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Abstract—Clipping is a common type of distortion in which the
amplitude of a signal is truncated if it exceeds a certain thresh-
old. Sparse representation has underpinned several algorithms
developed recently for reconstruction of the original signal from
clipped observations. However, these declipping algorithms are
often built on a synthesis model, where the signal is represented
by a dictionary weighted by sparse coding coefficients. In contrast
to these works, we propose a sparse analysis-model-based declip-
ping (SAD) method, where the declipping model is formulated on
an analysis (i.e. transform) dictionary, and additional constraints
characterizing the clipping process. The analysis dictionary is
updated using the Analysis SimCO algorithm, and the signal is
recovered by using a least-squares based method or a projected
gradient descent method, incorporating the observable signal
set. Numerical experiments on speech and music are used to
demonstrate improved performance in signal to distortion ratio
(SDR) compared to recent state-of-the-art methods including A-
SPADE and ConsDL.

Index Terms—ASimCO, sparse analysis, clipping signal, non-
linear measurement

I. INTRODUCTION

PARSE representation plays an important role in inverse

problems and signal recovery tasks, such as denoising,
inpainting, declipping and super-resolution. By exploiting the
sparsity of signals in some domain, such as a transform do-
main, the original signals can be estimated from the observed
signals using a sparse representation model. Clipping is a
common type of distortion whereby the amplitude of a signal
is truncated if it exceeds a certain threshold. Clipping may
occur when a signal is recorded by a sensor limited by the
range of data that can be physically measured, when the signal
is digitized, or when an analog or digital signal is transformed
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through a nonlinear system. The clipped signal y € R™ is a
distorted observation of the ground truth signal z € R™,

y=f(z) (D

where f is a nonlinear clipping function. The observed signal
y may be divided into clipped regions and reliable (i.e.
unclipped) regions. Declipping aims to recover the original
signal x from the clipped signal y. This can be achieved with a
variety of methods, as summarized in a recent survey paper [1].
Typically, this problem can be formulated using a cost function
based on reconstruction errors, together with constraints or
regularizers that are consistent with the clipping process [2],
(31, [4], [5], [6].

A popular model used for the declipping problem is the
sparse synthesis model [7], [8]. In this model, the original
signal x is represented using an overcomplete dictionary
QT € R™*P je. z = QTa, where o € RP is a sparse
coefficient vector, p > m, and the superscript 7' denotes matrix
transpose. The original signal = can be reconstructed from the
observations y based on the dictionary and sparse coefficients
[9], [10]. Often, Iy or Iy regularizations are used to enforce
the sparsity constraint on the representation coefficients of the
signal [11], [12], [13], [14], [15]. The dictionary ) can be
fixed [2], or learned [16], [17], [18], [19]. The declipping
problem has been addressed by imposing constraints on the
samples in the clipped region. More specifically, the magnitude
of the original signal should be greater than or equal to that
of the clipped signal in the clipped region. An alternative to
the synthesis model is the sparse analysis model, where an
analysis dictionary Q2 € RP*™ with p > m is used to sparsify
the signal x € R™ [20], [21], [22], i.e. making 2z sparse.
Only few algorithms, such as the A-SPADE algorithm [23],
[24], [25], have considered the use of an analysis model for
signal declipping, with a fixed dictionary.

A. Related Work

In [2], the original signal is estimated using the reliable
(i.e. unclipped) samples from the observed signal, with the
dictionary formed using positions of the unclipped samples.
This algorithm does not involve the update of dictionary atoms
as they are pre-selected from the unclipped samples of the
observed signal. To reconstruct the samples that are clipped,
additional constraints are imposed on their amplitudes. This
algorithm works better for low clipping levels than for high [2].
When the clipping region is enlarged, the number of reliable
(i.e. unclipped) samples that can be used for constructing



the dictionary decreases, and as a result, the quality of the
recovered signal deteriorates [2].

n [19], [26], the concept of clipping consistency is ex-
ploited to improve the reconstruction of the original signal,
where additional constraints are enforced for signal recovery
and dictionary learning so that they are “consistent” with the
measurement process. For example, the magnitude of the orig-
inal signal in the clipped region of the observed signal should
be greater than the clipping level. Therefore, such information
can be used to design consistency constraints to improve
signal recovery. However, the algorithm is based on extended
linear least-squares, which may be limited for the signals with
rapidly changing dynamics (e.g. highly non-stationary signals).
It is worth noting that the idea of measurement consistency
could also be used to address the problem of signal recovery
from other type of nonlinear observations such as quantized
or 1-bit samples, as shown in a recent study [27]. Another
algorithm called S-SPADE [23], [24] is also based on the
synthesis model, which uses [y pseudo-norm to measure the
sparsity, and [ norm to bound the distance between the signal
and its sparse approximation.

