network using various subsampling and combine the
results using attention. Note that subsampling is equivalent
to multiplying a {0, 1} mask to the input vector. Therefore,
the corresponding neural network output for random sampling
pattern can be represented by

v =
∑
i

〈bi(z),M (n)z〉b̃i(x) (50)

=
∑
i

〈M (n)bi(z), z〉b̃i(x), n = 1, · · · , N (51)

where M (n) denotes a diagonal matrix with {0, 1} values
depending on the subsampling factor, and we use the fact that
the adjoint of a real diagonal matrix is the original matrix for
the second equality. By inspection, we can easily see that the
corresponding sub-basis matrices in (48) are given by

B(n)(z) = M (n)(z)B(z), n = 1, · · · , N. (52)

As the subsampling patterns are independent to each other, we
can easily see thatB(n)(z) are linearly independent, leading to
more redundant representation. Moreover, although B̃(n) are
the same as B̃(z) for all n, the actual activation patterns and
nonzero column of B̃(z) are determined by 〈M (n)bi(z), z〉,
which may lead to distinct representations in the decoder basis.

2) Adaptive Residual Learning: Residual learning is widely
used for medical image restoration [11], [12], [33], [34], where
the neural network is trained to learn the difference between
the input data z and the reference data v. The reconstructed
result using residual learning can be represented as follows:

v = z + TΘ(z), (53)

In view of (44), this is equivalent to the sum of the output
of identity network and the output of the CNN. Therefore, we
can generalize the idea to adaptively combine the two network
outputs using nonlinear weights:

v = w1(z)z + w2(z)TΘ(z), (54)

which leads to redundant basis representations:

Bat(z) =
[
I B(z)

]
(55)

B̃at(z) =
[
w1(z)I w2(z)B̃(z)

]
(56)

Again both the encoder and the decoder basis are distinct,
which leads to redundant representations.

3) Iterative Aggregation: Rather than having a parallel
branch, here we show that applying the same neural network
multiple times and combining each intermediate results can
significantly improve the reconstruction performance with
minimal network complexity overhead. Specifically, the main
idea is given by

v = B(w,Θ)(z) :=
∑
n

wn(z)

n-times︷ ︸︸ ︷
(TΘ ◦ · · · ◦ TΘ)(z) (57)

Fig. 5: Simplified flowchart of expressivity enhancement
schemes using residual networks. Dashed lines refer to skipped
concatenation, and yellow lines corresponds to the input image
copying for residual learning. (a) Baseline residual network.
(b) Bootstrap subsampling with N = 2, where the network is
trained using multiple subsampling and aggregated using an
attention network. (c) Adaptive residual learning, where the
input and output of the network were adaptively combined
using an attention network. (d) Iterative aggregation with
N = 2, where intermediate results are aggregated with an
attention network.

Then, the corresponding sub-basis representation is given by

B(n)(z) = B(z)

multiplied by n− 1 times︷ ︸︸ ︷
· · · B̃(z)B>(z) (58)

B̃(n)(z) = wn(z)B̃(z) (59)

Similar to the bootstrap subsampling, B̃(n) are the same as
B̃(z) for all n, but the actual activation patterns and nonzero
columns of B̃(z) are determined by 〈 b(n)

i (z), z〉, which may
lead to distinct representations in the decoder basis.

Note that in all three methods, the additional complexity
comes only from the attention module, which is negligible
compared to other network components. The idea of these
expressivity enhancement schemes are illustrated in Fig. 5.
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IV. METHOD

A. Training dataset

We used two types of MR data sets − structural brain
images from the Human Connectome Project (HCP) MRI
dataset (http://db.humanconnectome.org) and knee images
from fastMRI dataset [35].

The HCP dataset was acquired by Siemens 3T MR system
using a 3D spin-echo sequence. The acquisition parameters
were as follows: the size of acquisition matrix = 320×320,
repetition time (TR) = 3200 ms, echo time (TE) = 565
ms, and field of view (FOV) = 224×224 mm. Among the
total of 119 subject data sets, 111 subject data sets were
used for training and validation. The remaining data sets
were used for testing. To generate multi-channel k-space
data, coil sensitivity maps were estimated from a 32×32
block data at the center of k-space using MRI simula-
tor (http://bigwww.epfl.ch/algorithms/mri-reconstruction). The
number of coils was 16. The fully acquired k-space were
retrospectively under-sampled by factors of 3×3 and 4×4
along ky × kz direction, respectively. We included 36×36
low frequency regions for both subsampling cases, which
could be used as the auto calibrating signal (ACS) region
for Generalized autocalibrating partially parallel acquisitions
(GRAPPA) [1]. Accordingly, the net acceleration factors were
about ×8.12 and ×15.42, respectively. The readout direction
is kx, which is fully sampled.

