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Block-Term Tensor Decomposition: Model
Selection and Computation
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Abstract—The so-called block-term decomposition (BTD) ten-
sor model has been recently receiving increasing attention due
to its enhanced ability of representing systems and signals that
are composed of blocks of rank higher than one, a scenario
encountered in numerous and diverse applications. Its uniqueness
and approximation have thus been thoroughly studied. Never-
theless, the challenging problem of estimating the BTD model
structure, namely the number of block terms and their individual
ranks, has only recently started to attract significant attention.
In this paper, a novel method of BTD model selection and
computation is proposed, based on the idea of imposing column
sparsity jointly on the factors and in a hierarchical manner and
estimating the ranks as the numbers of factor columns of non-
negligible magnitude. Following a block successive upper bound
minimization (BSUM) approach for the proposed optimization
problem is shown to result in an alternating hierarchical itera-
tively reweighted least squares (HIRLS) algorithm, which is fast
converging and enjoys high computational efficiency, as it relies
in its iterations on small-sized sub-problems with closed-form
solutions. Simulation results for both synthetic examples and a
hyper-spectral image de-noising application are reported, which
demonstrate the superiority of the proposed scheme over the
state-of-the-art in terms of success rate in rank estimation as
well as computation time and rate of convergence.

Index Terms—Alternating least squares (ALS), alternating
group lasso (AGL), block coordinate descent (BCD), block
successive upper bound minimization (BSUM), block-term tensor
decomposition (BTD), hierarchical iterative reweighted least
squares (HIRLS), rank, tensor

I. INTRODUCTION

BLOCK-Term Decomposition (BTD) was introduced in [1]
as a tensor model that combines the Canonical Polyadic

Decomposition (CPD) and the Tucker decomposition (TD), in
the sense that it decomposes a tensor in a sum of tensors that
have low multilinear rank (instead of rank one as in CPD1).
In other words, BTD is a sum of TDs (block terms). Hence
a BTD can be seen as a constrained TD, with its core tensor
being block diagonal (see [1, Fig. 2.3]). Given the sum-of-TDs
structure of BTD and in view of the fact that CPD is also a
constrained TD [2], BTD can also be seen as a constrained
CPD having factors with (some) collinear columns [1]. In a
way, BTD lies between the two extremes (in terms of core
tensor structure), CPD and TD, and it is interesting to recall
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1Note that a rank-1 tensor is also a rank-(1, 1, . . . , 1) tensor.
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Fig. 1. Rank-(Lr, Lr, 1) block-term decomposition.

the related remark made in [1], namely that ““the” rank of
a higher-order tensor is actually a combination of the two
aspects: one should specify the number of blocks and their
size.” Accurately and efficiently estimating these numbers for
a given tensor is the main subject of this work.

Although [1] introduced BTD as a sum of R rank-
(Lr,Mr, Nr) terms (r = 1, 2, . . . , R) in general, the special
case of rank-(Lr, Lr, 1) BTD has attracted a lot more of
attention, because of both its more frequent occurrence in
applications and the existence of more concrete and easier
to check uniqueness conditions. This paper will also focus
on this special yet very popular BTD model. Consider a
3rd-order tensor, X ∈ CI×J×K . Then its rank-(Lr, Lr, 1)
decomposition is written as

X =

R∑
r=1

Er ◦ cr, (1)

where Er is an I × J matrix of rank Lr, cr is a nonzero
column K-vector and ◦ denotes outer product. Clearly, Er
can be written as a matrix product ArB

T
r with the matrices

Ar ∈ CI×Lr and Br ∈ CJ×Lr being of full column rank, Lr.
A schematic diagram of the rank-(Lr, Lr, 1) BTD is shown
in Fig. 1.

BTD has found applications in communications (e.g., [3],
[4]), neuro- and anatomical imaging [5]–[8], electrocardiogra-
phy (ECG) (e.g., [9]–[11]), hyper-spectral imaging (HSI) [12]–
[15], community detection in networks [16], spectrum car-
tography [17], and electron microscopy [18], among others.
Recently it has also been proposed as a compact model of
neural networks in modern machine learning applications [19],
[20]. The application of BTD in blind source separation (BSS)
was first considered in [21] and later presented in more detail
in [22], giving rise to the so-called Block Component Analysis
(BCA) approach. The underlying idea is that BTD can bet-
ter represent components (sources) of a variable complexity
(hence rank), while CPD-based BSS2 restricts the sources to

2also referred to as Canonical Polyadic Analysis (CPA) [22].
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have rank one.3

The uniqueness of BTD was studied in [1], also for the
general rank-(Lr,Mr, Nr) case. Essential uniqueness for the
rank-(Lr, Lr, 1) BTD of eq. (1) means that the only inde-
terminacies are the order of the R terms and a scaling of
the Er matrix with a counter-scaling of the vector cr. The
most popular (though not the only one) uniqueness theorem
for this case states that a sufficient uniqueness condition is
that the partitioned matrices A ,

[
A1 A2 · · · AR

]
and B ,

[
B1 B2 · · · BR

]
are of full column rank

and C ,
[
c1 c2 · · · cR

]
does not have any collinear

columns [1, Theorem 4.1]. The generic version of the re-
quirement for full column rank of A,B is that min(I, J) ≥∑R
r=1 Lr, which can easily be met in applications where R

and Lr are small. It should however be noted that this is not a
necessary condition as our simulation results also demonstrate.

