
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021 37

Deep Griffin–Lim Iteration: Trainable Iterative Phase
Reconstruction Using Neural Network

Yoshiki Masuyama , Student Member, IEEE, Kohei Yatabe , Member, IEEE, Yuma Koizumi , Member, IEEE,
Yasuhiro Oikawa , Member, IEEE, and Noboru Harada , Senior Member, IEEE

Abstract—In this paper, we propose a phase reconstruction
framework, named Deep Griffin–Lim Iteration (DeGLI). Phase
reconstruction is a fundamental technique for improving
the quality of sound obtained through some process in the
time-frequency domain. It has been shown that the recent methods
using deep neural networks (DNN) outperformed the conventional
iterative phase reconstruction methods such as the Griffin–Lim
algorithm (GLA). However, the computational cost of DNN-based
methods is not adjustable at the time of inference, which may limit
the range of applications. To address this problem, we combine the
iterative structure of GLA with a DNN so that the computational
cost becomes adjustable by changing the number of iterations
of the proposed DNN-based component. A training method that
is independent of the number of iterations for inference is also
proposed to minimize the computational cost of the training. This
training method, named sub-block training by denoising (SBTD),
avoids recursive use of the DNN and enables training of DeGLI
with a single sub-block (corresponding to one GLA iteration).
Furthermore, we propose a complex DNN based on complex
convolution layers with gated mechanisms and investigated its
performance in terms of the proposed framework. Through several
experiments, we found that DeGLI significantly improved both
objective and subjective measures from GLA by incorporating
the DNN, and its sound quality was comparable to those of neural
vocoders.

Index Terms—Griffin–Lim algorithm, spectrogram consistency,
complex neural network, phase reconstruction, sub-block training
by denoising (SBTD).

I. INTRODUCTION

PHASE reconstruction of a spectrogram is an active research
topic with various applications, such as speech synthe-

sis [1]–[5], voice conversion [6], and sound source enhance-
ment/separation [7]–[14]. As a coefficient of the short-time
Fourier transform (STFT) is a complex number, it consists of
magnitude and phase. While both of them are necessary for
reconstructing the corresponding time-domain signal using the

Manuscript received May 1, 2020; revised August 25, 2020; accepted October
12, 2020. Date of publication October 28, 2020; date of current version January
29, 2021. (Corresponding author: Yoshiki Masuyama.)

Yoshiki Masuyama, Kohei Yatabe, and Yasuhiro Oikawa are with the De-
partment of Intermedia Art and Science, Waseda University, Tokyo 169-8555,
Japan (e-mail: mas-03151102@akane.waseda.jp; k.yatabe@asagi.waseda.jp;
yoikawa@waseda.jp).

Yuma Koizumi and Noboru Harada are with NTT Media Intelli-
gence Laboratories, NTT Corporation, Tokyo 180-8585, Japan (e-mail:
koizumi.yuma@ieee.org; noboru@ieee.org).

Color versions of one or more of the figures in this paper are available online
at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2020.3034486

Fig. 1. Overview of the existing and proposed phase reconstruction.

inverse STFT (iSTFT), many acoustical technologies only focus
on the amplitude (magnitude). For instance, traditional sound
source enhancement applies a real-valued time-frequency (T-F)
mask, which modifies amplitude without affecting phase [15].
Another example is a recent speech synthesis approach that
generates a time-domain signal by applying iSTFT to the syn-
thesized spectrogram after phase reconstruction [1]–[5]. Phase
reconstruction is necessary for such amplitude-based acoustical
technologies to obtain a time-domain signal with better sound
quality [16]–[19].

Various phase reconstruction approaches have been pre-
sented, such as the consistency-based approach [20]–[22],
sinusoidal-model-based approach [23], [24], deep neural net-
work (DNN)–based approach [25]–[32], and others [33]–[38].
An overview of the existing approaches is shown in Fig. 1 to
clarify the positions of each approach. Phase reconstruction ap-
proaches are categorized based on the assumed prior knowledge
of the phase structure of the target signals. The consistency-
based approach does not require any prior knowledge of the tar-
get signals, and it only exploits the properties of STFT [39], [40].
Since STFT is calculated with overlapping windows, adjacent
T-F bins are related to each other, which is called spectrogram
consistency. One of the most popular consistency-based phase
reconstruction methods is the Griffin–Lim algorithm (GLA) [20]
which has been applied to speech and audio synthesis [1]–[4].
However, its performance may not be superb because it does not
use any prior knowledge of the target signals. The sinusoidal-
model-based approach assumes that the target signal consists of
a sum of slowly varying sinusoids to address this problem [23],
[24]. This assumption is suitable for a large part of speech and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5881-0474
https://orcid.org/0000-0002-1345-0663
https://orcid.org/0000-0003-3645-6213
https://orcid.org/0000-0002-9078-1714
https://orcid.org/0000-0002-1759-4533
mailto:mas-03151102@akane.waseda.jp
mailto:k.yatabe@asagi.waseda.jp
mailto:yoikawa@waseda.jp
mailto:koizumi.yuma@ieee.org
mailto:noboru@ieee.org
https://ieeexplore.ieee.org

38 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021

audio signals. Thanks to the assumption, the sinusoidal-model-
based approach outperforms the consistency-based approach
in speech enhancement [7], audio restoration [41], and audio
source separation [9]. Recently, the DNN-based approach has
been studied to use more prior knowledge of the target signals.
DNNs can automatically discover the structures of signals in the
training dataset and utilize the obtained knowledge for phase
reconstruction. This approach has achieved promising results
in speech synthesis [27], [28], and it has a high potential for
further improvements in various applications because DNNs can
acquire the knowledge of any signals [42]. The application of
the approach is not restricted to specially structured signals like
a sum of sinusoids.

One issue of the DNN-based approach is low flexibility in
its computational cost. The number of DNN layers is fixed at
the time of training, and thus the required computational cost
is not adjustable at the time of inference. This nature of DNN
can be restrictive for some applications because the allowable
computational cost heavily depends on the device. That is, vari-
ous DNNs must be designed and trained to apply the DNN-based
approach on several types of devices, which is a time-consuming
process. Meanwhile, the consistency-based approach is usually
given by an iterative algorithm whose computational cost is
controllable by changing the number of iterations. To address
the issue of flexibility of the DNN-based approach, such it-
erative nature of the consistency-based approach should be
advantageous.

In this paper, we propose a phase reconstruction framework,
named Deep Griffin–Lim Iteration (DeGLI), by incorporating a
DNN into GLA. The proposed framework stacks a common
GLA-based sub-block that contains a DNN. One of the key
points of DeGLI is that the number of sub-blocks is adjustable
at the time of inference, and the computational cost of DeGLI
is controllable by changing the number of sub-blocks, which
enables us to apply a single trained DNN to various applications
whose allowable computational costs are different. In addition,
by exploiting the algorithmic structure of GLA, the properties
of STFT are explicitly considered, which reduces the number of
parameters to be trained. We also propose a training strategy for
the DNN used in DeGLI because the iterative use of a DNN is
unusual. The proposed strategy trains the DNN by solving a de-
noising task with only one sub-block, which is called sub-block
training by denoising (SBTD). SBTD significantly reduces the
required memory in training and improves stability comparing
to end-to-end training. While an arbitrary DNN can be applied
to the DeGLI framework, we present a novel complex DNN
for handling complex STFT coefficients efficiently. The DNN
employs gating mechanisms [43] calculated from the magnitude
of complex features and the given amplitude. With the proposed
training strategy and complex DNN, DeGLI is trained efficiently
and performs well in terms of both objective and subjective
measures. Our code and audio samples are available online.1

This paper intends to extend our conference paper [31], which
outlined DeGLI and verified it with limited experiments. The
difference between [31] and this paper is as follows:

1Our project page: https://sites.google.com/view/yoshiki-masuyama/degli.

� Relations to existing combinations of an iterative algorithm
and DNN are clarified (Sections III and IV-D);

� A novel complex DNN is proposed for treating complex
STFT coefficients in DeGLI (Section IV-C), and its effec-
tiveness is validated in an experiment (Section V-G);

� The effectiveness of the proposed sub-block is verified in
an experiment (Section V-E);

� The efficiency of the proposed training strategy is shown
through experiments (Section V-F).

The remainder of this paper is organized as follows. In
Section II, we review two phase reconstruction approaches:
consistency-based and DNN-based approaches. Section III in-
troduces some combinations of DNNs and iterative algorithms
in signal processing because DeGLI combines a DNN and the
iterative algorithm of GLA. Section IV presents the DeGLI
framework and its effective training strategy named SBTD.
A complex DNN for DeGLI is also proposed in Section IV.
After investigating the effectiveness and efficiency of DeGLI in
Section V, we conclude this paper in Section VI.

II. PHASE RECONSTRUCTION OF SPECTROGRAMS

In this section, after stating the problem of phase reconstruc-
tion, we briefly review the consistency-based and DNN-based
phase reconstruction approaches that are relevant to the proposed
phase reconstruction.

A. Phase Reconstruction Problem

Let STFT of a time-domain signal x ∈ RN with a window
g ∈ RL (L < N) be defined as

G(x)[ω, τ] =
L−1∑
l=0

x[l + aτ] g[l] e−2πiωl/L = X[ω, τ], (1)

where i is the imaginary unit, a is the time shifting step, τ =
0, . . . , T − 1 and ω = 0, . . . ,K − 1 are the time and frequency
indices, respectively, and K = L. Here, X[ω, τ] is the (ω, τ)th
element of X. Then, iSTFT is defined as

G†(X)[n] =
∑

(l,τ)∈Tn

K−1∑
ω=0

X[ω, τ] g̃[l] e2πiωl/L, (2)

where n = 0, . . . , N − 1 is the sample index of a time-domain
signal, Tn = {(l, τ) | n = l + aτ, l = 0, . . . , L− 1}, and g̃ ∈
RL is the canonical dual window of g [44].

