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Abstract—Removal of rain streaks from a single image is
an extremely challenging problem since the rainy images often
contain rain streaks of different size, shape, direction and density.
Most recent methods for deraining use a deep network following
a generic ‘“‘encoder-decoder” architecture which captures low-
level features across the initial layers and high-level features in
the deeper layers. For the task of deraining, the rain streaks
which are to be removed are relatively small and focusing much
on global features is not an efficient way to solve the problem.
To this end, we propose using an overcomplete convolutional
network architecture which gives special attention in learning
local structures by restraining the receptive field of filters.
We combine it with U-Net so that it does not lose out on
the global structures as well while focusing more on low-
level features, to compute the derained image. The proposed
network called, Over-and-Under Complete Deraining Network
(OUCD), consists of two branches: overcomplete branch which
is confined to small receptive field size in order to focus on
the local structures and an undercomplete branch that has
larger receptive fields to primarily focus on global structures.
Extensive experiments on synthetic and real datasets demonstrate
that the proposed method achieves significant improvements
over the recent state-of-the-art methods. Code is available at
https://github.com/jeya-maria-jose/Derain_OUCD_Net

Index Terms—Deraining, Overcomplete Representations, Deep
Networks

I. INTRODUCTION

Images taken in outdoors are more susceptible to different
weather conditions which decrease the visual quality of the
captured images. This results in degradation of many high-
level computer vision tasks like video surveillance, image
understanding, object detection and classification. In order
to improve the performance of these tasks, it is important
to develop algorithms that remove artifacts and recover the
cleaner version of the degraded images. Rain is one of
the most common weather condition that is responsible for
poor performance of high-level computer vision algorithms in
video surveillance and autonomous driving [1]]. Removing rain
streaks from the rainy images can considerably increase the
performance of these vision tasks [2].

Deep Learning methods have risen to popularity in solving
most of the computer vision tasks in the last decade. They
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have achieved state-of-the-art performance in many tasks like
image classification, object detection, semantic segmentation
and image restoration. Most of these methods are based on
convolutional neural networks (CNNs). AlexNet [3] in 2012
showed how a deep network consisting of convolutional, max-
pooling and fully-connected layers works very well for image
classification task. Most of the methods that followed [4]],
[S] used a similar set of layers with changes in architecture
for efficient learning. Seg-Net [6], an “encoder-decoder” type
of deep network was proposed for the task of semantic
segmentation which gave a significant improvement in the
performance over previous methods. The main idea behind an
“encoder-decoder” convolutional network architecture is that
at the initial convolutional layers, the receptive field size of the
filters are small and so capture low-level features like edges.
The deeper layers in the network work on larger receptive
field and so capture high-level features of the input image. The
feature maps are projected onto a lower dimension similar to
an undercomplete autoencoder. The decoder takes the feature
maps back to the original resolution of the input image. U-Net
[7]] proposed using skip connections between the encoder and
decoder network which showed a significant improvement in
performance for image segmentation. Following the popularity
of U-Net, it was the go-to network architecture serving as the
backbone for many other tasks like image-to-image translation
(8], [9ll, [LO], image synthesis [L1], image segmentation [12],
medical image analysis [13[], [14)], [15], [16] and image
restoration [11], [17], [18]].

The noisy element can be different in each restoration
problem, it can be small streaks in case of deraining, it
can be larger patches in case of shadow removal or it can
be grains of speckles in case of denoising problem. Using
a generic “encoder-decoder” architecture like U-Net or its
variant works well in most of the restoration problems as it
captures both low-level features (in initial layers) and high-
level features (in deeper layers). However, there is a difference
in the features that are to be given importance according to
the restoration task at hand. In tasks like deraining where
most of the rain streaks in the image are small; using a
filter that has a very large receptive field is not useful as it
does not learn any information about the rain streaks. For
example, Fig. [T] shows that existing deraining methods based
on ResNet and U-Net architectures are not able to remove
rain streaks completely since they are not able to focus on
meaningful low-level features. [19], [21], [22] which are based
on ResNet architecture, fail to remove small rain streaks and
fail to capture rain streaks in the sky as seen in Fig. E} [71, 120]
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Fig. 1: First and Second rows show the comparison of our method OUCD, for the rainy image against the state-of-the-art
methods. It can be seen that our proposed method OUCD produces a better derained image when compared to the other
methods. Third row: (a),(b) Features maps from the deep layers of an overcomplete network. (c),(d) Feature maps from the
deep layers of an undercomplete network. The feature maps of an overcomplete network captures rain streaks as seen in (a),(b)
while the undercomplete network captures details of the building or the sky as seen in (c),(d).

which are U-Net based architectures primarily focus on global
level features and fail to remove small rain streaks and also
remove some texture data as explained in [22]], [23]. In this
paper, we focus on extracting meaningful low-level features
that can capture even the tiniest rain streaks and remove them.
To this end, we propose to use an overcomplete convolutional
network architecture.

