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Abstract—The aggregate-label learning paradigm tackles the
long-standing temporary credit assignment (TCA) problem in
neuroscience and machine learning, enabling spiking neural net-
works to learn multimodal sensory clues with delayed feedback
signals. However, the existing aggregate-label learning algorithms
only work for single spiking neurons, and with low learning
efficiency, which limit their real-world applicability. To address
these limitations, we first propose an efficient threshold-driven
plasticity algorithm for spiking neurons, namely ETDP. It enables
spiking neurons to generate the desired number of spikes that
match the magnitude of delayed feedback signals and to learn
useful multimodal sensory clues embedded within spontaneous
spiking activities. Furthermore, we extend the ETDP algorithm to
support multi-layer spiking neural networks (SNNs), which sig-
nificantly improves the applicability of aggregate-label learning
algorithms. We also validate the multi-layer ETDP learning algo-
rithm in a multimodal computation framework for audio-visual
pattern recognition. Experimental results on both synthetic and
realistic datasets show significant improvements in the learning
efficiency and model capacity over the existing aggregate-label
learning algorithms. It, therefore, provides many opportunities
for solving real-world multimodal pattern recognition tasks with
spiking neural networks.

Index Terms—Spiking neurons, spiking neural networks,
aggregate-label learning, synaptic plasticity, multimodal infor-
mation

I. INTRODUCTION

HE brain has a remarkable ability to integrate multi-
modal sensory information for efficient detection and
identification of different external events, so as to adaptively
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interact with the environment. For example, when a predator
approaches its prey, the sounds of breaking twigs and the
odor of the predator represent essential survival clues for the
prey [1]. Life becomes much easier when an individual learns
these multi-sensory clues. However, it remains challenging for
biological neural systems to learn these useful multi-sensory
clues because they are usually embedded within distracting
streams of unrelated sensory signals. Even worse, the feedback
signals typically arrive after long and variable delays [1][2].
Learning useful multi-sensory clues requires bridging the gap
between their occurrence and the delayed arrival of feedback
signals [1][2][3]. This challenge, known as the temporal credit-
assignment (TCA) problem, is one of the long-standing re-
search topics in neuroscience and machine learning. While it
remains unclear how the brain resolves this challenging TCA
problem, the critical role of neural spikes (action potentials) in
transmitting information and modulating learning in the brain
is well recognized [4][5][6][7]. In recent years, many spike-
based supervised learning algorithms have been proposed to
explore the mechanisms underlying brain plasticity. Existing
supervised learning methods aim to train output neurons to
produce the desired spiking activity in response to an input
spike pattern and are classified, depending on the number
of target output spikes, into single- or multi-spike learning
algorithms.

Tempotron [6] is one of the most popular single-spike
learning algorithms, whereby synaptic weights are modified
to ensure the learning neuron fires at least one spike when the
desired input pattern is present and remains silent otherwise.
Rank-order learning [8][9][10] is another type of single-spike
learning algorithms, which adjusts synaptic weights to make
the learning neuron fires the earliest spike in response to
the desired input spike pattern. Subsequently, the time-to-
first spike decoding strategy is employed in the output layer
for rapid decision-making. The SpikeProp [11] learning algo-
rithm constructs an error function from the distance between
the times of the desired and the actual output spike and
applies a modified error back-propagation (BP) algorithm
to update synaptic weights. Although single-spike learning
algorithms were successfully applied in many application
domains [12][13][14], the spiking neural networks (SNNs)
trained by these algorithms have limited storage capacity and
are sensitive to noise.

In order to overcome these limitations, many multi-spike
learning algorithms have been proposed in recent years. One



well-known multi-spike learning algorithm is the remote su-
pervised method (ReSuMe) [15]. In ReSuMe, the synaptic
changes are driven by a combination of spike time-dependent
plasticity (STDP) and anti-STDP. DL-ReSuMe [16] improves
the learning performance of ReSuMe by considering both
the synaptic plasticity and the delay plasticity. The chronotron
[17] and the Spike Pattern Association Neuron (SPAN) [18]
update the synaptic weights based on the distance defined
by the Victor and Purpura metric [19] and the van Rossum
metric [20], respectively. Besides these spike-driven learning
algorithms, the membrane potential-driven methods are also
proposed [7][21][22][23][24]. They utilize the neuron mem-
brane potential to guild the target neurons, such that they fire
at the desired times. Experimental results [7][21] suggest that
the membrane potential-driven learning algorithms are more
efficient than the spike-driven learning algorithms. The afore-
mentioned multi-spike learning algorithms are only applicable
when the desired spike times are provided. However, such
information is often unavailable in neural systems and real
application scenarios.