With a similar heuristic as in the S-SPADE algorithm, the
A-SPADE algorithm [23], [24], [25] uses a fixed analysis
dictionary such as a discrete Fourier transform (DFT) or a
discrete cosine transform (DCT) for iterative signal recon-
struction, where the previous estimates are used to obtain
the new estimate. There are two main steps in the A-SPADE
algorithm. The first step is to obtain the representation matrix
using the fixed analysis dictionary and enforce sparsity of the
representation matrix. The second step is to apply a constraint
on the recovered signal to meet the clipping conditions. The
empirical results in [25] show that the A-SPADE algorithm
performs better than the S-SPADE algorithm.

Recent research, e.g., [27], has shown that learned dictio-
naries have the potential to outperform pre-defined dictionaries
in representing a signal and providing recovery of the original
signal from the clipped signal. Nevertheless, this research
has considered only the synthesis model. To the best of our
knowledge, dictionary learning with a sparse analysis model
has not been applied in the context of signal declipping.
In this paper, we will bridge this gap and examine the use
of a dictionary learned with a sparse analysis model for
signal declipping. This idea is partially inspired by the work
[20], where an analysis dictionary was shown to outperform
a synthesis dictionary for signal recovery from corrupted
observations.

B. Contributions

Our contributions can be summarized as follows. (1) We
build a new model (cost function) for signal declipping with
the consistency constraint defined on an analysis dictionary. (2)
We then develop a two-stage method for optimizing the cost
function. This involves dictionary learning using the Analysis
SimCO (ASimCO) algorithm [20] in the first stage, and signal
recovery in the second stage. To recover the original signal
from the clipped signal, we developed two methods based
on least squares and projected gradient descent, respectively.

(3) We evaluate the performance of the proposed algorithms
with different parameters, in terms of signal to distortion ratio
(SDR). We also compare our algorithms with two baseline
methods, i.e. A-SPADE [23] and ConsDL [27], and show that
our algorithms perform significantly better than the ConsDL
algorithm and slightly better than the A-SPADE algorithm.

C. Notations

In this paper, uppercase letters denote matrices, e.g. ¥ €
R™*™ and lowercase letters denote vectors, e.g. y € R™.
The ith row of X is denoted as X; ., and the jth column of
X is denoted as X, ;. For a matrix X, || X||o denotes the [y
pseudo-norm, measuring the sparsity, i.e. counting the number
of nonzero elements of X. || X || denotes Frobenius-norm of
the matrix X. ||y||; denotes the [;-norm of the vector y. The
symbols < and >~ denote the element-wise smaller (or equal)
and larger (or equal), respectively. I represents an identity
matrix, 1 is an all-one vector, and 1 an all-one matrix. The
symbol (z)4 denotes max(0,z), (X )4 denotes max(0,X),
(z)— denotes —(—x)4, and (X)_ denotes —(—X). The op-
erators max(X,Y') and min(X,Y") denote taking the element-
wise maximum and minimum of X and Y, respectively. We
use C to denote a set. For convenience, we use  and Q7 to
represent the analysis and synthesis dictionary, respectively.

D. Organization of the Paper

In Section II, we provide some background materials about
the Analysis SimCO algorithm. In Section III, we formulate
the declipping problem. In Section IV, we present our method
for the declipping problem, including the cost function and the
optimization algorithms. In Section V, we present simulation
studies of the proposed algorithm, with a focus on the choices
of the parameters and comparisons between the least-squares
based method and projected gradient descent based method
for the recovery of the original signal. In Section VI, we
compare our algorithm with the two baseline algorithms.
Finally, Section VII draws conclusions and discusses future
works.

II. ANALYSIS SIMCO ALGORITHM

In this section, we provide an overview of the ASimCO
algorithm that has been already published in [20]. Such
materials are not novel, but included to make the algorithms
presented later self-contained. In an analysis model, the anal-
ysis dictionary 2 € RP*™ is sought to sparsify x [28], [29],
[30] as follows

a=Qr st |a|,=p—1 (2)

where x € R™, a € RP, 0 <[ < p, and [ is the co-sparsity
[31] indicating the number of zero elements in a, and a is
the analysis representation vector of the signal x with respect
to . In this model, if = is a clean signal, we can obtain
the representation vector a directly via multiplying = by the
analysis dictionary 2. Note that the sparsity constraint is an
upper bound. In other words, if the value of Qx is more than
l co-sparse, no extra nonzero values will be added to increase



its [p pseudo-norm. In practice, 2 can be either a pre-defined
fixed analysis dictionary, or an analysis dictionary learned
from observed signals. To learn the analysis dictionary, we
can use an iterative algorithm alternating between two steps:
analysis pursuit and analysis dictionary update. This problem
is often called as analysis dictionary learning (ADL) [22], [31],
[28], [32], [33]. Given X which contains the training signals,
the ADL problem can be described as follows [34]

{AQ}Z&@%%MA—QXm,MwAﬂb:p—LW(@

where X € R™*™ is a matrix containing n training examples
each of dimension m, and A € RP*" is the analysis represen-
tation matrix. In order to mitigate the scale ambiguities, the
ASimCO algorithm optimizes the following cost [20], [35], by
imposing a constraint on the rows of €,

{A,Q} =argmin ||A — QX||2F
A0

st | Aull, =p—1,¥i @
[1€2),:[l, = 1, V5.