Before the deep learning era, overcomplete representations
have been used for many tasks where a robust method
that could deal with noisy input was needed. Although over-
complete architectures have been mentioned in the literature
[23], overcomplete convolutional architectures have not been
explored for low-level vision tasks. Unlike an undercomplete
convolutional network where the receptive field enlarges as we
go deeper through the network, an overcomplete architecture
restricts the enlargement of receptive field in the deeper layers
(the reason is discussed in section [[II). This helps us to force
the filters in all the layers of network focus on low-level
features. Moreover, the deeper layers now learn more finer
edges and focus on smaller objects than the initial layers which
helps us to detect and eliminate rain streaks better. Though we
state that low-level features are more important for the task
of deraining, it does not mean that high-level features do not
carry any meaning at all for this task. High level-features are
also important as they help in properly reconstructing large
structures and objects in the image. Hence, we propose a novel
network architecture that combines both the overcomplete and
undercomplete architectures in an efficient way for image
deraining. We name our network Over-and-Under Complete
Deraining (OUCD) Network. The overcomplete branch of
our network focuses on learning low level features in high
resolution thus capturing very fine features of rain streaks,
while the undercomplete branch learns global features. Some

of the feature maps from our network are illustrated in Fig.
[ (a),(b),(c) and (d). From these maps, it can be clearly seen
that an overcomplete convolutional network branch captures
the rain streaks clearly even in their deep layers as seen in Fig.
|I| (a),(b) whereas the undercomplete network branch captures
the building and sky in its deep layers as can be seen in Fig. [I]
(c) and (d).

To summarize, this paper makes the following contributions:

« We explore overcomplete representations in deep learning
network architectures for image deraining.

o We show how using an overcomplete architecture helps
in capturing finer details of rain streaks more effectively.

o« We propose a novel deep network architecture, Over-
and-Under Complete Deraining (OUCD) Network, which
combines both overcomplete and undercomplete net-
works so as to learn both low-level and high-level features
of the rainy image effectively.

e« We achieve significant improvements in performance
across many real and synthetic deraining datasets over
the recent state-of-the-art methods.

II. RELATED WORK

We have witnessed great progress in the literature address-
ing the rain removal problems using the traditional image pro-
cessing methods [26]), [27]], [28]], [29] and convolutional neural
networks (CNNs) [30]], [31]]. These rain removal methods can
be broadly divided into video rain removal methods [32], [33]],
[34], [33], [36], [37], and single-image rain removal methods
In this paper, we focus on single image rain removal problem.
A captured rainy image y is mathematically modeled as the



addition of rain streak information r (i.e called as residual
map) with the clean image x as follows

y=x+r. (1)

Video-based methods: Video-based deraining methods
are rich in temporal information, so one can use temporal
consistency to ease the deraining problem. [32], [33[], [34]
exploit temporal information in different ways and make
use of them to remove the rain information in videos. [36]
proposed a method using multi-scale convolutional sparse
coding model for the video rain streak removal that takes
both characteristics of rain information into account like rain
streaks follows multi-scale configurations and their patterns
are sparsely scattered. [37] proposed a two-step architecture
where they extract reliable motion information from the
initially estimated derained image to align the frames and
then model the motion in the second stage.

Single-image based methods: Early methods in the literature
like [26], [27], [28], [29] for the rain removal task use
traditional image processing techniques. They include tech-
niques that address the rain removal problem using low-high
frequency image decomposition [26]], low-rank representation
based [40], dictionary learning-based [47]], and Gaussian mix-
ture model-based methods [29]. Fu et al. [[19], [48] introduced
CNN-based methods in an end-to-end deep learning fashion to
address the rain removal problem. Zhang et al. [20] proposed
density aware multi-stream CNN where first they estimate
density of rainy image and use it to fuse the features from
different streams in order to derain the image. Qian et al.
proposed an attention based rain drop removal network where
they use recurrent network based architecture to obtain the
attention map. Li ef al. [21] exploits the benefits of recurrent
neural networks to preserve the useful contextual information
of the earlier layers. Ren et al. [38] proposed a simpler baseline
network that is based on ResNet and performs deraining in a
progressive manner to obtain the final derained image. [49],
[SO] proposed rainy datasets that considers physics of rainy
images formulation. Wang et al.[22]] proposed a local to global
procedure to derain the image using spatially attentive blocks.
Yasarla et al. [23] proposed a mutliscale deraining method
by modeling uncertainity in estimating residual at low scales
and using them in computing the final derained image. Wei et
al. [S1] proposed a semi-supervised deraining method using
Gaussian mixture models. Wang et al.[39] proposed a network
that learns a mapping from low-quality embedding to a latent
optimal vector by formulating a residual learning branch, that
is capable of adaptively adding residuals between the original
low-quality embedding to the latent vector in a entanglement
representation manner. Yasarla ef al. [52] proposed a semi-
supervised method to leverage rain information from real
rain images in training the network using Guassian processes.
Very recent works that propose using techniques like pyramid
networks, contextual deep networks for image deraining can
be found in [S3[], [54], [S5].