To circumvent this limitation, Giitig [1] puts forward a
novel aggregate-label learning paradigm for spiking neurons,
which trains spiking neurons to fire a desired number of
spikes without considering the precise timing of each spike.
Following this paradigm, several learning algorithms have
been proposed and can be categorized into threshold-driven
and membrane potential-driven. Multi-spike Tempotron (MST)
[1], the first introduced threshold-driven method, transforms
the discrete-valued spike count distance into a continuous-
valued distance between the fixed biological firing threshold
and the hypothetical threshold. With this transformation, the
gradient descent method can be applied to optimize the
synaptic weights by minimizing the firing threshold distance.
As demonstrated in [1], the spiking neurons trained with the
MST method can produce a desired number of spikes and learn
predictive clues embedded within a long stream of unrelated
spiking activities. Yu et al. [3] [25] propose another threshold-
driven plasticity algorithm, namely TDP, which simplifies
the recursive gradient computation of MST. Although the
experimental results have shown improved learning efficiency
over the MST, the approximated gradients derived by the
TDP diverge from the theoretical ones with an increasing
number of desired spike count, hence deteriorates the learning
effectiveness.

On the other hand, the membrane potential-driven
aggregate-label learning algorithms construct an error function
between the membrane potential and the fixed biological
firing threshold. Examples of this class of learning algorithms
include MPD-AL [2] and its variants [26][27]. The membrane
potential-driven algorithms have shown superior learning effi-
ciency over their threshold-driven counterparts. However, the
learning mechanism of these learning methods fails when
a sub-threshold membrane potential peak is absent in be-
tween any two adjacent output spikes. In addition, membrane
potential-driven algorithms impose some restrictions on the
training samples when learning predictive clues [2], and are
only applicable to single neurons.

This work attempts to improve the learning effectiveness

and efficiency of the existing aggregate-label learning algo-
rithms. We first propose an Efficient Threshold-Driven Plas-
ticity (ETDP) algorithm for spiking neurons, which enables
spiking neurons to generate the desired number of spikes
that match the magnitude of delayed feedback. Furthermore,
the proposed learning algorithm is capable of learning useful
multi-sensory clues embedded within a long stream of dis-
tracting sensory activities. Besides, we introduce an exploding
gradient prevention strategy (EGPS) to address the exploding
gradient problem found in existing aggregate-label learning
algorithms. Experimental results demonstrate that the ETDP
learning algorithm significantly outperforms its counterparts
in terms of learning efficiency. We further extend the ETDP
algorithm to support multi-layer spiking neural networks,
which significantly improves the computational capacity of the
trained SNN models. We also validate the multi-layer ETDP
learning algorithm in a multimodal computation framework
for audio-visual pattern recognition. Experimental results on
the MNIST and TIDIGITS datasets show that the proposed
SNN-based multimodal recognition framework can improve
the classification accuracy compared to its unimodal parts.

II. NEURON MODEL AND ETDP LEARNING ALGORITHMS

In this section, we first introduce the spiking neuron model
adopted in this work. Then, we present the proposed ETDP
algorithm for single spiking neurons and compare it to other
existing aggregate-label learning algorithms. Finally, we ex-
tend the proposed ETDP algorithm for multi-layer spiking
neural networks.

A. Neuron Model

In this work, we employ the current-based leaky integrate-
and-fire (LIF) model to derive the proposed learning algo-
rithm [1] due to its biological plausibility and computational
tractability. We consider an output spiking neuron, connected
with N afferent neurons, whose membrane potential is denoted
by V(t) and the resting potential V,..s is set to 0. Each
incoming spike from the afferent neurons induces a postsy-
naptic potential (PSP) and integrated by the output neuron.
The output neuron fires a spike when V'(¢) reaches the firing
threshold ¢ from below. The membrane potential dynamics of
the LIF neuron can be expressed as

N .
V()= Viewt > wi S K(t—t]) =9 exp(— t—t

- , p T
g <t ti<t

)
(1

where w; is the synaptic weight of afferent ¢, and tf denotes
the j spike time of afferent i. The PSP kernel K (t —t}) is

defined as
t—t t—t
exp (— l) — exp (— ¢ )] 2)
Tm Ts

where the integration time constant of the postsynaptic mem-
brane 7, and the decay time constant of synaptic currents
Ts jointly govern the shape of the PSP kernel. Vj is a
normalization constant that ensures a unitary peak value for

K(t—t)=V,




the PSP kernel. The last term in Eq. 1 is the refractory kernel,
which resets the membrane to its resting potential after the
spike generation. ¢ denotes the time of the jth output spike.