The fastMRI dataset was obtained with clinical 3T systems
(Siemens Magnetom Skyra, Prisma and Biograph mMR) or
1.5T Siemens Magnetom Area using 2D TSE protocol. The
acquisition parameters were as follows: the size of acquisition
matrix = 320×320, TR = 2200∼3000 ms, TE = 27∼34 ms,
and slice thickness = 3 mm. We used multi-channel dataset
with the number of coils of 15. Among the 413 cases of knee
data, 402 cases were used for training, 1 case for validation,
and the rest for testing. For fastMRI dataset, the downsampling
ratio is 4 along the ky direction with 30 lines of ACS region.
The corresponding acceleration ratio was approximately 3.25.

B. Network Architecture

We employed the U-Net [27] as the baseline network. In
particular, we use the residual learning scheme as in Fig. 5(a),
where the original U-Net part estimate the difference between
the input and target data [10]. Specifically, U-net consists of
convolution, batch normalization, ReLU, pooling layer, and
bypass connection as shown in Fig. 6(a). To deal with the
complex data, there were extra layers for the input and output
of the network, which was converted to complex and real
value. More specifically, the complex data can be transformed
to the real-valued data by concatenation of the real part and
the imaginary part of the data along the channel dimension.
Therefore, the number of input channels for U-net is 2×Nc,
where Nc denotes the number of coils. The complex result can
be formed using the real and imaginary channels of the output.
Each stage contains three sequential layers consisting of 3×3
convolution layer, batch normalization, and ReLU layer, which
is presented as a red arrow in Fig. 6(a). The final layer is 1×1
convolution layer, which is presented by a green arrow. The

yellow arrow is 2×2 average pooling. 2×2 unpooling layer
was replaced by 3×3 deconvolution layer followed by batch
normalization and ReLU. The number of channels increases
from 64 in the first stage to 1024 in the final stage. Here, the
deconvolution layer is implemented as the decoder filtering
followed by unpooling layer.

Fig. 6: (a) U-net architecture as the baseline network. (b)
Attention network for bootstrap subsampling using an MLP.

We evaluated two types of attention networks. The attention
network for bootstrap subsampling scheme is a multilayer
perceptron (MLP) in Fig. 6(b), which is a variant of squeeze-
and-excitation block [36]. The input of the attention network
is N outputs of the neural network for each subsampling
patterns, which are shrunk to a N -dimensional vector through
global average pooling. The number of hidden units of MLP is
64. The sigmoid function was applied to the output of MLP,
which results in the final weight vector, w(z) ∈ RN . The
final output was provided by weighted summation as shown in
(44). For adaptive residual learning and iterative aggregation,
the attention network consists of 1×1 convolution layer that
is applied to concatenated intermediate results:

vinterres = [z TΘ(z)], (60)

vinteriter = [TΘ(z) · · ·
N -times︷ ︸︸ ︷

(TΘ ◦ · · · ◦ TΘ)(z)], (61)

where N = 4 is used for our experiment.

C. Network Training
For training of the bootstrap subsampling scheme, the

subsampling process is required. The number of bootstrap
subsampling N for HCP dataset was 10. The same ACS region
was used, and the subsampling was randomly performed at
91% of the original undersampling ratio. The label image was
obtained from the fully acquired k-space data. The number
of subsampling mask for fastMRI dataset was set to 4. 92%
of the original undersampled position was randomly selected
for each bootstrap subsampling with equivalent ACS region.
For training of the iterative aggregation scheme, the n-th

intermediate result

n times︷ ︸︸ ︷
(TΘ ◦ · · · ◦ TΘ)(z) can be obtained by

applying the same neural network, TΘ, n−times.
Our networks were trained to minimize the loss as follows:

min
Θ

1

T

T∑
t=1

||v∗i −vi||2 =
1

T

T∑
t=1

||v∗i −B(w,Θ)(zi)||2, (62)
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where v∗ is the label image and z is the input data for network.
Depending on training scheme to be used, the output of the
neural network can be obtained by (51), (54), and (57). We
used Adam optimization [37] with the momentum β1 = 0.9
and β2 = 0.999 for network training. The initial learning
rate was set to 10−2 and 10−3 for HCP dataset and fastMRI
dataset, respectively. The learning rate was halved until it
reached around 10−4 at every 50 and 25 epochs for HCP
dataset and fastMRI dataset, respectively. The size of mini-
batch was 1. For fastMRI dataset, each slice data was divided
by the standard deviation of its absolute value for stable
training. The networks were implemented in Python using
TensorFlow library [38] and trained using NVidia GeForce
GTX 1080-Ti graphics processing unit and i7-4770 CPU. The
number of training epochs for the HCP dataset was 150, and
it took about 10 days. For the fastMRI dataset, the network
training took about 23 days, and the number of epochs was
125. We trained the proposed boosting schemes both in k-
space domain and image domain.

At the inference stage, the square root of sum of squares
(SSoS) images were generated from the reconstructed images
of multi-channel data.

D. Comparative studies

GRAPPA [1] and Scan-specific robust artificial-neural-
networks for k-space interpolation (RAKI) [15] were used as
representative scan-specific reconstruction methods for com-
parison. We also used the baseline U-Net for image domain
learning and k-space learning. The k-space learning is a recent
state-of-the art deep learning method implemented in k-space
domain [16], [17]. The parameters for GRAPPA were chosen
to provide the best results. The GRAPPA kernel size was 4×4
and 4×1 for the HCP dataset and fastMRI dataset, respectively.

The network used for RAKI is composed of three layers.
Each layer has a convolutional layer and nonlinear ReLU
operation except for the last layer. The baseline RAKI was
designed for k-space with 1-D sampling pattern. Therefore,
in this experiment RAKI was only applied for fastMRI data
set that are based on 1-D downsampling patterns. For RAKI
training, the k-space data was normalized such that the max-
imum magnitude was set to 0.015. The network was trained
using Adam optimization [37]. The learning rate was set to
provide the best results. Each model was trained with 1000
epochs, and the network was retrained for every undersampled
k-space data.

For quantitative evaluation, the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [39] index were used.
The PSNR is defined using mean squared error (MSE) as:

PSNR = 20 · log10

(
MAXx√

MSE(x,x∗)

)
, (63)

where x and x∗ is the reconstructed SSoS image and ground-
truth SSoS image, respectively. MAXx denotes the maximum
value of the ground-truth SSoS image. SSIM index is one of
the perceptual metric, which is defined as

SSIM =
(2µxµx0 + c1)(2σxx∗ + c2)

(µ2
x + µ2

x∗
+ c1)(σ2

x + σ2
x∗

+ c2)
, (64)

where µS and σS denote the mean and the standard deviation
of S, σ2

ST denotes the covariance of S and T , c1 and c2 are
the variables to stabilize the division such as c1 = (k1L)2 and
c2 = (k2L). L is the dynamic range of the pixel intensities.
The value of k1 and k2 are followed as the default such as
k1 = 0.01 and k2 = 0.03.

V. EXPERIMENTAL RESULTS

A. Simulation results

First, we trained the proposed model using HCP MR
data. In this simulated experiment, eight subjects from HCP
dataset were used to verify the performance of the proposed
expressivity enhancement schemes for 2-D uniform sampling
pattern. We conducted the experiments at an acceleration factor
R = 15.42. The performance of the proposed method was
compared with that of GRAPPA, and baseline U-Net with k-
space learning [16], [17].

Fig. 7 shows that the aliasing artifacts are present in the
reconstructed images using GRAPPA due to the calculation
of the kernel using k-space information only at the ACS
region. Although the baseline k-space learning scheme using
U-Net provided better reconstruction results by removing
many aliasing artifacts, there were still remaining artifacts
especially at the center of the image. In contrast, the proposed
modification of the k-space U-Net significantly reduced the
artifacts. Specifically, the PSNR value of the reconstructed
image using the iterative aggregation scheme for the second
subject increased up to 8.03 dB compared to the baseline k-
space learning as shown in Fig. 7. Moreover, the qualitative
evaluation also confirmed the quantitative performance im-
provements.