III. PROPOSED METHOD

As discussed earlier, most image deraining methods are
based on either an “encoder-decoder” architecture (U-Net
based) or a residual architecture. These architectures do not
focus much on the local features as the deeper layers of these
networks have large receptive fields thus extracting high-level
features. Although learning global-features is one of the main
reasons an encoder-decoder architecture was used in the first
place, it makes sense to use it for tasks like object detection,
classification and segmentation as the object of interest in the
image is comparatively larger. But in the task of deraining,
the rain streaks are mostly small and are better detected
when we use filters of small receptive field. To this end, we
force our network to learn low-level features by restricting
the receptive field from enlarging in the deeper layers of the
network by using an overcomplete convolutional architecture.
In an overcomplete architecture, the input image is taken
into a higher dimension (spatially) unlike the undercomplete
architecture. This happens as the max-pooling layers in an
undercomplete architecture are replaced by upsampling layers.
The receptive field increases in an undercomplete architecture
by using a max-pooling layer along with a convolutional
layer. During feed-forward, the feature maps of size k£ x k
that go through a pooling layer of a coefficient n become
(k/n) x (k/n). However, during back propagation, the flow
of gradients go from a kernel of size k& x k to nk x nk.
This increases the receptive field size of the filters in the
deeper layers of an undercomplete network resulting in the
features to learn high-level global features of the image. In
an overcomplete architecture, if we use an upsampling layer
instead of max-pooling layer, we get an inverse effect of what
happened before. The feature maps go from a size of k£ X k
to the size of nk x nk after every upsampling layer. Thus,
during back-propagation, the flow of gradients go from k x k
to (k/n) x (k/n). Although each convolutional layer causes
the receptive field to enlarge (depending on the kernel size
of convolutional layer), the upsampling layer subdues this
effect to some extent. Overall, an overcomplete convolutional
architecture forces the receptive field to not increase as much
as an undercomplete architecure does; resulting in the filters
across all layers to learn low-level features.

In Fig. 2] we illustrate the feature maps of the overcomplete
network taken across different layers when it is trained for
deraining. We can observe that all the layers of the network
learn to capture low-level features of the rain streaks properly.
It can also be noted here that as we go deeper in the
overcomplete architecture, the features captured are more finer
as the receptive field is small and acts at a higher resolution
of the input. In Fig. [3] we illustrate the feature maps across
different layers of an undercomplete U-Net architecture. It can
be seen that the feature maps in the deeper layers focus on
learning global features which are not necessarily rain streaks.
So, it is evident that for tasks such as deraining, low level
features are much more useful and so we give more importance
to low-level feature extraction in our proposed method as
explained in the next sub-section.



Fig. 2: Feature maps in an overcomplete architecture. The rows correspond to the encoder layer from which the feature maps
are taken. It can be seen that the overcomplete network captures information in the image which are mainly local and so we
can see a lot of filters here capture fine details like rain streaks and drops.

Fig. 3: Feature maps in an undercomplete architecture. The rows correspond to the encoder layer from which the feature maps
are taken. The undercomplete network captures information in the image which high-level and so we can see that a lot of

filters here capture details like the deer and its background.

A. OUCD Network

Fig. [] gives an overview of the proposed OUCD network.
We use two network branches: an overcomplete and an under-
complete branch. The intuition behind using both the architec-
tures is to make use of both local and global features. Although
we focus more on the local features using the overcomplete
branch, we do not leave out the global features altogether as
they still have some meaningful information helpful for proper
restoration of the image. In the overcomplete branch, we have
3 convolutional blocks in both encoder and decoder. Each
convolutional block in the encoder has a 2D convolutional
layer followed by an upsampling layer and ReLU activation.
All the convolutional layers in our architecture have a kernel
size of 3 x 3, stride of 1 and padding of 1 unless mentioned

otherwise. For upsampling, we perform bilinear upsampling
with a scale factor of 2. In the decoder, each convolutional
block has a 2D convolutional layer followed by max-pooling
layer and ReL.U activation [56]. The max-pooling layer has a
pooling coefficient of 2. We also have skip connections similar
to U-Net [7] from the encoder layers to the decoder layers for
better localization.