B. ETDP Learning Algorithm for Single Spiking Neurons

The goal of the proposed ETDP learning algorithm is to
modify the synaptic weights so that the trained neuron can
fire the desired spike count. Due to the discrete nature of the
spike count, its derivative with respect to synaptic weights
cannot be obtained directly. To circumvent this problem, we
apply the spike-threshold-surface (STS) to map the discrete
spike counts to continuous hypothetical firing thresholds [1].
As shown in Fig. 1(b), the critical threshold ¥} denotes the
threshold value at which the spike count jumps from k£ — 1
to k. For example, given a particular input spike pattern and
a set of synaptic weights, Fig. 1(a) shows that the neuron
fires three spikes with the neuron’s biological firing threshold
¥ = 1 (red line). While the neuron fires four spikes (blue line)
when the threshold decreases to ;. Based on the relationship
between the STS and the number of output spikes, the problem
of training a neuron to output the desired spike count d could
be transformed into adjusting the STS so that ¥}, , <9 < 9}.
Hence, the goal is violated either ¥}, ; > ¥ or ¥} < 9.

In general, there are two strategies to optimize the STS.
One is the “absolute” rule that directly uses 07, ; and 9} to
calculate the synaptic updates; while the other one uses the
actual output spike count o to determine the synaptic updates,
namely the “relative” rule. The “absolute” and the “relative”
rules are summarized in Eq. 3 and Eq. 4, respectively.

_ dﬂ;+1 M * >
s (B B2 o
A T if U <9
L it o>d
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A—2+L - if d>o

where ) is the learning rate. It is worth noting that the absolute
learning rule requires the exact value of desired spike counts,
while the relative learning rule is based on a binary feedback
signal that only specifies whether the neuron should increase
or decrease the spike count. Therefore, the relative learning
rule is simpler and biologically more plausible [3]. Therefore,
we derive the proposed ETDP learning algorithm based on this
relative learning rule.
According to the definition of critical threshold %, there
exists a unique t* that satisfies
* _ i
4 t] ) )

P =V({t") =

— 9" Z exp (
with
N
= Zwi Z K(t* —t)) (6)
¢ th <t

Here, m denotes the total number of output spikes fired before
t*. Since ¥* depends on the synaptic weights also through
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Fig. 1. (a) Membrane potential traces with the fixed biological firing threshold
¥ (red line) and the hypothetical firing threshold 49 (blue line). (b) Illustration
of the spike-threshold-surface (STS), which maps the neuron’s hypothetical
firing thresholds to the output spike counts. (c) The learning curve of different
threshold-driven aggregate-label learning algorithms, which demonstrates the
spike-timing dependence of synaptic contributions to the dV (¢*)/dw.

previous output spikes tJ < t*.j € {1,2,..,m}. Thus,
dd* /dw; can be determined as follows
dy*  dV(t* aV (t* AV (t*) dtl OV (t*) dt*
V) V() | N OVE) d oV
dw; dw; ow; = ol dw; ot*  dw;
(7)

The last component of Eq. 7 has no contribution to the
synaptic update since V' (¢*) is either a local maximum with
AV (t*)/0t* = 0 or t* is the time of an inhibitory input spike
whose arrival time does not depend on w;. The difficulty in
solving Eq. 7 lies in the dtJ/dw; term, and by applying the
chain rule, it can be expressed as

dtl  otl dV () g
dw; V() dw; ®)
with
dV(tl) oV (t) aV( 7) dt* ©)
dw;  Ow; — otk dw;

According to the linear assumption of the firing threshold
crossing [11], we get

, 11
j J ,
ats' — av(ts) _ _V/(tg)—l (10)
oV (t2) o(th)
Then, the Eq. 7 can be expressed as
do* V() 1 dV(#)
— S 11
dw; &w ; ot V() dw (an



In order to solve the remaining components of Eq. 11, we

denote the set of output spike times as ¢, € {t1, 2 ... t™ t*}.

The Eq. 5 thus can be evaluated as

Vo(ts)
Vity) = 12
with
t
=1 13
C, +Zexp( T) (13)
th<t,

Then, the remaining components of Eq. 11 can be deter-
mined as follows

oVit,) 1 ;
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Since the term V' (#J) is the denominator of Eq. 10, this will
lead to a gradient explosion problem when V'(¢J) is close to
0. To solve this problem, we propose an exploding gradient
prevention strategy (EGPS) by setting a lower bound 1, for
V(1) as

Vi) = {V(tg) it V)= a
Iy otherwise

In the same vein of research, the threshold-driven aggregate-
label learning algorithm TDP simplifies the recursive expres-
sion of the MST algorithm and demonstrated significantly
improved learning efficiency in their experiments [3]. Here,
we focus on the difference between the proposed ETDP and
the TDP algorithms. The main difference between these two
algorithms lies in the different solutions to terms OV (t,,)/Ow;
and dV (t2) /dw;.