Alternating least squares (ALS) was extended to the compu-
tation of a tensor BTD in [23]. In that same work, it was also
shown (and demonstrated through an example) that degeneracy
can also occur for BTD.4 In the noise-free case, and as shown
in [1, Theorem 4.1], the BTD can be also computed with
the aid of a generalized eigenvalue decomposition (GEVD),
provided the above uniqueness condition is satisfied. Recently,
algebraic solution methods that are free from this limitation
have been also reported [25]–[27]. In the presence of noise,
these solutions can serve to initialize the ALS iterations [23].
ALS with the appropriate modifications to incorporate the non-
negativity constraint was used in [12] for non-negative BTD
of hyper-spectral imagery. Non-alternating (all-at-once) com-
putation approaches, including gradient descent and nonlinear
least squares, were followed in [28] and the resulting methods
are implemented in Tensorlab [29]. Additional methods of
BTD computation include ALS regularized through `2 norms
of its factors (to avoid over-fitting [17] or to enforce low
rank [13]) or through proximal point modifications [30],
deflation-based [31], variable projection using Riemannian
gradient for rank-(Lr,Mr, Nr) BTD with factors of orthonor-
mal columns [32], tensor block diagonalization [33], solving
the equivalent matrix factorization problem with one of the
factors constrained to have low-rank rows [34], and computing
an appropriately constrained coupled CPD [27].

In most of the BTD methods mentioned above, R and Lr,
r = 1, 2, . . . , R are assumed known (and it is commonly
assumed that all Lr are all equal to L, for simplicity). In
fact, in practice, this is a challenging question on its own.
Unless external information is given (such as in a telecommu-
nications [22] or in a HSI unmixing application with given
or estimated ground truth [12]), there is no way to know
these values a priori. An observation that is common in all
known BCA applications is that the separation performance
does not strongly depend on the particular values of the Lr
ranks [6], [12], [17]. In fact, as it was also observed in [5],

3An intuitively pleasant way to describe this difference is to say that,
while CPA decomposes the data into “atoms”, BCA decomposes it into
“molecules” [22].

4That a best BTD approximation of given ranks may not exist for a real-
valued tensor was later shown in [24]. This is not the case for tensors in C,
however (cf. [24] and references therein).

[6], the method is robust to overestimation of Lr (although,
as observed in [8], performance of BTD-based classifiers may
considerably vary with Lr). Nonetheless, one should try not
to set Lr to a very high value. The reason is that, in addition
to increasing the computational complexity, setting Lr too
high may hinder interpretation of the results through letting
noise/artifact sources interfere with the desired sources [5].
This holds for R as well, although its choice is known to be
more crucial to the obtained performance. For example, setting
R too high in [5] results in source splitting (also referred to
as over-factoring [35]), thus compromising the separation and
interpretation of the components.

A. Background

Model order selection techniques for BTD can be dictated
by corresponding CPD techniques, as reviewed in [5, Sec-
tion 4], including clustering similar CPD components (e.g.,
[33]). Schemes of multilinear rank estimation (largely based on
matrix rank estimation and/or extensions of one-dimensional
information-theoretic criteria) are also relevant in view of the
constrained TD structure of BTD [7], [36]–[39]. In the absence
of noise, the model rank parameters can be computed as a
by-product of recently reported algebraic BTD methods [25],
[26]. Thus, in the non-iterative method of [26], and in the
(almost) noise-free case, these are estimated (with the aid
of singular value decompositions (SVDs)) from a joint block
matrix diagonalization problem. For noisier tensors, R and∑
r Lr are assumed known.
Model order selection can also be application-specific. For

example, Lr’s are estimated in [9] as the auto-regressive
(AR) orders of the sources in ECG analysis, with R assumed
known. In [6], and in the functional magnetic resonance
imaging (fMRI) context, Lr is estimated as the number of
statistically significant (bearing useful information) columns
of Ar,Br. [13] relies on the subspace-based method of [40]
for estimating the number R of spectral signatures in BTD-
based HSI denoising.

Alternative techniques rely on sparsity arguments for model
selection. A greedy scheme, inspired from a sparse coding
viewpoint, is proposed in [41], for more general tensor de-
compositions [42] including BTD as a special case. Instead of
building the model incrementally, however, one can follow the
reverse way of starting from a rank overestimate and arrive at
the true rank(s) by eliminating negligible components, aided
in this task by appropriate regularization. Such an approach is
followed in [35], [43], where the constrained CPD formulation
of BTD is taken advantage of to first estimate R and then
Lr’s assumed all equal, before computing the model factors
in (1). In each case, a regularization term is added to the tensor
approximation cost, which is composed of mixed norms of the
factor matrices and serves as upper bound on the tensor nuclear
norm thus promoting column sparsity to the factors and hence
low rank. The augmented Lagrangian method is adopted for
the computations.