The undercomplete branch is similar to the standard U-Net
architecture. It has 5 convolutional blocks in both encoder
and decoder. Each convolutional block in the encoder con-
sists of a 2D convolutional layer followed by a max-pooling
layer and ReLU activation. Each convolutional block in the
decoder consists of a 2D convolutional layer followed by
an upsampling layer and ReLU activation. Both pooling and
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Fig. 4: An overview of the proposed OUCD network architecture.

upsampling layers have coefficients of two. We also have skip
connections from each block of the encoder to the correspond-
ing block in the decoder, similar to U-Net architecture. More
details regarding the network architectures corresponding to
the overcomplete and undercomplete branches are provided in
the Appendix.

As we have established that overcomplete branch extracts
useful low-level features across all its layers, we propose to use
all those feature maps for a better prediction for the deraining
task as most of the rain streaks are low-level features. These
feature maps capture very fine details than the initial layers
of an undercomplete branch (U-Net) as the resolution of the
image that the overcomplete network acts on is very high when
compared to the initial layer of U-Net. So, we make use of all
of these feature maps from the encoder of the overcomplete
branch by adding them to the output of the first layer of
the undercomplete branch. This helps in the later layers of
the undercomplete branch to learn better global features.
Similarly, all the feature maps in the decoder of overcomplete
branch are added to the features maps of the undercomplete
branch’s decoder just before the last block. This facilitates
better restoration at the decoder part as well. Before adding
the feature maps from overcomplete branch, we pass it through
Multi-Scale-Feature-Fusion (MSFF) block. The details of the
MSFF block are given in the next subsection. Moreover, we
add the last set of feature maps from the overcomplete branch
with undercomplete branch before passing it on to the last
convolutional layer. The last convolutional layer has 1 x 1
kernels to convert the feature maps into a 3-channel RGB
image. This prediction is then compared with ground-truth
using a loss function to calculate the gradients for back-
propagation.

B. MSFF Block

We propose an MSFF block to transfer feature maps
from different scales of the overcomplete branch to the
undercomplete branch, transform them into the similar scales
while also maintaining equal number of feature maps such
that they have equal weightage when they are added. Fig. [3]
illustrates the network architecture of the MSFF block. We
use a convolutional block that consists of a downsampling
layer followed by a 1 x 1 convolutional layer across each
scale. The downsampling layer is used to downsample the
feature maps into a scale as that of feature maps in the
undercomplete branch it is going to be added to. We use
bilinear interpolation for the downsampling operation. The
scale factor for each scale is equal to the ratio of the size of
feature map in the undercomplete branch to the size of the
feature map at that particular scale. The 1 x 1 convolution
layer is used to make the number of feature maps taken
across different scales of the overcomplete network to be
consistent so that all the feature maps have equal weightage
when they are getting added to the undercomplete branch.
Then the feature maps are added and are passed on to the
undercomplete branch.

Loss Function: We use the standard ¢ loss calculated be-
tween the predicted # and the ground truth x. It is defined as
follows

Lnse = ||T — 33”%

We also compute a perceptual loss [57] using a pretrained
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VGG-16 network. It is defined as follows
1 ook Lk 2
Lo = Vv 2= 2= Ek:HF(@” — F(2)""3,
3 J v

where N is the number of channels of F'(.), and H and W
denote the height and the width of the feature maps. Here, x
denotes the ground truth and & denotes the predicted derained
image. We take features from relul_2, relu2_2 and relu3_2
of VGG-16 for computing the perceptual loss. The overall loss
used to train the OUCD network is,

E = Emse + )\ACp7 (2)

where A is a parameter which we set equal to 0.04 in our
experiments.

IV. EXPERIMENTS AND RESULTS

In this section, we conduct experiments to compare the
proposed OUCD method with state-of-the-art methods quan-
tatively and qualitatively on both synthetic rain and real-world
rainy images. We also conduct extensive ablation study to
show the benefits of our proposed method over the U-Net
and overcomplete base networks. We use Peak-Signal-to-Noise
Ratio (PSNR) and Structural Similarity index (SSIM) as the
comparative measures to evaluate the performance of different
methods. For qualitative comparision and analysis, we visually
present the sample results of different methods. We compare
OUCD against the following state-of-the-art methods,

o Discriminative sparse coding (DSC) [28](ICCV’15)

e Gaussian mixture model (GMM) (GMM) [29]
(CVPR’16)
e Joint Rain Detection and Removal (JORDER) [58]]

(CVPR’17)

o Deep detailed Network (DDN)[19](CVPR’17)

o REcurrent SE Context Aggregation Net (RESCAN) [21]
(ECCV’18)

o SPatial Attentive Network (SPANet)[22](CVPR’19)

o PreNet [38] (CVPR’19).