The problem of phase reconstruction considered in this paper
is to find a tuple of complex STFT coefficients X from its
magnitude A ∈ RK×T

+ based on some criteria. Hereafter, we
call A as a given amplitude. It can be written as follows:

Find X s.t. |X[ω, τ]| = A[ω, τ]. (3)

The most well-accepted criterion considered with (3) is the
restriction to the image of STFT. As STFT is redundant in
ordinary situations, i.e., KT > N , its image denoted by Im(G)
is a linear subspace of the space of all STFT coefficients:2

2We call an array of complex numbers X ∈ CK×T as a tuple of complex
STFT coefficients that includes X �∈ Im(G).

https://sites.google.com/view/yoshiki-masuyama/degli

MASUYAMA et al.: DeGLI: TRAINABLE ITERATIVE PHASE RECONSTRUCTION USING NEURAL NETWORK 39

Im(G) ⊂ CK×T . When X contains an inconsistent component
that lies outside the image of STFT, the magnitude of X will
be different after applying iSTFT G† and STFT G. This means
that the STFT magnitude of a reconstructed time-domain signal
G†(X) is different from A, even when |X[ω, τ]| = A[ω, τ]. To
avoid such a change, phase reconstruction is often formulated
as the following problem:

Find X s.t.

{
|X[ω, τ]| = A[ω, τ]

X ∈ Im(G)
. (4)

Since G(x) ∈ Im(G) for any time-domain signal x, the opti-
mization problem given in (4) can be interpreted as a problem
of finding a time-domain signal x whose STFT magnitude
coincides with the given amplitude. As the magnitude is fixed
by the first constraint, its solver attempts to find a tuple of STFT
phase components ϕ ∈ [−π, π)K×T such that A� exp(iϕ) ∈
Im(G), where exp(·) is the element-wise exponential function,
and � is the element-wise product.

B. Consistency-Based Phase Reconstruction

The consistency-based approach relies on the redundancy of
STFT, and it attempts to solve (4) directly. A tuple of complex
STFT coefficients X is said to be consistent when X ∈ Im(G).
The consistency-based methods force STFT coefficients to be
consistent by projecting them onto Im(G) as [45]

PC(X) = G(G†(X)), (5)

where C is the set of tuples of complex STFT coefficients
satisfying the spectrogram consistency, defined by

C =
{
X ∈ CK×T | X ∈ Im(G)

}
. (6)

By definition, PC(X) ∈ Im(G) for any X. Note that consistent
coefficients are characterized by the fixed points of the projec-
tion, i.e., X = PC(X) if and only if X ∈ Im(G).

One of the most popular consistency-based phase reconstruc-
tion methods is GLA [20]. To find consistent coefficients for
the given amplitude, i.e., a solution to the problem given in (4),
GLA iteratively applies two projections as follows:

X[m+1] = PC
(
PA(X

[m])
)
, (7)

where m is the iteration count, and PA is the projection onto the
set A defined by3

PA(X)[ω, τ] = A[ω, τ]
X[ω, τ]

|X[ω, τ]| . (8)

Here, A is the set of complex STFT coefficients whose magni-
tude coincides with A:

A =
{
X ∈ CK×T | |X[ω, τ]| = A[ω, τ]

}
. (9)

One of the two constraints in (4) is enforced by each projection
in GLA. By iterating them, both constraints might be satisfied

3When |X[ω, τ]| = 0 for some (ω, τ), (8) cannot be defined because of zero
division. To avoid such a situation, although the projection should be set-valued
when both |X[ω, τ]| = 0 and A[ω, τ] �= 0 are satisfied at some (ω, τ), we
simply replace the result of zero division by zero in this paper.

simultaneously. GLA can be viewed as a projected gradient al-
gorithm [22], and therefore its convergence towards the solution
is expected if the initial value is adequate.

C. DNN-Based Phase Reconstruction

DNN-based phase reconstruction has been studied in recent
years motivated by the strong modeling capability of DNNs.
This approach takes advantage of the rich prior knowledge of
the target signals that is automatically learned from a training
dataset. In the DNN-based phase reconstruction, a difficulty
of training mainly comes from the periodic nature of phase.
Phase is wrapped in [−π, π), and thus it is discontinuous at ±π
even when phase varies smoothly. To avoid this discontinuity
problem, several techniques have been developed.

One approach is to treat the phase reconstruction problem as a
classification problem by quantizing the target STFT phase [13],
[14]. In this approach, the DNN estimates the set of indices
corresponding to the quantized target phase. By recasting to a
classification problem, the DNN training does not suffer from
the periodic nature of phase. In another approach [27]–[29], the
output of DNN is defined by continuous real numbers whose
range is not restricted to [−π, π). In such a case, the DNN
training suffers from the ambiguity of 2π, and therefore this
approach utilizes a specific loss function based on circular statis-
tics [27]. This approach potentially achieves higher performance
as compared to the quantizing approach, because it does not
suffer from the quantization error. Meanwhile, a DNN outputting
complex STFT coefficients X̂ instead of STFT phases has also
been investigated [30], [31]. In this case, the phase is embedded
into the higher-dimensional space, or the complex plane, to avoid
the periodicity. Note that the estimate of phase is obtained by
taking the complex-argument of X̂, i.e., the amplitude of X̂ is
discarded in phase reconstruction.

These existing DNN-based approaches have outperformed
GLA [27]–[30]. The architecture of DNNs are fixed at the
time of training, and their parameters are optimized for the
dataset. Hence, the computational cost for the inference is not
controllable afterward. This nature of DNN can be restrictive
for applications whose allowable computational time varies.

III. COMBINATIONS OF ITERATIVE ALGORITHMS AND DNN
IN SIGNAL PROCESSING

Several recent studies have tried to incorporate knowledge
from optimization-based signal processing into DNN. The pro-
posed phase reconstruction framework introduced in the next
section is based on such combinations of signal processing and
deep learning. Thus, some of the studies are reviewed in this
section for clarifying the position of the proposed framework.

A. Similarity Between Iterative Algorithm and DNN

The idea of combining an iterative algorithm and DNN is
based on the structural similarity between them. In signal pro-
cessing, one standard methodology is to construct an iterative

40 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021

algorithm which can be written as the following abstract recur-
sive scheme:

u[m+1] = S(u[m]), (10)

where u[m] is a variable at the mth iteration, and S is an
operator representing the update procedure of the algorithm. For
example, GLA in (7) can be obtained by setting S = PC ◦ PA.
This procedure can be expanded as

u[M] = S(S(· · · S(S(u[0])))), (11)

where the operator S is applied M times. The operator S is often
designed for each problem based on an optimization algorithm
and prior knowledge of the data.

DNN is an artificial neural network consisting of multiple
layers with a large number of parameters. Each layer is a
relatively simple component such as an affine transform with an
element-wise nonlinear transform. Let the mth layer be denoted
by H[m]

θm
. Then, a DNN Fθ can be represented as

Fθ(u) = H[M]
θM

(H[M−1]
θM−1

(· · ·H[2]
θ2
(H[1]

θ1
(u)))), (12)

where the DNN is assumed to have M layers, and θ =
(θ1,θ2, . . . ,θM) is the tuple of DNN parameters. Each layer
H[m]

θm
is associated with its parameters θm that is trained with a

dataset to minimize the loss function. The architecture of a DNN
is often designed empirically, and its layers are not designed
specific to problems, even though their choice and combination
have an impact on the quality of inference.

From (11) and (12), the similarity of an iterative algorithm
and DNN is obvious. An iterative algorithm is usually based
on a hand-crafted model of the target signal, and the derived
procedure is often the repeated application of the same operator.
In contrast, a DNN is usually designed heuristically without any
explicit models, and each layer of the DNN is usually different
from the others. Some research has attempted to go between
them as described below.

B. Designing DNN Based on Iterative Algorithm

One way of borrowing both of the above ideas is to de-
sign a DNN architecture based on an iterative algorithm. By
unfolding (or unrolling) an iterative algorithm as in (11), it
can be interpreted as a DNN with common fixed parameters.
By making these parameters uncommon and trainable, a DNN
architecture is obtained based on a better-understood algorithm.
The parameters are optimized by end-to-end backpropagation to
maximize the performance at the fixed number of iterations. This
strategy is called deep unfolding [46] which often achieves better
performance with fewer iterations as compared to the original
iterative algorithms. Its effectiveness has been confirmed in
various inverse problems, such as compressed sensing [47],
multi-channel input multi-channel output signal processing [48],
source separation [49], [50], and others [51].

The idea of deep unfolding was originally proposed in com-
pressed sensing [47] where the iterative shrinkage-thresholding
algorithm (ISTA) was unfolded as the learned ISTA (LISTA).
Fig. 2 illustrates the iterative scheme of ISTA and the architecture
of LISTA. ISTA is a proximal algorithm obtained by inserting

Fig. 2. Illustration of LISTA. ISTA is unfolded to form a single DNN. Blue,
red, and green boxes are the affine transform, soft-thresholding operator, and
single layer in DNN, respectively.