PSNR [dB] SSIM index

GRAPPA [1] 34.521 0.721

Image domain

Standard 39.949 0.947
Bootstrap 40.614 0.957
Residual 40.455 0.965
Iterative 40.330 0.954

k-space domain

Standard 39.675 0.895
Bootstrap 42.719 0.924
Residual 42.604 0.948
Iterative 43.826 0.968

TABLE I: Quantitative comparison of various reconstruction
methods using HCP dataset at R = 15.42. The results are
mean values from 8 patient data.

Table I shows average results for the quantitative compar-
ison using 8 patient data set at the test phase. The proposed
expressivity enhancement schemes implemented in both image
and k-space domain significantly outperformed GRAPPA, and
the k-space and image-domain learning using the baseline U-
Net in terms of PSNR and SSIM index. More specifically,
the proposed methods resulted in about 5.7∼9.3 dB gain over
GRAPPA. This is because the estimation of GRAPPA kernel
becomes more difficult at higher acceleration factors, and
these limitations can be reduced using k-space deep learning



10

Fig. 7: Reconstruction results using GRAPPA, baseline k-space U-Net, bootstrap subsampling, adaptive residual learning, and
iterative aggregation at R = 15.42 of 2-D uniform sampling pattern. The second and forth rows show the difference images
between the reconstructed images and ground-truth images. The numbers written in the images are the corresponding PSNR /
SSIM index.

approaches, since the networks were trained to consider the
whole k-space region to estimate the interpolation kernel.
In addition, our method outperformed the baseline network
in both image and k-space domain by about 0.6∼4.2 dB
in terms of PSNR. This performance gain clearly confirmed
the importance of expressivity enhancement thanks to the
bootstrapping and subnetwork aggregation.

B. In Vivo results

Fig. 8 shows reconstruction results at acceleration factor
R = 3.25. Here, the baseline neural network was the image
domain U-Net [10], [11], [28], [33], and its expressivity
enhancement scheme was also implemented in the image
domain. As shown in Fig. 8, the results using GRAPPA
were noisy compared to other algorithms. Since the GRAPPA
kernel was calculated from the ACS region, the GRAPPA
reconstruction is sensitive to measurement noises when the
ACS region is not sufficiently large. Thanks to the nonlinear
estimation process, the results using RAKI were better than

those using GRAPPA. However, the reconstructed images
using RAKI were still blurry compared to the baseline image-
domain U-Net and their expressivity enhancement schemes. In
contrast to the baseline U-Net and the proposed schemes that
were trained using various training data set, the representation
of RAKI is only determined from the scan-specific ACS data,
which leads to relatively limited representation power and
poor performance. For example, the detailed structure was not
distinguishable using RAKI reconstruction (see red arrow in
the result of the first patient in Fig. 8), whereas the proposed
expressivity enhancement schemes provided more realistic
reconstructed imaged and the detailed structures. Among the
various expressivity enhancement scheme, adaptive residual
learning significantly outperformed the baseline network in
terms of PSNR and SSIM values. Specifically, the PSNR of
the reconstructed image using the adaptive residual learning
for the fourth subject in Fig. 8 increased about 2.88 dB.

Table II shows the average results for quantitative com-
parison using 10 patient fastMRI data set at the test phase.
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Fig. 8: Reconstruction results using GRAPPA, RAKI, image domain U-Net, bootstrap subsampling, adaptive residual learning,
and iterative aggregation at R = 3.25. The expressivity enhancement schemes are implemented in the image domain. The
yellow boxes demonstrate enlarged images. The numbers written in the images are the corresponding PSNR / SSIM index.

PSNR [dB] SSIM index

GRAPPA [1] 30.816 0.726
RAKI [15] 32.662 0.826

Image domain

Standard 32.798 0.828
Bootstrap 32.973 0.830
Residual 33.475 0.831
Iterative 33.487 0.832

k-space domain

Standard 32.852 0.828
Bootstrap 33.050 0.828
Residual 33.240 0.832
Iterative 33.220 0.831

TABLE II: Quantitative comparison of various reconstruction
methods using fastMRI dataset at R = 3.25. The values are
means values from 10 patient data.

The quantitative results in Table II confirmed our finding in
visual quality evaluation. Specifically, the proposed method
outperformed the baseline image domain and k-space learning
by about 0.18∼0.69 dB in terms of PSNR.