Nevertheless, as demonstrated in [44], [45] for the CPD
case, the problems of model rank estimation and approxima-
tion of factors can be addressed jointly, with significant gains
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in both accuracy and complexity (of particular interest for big
data applications). This idea is proposed in [46] for the rank-
(Lr, Lr, 1) BTD model with not necessarily all equal block-
term ranks Lr. A regularization term consisting of the sum of
the mixed `1,2 norms of the matrices A,B,C is added to the
squared error of the tensor approximation, namely

min
A,B,C

1

2

∥∥∥∥∥Y −
R∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+

γ(‖A‖1,2 + ‖B‖1,2 + ‖C‖1,2), (2)

where ‖ · ‖F is the Frobenius norm, ‖ · ‖1,2 denotes the
mixed `1,2 norm (defined as the `1 norm of the `2 norms
of the matrix columns5), and γ is the regularization parameter
weighing the regularization term over the data fidelity term.
This sparsity-inducing regularization helps promoting low rank
for the BTD factors and hence estimating R (as the number
of non-zero columns of C) and Lr’s (as the number of non-
zero columns of the rth blocks of A,B that correspond to
non-zero columns of C). For the solution of (2), a proximal
term is first added in [46] and then a block coordinate descent
(BCD) approach is taken, leading to a regularized version of
the ALS procedure of [23] that will be referred to henceforth
as the BTD alternating group lasso (BTD-AGL) algorithm.

The approach we propose in this paper also falls in the
previous category. Yet, it has a number of very important
new features, inherited from our earlier work on factorization-
based low-rank approximation of matrices [47], [48], [49],
from which it draws inspiration. In [49], the sum of reweighted
Frobenius norms of the factors of the data matrix is used as
regularization and, in particular, a diagonal weighting, jointly
depending on the factors, is proposed, naturally leading to
an iteratively reweighted least squares (IRLS) [50] solution
approach, with fast convergence and low complexity. Here we
generalize that idea in the BTD problem. The regularization
of [49] is employed, in two levels: first, combining the
reweighted norms of A and B, and second, coupling these
with the reweighted norm of C. This two-level coupling natu-
rally matches the structure of the model in (1), making explicit
the different roles of A,B and C, in contrast to previous
related works [35], [46] that miss to exploit this relation. Fur-
thermore, due to this fact, the regularization proposed here has
a stronger sparsity promoting action compared with previous
works. Applying majorization with appropriate upper bounds
and a BCD approach results in an alternating hierarchical IRLS
(HIRLS) algorithm that manages to both reveal the ranks and
compute the BTD factors at a high convergence rate and low
computational cost. Notably, iterations involve closed-form
updates that contain only matrix-matrix multiplications, which
can be efficiently implemented on most modern computer
systems and are easily parallelizable. The complexity can be
reduced even more by eliminating negligible columns (column
pruning) in the course of the iterations (as in [49] for the
low-rank matrix factorization problem). Simulation results for
both synthetic examples and a HSI de-noising application are
reported, which demonstrate the superiority of the proposed

5In [46], this is referred to as the `2,1 norm.

scheme over the state-of-the-art in terms of success rate in
rank estimation as well as computation time and rate of
convergence.6

The rest of this paper is organized as follows. The adopted
notation is described in the following subsection. The problem
is mathematically stated in Section II. The proposed method
is presented in Section III. Section IV reports and discusses
the simulation results. Conclusions are drawn and future work
plans are outlined in Section V.

B. Notation

Lower- and upper-case bold letters are used to denote
vectors and matrices, respectively. Higher-order tensors are
denoted by upper-case bold calligraphic letters. For a tensor
X , X(n) stands for its mode-n unfolding. ⊗ stands for the
Kronecker product. The Khatri-Rao product is denoted by �
in its general (partition-wise) version and by �c in its column-
wise version. ◦ denotes the outer product. The superscript T

stands for transposition. The identity matrix of order N and
the all ones column N -vector are respectively denoted by IN
and 1N . The row vectorization and the trace of a matrix X
are denoted by vec(X) and tr(X), respectively. ∇X stands
for the gradient operator with respect to (w.r.t) X. diag(x) is
the diagonal matrix with the vector x on its main diagonal.
The Euclidean vector norm and the Frobenius matrix norms
are denoted by ‖ · ‖2 and ‖ · ‖F, respectively. The mixed 1, 2
(`1,2) norm of a matrix X =

[
x1 · · · xN

]
is defined as∑N

n=1 ‖xi‖2. C is the field of complex numbers.

II. PROBLEM STATEMENT

Given an I × J ×K tensor Y , its best (in the least squares
sense) rank-(Lr, Lr, 1) approximation is sought for, namely

min
A,B,C

f(A,B,C) ,
1

2

∥∥∥∥∥Y −
R∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

, (3)

where the matrices Ar =
[
ar1 ar2 · · · arLr

]
∈

CI×Lr , Br =
[
br1 br2 · · · brLr

]
∈ CJ×Lr , C ∈

CK×R, and the ranks R and Lr, r = 1, 2, . . . , R are un-
known. In terms of its mode unfoldings, the tensor X ,∑R
r=1 ArB

T
r ◦ cr can be written as [1]

XT
(1) = (B�C)AT, (4)

XT
(2) = (C�A)BT, (5)

XT
(3)=
[

(A1 �c B1)1L1
· · · (AR �c BR)1LR

]
CT.(6)

These expressions can be used in alternatingly solving for
A,B,C, respectively.