Different from other ADL algorithms, such as Analysis K-
SVD [28], multiple atoms in the analysis dictionary {2 can
be updated simultaneously in the ASimCO algorithm. The
ASimCO algorithm alternates between two stages, i.e. analysis
pursuit and analysis dictionary updating, as discussed next.

A. Analysis Pursuit

In this stage, we need to compute the analysis representation
matrix A, given the analysis dictionary 2 and the signal X.
Similar to (2), we can obtain A as follows

A=QX. (5)

Since the analysis dictionary is generated arbitrarily, it does not
necessarily satisfy the co-sparsity constraints in (2), therefore a
hard thresholding operation is applied to ensure the co-sparsity
constraint

A= HT(A). (©)

This is a nonlinear operation to set the smallest | elements
(in magnitude) in each column of A to zeros. Among all the
matrices satisfying the co-sparsity constraints, A is the best
approximation of A in terms of the Frobenius norm error.

B. Dictionary Update
Given X and A, the analysis dictionary €2 can be found by
optimizing the following cost function [35], [20]

argmin g (?) = argmin |4 — QX||§7 s.t. |95, = 1, V5.
Q Q

(7
The unit-norm constraint on € suggests that columns of Q7
sit on the unit sphere S = {u € R™ : vTu = 1}, ie.
(©2,.)T € S. To optimise this cost function, we can use the
gradient descent based method, as detailed in [36] and [20].

[P

The negative gradient of the objective function in (7) with
respect to € can be obtained as

H=-vg(Q)
2
:_GHA—QXHF (8)
0N
=24XT —20xx7T.

To update (2, a line search method accounting for the unit-
norm constraint [|€2;.[|, = 1 was proposed in [20], where the
search direction of the jth row of ) is projected onto the
tangent space of S as follows

hy = H;,: (I -95.9;.) ®)
The jth row of {2 can then be updated as follows [20]
0, R
(€)= 4 o008 € sl,) + () sin e sl
otherwise
(10)

where £ is the step size, which can be either fixed, or varied
by searching for the optimal value at each iteration in terms
of the golden section rule, as detailed in [36], [37]. Readers
may refer to [20] for more details about the derivation of (9)
and (10) by incorporating [|€2;.|l, = 1. For the convenience
of later use, we abbreviate (10) as follows

Q=w(Q). (11)

I1I. MODELLING OF CLIPPED OBSERVATIONS
The clipped signal y in (1) is a distorted version of the
original signal z, and can be written as follows
9+ if xZ; 2 9+
T; others

12)

where T > 0 and ~ < 0 are positive and negative clipping
levels, respectively, as illustrated in Fig. 1. This representation

0" Yi

N /"

Fig. 1. Hard clipping: y is the observed signal, which contains the nonlinear
observations of the original signal . #1 and 6~ are the maximum and the
minimum of the observed signal.

can also be written in vector form

y=f(x)=Mz+0"MT1+0 M1 (13)



where 1 is an all-one vector, M", Mt and M¢~ are diagonal
binary sensing matrices defining the reliable, positive and
negative clipped samples, respectively. In practice, we can
select the maximum and minimum value of the observed signal
as 07 and 07, i.e. 07 = max(y), and 6~ = min(y).
Declipping can be regarded as an inverse problem with
discarded samples. Given the observed signal y with clipped
samples missing, the aim is to reconstruct the original signal
z from y, by solving the inverse problem [4], [16], [38], [39].
In declipping problems, the amplitudes of the original
signal in the clipping region are greater than or equal to the
amplitudes of the observed signal. Therefore, we can define a
so-called consistency set, as in [19], in closed form as follows

Cly) = {z|M"y = M"a, M*Ty X Mo, My = Mz}

(14)
This set contains all the possible = that could have generated
the observation y that is consistent with the observation (i.e.
measurement) process, which, in this case, is described by the
clipping function.

IV. PROPOSED METHOD

A. Cost Function

Our method is built on the following cost function

{Q, X, A} =argmin |4 — QX||§;
0,X,A

st |[Ally=p—1,Vi (15)
€211, = 1,Vj
XecCy)

where X € R"™*" represents the signal to be estimated, ¥ €
R™>™ represents the clipped signal, and C'(Y") is a consistency
set defined on matrices, i.e. replacing y by Y and =z by X in
(14). The cost function (15) consists of two parts. The first
part, || A — QX]| i, aims to learn the analysis dictionary {2 that
can sparsify the signal X. The constraint on || A. ||, is used
to enforce the sparsity of the representation coefficients A,
and the constraint on ||€2; .|, is applied to mitigate the scale
ambiguity of the analysis dictionary 2. The second part takes
into account the nonlinear observations from the clipped signal
Y, and enforces the recovered signal X to be on the set C'(Y").
In practice, Y could be formed by splitting the clipped signal
into n segments each of dimension m. Our aim is to learn
the analysis dictionary (2 and estimate the signal X, given the
observed signal Y.