According to Eq. 5, V(t,) is defined as

“ ty —t]
—9* Zexp( - )
j=1 m

TDP calculates OV (t,)/Ow; by simply considering the first
term of Eq. 18 that leads to the following equation

V(i) _ olls) _ 5 i

8wi 80.)1- "
t! <tg

Vit,) = (18)

19)

However, the membrane potential V(t,) depends on the
synaptic weight w; also through the second term of Eq. 18.
To consider this dependency, the proposed ETDP rule first
transforms Eq.18 into Eq. 12 following the proposal in [1],
and then solves dV (t,)/0w; according to Eq. 14, which is
more rigorous in mathematics.

On the other hand, TDP calculates the dV (t])/dw; as

dv(ed) ot oV ()
dw; 78V(t£) Ow;

(20)

with
_ tj

= > K(t]

tI<tl

2N

which ignores the fact that the membrane potential V (¢)
depends on the synaptic weights w; also through the output
spikes generated before ¢J. While we consider this dependency
in the proposed ETDP rule and determine dV (t!)/dw; as per
Eq. 8 and Eq. 9. As the learning curves provided in Fig. 1(c),
the ETDP will allocate more credits to the earlier presynaptic
spikes compared to the TDP.

C. ETDP Learning Algorithm for Multi-layer SNNs

The existing aggregate-label learning algorithms are all
based on single spiking neurons. While the powerful per-
ceptual and cognitive capabilities of the brain come from
the huge number of neurons that organized in a hierarchi-
cal manner. Therefore, these algorithms are not sufficient to
simulate the learning process of biological neural networks
[28][29]. Besides, the applicability of aggregate-label learning
is constrained due to the limited computational capability of
single spiking neurons. Therefore, in the following, we extend
the proposed ETDP algorithm to multi-layer spiking neural
networks.

The goal of multi-layer ETDP learning algorithm is to
update the synaptic weights in both the output layer and
hidden layers, such that the neurons in the output layer can
generate the desired number of spikes. Same as the ETDP
learning algorithm developed for single spiking neurons, this
goal can be accomplished by adapting the STS such that
vy, < ¥ < 9. Considering spiking neural networks with
a single hidden layer, since the synaptic weights w;; between
input layer and hidden layer affects ¢* through both the spikes
of hidden neurons (¢7') and output neurons (t?), the weight
update rule for w;; can be expressed as

dv (t*) ) dty oV (t*) dtj 22)
dw;p, bt 8tm dwzh ot 8t? dw;n
with
dtm otm oV (Em) oV () dtk
= 23
dwp, OV () Ow;p, Z 61&" dw;n (23)
n n n m n k
dtj _ 5tj Z E)V t dth zn: (9V t dt
dwih 8V(t?) t’”<t" 8tm dwih 8tk dwlh
(24)

where ;" is the mth spike of the hidden neuron h, and t;‘ is
the nth spike of the output neuron j. All the components in
Egs. 10, 22, 23 and 24 can be solved with a combination of
Egs. 14, 15, 16 and the following equation.
ta: _ tm
(=52)]

aV(tw) wl‘hV() [ 1 ( ta; — t;{b> 1
= —|—erp| ——— | — —exp
Tﬂ’L Tﬂ’L 7.8
(25)

oty Ct,
Furthermore, the SNNs with multiple hidden layers can be
trained in a similar fashion by applying the chain rule.




III. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate
the performance of the proposed ETDP learning algorithm for
single spiking neurons and multi-layer SNNs. First, we eval-
uate the effectiveness and efficiency of the ETDP algorithm
by training a single spiking neuron to generate the desired
number of spikes. Then, we demonstrate that the proposed
ETDP algorithm can train spiking neurons to discover useful
clues embedded within a long stream of multimodal sensory
activities. Finally, we evaluate the performance of the ETDP
algorithm by validating on an SNN-based multimodal compu-
tational framework for audio-visual information processing.

A. Learning to Fire a Desired Number of Spikes

In this section, we first introduce a learning example to
demonstrate the effectiveness of the proposed ETDP algo-
rithm for single spiking neurons. Furthermore, the learning
efficiency of this algorithm is compared with the threshold-
driven aggregate-label learning algorithm TDP.

In the first set of experiments, a spiking neuron with N =
500 presynaptic neurons is trained to fire 10 spikes within a
time window of T' = 500 ms. The initial synaptic weights are
drawn from a random Gaussian distribution with both mean
and standard deviation equal to 0.01. We adjust the initial
firing rate 7., of presynaptic neurons to 4 and 10 Hz so as
to cover both the under-firing and over-firing scenarios. The
experimental results of these two scenarios are provided in
Fig. 2 and Fig. 3, respectively.
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Fig. 2. Learning a desired number of spikes with rpre = 4 Hz (under-
firing scenario). (a) Neuron’s membrane potential trace before learning. (b)
The number of output spikes at the end of each learning epoch. (c) Neuron’s
membrane potential trace after learning.
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Fig. 3. Learning a desired number of spikes with rp.e = 10 Hz (over-
firing scenario). (a) Neuron’s membrane potential trace before learning. (b)
The number of output spikes at the end of each learning epoch. (c) Neuron’s
membrane potential trace after learning.