The regularization-based approach adds terms to the objec-
tive function above with the aim of imposing constraints on
the sought factors, as in (2) for example. However, in contrast
to (2), where all BTD factors are treated in the same manner,
the regularizer proposed in this paper perfectly matches the
structure of the BTD model, offering increased flexibility via a
suitable joint block and column sparsity promoting mechanism

6A short version of this work was accepted for presentation in EUSIPCO-
2020.
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of a hierarchical nature. The proposed modification to (3) can
be stated as

min
A,B,C

f(A,B,C) + λ‖F(A,B,C)‖1,2, (7)

where regularization is performed with the aid of the `1,2
norm of the 2 × R matrix F(A,B,C), constructed as fol-
lows. Let G ,

[
AT BT

]T
be the (I + J) ×

∑R
r=1 Lr

matrix resulting from stacking the factors A and B and
Gr ,

[
AT
r BT

r

]T
denote its rth (I + J) × Lr block.

The matrix F(A,B,C) is defined as

F(A,B,C) ,

[
‖G1‖1,2 ‖G2‖1,2 · · · ‖GR‖1,2
‖c1‖2 ‖c2‖2 · · · ‖cR‖2

]
.

(8)
The minimization of the `1,2 norm of a vector or matrix subject
to a data proximity criterion has been widely utilized in the lit-
erature for enforcing group sparsity in vector/matrix recovery
problems [51]. This property of the `1,2 norm was exploited in
our earlier work [49], [52] for model order selection in low-
rank matrix factorization applications. In the present work,
we extend that idea to the BTD problem by employing a
two-level hierarchical `1,2 norm-based regularization scheme.
At the upper level, the `1,2 norm of the matrix F(A,B,C)
above promotes the elimination of whole blocks of A and
B (which are tied together by the mixed norms ‖Gr‖1,2,
r = 1, 2, . . . , R) and the corresponding columns of C. At the
lower level, the `1,2 norms ‖Gr‖1,2 induce column sparsity to
the “surviving” blocks of A,B. Hence, we have the flexibility
to overestimate the ranks R and Lr, r = 1, 2, . . . , R as
R = Rini and Lr = Lini in the unknown BTD model, since
this regularization can reduce them towards their actual values
with a proper selection of the regularization parameter λ. The
problem in (7) may be solved using a block successive upper
bound minimization (BSUM) approach [53], as described in
the next section. As explained in Appendix B, the resulting
algorithm is an alternating hierarchical IRLS scheme, referred
to henceforth as BTD-HIRLS.

III. PROPOSED METHOD

First, we rewrite the minimization problem (7) more explic-
itly in terms of the BTD factors A,B, and C as

min
A,B,C

1

2

∥∥∥∥∥Y −
R∑
r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

+

λ

R∑
r=1

√√√√( L∑
l=1

√
‖arl‖22 + ‖brl‖22 + η2

)2

+ ‖cr‖22 + η2,

(9)

where η2 is a very small positive constant that ensures smooth-
ness and R and L here stand for the initial (over)estimates of
the model rank parameters. It can be shown that the objective
function in (9) is convex w.r.t. each one of the factors A,B and
C separately but not w.r.t. all of them. Moreover, due to the
regularization term, it is non-separable w.r.t to each one of the
matrix factors. As a result, minimizing the objective function
in (9) alternatingly w.r.t. the BTD factors (i.e., in a BCD

way with blocks the matrices A,B and C) would not lead
to closed-form solutions, which are desirable in an iterative
algorithm. Capitalizing on our previous work on low-rank
matrix factorization [49], we curb that problem by following a
BSUM approach for the objective function in (9). The idea is
that at each iteration of the BSUM scheme the BTD factors can
be computed in closed form by minimizing appropriate upper
bound functions of their initial objectives. Provided that these
functions satisfy certain conditions [53], the BSUM procedure
is guaranteed to converge to stationary points of the objective
function of the original minimization problem.

To be more specific, using the mode-1 unfolding of Y in (9)
and X =

∑R
r=1 ArB

T
r ◦ cr (cf. (4)), the objective function

w.r.t. A at iteration k may be expressed as follows

fA(A|Bk,Ck) =
1

2

∥∥∥YT
(1) −PkAT

∥∥∥2
F

+

λ

R∑
r=1

√√√√( L∑
l=1

√
‖arl‖22 + ‖bkrl‖22 + η2

)2

+ ‖ckr‖22 + η2,

(10)

where Pk , Bk � Ck. To allow this sub-problem to have
closed-form solution for A, we define a local tight upper
bound function of (10) as a rough second-order Taylor ap-
proximation of fA(A|Bk,Ck) around Ak. Namely:

gA(A|Ak,Bk,Ck) = fA(Ak|Bk,Ck) + tr{(A−Ak)