B. Optimization Process

To optimize the cost function (15), we develop a two-
stage method where the unknown variables are estimated
in an alternating manner, as commonly adopted in sparse
representations and analysis dictionary learning.

In the first stage, given X! obtained in iteration ¢, Ql¢+1]
and Al*t1] are updated in the (¢ + 1)-th iteration, based on the
following cost function

{040, A1) = argmin 4 - X1 H2
Q,A F
st A, =p—1Vi
192,11, = 1,5

(16)

Note that X% is initialized as Y. This stage can be achieved
by the ASimCO algorithm [20] as reviewed in Section II.
The second stage is to find X, given ) and A, under the
constraint on X to enforce consistency, i.e. X € C(Y), as
follows
X = argmin ||A — QXHQF
X a7
st. Xel(®Y).

The proposed sparse analysis model based declipping (SAD)
algorithm can be outlined in Algorithm 1.

Algorithm 1: Proposed SAD

. Initialization: Q, X =Y ¢t =0, &

. While not converged do

. Update €2 and A by solving (16) using ASimCO.
. Update X by solving (17).

t=t+1

. End while

AN AW

To optimise the cost function (17), we present two methods,
i.e. the least squares based method and projected gradient

based method, respectively.
The least squares based method can be achieved by ap-
proximating the constrained optimization problem (17) as an

unconstrained one. We note that the term |[|[M"(Y — X )||§
promotes the recovered signal to be close to the original
signal for the uncligped part of the signal, and the terms
| Mt (01 — X) 4 || and [ M (6~ 1 — X)_||% promote the
amplitudes of the recovered samples in the clipped regions to
be consistent with the clipping function, where 1 € R™*" is
an all-one matrix. As a result, instead of optimizing (17), we
can optimise the following cost function

X = argynin 14— QX + I - X1

a0+ e - X0 ]

(18)

where a regularization term controlled by a parameter p is

used to approximate the constraint X € C(Y). A relaxed

problem similar to the one proposed in (18) has been used in

[4], [27], [40], [41] in the context of the synthesis model with
a synthesis dictionary [42], [43], [44].

We then introduce an auxiliary function Z(X) € R™*"

defined as follows

Z(X)=M"Y + M max (#"1, X) + M° min ("1, X)
(19)
With Z(X), we can simplify (18) to

X = arg min |4 ~ QX2 + u[|2(X) - X (20)



With a least squares based method [45], [46], [47], the solution
of X can be obtained analytically from (20) as

X0 = (QTQ 4 1) (QT A+ pzZ(X1). @D
where I € R™*"™ is an identity matrix, A and {2 are obtained
by following the dictionary update step in (16). In our work,
) is real-valued, and Q72 is a positive definite matrix. As
a result (QTQ + pI) is a full-rank invertible positive definite
matrix. Empirically, we observed that the matrix inversion was
stable in our experiments. Note that the use of the auxiliary
function Z(X) is to facilitate the solution of (20). Although
the three types of samples are regularized with a single p in
(18), there may be a potential scope to treat them differently
with different regularization parameters.

The second method for optimising (17) is based on the
projected gradient algorithms [47], [48]. The gradient of the
objective function (17) with respect to X is

vlla - x| - 204- X o
=-20"A+20"0X.
Thus, X[+ can be obtained as
Xt = xM _ \(—20T7 A + 2070x W) (23)

where A is a step size. A projection step is then used to enforce
X+ € C(Y) as follows

X+ MY + Mt max (9@, X[t“])
(24)
+M°" min (071, X[Hl])

where the measurement matrices are the same as those in
Equation (14), and < means updating X [*+1] with the formula
on the right hand side.

With the SAD algorithm, we can finally obtain the analysis
dictionary 2, the analysis representation matrix A and the esti-
mated signal X. Algorithm 2 summarizes the implementation
details of the SAD algorithm.

Algorithm 2: Implementation details of SAD

1. Initialization: Q°1, X1 =Y ¢ =0, 1, pu,

2. While not converged do

3. Input: X[t],Q[t],Q[l] = Q[t], k= O,Q(Q[o]) =0
a. do

b Q) = w ()
using equation (11) for function w (2)
¢ Apyy = HT, (2 X1)

using equation (6) for function HT;(QX)

d k=k+1
e. until a pre-defined number of iterations is reached.
output: QU = Qp AT = Ay, Z1H
4. Q= Q1 A = Al ZIt+1]

a. using equation (21) or (23) (with (24)) to get X [t+1]
b. output: X [*+1]
t=t+1
. End while
7. Output: X

jarl
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C. Algorithm Convergence and Initialization

The SAD algorithm alternates among the steps of analysis
sparse coding, analysis dictionary update and signal estima-
tion. The algorithms for estimating X, i.e. the operation 4.a
in Algorithm 2 have been shown to be convergent in [20]
and [49]. However, convergence of Step 3 cannot be ensured.
We observed that g (Q[k]) may increase occasionally, which
could be caused by the update of X with (20) and (19)
in which the comparison between X and 671 or 671 is
performed. However, the decreasing trend of g (Q[k]) is often
restored automatically with further iterations. In practice, we
did not observe any other issues about the convergence of the
algorithm. We have used a pre-defined number of iterations
(e.g. 10) as the stopping criterion for the inner loop for
updating the analysis dictionary. In Algorithm 2, we use the
superscript ¢ to denote the iteration index for the outer loop,
while the subscript k for the inner loop.