C. Computation Time

The computation time per slice was 2.43, 5.24, 0.37, 0.45,
0.39, and 0.47 seconds for GRAPPA, RAKI, baseline neural
network, bootstrap subsampling, adaptive residual learning,
and iterative aggregation, respectively. RAKI took longer time
for the computation, since the network should be retrained
for each patient data. The computation time increase from
the proposed expressivity enhancement schemes are negligible
and all the expressivity enhancement scheme. Baseline neural
networks were about 5.4 ∼ 6.2 times faster than GRAPPA.

VI. DISCUSSION

A. Role of attention module

In order to confirm the role of the nonlinear aggregation
using the attention module, we compared the performance
with and without attention module for the case of bootstrap
subsampling. For this purpose, the HCP dataset with R =
15.42 was used. Without the adaptive weights, w(z), the final
reconstructed result was simply obtained by the average of
the overall intermediate results in the absence of the attention
module. The network without the attention module resulted in
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Fig. 9: Effects of attention module for bootstrap subsampling
scheme at R = 15.42.

performance drop. Even though this network provided better
results than the baseline network, the resulting performance
values are lower compared to the original performance metric.
As shown in Fig. 9, the attention module can reduce the error
by efficiently estimating the weights w(z). This result clearly
shows the importance of the attention module.

B. Ablation study

Our geometric analysis showed that redundant representa-
tion leads to an increase in the expressivity of the network.
To empirically verify our theoretical findings, we conducted
ablation studies using the HCP dataset with R = 15.42. First,
we performed a comparative study with different numbers
of subsampling patterns (N ) - 1, 4, 6, and 10 for bootstrap
subsampling scheme. As shown in Table III, the quantita-
tive measures were subsequently enhanced with increasing
N , which shows a direct connection between the network
expressivity and the performance. A similar tendency was
found in another ablation study with different iterations (N )
for iterative aggregation scheme. The PSNR value at N = 10
was 43.826 dB, which is an improvement of about 2.5 dB
compared to the baseline network. This clearly confirms the
correlation between the redundancy in the basis representation
and the expressivity of the network.

N PSNR [dB] SSIM index

Baseline 1 39.675 0.895

Bootstrap
4 40.599 0.914
6 41.233 0.920
10 42.719 0.924

Iterative
2 41.348 0.946
3 42.153 0.948
4 43.826 0.968

TABLE III: Quantitative comparison using PSNR and SSIM
index with respect to the number of subsampling patterns and
iterations for bootstrap subsampling and iterative aggregation
scheme, respectively. The results are means values from 8
patient data of the HCP dataset with R = 15.42.

C. Trade-off between expressivity and complexity

Recall that our expressivity enhancement schemes require
more layers and attention module to aggregate the intermediate
results. This leads to additional overhead in terms of trainable
parameters, so we are interested in investigating the trade-off
between the expressivity and complexity of the network.

Attention No. of param. Overhead (%)

HCP

Baseline − 25,154,336
Bootstrap MLP 25,155,690 5.4× 10−3

Residual 1×1 Conv 25,156,416 8.3× 10−3

Iterative 1×1 Conv 25,158,464 16.4× 10−3

FastMRI

Baseline − 25,153,054
Bootstrap MLP 25,153,634 2.3× 10−3

Residual 1×1 Conv 25,154,884 7.3× 10−3

Iterative 1×1 Conv 25,156,684 14.4× 10−3

TABLE IV: Network complexity versus PSNR trade-off of
baseline network, bootstrap subsampling, adaptive residual
learning, and iterative aggregation using (a) HCP and (b)
fastMRI dataset, respectively.

As for the attention module, we employed MLP for boot-
strap subsampling. Since the hidden unit of MLP was set
to 64, the additional number of learnable parameters is
N × 64× 2 + 64 +N , where N is the number of intermediate
neural network outputs from the bootstrap subsampled k-
space data (recall that we used N = 10 and 4 for HCP
and fastMRI data set, respectively). For the case of HCP data
set, this leads to 1355 additional trainable parameters. This
corresponds to 5.4× 10−3% complexity overhead, which can
be considered negligible. For other expressivity enhancement
schemes, 1×1 convolution layer was used. In this case, the
required additional parameter is N × (2Nc)

2 + 2Nc, where
N and Nc denotes the number of intermediate results and
coils, respectively (recall that we use N = 2 and 4 for the
case of adaptive residual learning and iterative aggregation,
respectively). For the HCP data set, this corresponds to 2080
and 4160 additional parameters for adaptive residual learning
and iterative aggregation, respectively. This again leads to neg-
ligible complexity overhead of 8.3×10−3% and 16.4×10−3%,
respectively. Despite the negligible overhead, the performance
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enhancement was significant. For example, the PSNR value
using the iterative aggregation was 43.826 dB, compared to
the baseline network with 39.675 dB as shown in Table IV.
The results for the fastMRI data in Table IV also confirmed
the negligible complexity increase.