Training Dataset: We train the proposed network using
synthetic rain datasets [20], [2] and real rain dataset [22]. The
DIDMDN synthetic rain dataset published by the authors of
[20]], contains 4000 low density rain, 4000 medium density
rain, and 4000 high density rain images for training. The
Rain800 [2]] synthetic rain dataset contains 700 training
images. We also train our network on the real rain dataset
proposed by the authors of SPANet [22] which contains 342
real rain frames for training.

Test Dataset: We evaluate the performance of OUCD against
the state-of-the-art methods on the synthetic and real rain
test datasets published by the authors of [29]], [20], [22], [2].
DIDMDN [20] contains two test sets. Test-1 has a total of
1200 images where it is a combination of 400 low density,
400 medium density, and 400 high density images. Test-2 has
a total 1000 images where the images are randomly sampled
from the synthetic test set of Fu er al[19]. The Rainl2
dataset contains 12 images shared by the authors of [29].
The Rain800 test set provided by the authors of [2]] contains
101 synthetic rain images. Authors of SPANet[22] published
a real-world test set which contains 1000 real rainy images
for testing. In addition to these test datasets, we also perform
qualitative comparsions of different methods using real-world
rainy images provided by the authors of [2], [22]].

Implementation Details: We train the OUCD network with
pairs of rainy and the corresponding clean images {y,x},
using the loss £ defined in (2). We augment the input rainy
image by randomly cropping 128 x 128 patches for training the
network. We use the Adam optimizer [59] with the batchsize
of 2 for optimizing the loss. We set the learning rate equal to
0.0002 for 30 epochs and 0.0001 for the remaining epochs.
We implemented our network on the PyTorch framework and
perform all the experiments using two NVIDIA RTX 2080Ti
GPUs.

A. Quantitative Results

We compare OUCD network quantitatively against the state-
of-the-art methods using the synthetic and real test set images
mentioned earlier. Table [[ shows the quantitative comparisons.
We can clearly observe that the OUCD network outperforms
the current state-of-the-art methods. On heavy rain synthetic
datasets like DIDMDN (both Test-1 and Test-2) and Rain800,
our OUCD Network performs approximately ~ 1dB better
than the state-of-the-art methods in terms of PSNR. For low
rain synthetic datasets like Rain12, OUCD also performs better
than the current methods by ~ 1.1dB. It is interesting to
observe that OUCD outperforms the state-of-the-art methods
by ~ 1.25dB on real rainy dataset SPANet [22].

Note that our work proposes an architecture change that
focuses on deraining. Our network can be used in place
of U-Net or residual architectures along with a confidence-
based loss functions [23] or progressive deraining [38] to even
further improve the performance. In this paper, we have shown
that we get significant performance improvements over the
recent methods with just the architecture change, while using



TABLE I: PSNR and SSIM (PSNR|SSIM) quantitative comparison of OUCD against the state-of-the-art methods.