Fig. 3. Concept of PnP. A proximity operator is replaced by a denoising DNN
Fθ . Here, we consider ISTA as an example of proximal algorithm. PnP utilizes
a DNN with the problem specific transform AΨ.

S = Tλ ◦AΨ into (11), where Tλ is the soft-thresholding oper-
ator with a parameter λ ∈ R+, and AΨ is the affine transform
depending on the observation Ψ. LISTA unfolds it to design a
DNN composed of the affine layers and the soft-thresholding as
illustrated in the bottom figure of Fig. 2. As in this example, deep
unfolding enables systematically designing an interpretable
DNN based on an iterative algorithm whose effectiveness is
validated theoretically.

C. Inserting DNN Into Iterative Algorithm

Another way of merging an iterative algorithm and DNN is to
utilize DNN within the iteration of an algorithm. In this strategy,
one significant challenge is how to insert DNN into an iterative
algorithm because an inappropriate use of a DNN can easily
collapse the well-constructed optimization algorithm. To solve
this problem, several approaches have been presented including
regularization by denoising (RED) and plug-and-play (PnP).
RED constructs a regularization term based on a denoising
DNN Fθ [52]. The regularization term is formulated by uT(u−
Fθ(u)) that penalizes the noise component (u−Fθ(u)) in
some sense [53]. An optimization problem with this regulariza-
tion term can be solved via its gradient. PnP inserts a denoising
DNN into a proximal algorithm with the hope that the DNN acts
as the proximity operator [54]–[56]. Proximal algorithms can
handle multiple regularization terms by utilizing proximity oper-
ators [57], proxf : u �→ argminv[f(v) + ‖v − u‖22/2], which
can be viewed as a Gaussian denoising operation based on the
prior distribution exp(−f(·)). PnP replaces a proximity operator
of a conventional regularization term by the denoising DNN as
illustrated in Fig. 3. The convergence of PnP can be guaranteed
by imposing some conditions on the DNN [55].

An essential aspect of these methods is that the DNN is solely
trained as a denoiser. That is, unlike deep unfolding, the training

MASUYAMA et al.: DeGLI: TRAINABLE ITERATIVE PHASE RECONSTRUCTION USING NEURAL NETWORK 41

Fig. 4. Illustration of the proposed phase reconstruction framework, DeGLI.

procedure is conducted independently of an original problem
and iterative algorithm. The DNN can be trained by utilizing
the additive Gaussian noise, which simplifies the preparation of
the training data. Applications of the denoising DNN are not
restricted to a denoising problem. By inserting the DNN into
an iterative algorithm for a task different from denoising, the
DNN can improve the performance for that task because of a
task-specific structure of the iterative algorithm. The proposed
framework follows this concept: utilizing a denoising DNN
within a phase-reconstruction-specific algorithm.

IV. PROPOSED PHASE RECONSTRUCTION

By incorporating a DNN into the iterative algorithm of GLA,
we propose a phase reconstruction framework, named DeGLI,
in this section. First, the architecture of DeGLI, shown in Fig. 4,
is introduced in Section IV-A. Then, its training strategy and
a complex DNN for DeGLI are proposed in Section IV-B
and IV-C, respectively. Finally, the relation between the pro-
posed framework and the existing methods is discussed in
Section IV-D.

A. Deep Griffin–Lim Iteration (DeGLI)

The motivation of proposing DeGLI is to obtain the benefits
from both the DNN-based and consistency-based phase recon-
struction approaches. As described in Section II-C, the DNN-
based methods reconstruct a high-quality signal by exploiting
the rich prior knowledge learned from a training dataset. After
fixing the network architecture, its parameters are automatically
optimized for a given dataset, which improves the performance
of the DNN-based phase reconstruction for signals similar to
those in the training dataset. One limitation of DNN-based phase
reconstruction is its low flexibility to the computational cost.
Since the types and number of layers are fixed at the time of
training, the computational cost is not controllable at the time of
inference. Therefore, one must design and train another DNN if
the trained networks do not meet the computational requirement
for some application. This is not the case for iterative algorithms
of the consistency-based phase reconstruction (Section II-B).
As the computational cost of an iterative algorithm grows lin-
early with the number of iterations, its cost can be adjusted by
selecting the number of iterations based on the computational
requirement. To take advantage of both approaches, we propose

a DNN-based phase reconstruction framework via the iterative
algorithm of GLA.

The proposed framework, DeGLI 4 , is illustrated in Fig. 4. It
stacks the same sub-block Bθ containing a DNN Fθ as

X[m+1] = Bθ(X
[m]) (13)

= Z[m] −Fθ(X
[m],Y[m],Z[m]), (14)

which is designed based on the algorithmic structure of GLA,
where X[m] is the output of mth sub-block (i.e., the same sub-
block Bθ was applied m times), and Y[m] and Z[m],

Y[m] = PA(X
[m]), (15)

Z[m] = PC(Y
[m]), (16)

are intermediate variables keeping the information related to
GLA given in (7). The entire architecture of DeGLI is defined
by M sub-blocks Bθ followed by the projection PA as follows:

DeGLIMθ (X[0]) = PA(Bθ(Bθ(· · · Bθ(Bθ(X
[0])))), (17)

where X[0] is a tuple of complex STFT coefficients whose mag-
nitude coincides with A. Note that the number of sub-blocks M
can be adjusted afterward because the same DNN Fθ is utilized
in eachBθ , i.e., the computational cost of DeGLI can be adjusted
afterward. Its computational cost grows linearly with the number
of sub-blocks as that of an iterative algorithm. Therefore, DeGLI
can be applied to various applications and devices, whose com-
putational requirements may vary widely, without designing and
training another DNN for each of them. In addition, the iterative
use of a single DNN can reduce the number of parameters to be
stored, which is desirable for memory-limited devices.

We designed the sub-block based on GLA and its variants,
and thus DeGLI can be viewed as an extension of the existing
Griffin–Lim type algorithms. DeGLI is reduced to GLA given in
(7) when the residual estimated by the DNNFθ is always zero. A
modified update of GLA presented in [39] is also an instance of
DeGLI given by settingFθ(X

[m],Y[m],Z[m]) = γY[m], where
γ is decided by the parameters of STFT. Another variant of
GLA obtained by applying an over-relaxation technique [58] is
formulated by

Z[m] = PC(PA(X
[m])), (18)

X[m+1] = ρZ[m] + (1− ρ)X[m], (19)

where ρ > 0. This is also an instance of DeGLI by set-
tingFθ(X

[m],Y[m],Z[m]) = (1− ρ)(Z[m] −X[m]). In this re-
spect, DeGLI can be interpreted as a general and trainable ex-
tension of Griffin–Lim type phase reconstruction. The trainable
extension should be able to go beyond a non-trainable Griffin–
Lim type algorithm because of exploiting the prior knowledge
of the target signal to phase reconstruction. Note that using a
DNN in a subtractive form is called residual learning in the

4In our conference paper [31], the DNN in DeGLI did not utilize the given
amplitude. In Section IV-C, however, we will propose a complex DNN that
handles the given amplitude. Because of this difference, the diagram of DeGLI
(Fig. 4) is slightly changed from that of Fig. 1 of [31]. This difference also
changes the diagram of training strategy of the DNN shown in Fig. 5.

42 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021

deep learning community [59], and its effectiveness has been
confirmed in image denoising [60].

For the residual estimation by the DNN, the input X[m] and
intermediatesY[m] andZ[m] should be informative. By compar-
ing X[m] and Y[m], related as Y[m] = PA(X

[m]), the mismatch
between the magnitude of X[m] and the given amplitude A
is known. Similarly, the comparison between Y[m] and Z[m],
related as Z[m] = PC(Y

[m]), gives inconsistent components of
Y[m]. These mismatches should be zero for the true phase,
and therefore a favorable phase reconstruction algorithm should
reduce them quickly. Based on this observation, the DNN is
informed about all intermediate results of GLA with the hope of
generating a suitable direction toward the correct phase.

B. Sub-Block Training by Denoising (SBTD)

One unique feature of DeGLI is the iterative application of a
common DNN, and its number of applications M is not fixed.
Training of the DNN should be designed to be suitable for this
feature. A simple way of training the DNN is the end-to-end
strategy, which, in our case, can be formulated as a minimization
of the following form:

min
θ

EX� [L(X�,DeGLIMθ (X[0]))], (20)

where E is the expectation operator, and L is a loss function.
Here, X� is the complex STFT coefficients calculated from a
time-domain signal in the training dataset. While such end-to-
end training is straightforward, the following problems exist: (i)
the number of sub-blocksM must be fixed at the time of training,
which is incompatible with the concept of the DeGLI framework
allowing M to be adjusted afterward; (ii) backpropagation
for such iterative use of the same DNN requires significant
computation as M increases; and (iii) it suffers from instability
caused by PA because it consists of element-wise multiplication
and division as in (8) which may excessively expand/diminish
the magnitude of the gradient calculated in backpropagation.

To circumvent these problems, we focus solely on the sub-
block instead of the entire procedure. The desired property in
each application of the sub-block is that the output X[m+1]

becomes closer to the solution than the input X[m]. Actually,
GLA in (7) fulfills this property in terms of the spectrogram
consistency [30], i.e., its iteration does not increase the energy of
the inconsistent component ‖PA(X

[m])− PC(PA(X
[m]))‖2Fro,

where ‖X‖2Fro =
∑

ω,τ |X[ω, τ]|2. This favorable property is
induced by the fact that the projections are the minimizers of the
following problems:

PA(X) = argmin
Z

‖X− Z‖2Fro s.t. Z ∈ A, (21)

PC(X) = argmin
Z

‖X− Z‖2Fro s.t. Z ∈ C, (22)

i.e., the projected result is the closest point to the input within
the constraint set. These optimization problems can be seen
as denoising problems for the Gaussian contamination model
with the prior uniform within the constraint set. In other words,
phase reconstruction can be realized by repeatedly applying
the Gaussian denoisers that have the desired property. Hence,
we propose to train the DNN by a denoising task so that the

Fig. 5. Diagram of the proposed SBTD.

sub-block becomes a denoising map based on prior knowledge
of the target signals.