In the SAD algorithm, the initial dictionaries €2 can be set
as random matrices with normalized rows, or as pre-defined
dictionaries such as the DCT dictionary. The initial dictionaries
can affect the results, as observed in our experiments. We will
examine the impact of the initial analysis dictionary on the
declipping performance in Section V.

V. SIMULATIONS

In this section, we focus on demonstrating the performance
of the proposed SAD algorithm using different parameters, on
sound datasets. Our algorithms can be easily applied to other
data, such as images. We use SDR as the performance metric,
which is defined as follows

]l

SDR (&, x) = 20log o= 2
2

(25)

where % is the estimated signal, and z is the original signal.

In the following subsections, we will show the setup of our
experiments, the performance of the SAD algorithm, including
the influence of the parameters m and [, and the initialization
of Q2 on the performance of the algorithm. The code of our
proposed SAD algorithm can be downloaded from Github'.
We will present the comparisons of our algorithms with the
baseline algorithms, i.e. ConsDL [19] and A-SPADE [23], in
Section VI.

A. Experimental Setup

To form Y, we take the clipped signal and divide it into
n segments, each of length m, with overlaps between the
adjacent segments, using a sliding window. For example, if the
clipped signal has 16384 samples, we can form Y as a matrix
64 x 16321, using a sliding window of m = 64 samples with
a hop size equal to one sample. In the experiments in this
section, we tested several different values for m, i.e. m = 16,
32, 64, and 128. The specific values used are discussed in the
corresponding subsections.

In our experiments, the clipping level 6 was set using a
routine from [27], which takes an input SDR and outputs the

Uhttp://github.com/BinLi504/SAD_matlabopen
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Fig. 2. The waveform of the original speech signal and the clipped signal used
for performance tests. The original signal was normalized to [-1,1], before
being clipped at the level 6 = 0.15.

clipping level. The clean signal was normalized before it was
clipped at the specified level. More details about the generation
of clipped signals are given in Section VI-A.

Our experiments were performed using Matlab on the Intel
Core i5-7500 CPU, with memory 8 G-Bytes, on Windows 10
operating system.

B. Empirical Tests of Parameters

We first test the performance of the proposed algorithm
(with the least-squares based update for X) using a speech sig-
nal “dev_male2_150ms_1_ch12.wav” from the SISEC dataset
[50]. These signals contain stereo recordings, with 8 bits per
channel, sampled at 16 kHz. One of the channels is used as
test data. The original signal is relatively long, therefore we
cut it into 16384 samples, as shown in Fig. 2 (a). We study
empirically the set up of important parameters such as co-
sparsity and dimension of dictionary atoms. Here we use a
relatively short signal for parameter tuning for the proposed
SAD method, however, we have also used longer and more test
signals in Section VI for performance comparisons on speech
and music datasets. The clipping level 6 is set as 0.15. The
waveform of the clipped signal is shown in Fig. 2 (b). We set
m = 64, | = 120, and the number of iterations as 20000.

1) Selection of Co-sparsity | and m: In the SAD algorithm,
the observed signal y is divided into segments each of length
m (i.e. equal to the dimension of dictionary atoms in terms of
our formulations discussed in Section IV), and the estimated
signal is finally obtained by concatenating the segments with
an overlap-and-add technique. The dimension of dictionary
atoms m and the selection of co-sparsity [ affect the quality
of the recovered signal. We study the impact of the co-sparsity
[ on the performance of the proposed algorithm. The value of
l is varied, with a step increase of 8. The clipping level is
fixed as 6 = 0.15.

Fig. 3 shows the results with different I’s, when m = 128,
64, 32, and 16, respectively. It can be seen that the setting of [
is related to m. For example, when m = 128, the best choice
for [ is 232, while for m = 64, the best choice for [ is 120.
When m = 32, the best choice for [ is 56, while for m = 16,
the best choice for [ is 24. When we use different m’s, [ should
be set accordingly. For each m value, we choose [ empirically
in terms of the reconstruction quality. The SDR results with

11 1
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o 10 o 9
kel kel
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®» 9 »n 7
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8 5
144 160 176 192 208 224 240 256 0 16 32 48 64 80 96 112128
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Fig. 3. The SDR achieved using different co-sparsity I. The setting of [ is
related to the dimension of dictionary atoms m. For a given m, the choice [
can be found empirically.

o
S,
o
[
w
95+ 1
9 1 1 1
1632 64 128 256

Dimension of Dictionary Atom

Fig. 4. The SDR of the recovered signal, achieved with different dimension of
dictionary atoms m. The signal reconstruction performance by the proposed
algorithm increases with the increase of m, however, the performance increase
tends to be saturating with larger m.

different m’s are presented in Fig. 4. It can be observed that the
SDR increases with the increase of m, but such improvement
is flattened when m is relatively large. Although only a single
signal was used in this test, we observed empirically that the
performance trend is similar when other signals were used.
Thus, the parameters tuned in this way seem to be appropriate
for subsequent experiments.