DSC[28] | GMM][29] | JORDER[58] | DDN[I9] | DIDMDN[20] | RESCAN[21] | SPANet[22] | PreNet[38] OUCD

Datasets (ICCV’15) | (CVPR’16) | (CVPR’17) | (CVPR’17) | (CVPR’18) (ECCV’18) | (CVPR’19) | (CVPR’19) (ours)
DIDMDN | Testl | 2144[0.79 | 2275[0.84 | 24.32(0.86 | 27.33[0.90 27.95[0.01 27.19]0.87 30.05[0.01 | 31.26]0.91 | 31.49]0.91
[ Test-2 | 20.080.78 | 20.66[0.81 | 22.26[0.84 | 25.63]0.89 26.07]0.91 25.65]0.88 26.19]0.00 | 26.27]0.90 | 26.73]0.92
SPANet 3233|003 | 32.99]095 | 35.72[097 | 33.28]0.97 28.96/0.95 35.19]0.98 38.060.08 | 38.55[0.98 | 39.250.98
Rainl2 30.07|0.85 | 32.02/0.86 | 33.92[095 | 31.78]0.90 31.32/0.90 32.42[0.92 34.12[0.04 | 34.44]0.94 | 35.28/0.95
Rain800 18.56]0.60 | 20.46/0.73 | 22.29/0.79 | 21.16]0.73 23.57|0.87 24.37]0.84 24.65/0.85 | 24.81]0.85 | 25.56|0.87
— T — ﬁ: T —
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Fig. 6: Qualitative comparisons of OUCD with recent methods on deraining of the test datasets of SPANet and Rain800. In
the first image, most of the other methods fail to remove small rain streaks near the roof of the image whereas our proposed
method produces a very clear image without any rain streaks. In the second image, though the other methods are able to
remove the rain streaks, they fail to produce a proper reconstruction of the background. It can be seen that our method’s output
has a clearer background and is closer to the ground truth than the others. In the third image, all the previous methods fail to
remove the tiny rain drops whereas OUCD removes all the rain drops.
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Fig. 7: Qualitative comparisons of OUCD with recent methods on deraining for real-world rainy images. In both of the
illustrated examples, it can be seen that OUCD gives better derained images than the other methods. In the first image, even
though the other methods remove the dense streaks present in the top-right part of the image, they fail to remove the rain
streaks of different patterns found near the roof. Our method removes rain streak of any pattern effectively. Also in the second
image all the other methods remove the rain streaks which are far off effectively but fail to remove the rain streaks which are
closer to the camera. As OUCD has two encoders, where one works on local features and another on global features, it can
be seen that OUCD removes the rain streaks which are far away (small drops) and which are closer to camera (large drops)
from the camera efficiently. Note that these are real images and do not come with ground truths.

only generic loss functions such as L.2-loss and the perceptual
loss.

B. Qualitative Results

We compare OUCD qualitatively against state-of-the-art
methods using the SPANet and Rain800 test sets, and real
rainy images shared by the authors of [22], [20]. It can be
clearly observed from the Fig. [6]that OUCD performs visually
better than the state-of-the-art methods on the SPANet and
Rain800 test sets. From Fig. [f] we clearly see that the state-
of-the-art methods which are based on Res-Net or U-Net
architectures are not able remove the rain streaks on the tiles
of the roof in the first image, and rain streaks on the tower
and the house roof top in the second image. For example,
DIDMDN [20], which is based on U-Net architecture, is not

able to remove streaks from tiles on the roof in the first
image, and rain streaks on clouds, roof tops and tower in
the second image. This is due to the fact that U-Net based
architectures do not focus much on local features as much
as it should. DDN [[19], RESCAN [21]], SPANet [22], which
are based on Res-Net, show a similar performance as they
are not able to remove rain streaks where the removal of rain
streaks is hard around the textured regions like tiles on the
roof, near clouds and top of the tower. On the other hand,
our OUCD network which focuses on features both locally
and globally while deraining the image, produces sharp and
visually pleasing derained images.

We observe similar trend in visual quality of these state-of-
the-art methods on real rainy images provided by the authors
of [22], [20]. From Fig.[7] we can clearly observe that deraining



Combined at last

OUCD (ours)

Ground-Truth

Fig. 8: Qualitative comparisons corresponding to ablation study. The undercomplete network essentially removes relatively
larger rain streaks and the overcomplete network removes smaller streaks. When the features from both the networks are
combined in a conventional way (at last), they produce a better derained image when compared to separate networks. Our
proposed method OUCD which combines the features using MSFF produces a better derained image compared to conventional

fusion.

TABLE II: PSNR and SSIM (PSNR|SSIM) quantitative com-
parisons corresponding to ablation study.

Method Rain800 Rainl2

under complete UNet 22.9910.74 | 25.50|0.77
Overcomplete UNet 23.74]0.80 | 29.26] 0.89
OUCD w/o MSFF block | 24.94/0.82 | 31.01|0.91
OUCD w/ MSFF block 25.56/0.87 | 35.28/0.95

methods [19], [20], [21] are not able remove rain streaks
on the roof in the first image, and rain streaks on the tree
in the second image. Even though SPANet [22] addresses
the deraining problem using spatially attentive modules, the
predicted derained image has small rain streaks present on
the roof tile in the first image, and leaves of the tree in the
second image of Fig.[7] Our method produces sharper derained
images even on the real rainy images as shown in the Fig. [7]
For example, tiles of the roof are more clear and sharp in the
first derained image, and there are no rain streaks on the leaves
of the tree in the second derained image of OUCD in Fig.