∇AfA(Ak|Bk,Ck)}+
1

2
vec(A−Ak)TH̄Akvec(A−Ak),

(11)

where the ILR × ILR approximate Hessian matrix H̄Ak of
fA(A|Bk,Ck) at Ak is given (in analogy with [49]) by

H̄Ak = II ⊗ (PkTPk + λDk), (12)

with Dk , (Dk
1 ⊗ IL)Dk

2 . Dk
1 is an R × R diagonal matrix,

whose rth diagonal entry is

Dk
1(r, r) =( L∑

l=1

√
‖akrl‖22 + ‖bkrl‖22 + η2

)2

+ ‖ckr‖22 + η2

−1/2(13)

and Dk
2 is an RL×RL diagonal matrix, whose ((r−1)L+l)th

diagonal entry is

Dk
2((r − 1)L+ l, (r − 1)L+ l) =

(‖akrl‖22 + ‖bkrl‖22 + η2)−1/2. (14)

The conditions of BSUM are satisfied by the majorization
function in (11) if H̄Ak and H̄Ak − HAk are both positive
semi-definite matrices, where HAk is the actual Hessian of
fA(A|Bk,Ck) at Ak [53]. From (12) it is obvious that H̄Ak

is positive semi-definite, while the positive semi-definiteness
of H̄Ak −HAk is proved in Appendix A. Then minimizing
gA(A|Ak,Bk,Ck) w.r.t to A results in the following analyt-
ical expression for the estimate of A at iteration k + 1:

Ak+1 = Y(1)P
k(PkTPk + λDk)−1. (15)
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Algorithm 1: BTD-HIRLS algorithm
Input: Y ,λ,Rini, Lini

Initialize: k = 0,A0,B0,C0

repeat
Compute Dk

1 ,D
k
2 from (13) and (14)

Dk ← (Dk
1 ⊗ IL)D

k
2

Pk ← Bk �Ck

Ak+1 ← Y(1)P
k(PkTPk + λDk)−1

Qk ← Ck �Ak

Bk+1 ← Y(2)Q
k(QkTQk + λDk)−1

Sk ←
[

(Ak
1 �c Bk

1)1L · · · (Ak
R �c Bk

R)1L

]
Ck+1 ← Y(3)S

k(SkTSk + λDk
1)

−1

k ← k + 1
until convergence

Similarly, Bk+1 can be found from the minimization of
gB(B|Ak,Bk,Ck), which has an analogous form with (11)
with H̄Bk = IJ⊗(QkTQk+λDk) and is a tight upper bound
around Bk of

fB(B|Ak,Ck) =
1

2

∥∥∥YT
(2) −QkBT

∥∥∥2
F

+

λ

R∑
r=1

√√√√( L∑
l=1

√
‖akrl‖22 + ‖brl‖22 + η2

)2

+ ‖ckr‖22 + η2,

(16)

with (cf. (5)) Qk , Ck � Ak. The unique solution of
min
B

gB(B|Ak,Bk,Ck) is given by

Bk+1 = Y(2)Q
k(QkTQk + λDk)−1. (17)

Finally, the objective function w.r.t. C may be expressed as

fC(C|Ak,Bk) =
1

2

∥∥∥YT
(3) − SkCT

∥∥∥2
F

+

λ

R∑
r=1

√√√√( L∑
l=1

√
‖akrl‖22 + ‖bkrl‖22 + η2

)2

+ ‖cr‖22 + η2,

(18)

where (cf. (6))

Sk ,
[

(Ak
1 �c B

k
1)1L · · · (Ak

R �c B
k
R)1L

]
.

The factor Ck+1 is found from min
C

gC(C|Ak,Bk,Ck) as

Ck+1 = Y(3)S
k(SkTSk + λDk

1)−1, (19)

where the locally upper bound function gC(C|Ak,Bk,Ck)
has an analogous form with gA(A|Ak,Bk,Ck) in (11) with

H̄Ck = IK ⊗ (SkTSk + λDk
1).

Summarizing the above, the steps of the proposed algorithm,
which alternatingly solves for A, B, and C, in that order,
are tabulated as Algorithm 1. As explained in Appendix B,
the proposed algorithm is a sort of hierarchical iterative
reweighted least squares (HIRLS) scheme, fully adjusted to
promote block and column sparsity in the BTD model. This
may be also seen from the expressions of Ak+1,Bk+1, and
Ck+1 given above and the form of the diagonal weighting
matrices Dk

1 and Dk
2 . Indeed, if R and L are overestimated,

reweighting via D1 imposes jointly block sparsity on A and B

and column sparsity on C, hence helping in estimating R. In
addition, reweighting via D2 promotes column sparsity jointly
on the corresponding blocks of A and B, thus estimating Lr’s.
This mechanism, combined with an appropriate selection of λ,
can reveal the actual value of R and the true block-term ranks
Lr’s, as it is also empirically demonstrated in the next section.