Fig. 2 illustrates the learning process with an input firing
rate of rp.. = 4 Hz. Due to the low input firing rate, the
membrane potential of the output neuron cannot reach the
firing threshold initially, and the output neuron thus remains
quiescent. As shown in Fig. 2(b), when trained with the pro-
posed ETDP learning algorithm, the output neuron gradually

increases its number of output spikes and reaches the desired
spike count after about 50 epochs. The membrane potential
trace of a successful learning example is given in Fig. 2(c). Fig.
3 shows that the learning neuron exhibits bursting behavior
with a high input rate of 7. = 10 Hz. As learning progresses,
the number of output spikes decreases to the desired spike
count after 28 learning epochs. These experimental results
demonstrate the proposed ETDP algorithm works effectively
under different neuronal activity states.

Next, we compare the learning efficiency of the ETDP
algorithm to the TDP. The experimental setup is same as that
used in Fig. 2, while the desired number of spikes varies from
10 to 100 with a step of 10. For each desired spike count, 20
independent experiments are conducted, and the statistics of
learning epochs and CPU time used are summarized in Fig. 4
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Fig. 4. Comparison of learning efficiency between the proposed ETDP and
TDP. (a) The required learning epochs of different algorithms. (b) The required
CPU time of different algorithms.

As shown in Fig. 4, the required number of learning epochs
and CPU time increase for both learning algorithms with
an increasing number of the desired spike count. However,
the proposed ETDP algorithm consistently outperforms TDP
for all the tasks. For example, when the desired number of
spikes is 100, the required number of learning epochs of the
proposed algorithm is about 200, while it is about 370 for
TDP. Besides, as shown in Fig. 4(b), the required average
CPU time of the ETDP algorithm is also lower than that of
the TDP. Specifically, for a desired spike count of 100, the
CPU time needed for our algorithm and TDP is 0.9s and 1.5s,
respectively. It worth noting that despite our algorithm takes
more CPU time per epoch to derive a higher quality gradient
than TDP, it takes significantly shorter CPU time that is due
to savings in the required training epochs.

B. Learning Multimodal Sensory Clues

Learning multimodal sensory clues can facilitate efficient
identification and localization of external events, and hence
enhance interactions with the environment. However, these
useful clues are usually embedded within distracting streams
of unrelated sensory activities, and the feedback signals may
occur after long and varying delays. How to make effective



use of the aggregated feedback signals to discover useful
sensory clues, known as the temporal credit-assignment (TCA)
problem, remains a challening research topic for both neuro-
science and machine learning. In this section, we evaluate the
capability of the proposed ETDP algorithm to solve the TCA
problem on both the synthetic and real-world datasets.

Similar to the tasks proposed in [1], ten brief spike patterns
are constructed to represent the spiking activities in response
to different multimodal sensory clues. Each brief spike pattern
consists of 500 spike trains of 50 ms, wherein each spike
train is generated randomly at a firing rate of 5 Hz. In each
trial, as shown in Fig. 5, a random number of these ten spike
patterns are embedded within a long stream of background
spiking activity generated at the same firing rate of 5 Hz.
Each training cycle consists of 100 such trials generated with
the set-up described above. Here, the task is to enable a single
spiking neuron to detect the useful sensory clues by firing the
specific number of spikes during their presence.
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Fig. 5. Learning useful multimodal sensory clues. (a) Input spike pattern. For
better visualization, only the first 50 out of the 500 afferents are provided.
Colored rectangles correspond to 10 different sensory clues. (b) The learning
neuron is trained to generate one spike only during the presence of the i-th
clue (red rectangle). (c) The learning neuron is trained to generate a burst of
five spikes only during the presence of the i-th clue. (d) The learning neuron
is trained to generate one spike only during the presence of the five different
clues. (e) The learning neuron is trained to generate a distinct number of
spikes {1, 2, 3, 4, 5} during the presence of the five different clues.