2) Signal Recovery: To illustrate the performance of the
proposed algorithm, we show the plots of three segments of
the recovered signal and the original signal in Fig. 5. Here
m = 64 and [ = 120. It can be seen that the recovered signal
is similar to the original signal.
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Fig. 5. Signal recovery examples: (a) (c) and (e) show three segments of an
original clean speech signal and the clipping level. (b), (d) and (f) show the
corresponding segments of the estimated (i.e. declipped) signal.

C. Dictionary Initialization: Random versus DCT

With the speech signal used in the previous section, we
compare the performance difference for the dictionaries initial-
ized as a random Gaussian matrix and a uniform distribution
matrix. We run the experiments ten times and observe the
effect of these initial dictionaries on the signal recovery results.
The estimate of X is based on the least-squares update. The
average results of these tests are presented in Fig. 6. It can
be seen that the results are similar. The standard deviation of
the SDR results in the 10 tests with Gaussian matrix is 0.083
dB and the uniform matrix is 0.052 dB. It appears that the
randomly initialised dictionaries with these two distributions
give similar SDR results.

We also compare the randomly initialised analysis dictio-
nary with the dictionary initialised as DCT. As the two random
dictionaries tested above give similar results, we initialise
the random matrix by generating the elements following a
Gaussian distribution with zero mean and unit variance. The
atoms in the initial dictionaries were normalized. In this
experiment, we have increased the number of test signals to
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Fig. 6. The SDR of the declipped signal, achieved with the analysis dictionary

initialized as a random matrix whose elements follow Gaussian or uniform
distributions with zero mean and unit variance.
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Fig. 7. The SDR of the declipped signal, achieved either with the dictionary
initialized as a random matrix whose elements follow Gaussian distribution
or with a DCT dictionary.

obtain more reliable results. We used 10 speech signals?, and
the length of each signal is about 5 to 6 seconds, including
about 80000 to 96000 samples (as the sampling rate is 16
kHz). The parameters of the SAD algorithm are set as m = 72
and [ = 136, and X is solved with the least-squares update.

Fig. 7 shows the SDR of the recovered signal with the dic-
tionary learning algorithm in which the dictionary is initialised
as either a random Gaussian matrix or as a DCT dictionary.
Overall, using the DCT dictionary performs similarly to using
a Gaussian dictionary in the initialization. When the clipping
level is at 0.1, the SDR obtained by using DCT is 0.3 dB
higher than that using the Gaussian dictionary.

Zhttp://www.repository.voxforge1.org/downloads/SpeechCorpus/Trunk/
Audio/Main/
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Fig. 8. The SDR of the declipped signal, obtained with the proposed SAD
algorithm, where the least squares method and the projected gradient method
are used for updating X, respectively.

D. Least Squares versus the Projected Gradient

In the SAD algorithm, two methods can be used to obtain
X, i.e. the least squares based method and the projected gradi-
ent based method. In this section, we compare the performance
of these two methods. We use the same experimental set up
as in Section V-C, with the analysis dictionary initialised with
the DCT dictionary. Fig. 8 shows that the SDRs obtained by
the two methods are very similar.

We have tuned the parameters such as the step size A, by
running a set of experiments. In particular, we tested different
combinations of the parameters § = 0.2, and 0.8, A = 0.1,
0.25, and 0.4, and the number of iterations equal to 1, 10
and 20, respectively. The test results are given in Table 1. The
results show that the step size and the number of iterations
can affect the SDR results of the recovered signals. Based on
these tests, we chose the step size at 0.25 and the number of
iterations at 10 in the subsequent experiments.

We also analyzed the impact of 1 on the results by changing
w from 0.4 to 1.8, while keeping other parameters unchanged.
The test results for the clipping level at 0.15 (i.e. input SDR
at 5 dB) are given in Table II. From the table, we can see that
the selection of p has a very small influence on the results.

These two methods seem to offer very similar performance,
and both need to tune a parameter (i.e. x in the least squares
based method, and X\ in the projected gradient method).
However, we found empirically that their computational com-
plexities can be different. The projected gradient based method
contains an additional loop (i.e. the inner loop for updating X),
and if multiple iterations in the inner loop are performed, its
complexity will become higher than the least squares based
method. For this reason, we will only use the least-squares
based method for the comparisons in the next section.

VI. COMPARISON WITH BASELINE ALGORITHMS

In this section, we compare the performance of our proposed
SAD algorithm with two recent baseline algorithms, i.e. the
ConsDL algorithm [19] and the A-SPADE algorithm [23].