It should be noted that the majorization functions gA, gB,
and gC used previously for the derivation of the proposed
algorithm are quadratic upper bound functions that satisfy
Assumption A [53, Table 3] required for BSUM. In addition,
minimization of these functions w.r.t. the BTD factors at each
iteration of the algorithm leads in all cases to unique solutions.
Hence, according to Theorem 1 of [53], every limit point of
the BTD-HIRLS algorithm is a stationary point of the initial
objective function (9).

A notable feature of the proposed algorithm is that the
closed-form expressions for the BTD factors comprise matrix
operations only and relatively small-size matrix inversions,
which is translated to relatively low computational complexity.
In contrast, in [46], the BTD factors are not computed in closed
form but via a group-sparsity promoting iterative procedure in
each iteration of the algorithm, which results in an increase of
the computation time. Further reduction in the computational
complexity of the proposed algorithm is possible by eliminat-
ing negligible columns (column pruning) in the course of the
iterations (as in [49]).

IV. SIMULATION RESULTS

In this section, we report indicative simulation results with
both synthetic and real data for evaluating the performance
of the proposed algorithm. For comparison purposes, the
classical BTD-ALS algorithm of [23], which makes no use
of any low-rank regularization, and the BTD-AGL algorithm
of [46], which minimizes the objective function defined in (2)
enhanced by a proximal term, are also tested. It should be
noted that a block-pruning mechanism is implemented in
both BTD-HIRLS and BTD-AGL, that is, Ar,Br blocks
that correspond to columns of C with negligible energy are
removed as the algorithms progress. This can be applied in
both of the aforementioned algorithms due to their group-
sparsity imposing characteristics.

A. Synthetic data

In all cases, we generate BTD tensors X contaminated by
additive noise, i.e., Y = X + σN , where N contains zero-
mean, independent and identically distributed (i.i.d) Gaussian
entries of unit variance and σ is set so that we get a
given signal-to-noise ratio (SNR), with SNR in dB defined
as SNR = 10 log10 ‖X‖2F/(σ2‖N ‖2F). The entries of the
matrices Ar and Br and the vectors cr have been also sampled
from i.i.d. zero-mean Gaussian distributions of unit variance.
The tensor approximation is measured with the normalized
mean squared error (NMSE) over the blocks, defined as
NMSE(Â, B̂, Ĉ) = 1

R

∑R
r=1

‖ArB
T
r ◦cr−ÂrB̂

T
r ◦ĉr‖2F

‖ArBT
r ◦cr‖2F

, where

(A,B,C) and (Â, B̂, Ĉ) denote the true and the estimated
tensor factors, respectively. To calculate this metric, a linear
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TABLE I
NMSE AND RUN-TIME COMPARISON OF BTD-HIRLS, BTD-AGL AND

BTD-ALS FOR DIFFERENT SNR VALUES.

SNR (dB) aver. time (sec)5 10 15 20
BTD-HIRLS 0.0128 0.0040 0.0012 0.0004 2.5
BTD-AGL 0.0197 0.0053 0.0015 0.0004 68
BTD-ALS 0.0893 0.0562 0.0561 0.0561 2.2

assignment problem is solved to resolve the permutation
ambiguity.7 When R is overestimated (as in BTD-HIRLS and
BTD-AGL), the NMSE over blocks is calculated on the basis
of those of the R block terms that are “closer” to the true
ones. For the stopping criterion we use the relative differ-
ence between two consecutive values of the reconstruction
error. The algorithms stop either when the relative difference
becomes less than 10−5 or a maximum of 200 iterations
is reached. The regularization parameter λ was empirically
observed to depend on the dimensions of the tensor and the
model ranks as well as on the noise strength. Hence, for the
selection of the value of λ in BTD-HIRLS we employ the
heuristic rule λ = LiniRini(I + J + K)σ̂ with σ̂ being a
guess of the standard deviation of the noise. Initializations
are performed randomly. The γ-sweeping procedure employed
in [46] is also adopted here for BTD-AGL, namely, for
each single case (corresponding to a given realization and
an initialization) BTD-AGL is applied five times with five
different (and increasing) γ’s (as in [46]) and the estimates
from each run are used to initialize the next one.

1) Performance in the presence of noise: First, we test
the algorithms at different SNR values. We set I = 60,
J = 50 and K = 55. The true R is set to 5 and the
Lr’s are integer numbers chosen uniformly at random from
the set {2, 3, 4, 5, 6, 7, 8, 9}. The noisy tensors are generated
as described above. Since the ranks of the model are in
general unknown, we initialized BTD-HIRLS and BTD-AGL
with overestimates of the true ones, namely Rini = 10 and
Lini = 10 for all factor blocks. For BTD-ALS it was assumed
that the true R is known, while all Lr’s were overestimated
to 10. All algorithms were randomly initialized 10 times and
their best run, in terms of the NMSE, was kept. In Table I
we report the median NMSEs of the results obtained over
10 independent realizations of the experiment. The average
run-times (with Matlab 2019b in a MacBook Pro, 2.6 GHz
6-Core Intel Core i7, 16 GB 2667 MHz DDR4) are also
reported. The proposed method is seen to outperform both
BTD-ALS and BTD-AGL in terms of NMSE. Moreover, BTD-
AGL is considerably more computationally costly. Note that
this should not be attributed to the γ-sweeping procedure only.
Even a single run of BTD-AGL takes more time because, in
contrast to BTD-HIRLS (and BTD-ALS), BTD-AGL does not
rely on closed-form solutions for the updates of A, B, and C
but it instead involves separate iterative procedures for the
solution of each of the sub-problems.