The proposed training strategy, which we call SBTD, is illus-
trated in Fig. 5. With the complex Gaussian noise ε, SBTD is
defined as the following minimization problem:

min
θ

EX�,˜X[L(Z̃−X�,Fθ(X̃, Ỹ, Z̃))], (23)

where X̃ = X� + ε denotes the complex STFT coefficients
contaminated by the complex Gaussian noise, Ỹ = PA(X̃), and
Z̃ = PC(Ỹ). It expects the DeGLI sub-blockBθ to map the noisy
STFT coefficients X̃ to the clean one X� as

X� ≈ Bθ(X̃) (= Z̃−Fθ(X̃, Ỹ, Z̃)), (24)

or equivalently X�− Z̃ ≈ −Fθ(X̃, Ỹ, Z̃) which leads to the
objective function in (23). Since the backpropagation does not
pass through PA, SBTD can avoid the instability caused by it.
In addition, its computational cost and required memory are
significantly reduced compared to the end-to-end method in (20)
which repeatedly applies the same DNN. The training data can
be easily synthesized by adding the Gaussian noise, which is
also an advantage of the proposed strategy.

Although SBTD is defined through the denoising task of
complex STFT coefficients, it is actually related to phase re-
construction. Magnitude of the inputted noisy coefficients is
always replaced by the true ones by PA. Thus, the latter part
of the sub-block, which includes the DNN, mainly focuses on
the reduction of phase disturbance. This is not a usual denoising
task but rather a phase reconstruction task. Appropriateness of
this training strategy will be confirmed in Section V-F.

C. Proposed Complex DNN

While any DNN can be incorporated into the DeGLI frame-
work, this subsection presents a DNN architecture suitable for
DeGLI named the amplitude-informed gated complex convolu-
tional neural network (AI-GCNN). AI-GCNN consists of mul-
tiple AI-GC layers: complex convolution layers with a gating
mechanism that considers the given amplitude.

A 2D complex convolution is formulated by [61]

ConvWC
(C) = (WRe ∗CRe −WIm ∗CIm)

+ i(WRe ∗CIm +WIm ∗CRe), (25)

where ∗ denotes 2D real convolution, C = CRe + iCIm is a
complex input variable, CRe and CIm are its real and imaginary
parts, respectively. Here, WC = WRe + iWIm is a complex

MASUYAMA et al.: DeGLI: TRAINABLE ITERATIVE PHASE RECONSTRUCTION USING NEURAL NETWORK 43

convolution filter to be trained, and WRe and WIm are its
real and imaginary parts, respectively. The complex convolution
layer is chosen for capturing the relation between adjacent T-F
bins efficiently. Furthermore, the projection regarding spectro-
gram consistency PC can be written as an operation similar to
the complex convolution5 [39]. Thus, a complex convolution
layer can be regarded as a generalization of the projection of
spectrogram consistency.

For the nonlinearity in AI-GCNN, we consider a gating
mechanism [43] motivated by the following two reasons: re-
quirement of a multiplicative structure and T-F masking. Firstly,
data-dependent scalar multiplication is desired. When the output
of the sub-block is ideal at the mth iteration, i.e., X[m] = X�,
the intermediate variable Z[m] is also X�, and thus the output
of the DNN should be zero. This requirement can be easily ful-
filled by applying zero multiplication as the gating mechanism.
Secondly, the gating mechanism is motivated by T-F masking.
As DeGLI subtracts the DNN output from Z = PC(PA(X)),
the DNN should extract the unsuitable components contained
in Z. A usual choice for extracting some components in a
spectrogram is T-F masking [62], which can be interpreted as a
gating mechanism.

A T-F mask is often estimated from STFT magnitude. Hence,
we calculate the gate as

AmpGateWR
(C) = Sigmoid(|C| ∗WR), (26)

where Sigmoid(·) is the sigmoid function, WR is a real convo-
lution filter, and |C| denotes magnitude of the complex numbers
calculated element-wise. We define the amplitude-based gated
complex convolution (AGC) layer as

AGCWC ,WR
(C) = ConvWC

(C)�AmpGateWR
(C).

(27)
Finally, as the given amplitude A is important for phase recon-
struction, AI-GCNN employs an amplitude-informed extension
of AGC layer, AI-GC layer. It is defined as

AI-GCWC ,WR
(C)=ConvWC

(C)�AmpGateWR
(Č), (28)

Č=[A,C], (29)

where [·, ·] denotes concatenation in the channel direction. AI-
GCNN should be possible to estimate the undesired residual
component by comparing the given amplitude A and the mag-
nitude of the complex features.

Before leaving this subsection, we briefly mention an exist-
ing complex layer for comparison. Recently, complex DNNs
have gained much attention in complex T-F mask estimation
for speech enhancement/separation [63], [64]. These studies
utilized complex extensions of nonlinear functions related to the
rectified linear unit (ReLU), and [63] reported that the following
CPReLU achieved promising results:

CPReLU(C)=PReLUαRe
(CRe) + iPReLUαIm

(CIm),
(30)

5Specifically, the projection regarding the spectrogram consistency is given by
the twisted convolution with a single filter [39]. The twisted convolution requires
frequency-dependent phase modification in addition to the regular convolution.

where αRe > 0 and αIm > 0 are the parameters of parametric
ReLU (PReLU). This CPReLU is not isotropic with respect to
the origin, which induces bias to the complex output. This bias
directly affects the estimated residual component in DeGLI. In
contrast, the gating mechanism given in (28) preserves the phase
because the sigmoid function takes a real number within 0 to 1.
Thus, the proposed nonlinear function does not induce such bias
to the estimated residual.

D. Relation Between DeGLI and Existing Methods

In this subsection, the relation between DeGLI and existing
iterative-algorithm-based DNNs is discussed. The main differ-
ence between DeGLI and deep unfolding [46] is whether it
is iterative or not. Deep unfolding constructs a single large
DNN based on an unrolled iterative algorithm. Each iteration
in the algorithm is interpreted as a layer of the DNN, where
each layer has its own trainable parameters to be optimized.
Therefore, deep unfolding must fix the number of layers before
training, and the entire DNN is applied only once at the time
of inference. In contrast, DeGLI iterates a single DNN, which
can be seen as deep unfolding whose parameters are shared in
all layers. Recently, the effectiveness of weight-shared DNNs
has been confirmed in natural language processing, and they
outperformed weight-unshared DNNs in some sense [65], [66].
DeGLI does not fix the number of iterations in advance, and
it can be decided at the time of inference. In addition, the
computational cost for the training of DeGLI is less than that
for deep unfolding thanks to the proposed SBTD.

The main difference between DeGLI and PnP [54] is whether
the training is task-oriented or not. PnP incorporates the trained
DNN into a proximal algorithm as a proximity operator which
can be interpreted as a Gaussian denoiser. This leads to the
idea of training the DNN to eliminate the Gaussian noise in
the inputted degraded signal. This training strategy is totally
independent of the original task. In contrast, SBTD contains
the projections specific to phase reconstruction, and thus the
training strategy of the DNN is related to phase reconstruction.
In the sub-block, the first projection PA perfectly removes the
noise in terms of amplitude, and the second onePC eliminates the
inconsistent component contained in the result ofPA. Because of
these projections, the proposed training strategy is different from
solving a general Gaussian denoising problem for the DNN.

Note that, while DeGLI is related to methods that combine
an iterative algorithm and DNN, it is not directly based on a
specific algorithm already proposed for phase reconstruction. In
the existing methods, the usual strategy is to replace a predefined
operation (PA or PC in our case) by a DNN to exploit the learned
knowledge (see Figs. 2 and 3). In contrast, DeGLI leaves the
predefined operations (PA and PC) and additionally applies a
DNN to their results. This idea is based on the acceleration
techniques as in (19) which does not modify the operations of
GLA.

V. EXPERIMENTS

In this section, we conducted several experiments to vali-
date the effectiveness of the proposed DeGLI framework. The

44 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021

Fig. 6. Illustration of AI-GCNN utilized in the experiments. It maps a concate-
nation of three tuples of complex STFT coefficientsX,Y, andZ to the undesired
component in Z. Here, “AI-GC” indicates the AI-GC layer given in (28) with
zero padding to maintain its input size, where k and c are the kernel size and
number of channels, respectively. “Conv” represents the complex convolution
layer (without bias) in (25). Stride sizes for all convolution layers were set to
1× 1.

experimental conditions are described in Section V-A. In Sec-
tion V-B, we investigate the relation between the number of
sub-blocks and the quality of the reconstructed signals. DeGLI
is compared with GLA and an existing DNN-based phase re-
construction method. Section V-C compares DeGLI with two
neural vocoders in both objective and subjective measures.
The generalization ability of DeGLI is shown in Section V-D.
Finally, three proposed techniques (the sub-block, SBTD, and
AI-GCNN) are validated separately in Sections V-E, V-F, and
V-G, respectively.