We also compared the performance improvement using a
baseline U-Net by simply changing the number of parameters.
Specifically, the number of channels was increased to make
the total number of parameters for HCP dataset and fastMRI
dataset up to 25,158,496 and 25,156,834, respectively. As
shown in Fig. 10, although the simple parameter increase
improves PSNR, but the performance enhancement was not re-
markable compared to the proposed expressivity enhancement
schemes. More specifically, iterative aggregation outperformed
U-Net with similar number of parameters up to about 1.30
dB and 0.31 dB in terms of PSNR for HCP dataset and
fastMRI dataset, respectively. This result confirmed that the
performance improvement of the proposed methods was not
just due to the increase in complexity of the network, but from
the synergistic expressivity enhancement that is not possible
by simply increasing the number of channels.

Fig. 10: The proposed schemes only slightly increases the
number of parameters, improving the PSNR for the (a) HCP
dataset at R = 15.42 and (b) fastMRI dataset at R = 3.25.
Even the standard learning with more network capacity pro-
vided inferior performance than our schemes.

D. Comparison with existing works

Recursion have been employed to improve performance of
the neural network in super-resolution [40] and MR accelera-
tion [14] tasks. However, there is a significant difference be-
tween the proposed iterative aggregation scheme and previous
works. Our study is the first to theoretically show why this iter-
ation leads to improved performance of the networks, whereas
previous studies have shown the effects only empirically
based on experimental results. In [40], although the weights
w = {wn}Nn=1 for the aggregation of the intermediate results
are learnable parameters that are adjusted during training, at
inference stage these are held still. In contrast, the attention
module in the proposed scheme, which estimates each weight

wn(z) based on each intermediate result

n-times︷ ︸︸ ︷
(TΘ ◦ · · · ◦ TΘ)(z),

is adapted to the inputs not only at training stage but also
at test time. The attention module is therefore effective to
faithfully reflect the distribution of intermediate results even in
the inference stage. In [14], the network consists of P blocks,
and each block is recursively reused N times. However, the
final reconstruction image is the output of the last P -th block,
and the intermediate results of the P blocks are not aggregated
for the final output [14]. This is largely different from the
proposed iterative aggregation scheme.

Furthermore, we investigated the role of ReLU. Our analysis
shows that the input/feature space are divided into two disjoint
regions by the hyperplane determined by each neuron thanks
to the ReLU activation pattern. Although ReLU has been
often viewed as a simple shrinkage operation, our perspective
of deep neural network provides another closer link to the
classical basis pursuit algorithm as explained in Section II-E.
More specifically, the neural network works as an effective
multiplexer to different linear representations according to the
ReLU activation pattern that is determined by the input.

VII. CONCLUSION

In this paper, we investigated a systematic approach to
improve the reconstruction performance of deep neural net-
works for MRI reconstruction from accelerated acquisition.
We reviewed the recent geometric understanding of the deep
convolutional neural network to show that the expressivity
and redundant representation are two important aspects of
neural networks for image reconstruction. Inspired by the fact
that skipped connection achieves two goals, we proposed a
systematic expressivity enhancement scheme that improves
the expressivity of the underlying neural network with neg-
ligible complexity increase. The performance improvement
using the proposed expressivity improvement schemes were
verified using various simulation and in vivo experiments. We
believe that the proposed schemes can be applied not only to
accelerated MRI but also to various inverse problems.

One limitation of our current work is that our experimental
validation of the proposed expressivity improvement schemes
were only based on U-net. It is expected that the expressive
power of other networks such as densely connected CNN
(DenseCNN) [41], which exploits a large number of skip
connections, can be also analyzed and further enhanced using
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the same proposed schemes. Another limitation of the current
study is the lack of the analysis of batch normalization
[42]. Batch normalization has been used frequently to reduce
internal covariance shift which is the change in the distribution
of network activations due to the change in network parameters
during training. However, the theoretical analysis of batch
normalization is an active area of research [43]–[46], and there
exists no standard theoretical analysis. Therefore, we leave the
investigation of these open problems for a possible future work
of this study.
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