Furthermore, BTD-HIRLS exhibits a much higher rate of
convergence than BTD-AGL, as demonstrated in Fig. 2, where

7The Matlab 2019b matchpairs function was employed for this purpose.
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Fig. 2. NMSE of BTD-HIRLS and BTD-AGL vs. iterations for SNR=10 dB.

the evolution of NMSE’s is plotted versus the number of
iterations, for SNR=10 dB and all 10 realizations of the
experiment. To facilitate the comparison of the 200 iterations
of BTD-HIRLS with the BTD-AGL sweeping runs, its curves
have been extended all the way to 1000 iterations based on
the NMSE value at iteration 200. It should be clear from
Fig. 2 that the γ-sweeping procedure is indeed necessary for
BTD-AGL as in most cases it does not converge before the
3rd round of it, that is, 600 iterations. In contrast, the proposed
method converges fast, requiring no more than 50 iterations
in all realizations.

2) Success rates for the recovery of R and Lr’s: In this
part, our aim is to demonstrate the capability of BTD-HIRLS
to revealing the true model structure. We set SNR=15 dB and
we estimate the success rates in the estimation of R as well
as of the Lr’s for 100 different realizations of the experiment.
Here tensors are of dimensions 18 × 18 × 10 and the true
number of the blocks, R, is set to 3. Again, we compare
BTD-HIRLS with BTD-AGL and for both algorithms we over-
estimate R and Lr’s as Rini = 10 and Lini = 10 for all block
terms. We examine two different scenarios:
a) Scenario I: The true block ranks are L1 = 8, L2 = 6
and L3 = 4. In this case,

∑R
r=1 Lr = min(I, J), that is, the

sufficient uniqueness condition is met. As it can be seen in
Fig. 3(a), BTD-HIRLS achieves success rates higher than 90%
for all Lr’s outperforming BTD-AGL in the task of revealing
the true Lr’s. This can be explained by the properties of the
regularizer of BTD-HIRLS which is carefully designed so as
to better capture the structure of the decomposition model.
The latter is also verified in Fig. 3(c), where we can see that
BTD-HIRLS is more efficient than BTD-AGL when it comes
to the success in estimating the number of block terms, R.
b) Scenario II: In this more challenging setting, we set L1 = 9,
L2 = 7, and L3 = 5. Thus, we now have

∑R
r=1 Lr >

min(I, J) and hence the sufficient uniqueness condition is
violated. However, it can be observed in Fig. 3(b) that BTD-
HIRLS reveals all Lr’s with high relative frequencies, slightly
outperforming BTD-AGL. Moreover, the success rate of accu-
rately estimating R remains high as in the case of the “benign”
scenario (cf. Fig. 3(d)).
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Fig. 3. Relative frequencies of the estimated values of Lr’s and success rate (%) of estimating R via BTD-HIRLS and BTD-AGL. SNR=15 dB. a) Scenario I:∑R
r=1 Lr ≤ min(I, J); true Lr’s are L1 = 8, L2 = 6, L3 = 4 b) Scenario II:

∑R
r=1 Lr > min(I, J); true Lr’s are L1 = 9, L2 = 7, L3 = 5 (c) success

rate of estimating R for Scenario I and (d) same for Scenario II.

B. Experimenting with real data: Hyper-spectral image de-
noising

Hyper-spectral images are known to exhibit high coherence
both in the spectral and the spatial domain [49]. As a re-
sult, low-rank matrix and tensor factorization methods have
been widely employed to address related problems such as
restoration, super resolution, de-noising, etc. [13], [14], [49].
Here, we consider the recovery of a hyper-spectral image
from its noise-corrupted version with additive Gaussian noise
of SNR=5 dB, with the aid of the BTD-HIRLS and BTD-
AGL algorithms. The idea is to recover the image as a low-
rank BTD approximation of the noisy one, capitalizing on the
low-rank structure of the HSI, which allows the removal of
the high-rank noise [49]. In both cases, we set Rini = 50
and Lini = 10. Note that, for HSI data, and using the HSI
spectral unmixing jargon, R is related to the number of the
end-members (i.e., spectral signatures of the materials that
exist in the depicted scene) while the Lr’s reflect the ranks
of the corresponding R abundance maps (i.e., the images of
the percentages of a given material in the given image). In this
example, we consider the Washington DC Mall AVIRIS image
captured at m = 191 contiguous spectral bands in the 0.4
to 2.4 µm region of the visible and infrared spectrum [49].
The size of the image is 150× 150 pixels.