A. Experimental Condition

1) Dataset, Initialization, and STFT Parameters: We utilized
the LJ speech dataset which consists of 13100 English utterances
of a single speaker. Audio clips were separated into three subsets:
12500 clips for the training, 300 clips for the validation, and 300
clips for the testing as in [67]. During the training, the utterances
were divided into about 1-second-long segments (24064 sam-
ples), where the sampling rate was 22050 Hz. As the noise for
SBTD, the complex Gaussian noise was added in T-F domain so
that the signal-to-noise ratio (SNR) was randomly selected from
−6 to 12 dB. At the time of inference, for DeGLI and GLA,
the magnitude of X[0] was set to the given amplitude A that
was calculated from the corresponding time-domain signal. The
phase was initialized by the following two methods: sampling
from the uniform distribution within ±π or setting to zero.
Note that, in the latter case, X[0] coincided with A. STFT was
implemented with the Hann window, whose length was 46.4 ms
(1024 samples), with 11.6 ms (256 samples) shifting.

2) DNN Architecture and Training Setup: The architecture
of AI-GCNN utilized in the following experiments is depicted
in Fig. 6. It consists of 3 AI-GC layers given in (28), and one
complex convolution layer follows them. Note that all complex
convolutional layers did not contain bias. This DNN estimated
a residual component from three tuples of complex STFT co-
efficients which were concatenated to the channel directions.
For SBTD given in (23), the loss function L was the squared
Frobenius norm of the difference. In all training, parameters
were optimized by the Adam optimizer [68] with a batch size 32

TABLE I
EXPERIMENTAL CONDITIONS

for 300 epoch, where the step size was decayed by multiplying
0.5 every 100 epoch from 0.0004. Since we observed that the
training and validation losses exhibited almost the same behavior
in our early experiments, we only utilized the validation dataset
to monitor the behavior of training in the experiments. All the
above-mentioned conditions are summarized in Table I.

3) Evaluation Metrics: The phase reconstruction perfor-
mance of DeGLI was compared with those of existing methods
by three objective measurements. We evaluated the quality of
the reconstructed signal by the wide-band extension of the per-
ceptual evaluation of subjective quality (PESQ) [69]. Note that
original PESQ was utilized for evaluation of narrow-band speech
in telecommunications. The short-time objective intelligibility
(STOI) was also utilized to evaluate the speech intelligibil-
ity [70]. These objective measures have been commonly utilized
to evaluate the sound quality in speech enhancement [62]. As in
ordinary studies of phase reconstruction, we also evaluated the
log-spectral convergence (LSC) [71]:

LSC(X̂,A) = 20 log10
‖A− |PC(X̂)|‖Fro

‖A‖Fro
. (31)

B. Relation Between Performance and Number of Sub-Blocks

To validate the concept of DeGLI that can balance the per-
formance and computational cost, we first investigated the per-
formance per number of sub-blocks M . The objective measures
of signals obtained by DeGLI, GLA, and GLA initialized by a
DNN-based phase reconstruction method called recurrent phase
unwrapping (RPU) [32] are shown in Fig. 7. Although the DNN
was not trained in a end-to-end manner, the objective measures of
DeGLI were monotonically improved by increasing the number
of sub-blocks M . Since M is adjustable at the time of inference,
this result indicates that DeGLI can easily trade the quality of
reconstructed signals and the computational cost linearly de-
pending on M . Namely, one can eliminate unnecessary compu-
tation or improve the sound quality as long as the computational
resource allows. We stress that this favorable feature of DeGLI
cannot be achieved by existing DNN-based phase reconstruc-
tion, including RPU. As the result of using DNN inside GLA,

MASUYAMA et al.: DeGLI: TRAINABLE ITERATIVE PHASE RECONSTRUCTION USING NEURAL NETWORK 45

Fig. 7. Relation between the objective measures (PESQ, STOI, and LSC)
and the number of sub-blocks M . Higher PESQ and STOI indicate better sound
quality. Lower LSC means better phase reconstruction. Lines represent medians,
and colored regions indicate the first and third quartiles. The types of lines
represent different initialization of phase: solid lines represent uniformly random
initialization, and dotted lines represent zero initialization. The quartiles for
the zero initialization are omitted for visibility because their appearance was
essentially the same with those of random initialization.

DeGLI outperformed the original GLA in terms of all objective
measures for both initialization methods of phase. The uniformly
random initialization achieved better objective measures than
zero initialization when the number of sub-blocks was small,
and thus we utilized the random initialization method in the
following experiments. It also outperformed RPU followed by
GLA. These results indicate that DeGLI is not only efficient but
also well-performing. Note that DeGLI significantly improved
the sound quality in the first 10 sub-blocks. Perceptually, we also
confirmed that the reconstructed signals had reasonable quality
at M = 10.

Since DeGLI applies the DNN in addition to the projections
of GLA, its computational time per iteration is longer than that
of GLA. As a reference, DeGLI with 10 sub-blocks took about
0.172 s on a GPU (NVIDIA TITAN V) and 3.089 s on a CPU
(Intel Core i9-7980XE, 2.60 GHz) for a 2-second-long signal.
GLA with 200 iterations took about 0.297 s on the GPU and
5.97 s on the CPU. We stress that DeGLI with 10 sub-blocks
outperformed GLA with 200 iterations in terms of the objective
measures as observed in Fig. 7.

C. Comparison to Neural Vocoders

In speech synthesis, it has been widely demonstrated that neu-
ral vocoders can generate natural speech signals and outperform
GLA in terms of perceptual quality [67], [72], [73]. Since the
experimental results in Section V-B showed the reconstruction
quality only in terms of objective measures, DeGLI was com-
pared in terms of naturalness in this subsection. In this experi-
ment, we compared DeGLI with two neural vocoders: a popular
open source WaveNet (WN) [72], [74] based on a mixture of lo-
gistics distribution,6 and the official WaveGlow (WG) [67]. The
audio samples of them were brought from a public folder.7 Note
that GLA and DeGLI reconstruct a time-domain signal from a

6The audio samples of WN were generated by using Yamamoto’s open source
implementation: https://doi.org/10.5281/zenodo.1472609. This code has been
utilized as a reference in several papers [67], [75], [76].

7The audio samples were brought from Google Drive: https://drive.google.
com/open?id=1SKO4oDmqUy-AEFXCSAMHyhe_iUIG9FKq

Fig. 8. PESQ, STOI, and the result of subjective test for signals reconstructed
by GLA [20], Yamamoto’s open-source WN [72], [74], official WG [67], and
the proposed DeGLI with 60 sub-blocks. Red lines represent medians, and boxes
indicate the first and third quartiles.

linear spectrogram while the neural vocoders reconstruct that
from a mel-spectrogram. Reconstructed signals were evaluated
by PESQ, STOI, and a subjective test like MUSHRA (multiple
stimuli with hidden reference and anchor) with 16 participants.
In the subjective test, GLA with 60 iterations was used as the
anchor. The number of the DeGLI sub-blocks was also set to 60.
Each participant evaluated 10 sets that were randomly selected
from 40 prepared utterances.8 Each evaluation set consisted of
the original signal, as the hidden reference, and 4 reconstructed
signals by GLA, WN, WG, and DeGLI. The participants were
asked to rate them in terms of naturalness from 0 to 100. To assess
naturalness relatively and clarify the difference, we additionally
instructed the participants to rate one of them as 0 (worst among
the 5 signals) and another one as 100 (expected to be the hidden
reference) for each set.

PESQ, STOI, and the result of the subjective test are illustrated
in Fig. 8. GLA and DeGLI resulted in higher PESQ and STOI
compared to the neural vocoders. This should be because the
neural vocoders generated signals whose STFT magnitudes were
different from the given ones while GLA and DeGLI maintained
them byPA. In the subjective test, the official WG outperformed
both GLA and the Yamamoto’s open-source WN, which is
consistent with the results reported in previous studies [67],
[73]. Compared to the official WG, DeGLI further improved
the subjective scores. One of the advantages of DeGLI is the
smallness of the number of parameters to be stored, which is the
result of the parameter sharing and GLA-based fixed layers. The
number of parameters of DeGLI was less than 0.5% of that of
WG.

D. Robustness and Generalization Capability of DeGLI

1) Evaluation using Degraded Spectrograms: In some ap-
plications, including speech synthesis, the given amplitude A
may contain estimation errors. To validate the robustness of
DeGLI to such errors, in this experiment, we evaluated DeGLI
on degraded spectrograms. For degradation of spectrograms, we
utilized mel-frequency compression because a mel-spectrogram
is a popular acoustic feature in speech synthesis. The degraded
spectrogram was calculated by the following procedure. First,
a linear spectrogram calculated from a time-domain signal was
converted to a mel-spectrogram. Second, the mel-spectrogram

8The audio samples utilized in the test are available in our project page: https:
//sites.google.com/view/yoshiki-masuyama/degli.

https://doi.org/10.5281/zenodo.1472609
https://drive.google.com/open{?}id$=$1SKO4oDmqUy-AEFXCSAMHyhe_iUIG9FKq
https://sites.google.com/view/yoshiki-masuyama/degli

46 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021

Fig. 9. Example of the original linear spectrogram and degraded ones with
different levels of mel-frequency compression.

Fig. 10. PESQ and STOI of speech signals reconstructed from the degraded
spectrograms. Solid lines represent medians, and colored regions indicate the
first and third quartiles.

was converted back to the linear scale by the pseudo inverse
of the forward transform. Finally, the negative elements of the
reconstructed spectrogram were replaced by zero. To change
the level of degradation, the dimension of mel-spectrograms
D was chosen from {80, 160, 320}. Examples of the linear
spectrograms are shown in Fig. 9. Note that the DNN is trained
only with clean linear spectrograms as described in Section V-A.