In Fig. 5(b), the neuron is trained to detect the clue ¢ among
the other 9 distractors and background activities. For each trial,
the desired number of spikes N4 is set as the occurrences
of clue ¢ (Ng = ¢;). If the learning neuron fires more or
fewer spikes, the proposed learning algorithm will weaken or
potentiate the synaptic weights to make the neuron fire desired
spike count. As shown in Fig. 5(b), the learning neuron can
precisely fire one spike during the presence of the clue «.
As shown in Fig. 5(c), when set the desired spike count five
times to the occurrences of the clue ¢ (INg = 5¢;), the neuron

learns to generate a burst of 5 spikes in response to the clue @
and remains silent otherwise. Moreover, by setting the desired
spike count as Ny = Zl c;d;, where ¢; denotes the number of
clue ¢ within a trial and d; is the corresponding desired spike
count to the clue ¢, the proposed learning algorithm enables the
trained neuron to decompose the feedback signal and associate
each clue with a distinct number of spikes. Fig. 5(d) and Fig.
5(e) show the testing results when d; of the five useful sensory
clues are set as {1, 1, 1, 1, 1} and {1, 2, 3, 4, 5}, respectively.
These experimental results demonstrate the proposed learning
algorithm can learn useful multimodal sensory clues with
delayed feedback even when these clues are embedded within
distracting streams of unrelated sensory and background ac-
tivities.
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Fig. 6. Learning efficiency of different learning algorithms to accomplish the
task of Fig. 5(e). The left and right figures summarize the required learning
epochs with and without EGPS, respectively.

As explained in Section II-B, the derived error gradients are
prone to the gradient explosion problem. Here, we evaluate the
effectiveness of the proposed EGPS method to overcome this
problem by comparing the required learning epochs, with and
without the EGPS method, to solve the corresponding task
in Fig. 5(e). As shown in Fig. 6, by combining the proposed
EGPS method, the learning efficiency is improved for both the
learning algorithms TDP and ETDP. Moreover, the learning
efficiency of the proposed ETDP algorithm is higher than the
TDP algorithm for this challenging multimodal sensory clues
learning task. Specifically, when combined with the EGPS
method, the required learning epochs of our method and TDP
are about 150 and 250, respectively.

Next, we apply our method to a more challenging real-
world task. In this task, we construct 200 multimodal spiking
streams by randomly embedding 10 spike patterns, encoded
from five images and five speech signals, within a long stream
of background activities. These five images are randomly
selected from the MNIST dataset, and further encoded into
spike patterns through the latency coding [4][31] as illustrated
in Fig. 7. These five speech signals are randomly selected from
the TIDIGITS corpus, and then encoded into spike patterns
using the Biologically plausible Auditory Encoding scheme
(BAE) [32][30] as shown in Fig. 8. There are two neurons
in the output layer, which selectively respond to images and
speech signals, respectively. The desired spike count of each
output neuron is defined as Ny = Z@ c;d;, where ¢; denotes
the number of clue ¢ (i-th image or i-th speech signal) within
a spiking stream, and d; is the corresponding desired spike
count of the clue <.

After training, we generate a testing spike stream to verify
whether these two output neurons can separate and recog-
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Fig. 7. The illustration of the neural latency coding for images. The luminance
or intensity value of each pixel is encoded into the spike time, whereby the
earlier spike time corresponds to the larger intensity value. (a) is an image of
the hand-written digit “2”. The horizontal bars in (b) depict the luminance or
intensity value of 6 pixels, where a longer bar represents a brighter pixel. (c)
is the latency-encoded spike pattern, in which each pixel in (b) is encoded
into a single spike (red pulse) in the corresponding row of (c).

nize different visual and auditory clues. Fig. 9(b) and Fig.
9(c) illustrate the membrane potential traces of the neurons
that trained to selectively respond to auditory (speech) and
visual (image) information, respectively. After training with
the proposed ETDP learning algorithm, these two output
neurons can selectively respond to speech signals and images.
Furthermore, they can recognize different clues by firing the
corresponding number of spikes. For example, as shown in Fig.
9(c), this output neuron fires spikes whenever there is an image
presented, while remains silent during the presence of speech
signals and background activities. Besides, the neuron fires a
distinct number of spikes in response to different images.

C. Classification Tasks

To demonstrate the effectiveness of the proposed ETDP
learning algorithm for multi-layer SNNs, we first validate the
trained SNNs on the XOR classification task. Furthermore,
we propose an SNN-based computational framework for mul-
timodal pattern recognition tasks.

1) XOR Classification Task: In this experiment, we encode
the four training samples of the XOR task into spike time by
associating the binary input ‘0’ and ‘1’ to spike times of 5
ms and 10 ms, respectively. The input spikes then project to
a hidden layer consists of four neurons which subsequently
connected to a single output neuron. During the training
process, the training samples of {5, 5} ms and {10, 10} ms are
defined as the same class, and the output neuron is required
to fire two spikes. While when the samples of {5, 10} ms and
{10, 5} ms are presented to the network, the output neuron is
required to remain silent.

As shown in Fig. 10(a), there are four different input
spike patterns corresponding to the four training samples. Fig.
10(b) shows the membrane potential traces of the four hidden
spiking neurons which are denoted in different colors. After
training, the output neuron can precisely emit two spikes when
the samples of {5, 5} ms and {10, 10} ms are presented, while

remains silent otherwise. This experimental result suggests that
the proposed ETDP learning algorithm has the capability to
trained multi-layer SNNs to perform the non-linear pattern
classification task.