TABLE I
TESTS FOR DIFFERENT COMBINATIONS OF PARAMETERS (CLIPPING
LEVEL, STEP SIZES AND ITERATION NUMBERS) IN THE PROPOSED
METHOD WITH PROJECTED GRADIENT.

0 A iterations | SDR (dB)
0.2 0.1 1 15.36
0.2 0.1 10 14.70
0.2 0.1 20 14.76
0.2 0.25 1 15.35
0.2 0.25 10 14.54
0.2 0.25 20 14.54
0.2 0.4 1 13.47
0.2 0.4 10 12.10
0.2 0.4 20 12.01
0.8 0.1 1 39.88
0.8 0.1 10 39.90
0.8 0.1 20 39.98
0.8 0.25 1 39.94
0.8 0.25 10 4091
0.8 0.25 20 41.12
0.8 04 1 42.32
0.8 0.4 10 41.20
0.8 0.4 20 41.31

TABLE 11

THE INFLUENCE OF DIFFERENT p1 VALUES ON SIGNAL RECOVERY
PERFORMANCE IN TERMS OF SDR OF THE RECOVERED SIGNAL.

I 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

SDR 8.64 | 8.64 | 8.66 | 8.660 | 8.66 | 8.66 | 8.66 | 8.64

A. Datasets and Test Preparation

Both speech and music data were used in our evaluations.
The speech signals were taken from the Trunk dataset. We
used four folders from this dataset, which are respectively, AT-
20130718-lws, Adminvox-05232006, 1snoke-20120412-hge,
and 1337ad-20170321-ajg. In total, there are 50 speech signals
from these four folders, sampled at 16 kHz. The length of each
signal is about 4 to 7 seconds. The music signals were taken
from the DSD100 dataset’. The music files used are the vocals
of 055 — Angels In Amplifiers - I'm Alright, vocals of 081
- Patrick Talbot - Set Me Free and vocals of 049 - Young
Griffo - Facade, downloaded from DSD100 dataset. Each of
these files contains sound recordings of approximately 45 to
49 seconds, sampled at 44.1 kHz. We then pre-processed the
data, and generated 50 signals each of 1.9 seconds, i.e. 81920
samples.

The clipped signals were generated in the same way for
speech and music signals, by following [27]. More specifically,
we set the same input SDR for each of the 50 signals, and
tune the level of clipping to match the input SDR. We also
tune the input SDR so that the level of clippping is achieved
approximately at the level specified. We then calculate the
average level of clipping over these 50 signals. For example,
when the input SDR is 4.2 dB for 50 speech signals, the
average 0 is approximately 0.1. We varied the clipping level
0 from 0.1 to 0.9, which corresponds to the input SDR from

3https://www.loria.fr/~aliutkus/DSD100subset.zip



TABLE III

MAPPING BETWEEN AVERAGE CLIPPING LEVEL 6 AND INPUT SDR OF THE

SPEECH SIGNALS (S/S), AND MUSIC SIGNALS (S/M) USED IN THE

EXPERIMENTS
0 0.1 ] 02|03 04 ] 051 06 0.7 | 0.8 | 09
S/S 42 175 | 113 | 15 19 | 235 |29 | 36 | 45
S/M 3517 10.8 | 14 18 | 22 27 | 33 | 42
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Fig. 9. The average SDR over all the recovered speech signals obtained by
the SAD algorithm as compared with A-SPADE and ConsDL, for different
clipping levels.

4.2 dB to 45 dB, as shown in the second row of Table III.
Note that for the same input SDR, different signals may lead
to slightly different 6 values. Therefore, the € is an average
0 for all the clipped signals used in our tests, tuned to be
approximately at the corresponding clipping level.

The implementation of the ConsDL algorithm [19] comes
from the author’s personal homepage*. For the A-SPADE
algorithm [23] we used its version 1.0, downloaded from the
author’s homepage’. In our experiments, the default settings
of the ConsDL (i.e. the size of overlapping time frames
N = 256 with rectangular windows and 75% overlap) and
A-SPADE algorithms were used. The parameters used in the
SAD algorithm are set as p = 144, m = 72 and [ = 120,
with initial analysis dictionary 2 set as a DCT dictionary
matrix. The condition for stopping algorithm iterations is
that the difference between the values of the cost function
at two consecutive iterations is less than 0.001. The same
experimental setup has been used for the experiments on
speech and music data. We take the average of the SDRs
calculated from the recovered signals from the 50 tests as the
performance metric.