PESQ and STOI of reconstructed signals are shown in Fig. 10.
In all cases, the final performance of DeGLI became worse than
that using the original linear spectrograms. Even so, DeGLI
still outperformed GLA when D ∈ {160, 320} and was com-
parable to GLA when D = 80. Note that the monotonic nature
of improvement brought by DeGLI was essentially preserved,
which indicates the robustness of DeGLI to the error in the given
amplitude. SBTD using degraded spectrograms may improve the
performance of DeGLI in such a case, but an appropriate way
of degradation should depend on the application.

2) Evaluation using Different Speakers: To investigate the
generalization capability in terms of speakers, DeGLI trained on
the LJ speech dataset was evaluated by using the VCTK corpus.
The training dataset, the LJ speech dataset, contains utterances
of a single female speaker. For the evaluation, we utilized 600

Fig. 11. PESQ and STOI of reconstructed signals in the VCTK corpus, where
DeGLI was trained by the LJ speech dataset. Solid lines represent medians over
300 utterances, and colored regions indicate the first and third quartiles.

Fig. 12. (a) Sub-block of DeGLI. (b) Sub-block for the inference using
DenoisingNet/DenoisingNet+. (c) Diagram of training of DenoisingNet. (d)
Diagram of training of DenoisingNet+.

utterances from the VCTK corpus where each 100 utterances
were selected from those of three females (p225, p228, p229)
and three males (p226, p227, p232). Those utterances were
resampled at 22050 Hz.

The experimental results are illustrated in Fig. 11. DeGLI
outperformed GLA even for the utterances of speakers not
contained in the training dataset. This result suggests the gener-
alization capability of DeGLI to multiple speakers. Comparing
Fig. 11 to Fig. 7, the final objective measures for the VCTK
corpus were slightly worse than those for the LJ speech dataset
due to the mismatch between training and testing datasets.
Recent speaker adaptation techniques [77]–[79] may reduce this
performance deterioration, which is a possible direction of future
works.

E. Effectiveness of Auxiliary Inputs X[m] and Y[m]

In DeGLI, the DNN estimates the residual component inZ[m]

from three tuples of complex STFT coefficients,X[m],Y[m], and
Z[m]. To clarify the effectiveness of the auxiliary inputs, X[m]

and Y[m], we compared DeGLI in Fig. 12-(a) with its variant
illustrated in Fig. 12-(b), where the DNN only takes Z[m] as
input. We considered two DNNs trained by different strategies
for comparison. DenoisingNet was trained with the general
Gaussian denoising task as in Fig. 12-(c), while DenoisingNet+

MASUYAMA et al.: DeGLI: TRAINABLE ITERATIVE PHASE RECONSTRUCTION USING NEURAL NETWORK 47

Fig. 13. Medians of PESQ and STOI of reconstructed speech signals for
comparing different sub-block architectures.

Fig. 14. Example of the given amplitude A, result of GLA Z[0], and result
of refinement by DNN Z[0] −F(X[0],Y[0],Z[0]) (from left to right). In the
circle and box, corrupted harmonic components were recovered.

TABLE II
LSCS OF Z[m] AND Z[m] −F(X[m],Y[m],Z[m]).

utilized the projections specific to phase reconstruction as in
Fig. 12-(d). In this experiment, their architecture was similar
to that of AI-GCNN, but AI-GC layers were replaced by AGC
layers because the clean STFT magnitude is usually unknown
in the general Gaussian denoising task. To set the number of
parameters roughly the same, they contained an additional AGC
layer before the DNN. The results are summarized in Fig. 13,
where DeGLI outperformed the other two. This result indicates
that auxiliary variables X[m] and Y[m] are informative to esti-
mate the residual component. In addition, it can be seen that the
projections in the training stage is indispensable because De-
noisingNet, which did not utilize the projections in its training,
failed to improve the performance by increasing the number of
sub-blocks M .

To illustrate the effectiveness of the residual estimation by
the DNN, an example of A, Z[0], and Z[0] −F(X[0],Y[0],Z[0])
are shown in Fig. 14. It can be seen that the corrupted har-
monic components were enhanced by subtracting the residual
component estimated by the DNN, e.g., in the orange circle
and box. This favorable result was also confirmed in terms of
LSCs. LSCs of Z[m] and Z[m] −F(X[m],Y[m],Z[m]) of the
signal corresponding to the spectrogram shown in Fig. 14 for
m = 0, 1, 2 are listed in Table II. The DNN improved LSCs from
the result of GLA Z[m]. These results indicate the effectiveness
of the residual estimation by the DNN.

Fig. 15. Comparison of LSCs among training strategies whose number of
sub-blocks at the time of training is different. The proposed SBTD, which uses
one sub-block in training, is illustrated in the leftmost figure.

Fig. 16. Medians of PESQ and STOI of reconstructed speech signals for
comparing SBTDs with different SNR ranges.

F. Detailed Experiments of SBTD

1) Efficiency of SBTD: To illustrate the sufficiency of the
single-block training, SBTD (using 1 sub-block) was compared
with its variants using 3 and 5 sub-blocks. In those variants,
the model parameters were shared in all sub-blocks to align the
number of parameters. In the training with multiple sub-blocks,
the complex Gaussian noise was added to the clean STFT coef-
ficients before the first sub-block. Then, the DNN was trained
to minimize the difference between the clean STFT coefficients
and the output of the last sub-block.

LSCs of the reconstructed signals are shown in Fig. 15.
DeGLI trained by SBTD achieved performance comparable to
those trained with 3 and 5 sub-blocks. As the computational
cost of the training increases as M increases, that of SBTD is
the lowest among all variants using more than one sub-blocks.
Hence, SBTD minimizes the computational cost for training
while maintaining the performance.

2) Effect of Noise Level in SBTD: In the all experiments thus
far, DeGLI was trained by SBTD whose SNR of inputted STFT
coefficients was varied from −6 to 12 dB. In this experiment,
we investigated how this range of SNR affects the performance.
To this end, two DNNs were additionally trained by SBTD with
a lower SNR range (from −18 to 6 dB) or a higher range (from
6 to 24 dB).

The results are illustrated in Fig. 16. First of all, with all
SNR ranges, PESQ and STOI were improved as the number
of sub-blocks increased. DeGLI trained with the lower SNR
range improved the objective measures quickly but resulted in
the lowest performance at the end. In contrast, DeGLI trained
with the higher SNR range improved PESQ and STOI slowly but
surpassed those with the lower SNR range. These results indicate
that there exists a trade-off between the speed of improvements

48 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021

TABLE III
MEDIAN OF PESQ AND STOI OF RECONSTRUCTED SIGNALS WITH 1, 2, 3, 5, 10, 100 SUB-BLOCKS FOR COMPARING VARIOUS

DNN ARCHITECTURES. THE BOLD FONT AND UNDERLINE INDICATE HIGHEST AND SECOND HIGHEST SCORES.

and the final performance, and it can be adjusted by the range
of SNR in SBTD.

G. Effectiveness of AI-GC Layer

DeGLI iteratively utilizes a single DNN that directly handle
complex STFT coefficients. Such iterative use is unusual, and
it is unclear what kind of DNN is suitable for that. Hence,
we conducted an experiment for comparing DNN architectures
in terms of the DeGLI framework. In addition to AI-GCNN,
we considered three complex DNNs and two real DNNs. Two
complex DNNs were constructed by replacing AI-GC layers
with AGC layers or the following real-imaginary-based gated
complex convolution (ReImGC) layers:

ReImGateWR
(C)=Sigmoid([CRe,CIm] ∗WRe), (32)

ReImGCWC ,WR
(C)=ConvWC

(C)�ReImGateWR
(C).

(33)

Another complex DNN was obtained by combining the complex
convolution layers with CPReLU given in (30) (abbreviated as
CPReLUC). We also considered real gated convolution layer
(abbreviated as rGC) as in our conference paper [31] and real
convolution layer with PReLU (abbreviated as rPReLUC) as
in [30]. The number of channels for real convolution layers was
set to 128.

The results are summarized in Table III. First of all, with all
DNNs, the performance of DeGLI improved as the number of
sub-blocks M increased. This indicates that the DeGLI frame-
work can cooperate with various types of DNNs. When M = 1,
DeGLI with the rPReLUC layer achieved the best PESQ. Note
that the rPReLUC layer was utilized in a DNN-based phase
reconstruction method that directly generates complex STFT
coefficients [30]. Therefore, our experimental result confirmed
the validity of the previous study. When M > 1, AI-GC outper-
formed rPReLUC for allM . This result indicates that the AI-GC
layer is suitable for the iterative use in DeGLI, and its benefit is
provided by stacking at least more than one sub-block.

Comparing AGC and ReImGC layers, the gating mechanism
based on the magnitude of inputted variables |C| achieved better
performance than that based on the real and imaginary parts
of inputs [CRe,CIm]. Furthermore, AGC outperformed rGC,
which was utilized in our conference paper [31], with much small
number of parameters. This result also indicates the effectiveness
of the combination of complex convolution and the amplitude-
based gating mechanism. By additionally utilizing the given
amplitude, AI-GC outperformed AGC when M ∈ {1, 2, 3, 5},

but their difference became smaller as the number of sub-blocks
M increased. This might be because the first AGC layer can also
consider the target amplitude A by extracting the amplitude of
Y = PA(X).