2) Multimodal Pattern Recognition: The studies in cogni-
tive neuroscience suggest that the human brain can efficiently
integrate sensory information of multiple modalities [33],
[34], [35], [36]. Besides, there is strong evidence showing
that cross-modal coupling facilitates the influence of one
modality to the areas of other modalities, and the integration
occurs in the supramodal areas where neurons are sensitive to
multimodal stimuli. Inspired by these findings, we propose an
SNN-based multimodal computational framework for audio-
visual pattern recognition. As shown in Fig. 11, the proposed
multimodal computational frame mainly consists of three
parts, the unimodal processing part, the cross-modal coupling
part, and the supramodal part. In the following, the working
mechanism of each part will be introduced in sequence.

In the unimodal processing part, two SNN-based computa-
tional models are working independently for visual and audio
modalities. These two unimodal SNN models are trained fol-
lowing the proposed ETDP algorithm. The feedforward SNN
architectures used for visual and audio signal processing are
784-800-10 and 620-800-10, respectively. The role of cross-
modal coupling is to transmit the influence of one modality to
the areas that intrinsically belong to other modalities. Hence,
in the cross-modal coupling part, we construct excitatory and
inhibitory connections across two different modalities. Such
that when the output neurons of one modality fire spikes, the
output neurons in the other modality will receive those spikes
to facilitate synchronized behaviors across different modality.
For example, when both the image and speech patterns ‘one’
are presented to the unimodal SNNs, and the output neuron
representing image ‘one’ fires first. The generated spikes
will excite the output neuron representing ‘one’ of the audio
modality, while inhibit all other neurons to prevent them from
firing.

There are ten neurons in the supramodal layer, which
integrate the information from the corresponding output neu-
rons of single modalities through excitatory connections. To
facilitate a rapid response, the neurons in the supramodal
layer will generate an output spike as soon as they receive
an incoming spike from the cross-modal coupling layer.

We evaluate the performance of the proposed multimodal
computational framework on the joint digit classification
dataset. In this experiment, the training dataset consists of
60,000 pairs of inputs (training samples in the TIDIGITS
corpus are repeated to match the size of the MNIST dataset),
and the testing dataset consists of 10,000 samples. Same as
the earlier experiments, we use the latency coding [4][31] and
the Biologically plausible Auditory Encoding Scheme [30][32]
to encode the image and speech signals into spike patterns,
respectively. When the encoded spike pattern is presented to
the unimodal SNN, the corresponding output neuron is trained
with the proposed ETDP learning algorithm such that it fires
the most number of spikes. The connections between different
modalities are pre-defined so as to exert the desired influence
on the other modality. In the supramodal part, the pattern is
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Fig. 8. The illustration of the neural encoding for audio signals, using a Biologically plausible Auditory Encoding scheme (BAE). A raw audio signal
corresponds to the spoken digit “two” (a) is first filtered by a cochlear filter bank and decomposed into a 20-channel spectrogram (b). We further encode
this spectrogram with the neural threshold coding (c), which can effectively describe the moving trajectory of sub-band signals. Finally, we apply an auditory
masking scheme to eliminate those imperceptible spikes, resulting in a sparse while effective spike pattern (d). More details about the BAE scheme can be

found in [30].
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Fig. 9. Illustration of the audio-visual pattern recognition with spiking neurons. (a) The input spiking stream corresponds to the audio-visual sensory stimuli on
the top row, the random spontaneous spiking activities are added during the silence period. Only the first 200 synaptic afferents are given. (b) The membrane
potential trace of the output neuron that is trained to selectively respond to speech signals. (c) The membrane potential trace of the output neuron that is

trained to selectively respond to images.

classified to the neuron that fires the most number of spikes.

As shown in Table. I, the multimodal classification frame-
work equipped with the proposed ETDP learning algorithm
outperforms many unimodal approaches. In addition, with the
help of crossmodal coupling and the supramodal parts, the
multimodal classification framework achieves a classification
accuracy of 98.9%, which improves over single modalities by
more than 2%.

IV. DISCUSSION

The aggregate-label learning paradigm equips spiking neu-
rons with the capability to decompose the aggregated su-
pervision signals into both spatial and temporal domains,
whereby effectively solves the long-standing ‘temporary credit
assignment’ problem in neuroscience. Comparing with other
existing SNN learning algorithms[37], [43], [44], [45], [46],

the aggregate-label learning paradigm boosts the computa-
tional capability of a single spiking neuron by making it fire
a distinct number of spikes in response to different predictive
clues.