Fig. 4 plots the values of the structural similarity index
(SSIM) between the original and the de-noised images, while
the results can be visually inspected in Fig. 5, where RGB

0 20 40 60 80 100 120 140 160 180

0.85

0.9

0.95

1

S
S

IM

Fig. 4. SSIM of the hyper-spectral images recovered via BTD-HIRLS and
BTD-AGL.

false color images reconstructed from bands (24,64,135) are
shown. The two algorithms are seen to perform equally well
in this experiment. Both estimate R as 8, which agrees with the
true number of the end-members in the scene depicted [49].

V. CONCLUSIONS

The challenging problem of efficiently and effectively es-
timating the model structure and parameters of a BTD has
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(a) (b)

(c) (d)
Fig. 5. False RGB color images of Washington DC Mall AVIRIS hyper-
spectral image. (a) Original (b) Noisy (c) De-noised with BTD-AGL (d) De-
noised with BTD-HIRLS.

recently received special attention due to the increasing appli-
cation range of this tensor model. This paper briefly reviews
the related literature and reports our recent results on this
topic, which are based on an appropriate extension to the BTD
model of our earlier rank-revealing work on low-rank matrix
and tensor approximation. The idea is to impose column
sparsity jointly on the factors and in a hierarchical manner that
matches the structure of the model, and successively estimate
the ranks as the numbers of factor columns of non-negligible
magnitude, with the aid of alternating hierarchical IRLS. The
proposed method enjoys fast convergence and low compu-
tational complexity, also allowing the negligible columns to
be pruned in the course of the procedure. Simulation results
that demonstrate the effectiveness of our method in accurately
estimating both the ranks and the factors in both synthetic and
real-world scenarios are reported.

Future work will include the development of constrained
variants of the method and (semi-)automatic ways of tuning
its regularization parameter.

APPENDIX A
PROOF OF POSITIVE SEMI-DEFINITENESS

Let the ILR × 1 vector a , vec(A) be
[a11, . . . , a1d, . . . , aI1, . . . , aId]

T where d , LR. After
some tedious algebra, it can be shown that H̄A−HA = λU,
where U is a Id × Id matrix which consists of I2 d × d
diagonal blocks denoted as Uij with i, j = 1, 2, . . . , I and
shown in (20) (see top of the next page). From (20) it follows
that U can be written in the form U = ŨTŨ, hence it is
positive semi-definite. In fact, Ũ is a d × Id matrix that
comprises I d × d diagonal blocks Ũi which can be written
as in (21) (see top of the next page). It thus follows that,
since λ > 0, H̄A −HA is also positive semi-definite, which

completes the proof. Analogous results for the B and C
sub-problems can be similarly arrived at.

APPENDIX B
THE HIERARCHICAL IRLS NATURE OF BTD-HIRLS

If x =
[
x1 x2 · · · xn

]T
is a sparse vector, the IRLS

algorithm for estimating x subject to an `2 proximity criterion
is derived by solving the following minimization problem at
iteration k + 1 [50]:

xk+1 = arg min
x

1

2
‖b−Rx‖22 +

λ

2

n∑
i=1

x2i√
xk2i + η2

. (22)

This problem admits the closed-form solution xk+1 =
(RTR + λWk)−1RTb, where Wk is a diagonal weighting
matrix whose ith diagonal entry is given by Wk(i, i) =
(xk2i + η2)−1/2.

In the same vein, it can be shown that the closed-form
expression for the BTD factor Ak+1 given in (15) can be
also obtained by solving the following minimization problem

Ak+1 = arg min
A

1

2

∥∥∥YT
(1) −PkAT

∥∥∥2
F

+

λ

2

R∑
r=1

(
1
2

∑L
l=1

‖arl‖22+‖b
k
rl‖

2
2+η

2

√
‖ak

rl‖
2
2+‖bk

rl‖
2
2+η

2

)2

+ ‖ckr‖22 + η2√(∑L
l=1

√
‖akrl‖22 + ‖bkrl‖22 + η2

)2

+ ‖ckr‖22 + η2

.

(23)

A similar minimization problem can be defined for computing
the factor Bk+1 as in (17), while we can also get (19) from

Ck+1 = arg min
C

1

2

∥∥∥YT
(3) − SkCT

∥∥∥2
F

+

λ

2

R∑
r=1

(∑L
l=1

√
‖akrl‖22 + ‖bkrl‖22 + η2

)2

+ ‖cr‖22 + η2√(∑L
l=1

√
‖akrl‖22 + ‖bkrl‖22 + η2

)2

+ ‖ckr‖22 + η2

(24)

By carefully inspecting the objective functions in (23) and (24)
and comparing with the conventional IRLS objective function
in (22), we easily recognize a hierarchical IRLS structure
consisting of two separate reweighting least squares steps.
Each step gives rise to a separate reweighting matrix. Namely,
the first one (D1) is composed of the inverses of the outer
summation terms of the regularizer in (9) and jointly weighs
the blocks of A,B, i.e. the Ar’s and Br’s, and the respective
columns of C. The second reweighting matrix (D2) contains
the inverses of the terms of the inner summation in (9) and
jointly balances the corresponding columns of the Ar’s and
Br’s. It thus follows that the proposed two-level `1,2 regular-
ization naturally leads to a IRLS scheme with a corresponding
hierarchy.
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