VI. CONCLUSION

We have presented the DNN-based phase reconstruction
framework, called DeGLI, which stacks the common GLA-
based sub-block containing a DNN. The DNN aims to remove
the undesired components from the result of projections of
GLA. An advantage of DeGLI is that its computational cost
is adjustable at the time of inference by changing the number
of sub-blocks. This allows us to use a single model for applica-
tions on various devices whose allowable computational cost is
different. We further proposed the effective training strategy,
named SBTD, that minimizes the computational cost of the
training while keeping the phase reconstruction performance.
Our experimental results confirmed that DeGLI enables us to
trade the quality of a reconstructed signal and computational
cost. In addition, DeGLI with 60 sub-blocks resulted in better
sound quality comparing to the neural vocoders. Furthermore,
we presented a complex DNN for DeGLI, and its effectiveness
was validated by comparing various real and complex DNNs.

REFERENCES

[1] S. Takaki, H. Kameoka, and J. Yamagishi, “Direct modeling of frequency
spectra and waveform generation based on phase recovery for DNN-based
speech synthesis,” in Proc. INTERSPEECH Aug. 2017, pp. 1128–1132.

[2] T. Kaneko, S. Takaki, H. Kameoka, and J. Yamagishi, “Generative adver-
sarial network-based postfilter for STFT spectrograms,” in Proc. INTER-
SPEECH, Aug. 2017, pp. 3389–3393.

[3] Y. Saito, S. Takamichi, and H. Saruwatari, “Text-to-speech synthesis
using STFT spectra based on low-/multi-resolution generative adversarial
networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Apr. 2018, pp. 5299–5303.

[4] Y. Wang et al., “Tacotron: Towards end-to-end speech synthesis,” in Proc.
INTERSPEECH, Aug. 2017, pp. 4006–4010.

[5] A. Marafioti, N. Holighaus, N. Perraudin, and P. Majdak, “Adversarial
generation of time-frequency features with application in audio synthesis,”
in Proc. Int. Conf. Mach. Learn., vol. 97, Jun. 2019, pp. 4352–4362.

[6] H. Suda, D. Saito, and N. Minematsu, “Voice conversion without explicit
separation of source and filter components based on non-negative ma-
trix factorization,” in Proc. ISCA Speech Synth. Workshop, Sep. 2019,
pp. 69–74.

[7] M. Krawczyk and T. Gerkmann, “STFT phase reconstruction in voiced
speech for an improved single-channel speech enhancement,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 22, no. 12, pp. 1931–1940,
Dec. 2014.

[8] P. Mowlaee and J. Kulmer, “Harmonic phase estimation in single-channel
speech enhancement using phase decomposition and SNR information,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23, no. 9, pp. 1521–
1532, Sep. 2015.

MASUYAMA et al.: DeGLI: TRAINABLE ITERATIVE PHASE RECONSTRUCTION USING NEURAL NETWORK 49

[9] P. M. R. Badeau and B. David, “Model-based STFT phase recovery for
audio source separation,” IEEE/ACM Trans. Audio, Speech Lang. Process.,
vol. 26, no. 6, pp. 1095–1105, Jun. 2018.

[10] T. Afouras, J. S. Chung, and A. Zisserman, “The conversation: Deep
audio-visual speech enhancement,” in Proc. INTERSPEECH, Sep. 2018,
pp. 3244–3248.

[11] Z.-Q. Wang, J. L. Roux, D. Wang, and J. R. Hershey, “End-to-end speech
separation with unfolded iterative phase reconstruction,” in Proc. INTER-
SPEECH, Sep. 2018, pp. 2708–2712.

[12] Z.-Q. Wang, K. Tan, and D. Wang, “Deep learning based phase
reconstruction for speaker separation: A trigonometric perspec-
tive,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
May 2019, pp. 71–75.

[13] N. Takahashi, P. Agrawal, N. Goswami, and Y. Mitsufuji, “PhaseNet:
Discretized phase modeling with deep neural networks for audio source
separation,” in Proc. INTERSPEECH, Sep. 2018, pp. 2713–2717.

[14] J. Le Roux, G. Wichern, S. Watanabe, A. Sarroff, and J. R. Hershey,
“Phasebook and friends: Leveraging discrete representations for source
separation,” IEEE J. Sel. Top. Signal Process., vol. 13, no. 2, pp. 370–382,
May 2019.

[15] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator,” IEEE/ACM
Trans. Acoust., Speech, Signal Process., vol. 32, no. 6, pp. 1109–1121,
Dec. 1984.

[16] K. Paliwal, K. Wójcicki, and B. Shannon, “The importance of phase in
speech enhancement,” Speech Commun., vol. 53, no. 4, pp. 465–494,
Apr. 2011.

[17] T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux, “Phase processing for
single-channel speech enhancement: History and recent advances,” IEEE
Signal Process. Mag., vol. 32, no. 2, pp. 55–66, Mar. 2015.

[18] P. Mowlaee, R. Saeidi, and Y. Stylianou, “Advances in phase-aware signal
processing in speech communication,” Speech Commun., vol. 81, pp. 1–29,
Jul. 2016.

[19] K. Yatabe, Y. Masuyama, T. Kusano, and Y. Oikawa, “Representation of
complex spectrogram via phase conversion,” Acoust. Sci. Tech., vol. 40,
no. 3, pp. 170–177, May 2019.

[20] D. Griffin and J. Lim, “Signal estimation from modified short-time Fourier
transform,” IEEE Trans. Acoust. Speech Signal Process., vol. 32, no. 2,
pp. 236–243, Apr. 1984.

[21] N. Perraudin, P. Balazs, and P. L. Søndergaard, “A fast Griffin–Lim
algorithm,” in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust.,
Oct. 2013, pp. 1–4.

[22] Y. Masuyama, K. Yatabe, and Y. Oikawa, “Griffin–Lim like phase recovery
via alternating direction method of multipliers,” IEEE Signal Process.
Lett., vol. 26, no. 1, pp. 184–188, Jan. 2019.

[23] G. T. Beauregard, M. Harish, and L. Wyse, “Single pass spectrogram
inversion,” in Proc. IEEE Int. Conf. Digit. Signal Process., Jul. 2015,
pp. 427–431.

[24] P. Magron, R. Badeau, and B. David, “Phase reconstruction of spectro-
grams with linear unwrapping: Application to audio signal restoration,” in
Proc. Eur. Signal Process. Conf., Aug. 2015, pp. 1–5.

[25] D. S. Williamson, Y. Wang, and D. Wang, “Complex ratio masking for
monaural speech separation,” IEEE/ACM Trans. Audio, Speech Lang.
Process., vol. 24, no. 3, pp. 483–492, Mar. 2016.

[26] D. S. Williamson and D. Wang, “Time-frequency masking in the com-
plex domain for speech dereverberation and denoising,” IEEE/ACM
Trans. Audio Speech Lang. Process., vol. 25, no. 7, pp. 1492–1501,
Jul. 2017.

[27] S. Takamichi, Y. Saito, N. Takamune, D. Kitamura, and H. Saruwatari,
“Phase reconstruction from amplitude spectrograms based on von–Mises-
distribution deep neural network,” in Proc. Int. Workshop Acoust. Signal
Enhance., Sep. 2018, pp. 286–290.

[28] S. Takamichi, Y. Saito, N. Takamune, D. Kitamura, and H. Saruwatari,
“Phase reconstruction from amplitude spectrograms based on directional-
statistics deep neural networks,” Signal Process., vol. 169, pp. 107368,
Apr. 2020.

[29] A. A. Nugraha, K. Sekiguchi, and K. Yoshii, “A deep generative model of
speech complex spectrograms,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., May 2019, pp. 905–909.

[30] K. Oyamada, H. Kameoka, T. Kaneko, K. Tanaka, N. Hojo, and H. Ando,
“Generative adversarial network-based approach to signal reconstruc-
tion from magnitude spectrograms,” in Proc. Eur. Signal Process. Conf.,
Sep. 2018, pp. 2514–2518.

[31] Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, “Deep
Griffin–Lim iteration,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., May 2019, pp. 61–65.

[32] Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, “Phase
reconstruction based on recurrent phase unwrapping with deep neural
networks,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
May 2020, pp. 826–830.

[33] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, maxcut
and complex semidefinite programming,” Math. Programm., vol. 149,
no. 1, pp. 47–81, Feb. 2015.

[34] E. J. Candes, Y. Eldar, and T. S. V. Voroninski, “Phase retrieval via matrix
completion,” SIAM Rev., vol. 57, no. 2, pp. 225–251, May 2015.

[35] E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: Exact and stable
signal recovery from magnitude measurements via convex programming,”
Commun. Pure Appl. Math., vol. 66, no. 8, pp. 1241–1274, Nov. 2013.

[36] Z. Průša, P. Balazs, and P. L. Søndergaard, “A noniterative method for
reconstruction of phase from STFT magnitude,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 25, no. 5, pp. 1154–1164, May 2017.

[37] K. Yatabe, Y. Masuyama, and Y. Oikawa, “Rectified linear unit can
assist Griffin–Lim phase recovery,” in Proc. Int. Workshop Acoust. Signal
Enhance., Sep. 2018, pp. 555–559.

[38] T. Bendory, Y. C. Eldar, and N. Boumal, “Non-convex phase retrieval
from STFT measurements,” IEEE Trans. Inf. Theory, vol. 64, no. 1,
pp. 467–484, Aug. 2018.