The existing aggregate-label learning algorithms can be
classified into membrane potential-driven and threshold-driven
methods. For membrane potential-driven methods, the synaptic
updates are directly derived from the subthreshold membrane
potentials. While the threshold-driven methods construct a
spike-threshold-surface to map the discrete spike counts to
the continuous hypothetical firing thresholds and perform
synaptic updates based on the error gradients derived from
the spike-threshold-surface. By avoiding the computational-
intensive process of calculating the hypothetical threshold %,
the efficiency of membrane potential-driven methods is sig-
nificantly improved over their threshold-driven counterparts.
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Fig. 11. The proposed SNN-based computational framework for multimodal pattern recognition. This framework mainly consists of three parts, the single
modal processing part, the cross-modal coupling part and the supramodal part.

However, the membrane potential-driven methods, such as The proposed ETDP learning algorithm improves the learn-
MPD-AL, are subject to several limitations. First of all, the ing efficiency over other existing membrane potential-driven
synaptic updates of the MPD-AL algorithm are dependent methods by optimizing the learning curve and preventing
on the availability of a maximum peak in the subthreshold the problem of gradient explosion. As demonstrated in our
membrane potential trace. Whenever there is no such a peak experiments, the required training epochs and CPU time
exist in between any two adjacent spike times, the learning are improved consistently across different pattern recognition
process is stopped. Furthermore, the membrane potential- tasks. While it is worth noting that the calculation of ¥* is
driven methods can learn predictive clues only when they still time-consuming for all the threshold-driven methods, we
are sparsely embedded in training samples [2]. In contrast, will explore efficient strategies to calculate this quantity in our
the threshold-driven algorithms are not constrained by the future work. The existing aggregate-label learning algorithms
existence of the maximum peak or the sparsity of embedded can only train single spiking neurons to output a desired
clues. number of spikes. However, the powerful perceptual and cog-



TABLE I
COMPARISON OF OUR WORK WITH OTHER UNIMODAL APPROACHES
Model Type Layers Learning Modality Dataset Accuracy
Diehl et al. [37] SNN 2 Unsupervised Unimodal MNIST 95.0%
Rathi et al. [36] SNN 3 Unsupervised Unimodal MNIST 93.2%
Kheradpisheh et al. [38] SNN+SVM 6 Supervised Unimodal MNIST 98.4%
Hong et al. [39] SNN 3 Supervised Unimodal MNIST 97.2%
Gu et al. [27] SNN 3 Supervised Unimodal MNIST 98.6%
Tavanaei et al. [40] SNN+SVM 2 Supervised Unimodal TIDIGITS 91.0%
Tavanaei et al. [41] SNN+HMM 4 Supervised Unimodal TIDIGITS 96.0%
Neil et al. [42] MFCC and RNN 4 Supervised Unimodal TIDIGITS 96.1%
ETDP (this work) SNN 3 Supervised Unimodal MNIST 96.8 %
ETDP (this work) SNN 3 Supervised Unimodal TIDIGITS 95.8 %
ETDP (this work) SNN 3 Supervised Multimodal | MNIST and TIDIGITS 98.9 %

nitive capabilities of cortical neural networks are accomplished
with a large number of biological neurons that are organized
hierarchically. In this paper, for the first time, we introduce
an aggregate-label learning algorithm for multi-layer SNNs by
combining the proposed ETDP algorithm with the spike-based
error back-propagation.

We further develop an SNN-based multimodal computa-
tional framework that can effectively integrate sensory infor-
mation from multiple modalities for effective decision making.
This framework consists of the unimodal processing units, the
cross-modal coupling part, and the supramodal part. It is worth
noting that the cross-modal coupling part facilitates the infor-
mation synchronization across unimodal processing units that
handling different sensory modalities. Finally, the supramodal
part effectively integrates the information of different sensory
modalities and significantly improves the decision quality as
demonstrated in the digit recognition task.

V. CONCLUSION

The temporal credit assignment problem is a long-standing
research topic in neuroscience and machine learning. In this
work, we propose an efficient threshold-driven aggregate-label
learning algorithm, namely ETDP, to resolve this challenging
problem. The ETDP algorithm optimizes the learning curve
over the existing threshold-driven aggregate-label learning
algorithms, thereby achieves significantly improved learning
efficiency and effectiveness. Furthermore, we extend the ETDP
algorithm to support multi-layer network configurations. To
the best of our knowledge, this is the first time that an
aggregate-label learning algorithm is developed for multi-
layer SNNs. Finally, we propose an SNN-based computational
framework for multimodal sensory information processing.
Equipped with the proposed ETDP algorithm, this framework
achieves superior classification accuracy over other unimodal
frameworks. As future work, we will apply the ETDP algo-
rithm to convolutional SNNs so as to better process the visual
information and explore more challenging multimodal sensory
information processing tasks.
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