B. Results on Speech Signals

Fig. 9 shows the average SDR of all the recovered speech
signals for each clipping level. From this figure, we can see

“https://www.cvssp.org/Personal/LucasRencker/software. html#DL_for
_declipping
Shttp://spade.inria.fr
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Fig. 10. The variance of the SDRs for all the recovered speech signals
obtained by the SAD as compared with the A-SPADE and ConsDL algorithms,
for each clipping level.
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Fig. 11. The average SDR of all the recovered music signals obtained by

the proposed SAD algorithm, as compared with the A-SPADE and ConsDL
algorithms for different clipping levels. For comparison, the average input
SDR is also shown for each clipping level.

that the proposed SAD algorithm performs better than other
algorithms, except when 6 = 0.1, and 0.2, in which case, A-
SPADE performs better. Fig. 10 shows the variance of the SDR
results for all the tests on the 50 speech signals obtained by the
SAD for each clipping level, as compared with the baseline al-
gorithms. It can be observed that the ConsDL algorithm gives
the smallest variance, while the variance of A-SPADE is higher
than those of other compared methods including the proposed
SAD algorithms, except when 6 < 0.2. It is interesting to
note that the variance of all the algorithms increases with the
increase in 6, which is probably not surprising considering the
fact that the average SDR improvements also increase with the
increase in 6.
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Fig. 12. The variance of the SDR results for all the recovered music signals
obtained by the SAD, as compared with the A-SPADE and ConsDL algorithms
for each clipping level.
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Fig. 13. The average of the SDR results for all the tests on the recovery of the
down-sampled music signals, obtained by the SAD, as compared with the A-
SPADE and ConsDL algorithms for different clipping levels. For comparison,
the average input SDR is also shown for each clipping level.

C. Results on Music Signals

Fig. 11 shows the average SDR results of all the tests for
the music signals. The proposed method performs better than
ConsDL for all the clipping levels, and slightly better than
A-SPADE, except for low clipping levels. Fig. 12 shows the
variance of the SDR results of the recovered music signals,
for each clipping level. From this figure, we can see that
the variance of the SAD algorithm is smaller than that of
the A-SPADE algorithm but larger than that of the ConsDL
algorithm.

In the A-SPADE algorithm, we used the default parameter
set up in its original codes, which was for signals sampled at
16 kHz, and may not be optimal for the experiments on the
music signals sampled at 44.1 kHz. In practice, it may not be
a trivial task to tune the parameters of A-SPADE to obtain the
optimal performance for a different sampling rate. To address
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Fig. 14. The variance of the SDR results for all the tests on the recovery of
the down-sampled music signals, obtained by the SAD, as compared with the
A-SPADE and ConsDL algorithms for different clipping levels.

this issue, we run another set of experiments, where we first
re-sample music signals from 44.1 kHz to 16 kHz. We then
run the tests of all the compared algorithms on the re-sampled
music signals. Fig. 13 shows the average SDR of the recovered
50 music signals obtained by the proposed SAD algorithm, as
compared with A-SPADE and ConsDL. From this figure, we
can see that the SDR results obtained are quite similar to those
in Fig. 11. This shows that the influence of sampling rate on
the performance of the algorithms compared is very small. Fig.
14 shows the variance of the SDR results for all the tests on
the re-sampled music signals obtained by the SAD for each
clipping level, as compared with the baseline algorithms. From
the figure, we can see that the general trend of performance
is similar to those shown in Fig. 12, although it appears
to be more stable with respect to different clipping levels.
The ConsDL algorithm still gives the smallest variance. The
variance of A-SPADE is higher than those of other compared
methods including the proposed SAD algorithm.

D. A Note on Running Speed

We found empirically that the proposed SAD algorithm is
computationally less efficient as compared with A-SPADE and
ConsDL. To process a signal of 81920 samples with a dic-
tionary of dimension 144 x 64, the proposed SAD algorithm
using least-squares based update for X took about 18 minutes
to run for 500 (outer) iterations, with the simulation envi-
ronment we mentioned earlier. Using the projected gradient
based method, the proposed SAD algorithm needs to run an
additional loop (i.e. the inner loop for updating X'). With the
same number of iterations for the outer loop, i.e. 500, the
SAD algorithm took about 17.5 and 26.5 minutes, respectively,
when the inner loop was run for one iteration and 10 iterations,
respectively. However, the A-SPADE and ConsDL algorithms
took about 6 and 6.5 minutes, respectively.



VII. CONCLUSION

We have presented a sparse analysis-model based signal
declipping algorithm. In our proposed SAD algorithm, the
cost function is established on a sparse analysis model, and
the clipped signal is restored by using the analysis dictionary
learned directly from the observed signal, via the Analysis
SimCO algorithm. The evaluation results showed that our
proposed algorithm offers better performance in terms of SDR
and more stable results in terms of variance, than two recent
baselines, namely, the ConsDL and A-SPADE algorithms.

In our work, we considered only real-valued analysis dic-
tionary 2. The method could potentially be extended to
complex-valued dictionaries, such as the dictionaries learned
with complex non-negative matrix factorization [51], which
uses another matrix to encode the phase term of the complex
numbers. Including phase term could help maintain phase
coherence between different frequency components within the
signal [51].

In addition, we used a fixed step size in the projected gra-
dient method, which could be replaced by a variable step size,
and optimized using e.g. the golden section rule, as used in
[36] and [37]. Other possible directions of future work include
extension of the SAD algorithm for noisy signal declipping,
the employment of the dictionary pair learning (DPL) [52]
for declipping, and comparisons with other analysis dictionary
learning algorithms such as [53].
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