[39] J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama, “Fast signal
reconstruction from magnitude STFT spectrogram based on spectro-
gram consistency,” in Proc. Int. Conf. Digit. Audio Effects, Sep. 2010,
pp. 397–403.

[40] J. Le Roux and E. Vincent, “Consistent Wiener filtering for audio source
separation,” IEEE Signal Process. Lett., vol. 20, no. 3, pp. 217–220,
Mar. 2013.

[41] Y. Masuyama, K. Yatabe, and Y. Oikawa, “Model-based phase recovery
of spectrograms via optimization on Riemannian manifolds,” in Proc. Int.
Workshop Acoust. Signal Enhance., Sep. 2018, pp. 126–130.

[42] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “GANSynth: Adversarial neural audio synthesis,” in Proc.
Int. Conf. Learn. Represent., Apr. 2019.

[43] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” 2016, arXiv:1612.08083.

[44] O. Christensen, “Gabor frames and duality,” in An Introduction to Frames
and Riesz Bases, May 2016, Boston, MA, USA: Birkhäuser, pp. 287–325.
[Online]. Available: https://doi.org/10.1007/978-3-319-25613-9_12

[45] O. Christensen, “Gabor frames and duality,” in An Introduction to Frames
and Riesz Bases, May 2016, Boston, MA, USA: Birkhäuser, pp. 1–46.
[Online]. Available: https://doi.org/10.1007/978-3-319-25613-9_12

[46] J. R. Hershy, J. Le Roux, and F. Weninger, “Deep unfolding: Model-based
inspiration of novel deep architectures,” 2014, arXiv:1409.2574.

[47] K. Greger and Y. LeCun, “Learning fast approximations of sparse coding,”
in Proc. Int. Conf. March. Learn., Jun. 2010, pp. 399–406.

[48] S. Takabe, M. Imanishi, T. Wadayama, and R. Hayakawa, “Trainable
projected gradient detector for massive overloaded MIMO channels:
Data-driven tuning approach,” IEEE Access, vol. 7, pp. 93 326–93 338,
Jul. 2019.

[49] S. Wisdom, J. Hershey, J. Le Roux, and S. Watanabe, “Deep unfolding for
multichannel source separation,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Mar. 2016, pp. 121–125.

[50] G. Wichern and J. Le Roux, “Phase reconstruction with learned time-
frequency representations for single-channel speech separation,” in Proc.
Int. Workshop Acoust. Signal Enhance., Sep. 2018, pp. 396–400.

[51] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Inter-
pretable, efficient deep learning for signal and image processing,” 2019,
arXiv:1912.10557.

[52] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could:
Regularization by denoising (RED),” SIAM J. Imag. Sci., vol. 10, no. 4,
pp. 1804–1844, Oct. 2017.

[53] E. T. Reehorst and P. Schniter, “Regularization by denoising: Clarifications
and new interpretations,” IEEE Trans. Comput. Imag., vol. 5, no. 1,
pp. 52–67, Mar. 2018.

[54] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-Play
priors for model based reconstruction,” in Proc. IEEE Glob. Conf. Signal,
Inf. Process., Dec. 2013, pp. 945–948.

[55] S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-Play ADMM for
image restoration: Fixed-point convergence and applications,” IEEE Trans.
Comp. Imag., vol. 3, no. 1, pp. 84–98, Mar. 2017.

[56] T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers, “Learning proximal
operators: Using denoising networks for regularizing inverse imaging
problems,” in Proc. Int. Conf. Comput. Vis., Oct. 2017, pp. 1799–1808.

[57] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Opt.,
vol. 1, no. 3, pp. 127–239, Jan. 2014.

https://doi.org/10.1007/978-3-319-25613-9_12
https://doi.org/10.1007/978-3-319-25613-9_12

50 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 1, JANUARY 2021

[58] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, “Proximal
splitting algorithms: Relax them all!,” 2019, arXiv:1912.00137.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comp. Vis. Pattern Recognit., Jun. 2016,
pp. 770–778.

[60] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE Trans.
Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[61] C. Trabelsi et al., “Deep complex networks,” in Proc. Int. Conf. Learn.
Represent., Apr. 2018.

[62] D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 26, no. 10, pp. 1702–1726, Oct. 2018.

[63] A. Pandey and D. Wang, “Exploring deep complex networks for complex
spectrogram enhancement,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., May 2019, pp. 6885–6889.

[64] Y. Hu et al., “DCCRN: Deep complex convolution recurrent network for
phase-aware speech enhancement,” Aug. 2020, arXiv:2008.00264.

[65] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Proc.
Adv. Neural Inf. Process. Syst., Dec. 2019, pp. 690–701.

[66] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite BERT for self-supervised learning of language repre-
sentations,” in Proc. Int. Conf. Learn. Represent., Apr. 2020.

[67] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based gen-
erative network for speech synthesis,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., May 2019, pp. 3617–3621.

[68] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., May 2015.

[69] P.862.2: Wideband Extension to Recommendation P.862 for Assessment
Wideband Telephone Networks and Speech Codecs, ITU-T Std. P.862.2,
2007.

[70] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algorithm
for intelligibility prediction of time-frequency weighted noisy speech,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 7, pp. 2155–2136,
Sep. 2011.

[71] N. Strumel and L. Daudet, “Signal reconstruction from STFT magnitude:
A state of the art,” in Proc. Int. Conf. Digit. Audio Effects, Sep. 2011,
pp. 375–386.

[72] J. Shen et al., “Natural tts synthesis by conditioning wavenet on mel
spectrogram predictions,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., Apr. 2018, pp. 4779–4783.

[73] K. Kumar et al., “MelGAN: Generative adversarial networks for con-
ditional waveform synthesis,” in Proc. Adv. Neural Inf. Process. Syst.,
Dec. 2019, pp. 14 910–14 921.

[74] A. van den Oord et al., “Wavenet: A generative model for raw audio,” pp.
4779–4783, Apr. 2016, arXiv:1609.03499.

[75] K. Kastner, J. F. Santos, Y. Bengio, and A. Courville, “Representation
mixing for TTS synthesis,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., May 2019, pp. 5906–5910.

[76] S. Maiti and M. I. Mandel, “Parametric resynthesis with neural vocoders,”
in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust., Oct. 2019,
pp. 303–307.

[77] L. J. Liu, Z. H. Ling, Y. Jiang, M. Zhou, and L. R. Dai, “Wavenet vocoder
with limited training data for voice conversion,” in Proc. INTERSPEECH,
Sep. 2018, pp. 1983–1987.

[78] S. Arik, J. Chen, K. Peng, W. Ping, and Y. Zhou, “Neural voice cloning
with a few samples,” in Proc. Adv. Neural Inf. Process. Syst., Dec. 2018,
pp. 10 019–10 029.

[79] Y. Koizumi, K. Yatabe, M. Delcroix, Y. Masuyama, and D. Takeuchi,
“Speech enhancement using self-adaptation and multi-head self-
attention,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
May 2020, pp. 181–185.

Yoshiki Masuyama (Student Member, IEEE) re-
ceived the B.E. degree from Waseda University in
2019. He is currently working toward the M.E. degree
from the Department of Intermedia Art and Science,
Waseda University. Mr. Masuyama is a member of
the Acoustical Society of Japan (ASJ).

Kohei Yatabe (Member, IEEE) received the B.E.,
M.E., and Ph.D. degrees from Waseda University, in
2012, 2014, and 2017, respectively. He is currently
an Assistant Professor with the Department of Inter-
media Art and Science, Waseda University.

Yuma Koizumi (Member, IEEE) received the B.S.
and M.S. degrees from Hosei University, in 2012
and 2014, respectively and the Ph.D. degree from
the University of Electro-Communications in 2017.
Since 2014, he has been with Nippon Telegraph and
Telephone Corporation (NTT), where he has been
involved with research on acoustic signal processing
and machine learning. He is a member of the ASJ
and the Institute of Electronics, Information, and
Communication Engineers.

Yasuhiro Oikawa (Member, IEEE) received the B.E,
M.E., and Ph.D. degrees in electrical engineering
from Waseda University, in 1995, 1997, and 2001,
respectively. He is currently a Professor with the
Department of Intermedia Art and Science, Waseda
University. His main research interests include com-
munication acoustics and digital signal processing of
acoustic signals. Prof. Oikawa is a member of ASJ,
ASA, IEICE, IPSJ, VRSJ, and AIJ.

Noboru Harada (Senior Member, IEEE) received
the B.S. and M.S. degrees in computer science from
the Department of Computer Science and Systems
Engineering, Kyushu Institute of Technology, Ki-
takyushu, Japan, in 1995 and 1997, respectively, and
the Ph.D. degree in computer science from the Grad-
uate School of Systems and Information Engineer-
ing, University of Tsukuba, Tsukuba, Japan, in 2017.
Since joining NTT Corporation, Tokyo, Japan, in
1997, he has been involved with research on speech
and audio signal processing, such as high efficiency

coding and lossless compression. His current research interests include acoustic
signal processing and machine learning for acoustic event detection, including
ADS. Dr. Harada was the recipient of the Technical Development Award from
the Acoustical Society of Japan (ASJ) in 2016, the Industrial Standardization
Encouragement Awards from the Ministry of Economy Trade and Industry of
Japan in 2011, and the Telecom System Technology Paper Encouragement
Award from the Telecommunications Advancement Foundation of Japan in
2007. He is a member of the ASJ, the Institute of Electronics, Information and
Communication Engineers, and the Information Processing Society of Japan.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