C. Ablation Study

We perform an ablation study to show the impact of each
block in our proposed method. We start our experiment with
just a generic undercomplete architecture which is basically a
U-Net. Then we test with an overcomplete architecture which
focuses heavily on local features. From Table [T} it can be seen
that the overcomplete architecture gives a better performance
than the undercomplete network. It can be noted here that the
number of blocks and parameters used in the overcomplete
architecture is relatively lesser. We then check the performance
when both the overcomplete and undercomplete networks are
trained in parallel and fused at the last layer (OUCD w/o
MSFF block). This gives a boost in performance as the fused
network has two branches where one solely focuses on low-
level features while the other branch captures both low and

high-level features thus the overall network does not lose
out on global features altogether unlike the overcomplete
architecture. Next, we experiment OUCD network while using
our proposed MSFF block. Using the MSFF block to transfer
the feature maps from the overcomplete branch to the un-
dercomplete branch helps the undercomplete branch to train
better as they now have better quality feature maps in the
early layers which can facilitate better feature capturing in
the deeper layers. This can be seen from Table |lI| as we get
a significant improvements when compared to just fusing the
networks at the last layer. Figure[§]illustrates qualitative results
corresponding to the ablation study.

V. CONCLUSION

We propose using overcomplete convolutional deep net-
works for the task of image deraining. We showed that
using overcomplete architectures help to restrict the receptive
field size of the filters in the deeper layers. This helps the
filters in deep layers to capture more low-level information
and finer details than the generic “encoder-decoder” architec-
tures or residual networks. Focussing on low-level features
makes much more sense in the task of deraining as the rain
streaks are generally of a small size in the rainy image.
We proposed an Over-and-Under Complete Derain (OUCD)
Network which takes advantage of both local and global
features extracted from its overcomplete and undercomplete
branches, respectively. We use a special Multi Scale Feature
Fusion (MSFF) block to efficiently transfer feature maps
from the overcomplete branch to the undercomplete branch
so as to aid the undercomplete network’s training with better
low-level feature maps extracted in the overcomplete branch.
We show that the filters in the overcomplete branch of our
proposed network captures even the tiniest streaks of the rain
precisely aiding in deraining, and the undercomplete branch
captures objects and other structures in the image aiding in
proper reconstruction. We tested our method on both real
and synthetic rain datasets availble in the literature where we



achieve better performance than many recent state-of-the-art
methods. We achieve a significant performance boost with just
an architecture change while using generic loss functions like
L2 loss and the perceptual loss. We also perform an ablation
study to show the impact of each block that we propose in
this work.

APPENDIX A
NETWORK ARCHITECTURE

Tables [[TI] and [IV] show the configuration of the undercom-
plete and overcomplete branches of our OUCD Network. Table
shows the average inference time comparison between our
proposed methods other state of the art methods. Total number
of parameters in OCUD network are 1.1 x 107.

APPENDIX B
RECEPTIVE FIELD SIZE

F2
== Conv 2D+ Upsampling

= Conv 2D+ Max Pooling

Undercomplete Network

Overcomplete Network

Fig. 9: Explanation for receptive field change difference be-
tween undercomplete network and overcomplete network.

Let I be the input image, F} and F5 be the feature maps
extracted from the conv blocks 1 and 2, respectively. The
max-pooling layer present in these conv blocks of the U-
Net is the main reason why receptive field is large in the
successive layers. Let the initial receptive field of the conv
filter be £ x k on the image. The receptive field size change due
to max-pooling layer is dependent on two variables- pooling
coefficient and stride of the pooling filter. For convenience,
the pooling coefficient and stride is both set as 2 in UNet.
Considering this configuration, the receptive field of conv
block 2 (to which F} is forwarded) on the input image would
be 2 X k x 2 x k. Similarly, the receptive field of conv block
3 (to which F5 is forwarded) would be 4 X k x 4 x k. This
increase in receptive field can be generalized for i*" layer in
the UNet as follows:

RF(w.rt I) = 22070 x b x k

Now for our proposed overcomplete network, we have
upsampling layer of coefficient 2 in our conv blocks replacing
the max-pooling layer. As the upsampling layer actually works
exactly opposite to that of max-pooling layer, the receptive
field of conv bock 2 on the input image now would be
£ x k x 3 x k. Similarly, the receptive field of conv block
3 now would be i x kX i x k. This increase in receptive field
can be generalized for i** layer in the overcomplete branch as

follows:

1 )
RF(w.rt )= (5)2*0—1) Xk x k

Note that the above calculations are based on a couple of as-
sumptions. We assume that the pooling coefficient and stride is
both set as 2 in both overcomplete and undercomplete network.
Also we consider that the receptive field change caused by the
conv layer in both undercomplete and overcomplete networks
would be the same and do not consider in our calculations.
This can be justified as we have maintained the conv kernel
size to 3 x 3 with stride 1 and padding 1 throughout our
network and this setting does not actually affect the receptive
as much as max-pooling or upsampling layer does. The above
explanations are illustrated in Fig [0

TABLE III: Configuration of blocks
branch of OUCD.

in the overcomplete

Block name Layer Kernel size/Scale Factor | Filters | Padding Tnput size Output size
Convl 3 x3 32 1 3XHxXxW 32 x Hx W
T i 2x2 - - 32 XHXW 32 X 2H x 2W
ReLU - - - 32 X 2H x 2W 32 x 2H x 2W
Conv2 3x3 64 T 32 X 2H x 2W 64 X 2H X 2W
Encoder U i 2x2 - - 64 X 2H x 2W 64 X 4H x 4W
ReLU - - - 64 x 4H x 4W 64 X 4H x 4W
Conv3 3x3 128 1 64 X 4H x 4W 128 x 4H x 4W
U 2 x2 - - 128 x 4H x 4W 2C x 8H x 8W
ReLU - - - 128 x 8H x 8W [ 128 x 8H x 8W
Convl 3 x3 128 1 128 x 8H x 8W 128 x 8H x 8W
Max-Pooling 2x2 - - 128 x 8H x 8W [ 128 X 4H x 4W
ReLU - - - 128 x 4H x 4W | 128 x 4H x 4W
Conv2 3 x3 64 1 128 X 4H x 4W [ 128 X 4H x 4W
Decoder Max-Pooling 2x2 - - 64 X 4H x 4W 64 X 2H x 2W
ReLU - - - 64 x 2H x 2W 64 x 2H x 2W
Conv3 3 x3 32 T 64 X 2H x 2W 32 X 2H X 2W
Max-Pooling 2x2 - - 32 x 2H x 2W 32 xHx W
ReLU - - - 32 x Hx W 32 X Hx W

TABLE 1IV: Configuration of the undercomplete branch of
OUCD.

Block name LCayer Kernel size/Scale Factor | Filters | Padding Tnput size Output size
Convl 3x3 32 T IXHXW 2 x HX W

MaxPooling TX2 B B X HXW 2 X H2 X W2

ReLU B B B 32 X H2 X W2 32X H2 X W12

Conv2 3 64 T 32 x H2 X WI2 64 % H2 X WI2

MaxPooling 2 64 % H2 X W/2 64 % H/A X Wik

ReLU - B B 64 % H/A X W/A 64 % H/A X W&

Conv3 128 I 64 x H/4 X W/4 128 x H/4 x W/4

3 o
x| %
9 o

Encoder MaxPooling 128 x H/4 x W/4 128 x H/8 x Wi8

ReLU - - - 128 x H/8 x W/8 128 X H/8 x Wi8

Conv4 3x3 256 1 128 X H/I8 X W8 256 x H/I8 X W8
MaxPooling 2x2 - - 256 x H/8 x WI8 256 x H/16 x W/T6
ReLU - - - 256 x H/16 x W/16 | 256 x H/16 x W/16
Convs 3x3 512 I 256 x H/16 x W/16 | 512 x H/16 x W/16
MaxPooling 2 x2 - - 512 x H/16 x W/16 | 512 x H/32 x W/32
ReLU - - - 512 x H/32 x W/32 | 512 x H32 x W/32
512 x H/32 x W/32 | 512 x H/32 x W/32

Convl 3 x

512 1

9] vl

U 512 x H/32 x W/32 | 512 x H/16 x W/16

ReLU - - - 512 x H/16 x W/16 | 512 x H/16 x W/16

Conv2 256 I 512 x H/16 x W/16 | 256 x H/16 x W/16

3 o
3 o

U 256 x H/16 x W/16 256 x H/8 x WI8

ReLU 256 x HI8 X WI8 256 x H/8 X WI§

Conv3 3x3 128 T 256 x H/8 x WI8 128 x H/8 x W/8
Decoder U i 2 x2 - - 128 x H/8 x W/ 128 x H/4 x W/4
ReLU - - - 128 x H/4 x W/4 128 x H/4 x W/4
Conv2 3x3 64 I 128 x H/4 x W/4 64 x H/4 X WAW
U i 2 x2 - - 64 x H/4 x W/4 64 x H2 x W2
ReLU - - - 64 x H2 X W2 64 x H2 x W2
ConvI 3x3 32 T 64 x H2 x W2 32 x H2 x W2
U i 2 x2 - - 32 x H2 x W/2 N2 xHXW
ReLU - - - 32 X Hx W 32 xHXW

TABLE V: Run time comparison with SOTA methods

[Method | DSC [ LP__ | JORDER | DDN | JBO | DID-MDN | SIRR | SPANet | Ours |
‘ RunTime ‘ 190s ‘ 675s ‘ 600s ‘ 0.3s ‘ 1.4s ‘ 0.2s ‘ 0.4s ‘ 0.3s ‘ 0.12s ‘
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